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EXECUTIVE SUMMARY 

 

Problem Statement 

Externally bonded carbon fiber reinforced polymer (CFRP) laminates are a feasible and 
economical alternative to traditional methods for strengthening and stiffening deficient 
reinforced concrete and prestressed concrete girders. Although extensive research has already 
been undertaken to investigate both short term and long term behavior of CFRP strengthened 
bridge girders, the majority of work conducted to date has been experimental in nature. 
Furthermore, while some studies have proposed design models and methodologies to identify the 
necessary number of laminates to achieve a target strength or stiffness, many important design 
issues still remain unresolved.  

Objectives 

The overall objective of the research reported herein is to use state-of-the-art numerical 
techniques to resolve some of the open questions. The intent of this work is to provide 
information that complements existing data and that will be useful for formulating 
comprehensive design guidelines for CFRP rehabilitation. Specific objectives include: 

• Develop analytical models for simulating the static response and accelerated fatigue behavior 
of concrete beams strengthened with CFRP laminates. Use the developed models to 
investigate the static and fatigue behavior of CFRP strengthened beams.   

• Investigate the short-term tensile strength of CFRP laminates and establish a relationship 
between the fiber tensile strength and the tensile strength of CFRP laminates attached to a 
concrete girder. Such a relationship facilitates the design process and enables structural 
engineers to estimate laminate strength from fiber properties published by the manufacturer.  

• Develop resistance models for reinforced and prestressed concrete bridge girders flexurally 
strengthened with externally bonded CFRP laminates. Use the developed models to calculate 
the probability of failure, reliability index, and flexural resistance factor of CFRP 
strengthened cross-sections. 

Summary of Work 

Models for simulating the static and accelerated fatigue behavior of reinforced and prestressed 
concrete beams strengthened with CFRP were developed. The models are based on the fiber 
section technique and account for the nonlinear time-dependent behavior of concrete, steel 
yielding, and rupture of CFRP laminates. The effect of size on the tensile strength of CFRP 
laminates is accounted for in the calculations.  
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The models were implemented in a MatLab computer program, T-DACS (Time-Dependent 
Analysis of Composite Sections), and were verified and exercised by comparing analytical 
results to data from several experimental investigations. A second computer program MACS 
(Monotonic Analysis of Composite Sections) was developed to run only the static portion of the 
developed models within a Visual Basic environment. MACS is user-friendly and features an 
easy to use graphical user interface.  

The developed computer programs were used to investigate the static and fatigue response of RC 
and PSC concrete girders strengthened with CFRP laminates. Additional Monte-Carlo 
simulations (120,000 runs) were conducted using MACS to develop resistance models for both 
reinforced and prestressed concrete bridge girders flexurally strengthened with CFRP laminates. 
The resistance models were used to calculate the probability of flexural failure and flexural 
reliability index of CFRP strengthened cross-sections. The first order reliability method was 
employed to calibrate the proposed flexural resistance factors for a broad range of design 
variables. 

Main Findings and Conclusions 

Following are the most important findings and conclusions from this work:  

• The use of coupons to obtain the in-situ strength of CFRP laminates can lead to 
unconservative estimates of strength if the size effect is not properly considered.  

• The short-term tensile strength of CFRP laminates can be calculated by applying the Weibull 
Theory. Two steps are needed to compute the short-term tensile strength. The first step 
accounts for the size effect and predicts the tensile strength of a uniformly stressed volume 
that shares the size of the CFRP used in the real structure. The second step accounts for the 
effect of stress gradients.  

• Cyclic fatigue leads to an internal redistribution of stresses similar to that obtained under 
static creep. To account for the increase in steel stresses due to cyclic fatigue as well as 
shrinkage, creep under dead loads and the variability in reinforcing steel strength, it is 
recommended that the service steel stress be limited such that ys f85.0 < σ .   

• The reliability index of CFRP strengthened RC cross-sections is greater than that of 
unstrengthened sections and increases with increasing CFRP ratio. Although the reliability 
index improves with addition of CFRP, the flexural resistance factor is recommended as 
φ=0.85, which is lower than that recommended by AASHTO-LRFD for RC sections under 
flexure. The reduced φ  value results in a larger target reliability index than is normally 
specified in recognition of the brittle nature of CFRP behavior. 

• The strength reduction factor, φ, for CFRP strengthened PSC bridge girders is recommended 
to vary linearly from 0.85 to 1.0 depending on the ratio between the resistance provided by 
the CFRP and prestressing steel. This is shown to result in acceptable reliability for a wide 
range of dead load to live load ratios.  
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1 INTRODUCTION 

 

1.1 Background 

Concrete bridge girders become structurally deficient for many reasons including corrosion of 
reinforcing bars or prestressing strands, change in load requirements, vandalism, collision 
between vehicles and bridge components, etc. National concern about the increasing cost of 
bridge rehabilitation has prompted extensive research efforts to find effective and economical 
rehabilitation means. One of the emerging technologies that has proven particularly suited for 
strengthening and stiffening reinforced and prestressed concrete bridge girders is the use of 
externally bonded carbon fiber reinforced plastic (CFRP) laminates. This rehabilitation technique 
has gained popularity in recent years as bridge engineers have become more familiar with the 
appealing attributes of CFRP which include light weight, high strength and stiffness, resistance 
to corrosion, and good fatigue characteristics.  

Carbon fiber reinforced plastic laminates are attached using epoxy adhesives to the bottom 
surface of beams or are wrapped around the girder stems to provide additional tensile 
reinforcement. The Florida Department of Transportation (FDOT) has been a pioneer of this 
technology and has been extensively involved in its development for the past decade. Extensive 
testing at FDOT and elsewhere has focused on the effect of CFRP rehabilitation on the stiffness, 
strength, fatigue, ductility, mode of failure, and reliability of reinforced concrete girders 
strengthened with CFRP laminates.   

Research in this field has matured to the extent that code committees are starting to crystallize 
available knowledge into code provisions. ACI committee 440 is currently developing design 
guidelines for external strengthening of concrete structures using fiber reinforced polymer 
systems, and a synthesis of the provisions of the Canadian Highway Bridge Design Code for 
fiber-reinforced structures has been recently published (Bakht et al 2000). Prominent examples 
of the use of this technology in bridge rehabilitation can be found in a report published by ACI 
(1996). 

1.2 Motivation and Research Objectives 

The majority of research conducted to date for investigating both short term and long term 
behavior of CFRP strengthened bridge girders has been experimental in nature. Furthermore, 
while some studies have proposed design models and methodologies to identify the necessary 
number of laminates to achieve a target strength or stiffness, many important design issues still 
remain unresolved. The overall objective of the research reported herein is to use state-of-the-art 
numerical techniques to resolve some of these questions. The intent of this work is to provide 
information that will be useful for the development of comprehensive design guidelines for 
rehabilitation schemes employing CFRP technology. Specific objectives include: 
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• Develop an analytical model for simulating the static response and accelerated fatigue 
behavior of concrete beams strengthened with CFRP laminates. Use the developed model to 
investigate the static and fatigue behavior of CFRP strengthened beams.   

• Investigate the short-term tensile strength of CFRP laminates and establish a relationship 
between the fiber tensile strength and the tensile strength of CFRP laminates attached to a 
concrete girder. Such a relationship facilitates the design process and enables structural 
engineers to estimate laminate strength from fiber properties published by the manufacturer.  

• Develop resistance models for reinforced and prestressed concrete bridge girders flexurally 
strengthened with externally bonded CFRP laminates. Use the developed models to calculate 
the probability of failure, reliability index, and flexural resistance factor of CFRP 
strengthened cross-sections. 

1.3 Report Outline 

This report is comprised of 6 chapters and an appendix. Chapter 1 provides background and 
motivation for this work. Specific objectives are also listed in this chapter. Chapter 2 describes 
the fiber section method used to characterize the static and fatigue behavior of composite cross-
sections. Constitutive models and the solution method are described and discussed. In Chapter 3, 
the Weibull theory is used to establish a relationship between the strength of a CFRP laminate 
and the fiber strength reported by the manufacturer. A chart for quickly determining laminate 
strength is provided for design convenience. The fiber section program developed in Chapter 2 is 
exercised and the results reported in Chapter 4. Both static and fatigue analyses are conducted 
using the program and compared to experimental results for verification purposes. Chapter 5 
provides details of the reliability study used to develop flexural strength reduction factors for 
both reinforced and prestressed concrete girders. The work is summarized and the most 
important conclusions are drawn in Chapter 6. Finally Appendix A lists the details of the First 
Order Reliability Method (FORM) employed for the reliability study reported in Chapter 5.  
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2 CROSS-SECTION FIBER ANALYSIS 

 

2.1 Introduction  

The static and fatigue analyses presented in this report are based on the fiber section technique. 
The fiber section method is an accurate and practical technique for computing the moment-
curvature response of a reinforced or prestressed concrete section strengthened with CFRP. This 
chapter presents a detailed description of the method.  

2.2 Fiber Section Analysis - General Analysis Process 

As shown in Fig. 2.1, fiber section analysis of a composite cross section entails discretization of 
the section into many small layers (fibers) for which the constitutive models are based on 
uniaxial stress-strain relationships. Each region represents a fiber of material running 
longitudinally along the member and can be assigned one of several constitutive models 
representing concrete, CFRP, reinforcing steel, or prestressing steel. The main assumptions 
employed in the fiber section method are:  

• Plane sections are considered to remain plane after bending. It is generally accepted that this 
assumption is reasonable even well into the inelastic range. Measurements of strains along 
the height show that this assumption is good for beams with either partial or full wrapping 
(Shahawy and Beitelman 2000 and Inoue et. al 1995) 

• Perfect bond is assumed between concrete and other materials (steel reinforcement and CFRP 
laminates). 

• Shear stresses are not accounted for. The fiber section method, as presented in this report, is 
therefore limited to long thin members whose behavior is dominated by flexure. 

In their general discretized form, the cross-sectional forces are determined as stress resultants 
according to the following general equations: 

∑
=

=
n

i

ii AF
1

σ  (2.1) 

∑
=

=
n

i

iii dAM
1

σ  (2.2) 
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where: 

i  concrete, steel, or CFRP fiber 
F  axial load 
M  major bending moment 
σi  longitudinal stress at centroid of fiber i 
Ai area of fiber i  
di distance between centroid of fiber i and top of section. 
n  total number of section fibers  

The general solution procedure is organized around calculating the moment-curvature 
response for a fixed value of axial load, F, where, F=0 for the case of pure flexure. The moment-
curvature response is obtained by incrementally increasing the curvature and solving for the 
corresponding value of moment. The location of the neutral axis and the fiber strains are a 
function of the curvature, θ , and strain at the extreme top fiber, topε . Based on the “plane 

sections remain plane” assumption, the fiber strains are equal to topε  minus the product of the 

curvature times the orthogonal distance from the centroid of each fiber to the neutral axis (see 
Fig. 2.1). The fiber stresses in Eqs. 2.1 and 2.2 above are calculated from the fiber strains using 
appropriate constitutive relationships (described later on). For given values of curvature, the top 
fiber strain is solved for by iteration until the specified value of F is reached. Resulting from this 
process is a set of unique values of moment and curvature. The moment-curvature calculations 
are stopped when a prespecified number of curvature increments are applied.  

The solution process for prestressed girders is described in the following section. While the 
solution method for reinforced concrete girders is conceptually identical to that for prestressed 
concrete, it is actually simpler because the effects of the prestressing force do not have to be 
dealt with.  

 

Strains

di

Ai, di

θ
εi=εtop-θdi

εtop

 

Figure 2.1: Fiber section discretization of a reinforced concrete section strengthened with CFRP 
laminates. 
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2.3 Fiber Section Analysis of Prestressed Concrete Girders 

This section describes the solution process of the fiber section method and outlines how the 
effects of prestressing are handled.  

2.3.1 At Transfer 

At the beginning of the life of a prestressed girder, the prestressing force is activated either by 
releasing fixation to the bulkheads for a pre-tensioned girder, or by jacking a post-tensioned 
girder.  In both cases, the induced stresses due to the prestressing force cause the girder to 
camber (deflect upward for a simply supported configuration).  Handling this initial stage of 
loading in the fiber section method is achieved through an equilibrium step to calculate the initial 
camber-causing curvature at the time of transfer. The algorithm involves a two-stage iterative 
process that satisfies force then moment equilibrium within each iteration. 

The analysis progress is explained using the cross section shown in Fig. 2.2.  The algorithm 
proceeds as follows: 

1. The entire prestressing force, without losses, is first applied on the cross-section. The 
corresponding initial prestressing strains, o,PSε , are then calculated.  

2. The first-stage of the iterative procedure finds a strain distribution that results in an internal 
force that satisfies force equilibrium according to the following equation: 

0.0
1

,s,s
1

,CFRP,CFRP
1

,,
1

,PS,PS =∉++++= ∑∑∑∑∑
====

F

q

l
ll

p

k
kk

n

j
jcjc

m

i
ii AAAAF σσσσ  (2.3) 

where ii A ,PS,PS  and σ are the stress and area of prestressed strand layer i, jcjc A ,,  and σ are the 

stress and area of concrete fiber j, kk A ,CFRP,CFRP  and σ are the stress and area of CFRP fiber k 

(in case CFRP exists at this stage), lsls A ,,  and σ are the stress and area of steel fiber l, and F∉  

is the force error.  Note that Eq. 2.3 is a generalized version of Eq. 2.1. Force equilibrium is 
achieved if F∉  is less than an acceptable tolerance as set by the user (taken as 10-4 of the 
total force in concrete fibers in this study).  First stage iterations are executed in search for a 
top strain value that satisfies Eq. 2.1. The initial iteration of the procedure starts by assuming 
that the strain in the top concrete fiber is positive.  A bisection algorithm is used while 
decreasing top strain value (compression = negative strain), and hence strains in all fibers, 
until the error is within the acceptable tolerance. The result of this iterative process is a value 
for the top strain denoted by 1,topε where the subscript 1 corresponds to the iteration number, 

in this case, the first iteration. 

In the preceding calculations, the strains in the prestressing strand fibers are adjusted like any 
other fiber.  The only difference in determining strand fiber stresses is that the strain 
value, i,PSε , used in calculating the stress i,PSσ  is taken as the sum of the strain value from the 

distribution in Fig. 2.3, *
,PS iε , and the initial prestressing strain, o,PSε .  
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At the end of this first stage, the resulting strain distribution is uniform which obviously does 
not satisfy moment equilibrium (unless the effective depth of the prestressing strands lies on 
the centroid of the cross section).  Therefore, the second stage of the procedure is necessary 
to achieve moment equilibrium. 

3. In the second-stage, moment equilibrium is calculated according to the following equation: 

( )( ) ( )( )

( )( ) ( )( ) 0.0          
1

,,s,s
1

,CFRP,CFRP,CFRP

1
,,,,PS

1
,PS,PS

=∉++

++=

∑∑

∑∑∑

==

==

F

q

l
lsll

p

k
kkk

n

j
jcjcjci

m

i
ii

dAdA

dAdAM

σσ

σσ Λ
 (2.4) 

where id ,PS , jcd , , kd ,CFRP , and lsd ,  are the distances from the girder top to the centroid of 

prestressed strand layer i, concrete fiber j, CFRP fiber k, and steel bar layer l, respectively. 

M∉  is the moment error which must fall within an acceptable tolerance as set by the user for 
convergence (also taken in this study as 10-4 of the total moment caused by forces in concrete 
fibers).  Note once again that Eq. 2.4 is a more detailed version of Eq. 2.2. To achieve 
moment equilibrium, the top strain obtained in the previous step, 1,topε , is maintained and 

iterations are executed in search for the correct curvature, 1θ  as can be seen in Fig. 2.3(a). 

At the end of this second stage (end of first full iteration), the resulting non-uniform strain 
distribution satisfies moment equilibrium, however, force equilibrium is clearly violated.  
The force in concrete fibers has obviously increased due to the increase in strain levels, 
especially in lower fibers. 

4. Steps 2 and 3 are repeated until both F∉  and M∉  from 2 subsequent iterations fall within the 
acceptable tolerance. This implies that convergence has been reached and that an acceptable 
solution for the problem is achieved. 
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Figure 2.2: Cross section of single T-girder used for illustration. 
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Figure 2.3: Strain and stress distributions at the end of each stage (a- 1st iteration, b- nth 
iteration). 

 

Figure 2.4 shows the progress of the algorithm from the initial step until convergence for the 
cross-section in Fig. 2.2.  Figure 2.4 shows a plot of the top strain, topε , and curvature, θ , at the 

end of each iteration.  In Fig. 2.5, the error values, F∉  and M∉ , are shown at the end of each 
iteration.  Both figures show that the solution has reached convergence in 10 iterations.  
Experience with the algorithm suggests that it usually converges in less than 30 iterations.  

The stress and strain distributions at the end of the transfer stage is given in Fig. 2.6.  Also 
plotted in the figure are the values obtained using hand calculations using the well-known 
equations: 
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P
f +−−=  (2.5b) 

In Eq. 2.5, e (positive upwards) is the eccentricity of prestressing strands from the concrete 
section center of gravity (CGC), A and I are area and moment of inertia of the cross section, ytop 
and ybot are the distances from top and bottom concrete fibers to CGC, and MG is the moment due 
to girder self-weight. Equation 2.5 was used to obtain two strain distributions; the first is based 
on gross concrete cross section properties, Ag and Ig, and the second is based on the transformed 
cross section properties, At and It, taking into account the contribution of prestressing strands to 
these properties.  As can be seen in Fig. 2.6, the more accurate representation (using At and It) is 
in better agreement with the results obtained from the fiber section analysis.  The plots in Fig. 2.6 
are calculated using MG = 0. 
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Figure 2.4: Convergence of girder top strain, topε , and curvature, θ  during two-stage 

equilibrium process at transfer (analysis step number 1). 
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Figure 2.5: Observed force error, F∉ , and moment error, M∉ , after each iteration. 
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Figure 2.6: Concrete stress distribution for T-beam example at transfer. 

 

2.3.2 Moment-Curvature relationship after Transfer 

At the end of the two-stage process described in the previous section, the analysis algorithm 
proceeds in steps to find points on the cross-section θ−M  relationship.  The procedure for 
developing the θ−M  curve is as follows: 
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1. After transfer calculations, the applied prestress force is adjusted for prestress loss due to 
elastic shortening and all other sources of loss. The cross-section response is then calculated 
in a manner similar to that used in transfer. Although approximate, the assumption that all 
prestress losses occur immediately after transfer simplifies the analysis algorithm 
considerably. In reality, prestress losses occur in a nonlinear manner over time, which would 
necessitate a time-dependent analysis, the accuracy and scope of which are not warranted for 
the type of research reported herein.  

2. The calculated strains (after transfer and losses) are stored for all fibers of all component 
materials in the cross section including prestressing strands.  These strains are designated 

*
,iPSε , *

,icε , *
,iCFRPε , and *

,isε  for prestressing strand layers, concrete fibers, CFRP fibers, and 

steel bar layers, respectively. 

3. The post-transfer/loss curvature is then calculated. For example, the curvature, θ , for the 
first step is equal to the curvature increment, θ∆ , i.e. θθ ∆= . The total curvature at this 
level is 

*1  θθθ +=   (2.6) 

where *θ  is the curvature of the section just after transfer and loss calculations. The 
superscripts indicate the step number in the solution process. For example, a superscript of 1 
corresponds to the first step in the post transfer/loss calculations.  

4. Strains in all component fibers are adjusted to account for the initial prestressing stage 
according to the following equations: 

*
,,PStop,PS  iPSii d εθεε ++=  (2.7a) 

*
,top,c  icc,ii d εθεε ++=  (2.7b) 

*
,,CFRPtop,CFRP  iCFRPii d εθεε ++=  (2.7c) 

*
,top,s  iss,ii d εθεε ++=  (2.7d) 

In the previous equations, i denotes a fiber or a reinforcement layer. Strains in the CFRP and 
the concrete deck are adjusted once again to account for the construction sequence as 
described in the following section.  

5. An iterative procedure is carried out to reach force equilibrium by performing a bisection 
algorithm in search of the girder top strain corresponding to the applied curvature. The top 

strain is denoted 1
topε  for it represents the top strain at the 1st step. 
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6. Once equilibrium is achieved, the corresponding moment, 1M , is calculated from the 
contribution of individual components (i.e. fibers and reinforcement layers).  This moment 

value and the corresponding curvature, 1θ , represent a point on the θ−M  relationship.  

7. Subsequent steps are conducted the same way by repeating 3 through 6.  This yields a 
number of points on the θ−M  relationship for the analyzed girder. 

Figure 2.7 shows the final θ−M  relationship for the single T-girder in Fig. 2.2.  It is clear that 
the developed algorithm accurately captures all aspects of the flexural behavior of the beam.  The 
results compare well with experimental values reported in Mitchell and Collins (1991). 
Additional verification studies for reinforced concrete cross-sections strengthened with CFRP are 
presented in Chapter 4.  
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Figure 2.7: Experimental vs. analytical θ−M  relationship for verification. 

 

2.3.3 Accounting for the Construction Sequence 

As discussed in the previous sub-section, equilibrium steps are carried out at the time of 
transfer/loss to calculate the initial camber-causing curvature using a two-stage iterative process 
that satisfies moment then force equilibrium within each increment. After transfer/loss 
calculations, the loading sequence associated with placement of non-monolithic decks is taken 
into account during the moment-curvature calculations using a process similar to that described 
below for CFRP laminates (Fig 2.8). 
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Figure 2.8: Sequence of analysis for girders with CFRP-strengthened girders with composite 
decks. 

 

Rehabilitation of concrete structures using CFRP laminates usually takes place while the 
structure is subjected to a certain level of loading (taken equal to the full dead load in this study). 
Therefore, CFRP laminates are not strained while concrete and steel are both strained at the time 
of strengthening.  The analysis method takes into account this situation as shown in Fig. 2.8. Just 
prior to strengthening the cross section with CFRP laminates, the cross section is subjected to a 
threshold moment inM  resulting in the corresponding strain gradient shown in Fig. 2.8(c). 

Knowing that CFRP strains must be zero at this stage, and that subsequently applied moments 
(beyond inM ) will not result in identical strains in adjacent CFRP and concrete fibers, strains in 

CFRP fiber i are adjusted using the following equation: 

in
iCFRPiCFRP

adjusted
iCFRP ,,, εεε −=  (2.8) 

As shown in Figure 2.8(d), iCFRP,ε is the strain in the CFRP fibers corresponding to a moment 

higher than inM  and calculated assuming that the strain in adjacent concrete and CFRP fibers is 
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identical. in
iCFRP,ε  are the strains in concrete fibers adjacent to CFRP fibers at the threshold 

moment inM . adjusted
iCFRP,ε  are the adjusted CFRP strains for a moment greater than inM . 

2.3.4 General Moment-Curvature Response 

Figure 2.9 shows a moment-curvature ( θ−M ) relationship that results from typical analyses of 
a PSC girder with and without bonded CFRP laminates.  The relationship for the case with CFRP 
laminates shows key points of behavior such as at transfer, loss, threshold moment points (point 
at which concrete deck is cast or CFRP is bonded), and ultimate point. After casting the CIP 
deck, the girder exhibits increased stiffness, which further increases when the CFRP is attached.  
Once the CFRP ruptures, the flexural strength of the cross-section drops sharply then gradually 
flattens out as the crack in the CFRP laminates travels up the web.  The strengthened cross 
section does not fail completely, but exhibits a post-failure capacity equal to the strength of the 
original cross section. 
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PS only
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Figure 2.9: Idealized moment-curvature relationships for PSC girders strengthened with CFRP 
laminates. 

 

2.4 Constitutive Properties of Component Materials 

The assumed constitutive properties for the component materials are shown in Fig. 2.10. The 
stress-strain response of CFRP is assumed to be elastic-perfectly brittle whereas the stress-strain 
curve for steel is elastic-plastic with a post yield strain hardening of 1%. Prestressing strands are 
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modeled assuming a Ramberg-Osgood function.  The Ramberg-Osgood coefficients are taken as 
=a 0.025, =b 118, and =c 10 for low relaxation strands (Collins and Mitchell 1991).  A 

nonlinear stress-strain relationship is assumed for concrete fibers, which is described next.  

2.4.1 Concrete in Compression 

The concrete compressive stress-strain curve is taken after Thorenfeldt (1987) and Popovics 
(1973): 

( )
( )nk

ccf

ccfc
c

n

nf
f

'

''

1 εε

εε

+−
=  (2.9) 

Where: 

cf  is the concrete stress. 

'
cf  is the unconfined compressive strength (cylinder strength). 

cfε  is the concrete strain. 

'
cε  is the concrete strain at '

cf . 

178.0 '
cfn +=  ( '

cf  in MPa units) 

( ) 16267.0 ' >+= cfk  for ( cfε / '
cε )>1. Otherwise k = 1. ( '

cf  in MPa units) 

Concrete strength is taken to be 0.85 '
cf  instead of '

cf  in the analyses. Use of the 0.85 factor is 

well established in the literature and accounts for (a) basic differences between concrete in a test 
cylinder versus a reinforced concrete beam due to geometry, steel reinforcement, method of load 
application, rate of loading, …etc.; and (b) variations in concrete compaction, water-cement 
ratio, and curing conditions. 

2.4.2 Concrete Cracking 

Concrete is assumed to crack when it reaches its tensile strength calculated according to the ACI 
318 Code (1999). After concrete cracks, tension stiffening occurs in concrete reinforced with 
CFRP or steel bars. Tension stiffening accounts for load transfer mechanisms that exist between 
reinforcement (steel bars or CFRP fabric) and surrounding concrete and is generally represented 
by a gradual degradation in the concrete tensile strength after cracking. It is reasonable to assume 
that CFRP will generate a greater concrete tension stiffening effect compared to steel bars 
because it is directly attached to a large concrete surface area. Based on a calibration to beam test 
results by Shahawy and Beitelman (1999) tension stiffening due to steel bar reinforcement alone 
is assumed to decrease linearly from 70% of the cracking stress to zero at five times the concrete 
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cracking strain. Tension stiffening due to the presence of both steel and CFRP combined is 
assumed to degrade linearly from 70% of the cracking stress to zero at 20 times the concrete 
cracking strain. These models are shown in Fig. 2.10b.  
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Figure 2.10: Monotonic constitutive models for component material 

 

2.5 Time-Dependent Behavior of Component Materials  

Much work has been done on time-dependent analysis of concrete structures. Bazant (1988) 
provides a general review of material models and analysis techniques for concrete structures 
undergoing creep and shrinkage. Rao and Jayaraman (1989) provide a more specific review of 
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models used for the analysis of reinforced and prestressed beams undergoing creep and 
shrinkage. Among the material models most commonly used are the incremental quasi-elastic 
stress-strain model and the age-adjusted effective modulus model. In the former, which is more 
rigorous and accurate, the stress-strain relation for the time step is treated as a quasi-elastic 
relation, and the structural problem is solved through a sequence of linear steps. In the age-
adjusted effective modulus model, the problem is solved in one time step making use of an 
effective quasi-elastic stress-strain relationship. The model proposed in this paper falls under the 
first category and is described in the following sections.  

2.5.1 Fatigue Response of Concrete 

Cyclic loading on concrete produces an effect that is similar to creep, i.e. increase in concrete 
strain with increasing number of cycles. However, tests have demonstrated that strain 
accumulation due to a varying load is greater than creep due to a constant load equal to the 
average of the cyclic load. The difference is dependent on a number of parameters, including 
stress range, maximum stress, ambient temperature, and humidity (Neville 1996). 

Experiments have shown that the stress-strain response of concrete varies with the number of 
load repetitions ('Considerations' 1974, Neville 1996, Holmen 1982). It starts out with the usual 
concave shape and quickly transitions to a straight-line then gradually to a characteristic convex 
shape. Test observations indicate that the closer the concrete is to failure, the more convex its 
stress-strain response (Figure 2.11).  

 

 

Figure 2.11: Compressive behavior of concrete subjected to repeated loading 
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Since concrete in most structures will typically be subjected to relatively low stress levels under 
service conditions and will generally not be susceptible to high cycle fatigue failure during the 
design life, it is reasonable to assume the straight-line constitutive model depicted in Fig. 2.12 
for fatigue calculations. Making use of the straight-line assumption and uniaxial concrete fatigue 
test data provided by Holmen (1982) and Bennet and Raju (1971) the following concrete 
material model is proposed. The model is suitable for a loading frequency ranging from 0.83 to 
15 Hz ('Considerations' 1974 and Holmen 1982).  
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Stress
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N=1,000,000

εmax

Equations 4 through 6

Equation 8

Cyclic creep strain  

Figure 2.12: Proposed constitutive model for concrete subjected to fatigue loading. 

 

Holmen proposed that the total maximum strain at any time and at any number of cycles is the 
sum of two components. The first component is related to the endurance of the specimen, εe , 
and the second part is a function of the loading time, εt , and is essentially a creep strain. In other 
words: 

te εεε +=max  (2.10) 

It was observed from the tests that strain development follows three distinct phases; a rapid 
increase from 0 to about 10 percent of the total fatigue life, a uniform increase from 10 to about 
80 percent, then a rapid increase until failure. Holmen (1982) proposed the following expressions 
to describe the first and second phases: 
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where: 

εmax  maximum total strain 

Esec initial secant modulus = 
Smax

ε
0

 

ε0  maximum total strain in the first load cycle 

Smax ratio of maximum stress to concrete strength 

Sc characteristic stress level = Sm + RMS 

Sm mean stress ratio = 
2

1
 (Smin + Smax) 

Smin ratio of minimum stress to concrete strength 

N number of load cycles 

NF  number of load cycles to failure for a specified probability of failure. For example, for a 
50% probability of failure, and for Smin=0.05, the number of cycles to failure can be 

calculated from log . max
.N SF = −1839 3 033  (Holmen 1982) 

t duration of alternating load in hours 

RMS root mean square value = 
1

0

2

0
T

x t dt

T

( )∫  

x(t) stress as a function of time, t 
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T0 total time, i.e. duration of loading. 

According to Holmen (1982), the RMS value for sinusoidal loading is given by  

RMS S S= +
1

2 2
( )min max  (2.13) 

Based on calibration to test results in Bennet and Raju (1971) and Holmen (1982), the following 
equation is proposed for the effective modulus of elasticity.  

sec33.01 E
N

N
E

F
N 





−=  (2.14) 

where: 

NE  is the effective concrete modulus of elasticity at N cycles. 

Knowing Smax, εmax, and NE  defined using Eqs. 2.10 through 2.14, a relationship can be 

constructed that represents the compressive stress-strain response of concrete as a function of the 
applied stresses and number of load cycles. Concrete under tension is assumed to have no 
significant tensile strength during cyclic fatigue calculations. The proposed stress-strain curve is 
shown in Fig. 2.12. 

2.5.2 Additional Model Assumptions 

The proposed concrete fatigue model makes use of a number of additional assumptions. It is 
assumed that the concrete water content and ambient temperature associated with a particular 
specimen to be analyzed are comparable to those in Holmen's tests. It is further assumed that the 
model, which is calibrated to uniaxial data, is applicable to concrete subject to a strain gradient. 
Test results indicate that a strain gradient can influence the fatigue behavior of concrete, 
typically resulting in a slower rate of strength degradation with increasing number of cycles 
('Considerations' 1974). However, fatigue tests on eccentrically loaded concrete are limited, and 
there is insufficient information to calibrate the proposed model to account for this effect. It is 
also assumed that the shrinkage strain is negligible compared to the cyclic fatigue strain. This is 
justifiable since the proposed model is mostly useful for analyzing beams subjected to 
accelerated fatigue loading, in which the duration of the test is rather short - two to three weeks. 

2.5.3 Fatigue Response of Steel, CFRP, and Epoxy 

Experimental results presented in Barsom and Rolfe (1987) suggest that the modulus of elasticity 
for steel remains unchanged until just before failure by high cycle fatigue.  Furthermore, test data 
in Hull (1981) and Hollaway and Leeming (1999) suggests that the behavior of CFRP is virtually 
unaffected by fatigue loading. Hence, the modulus of elasticity for both steel and CFRP is 
assumed to remain unchanged during cyclic loading. Furthermore, the epoxy between the CFRP 
laminates and concrete is assumed to be rigid and unaffected by cyclic loading. This is a 
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reasonable assumption for beams in which failure initiates in the high moment zone, where shear 
stresses in the epoxy are low.  

2.6 Fatigue Calculations 

As fatigue loading progresses, the stress-strain response of each concrete fiber changes as a 
function of the number of cycles and maximum and minimum stresses generated within the fiber. 
To simulate the fatigue behavior of a cross-section, the analysis is conducted in increments of 
cycles, say 10,000 cycles each, and the concrete constitutive model is updated at the end of each 
block of cycles. It is assumed that the concrete model does not change within each set of cycles.  

The maximum and minimum stresses in each fiber can change considerably during the analysis, 
affecting the cyclic creep strain calculation and the corresponding constitutive relationship. As 
shown in Figure 2.12, the cyclic creep strain is equal to εmax minus the elastic component of 
strain. The change in stress levels during the analysis is taken into account using the principle of 
superposition. The principle of superposition states that the creep strain response (in this case 
cyclic creep strain) of concrete to a sum of two stress histories is the sum of the responses to 
each of them taken separately. The superposition principle is generally deemed reasonably 
accurate when applied to concrete within the service stress range (Bazant 1988).  

A fatigue simulation starts by conducting a monotonic moment-curvature analysis of the beam 
cross-section. The purpose of this step of the analysis is to obtain the maximum and minimum 
stresses in each fiber corresponding to the application of the maximum and minimum moments. 
These stresses are utilized to construct concrete constitutive models for each individual fiber 
using Eqs. 2.10 through 2.14. The developed constitutive model for each fiber is assumed to 
represent fiber behavior at the beginning and during the following (second) block of cycles. 
Using the constructed constitutive models, a second monotonic analysis is conducted to calculate 
the moment-curvature response of the section during the second block of cycles. The maximum 
and minimum stresses calculated from the second monotonic analysis are used as input stresses 
for the third set of cycles and new stress-strain curves for each fiber are constructed using Eqs. 
2.10 through 2.14. The process described above is repeated to compute the response of the cross-
section for any number of cycles.  

The sequence of steps taken by the program to update the cyclic creep strains can be better 
understood by examining Fig. 2.13. At the beginning of the first block of 10,000 cycles, the 
maximum stress in a particular fiber is say, Smax1, and the cyclic creep strain is zero. At the 
beginning of the of the second block of cycles, the maximum stress in the same fiber drops to 
Smax2 by an amount ∆S21 and the accumulated cyclic creep strain is εcr1. At the beginning of the 
third block of cycles, the maximum stress in the fiber drops to Smax3 by an amount ∆S32 and the 
accumulated cyclic creep strain is εcr2 - ∆ε21. The quantity, εcr2, is calculated as if the stress, Smax1, 
had been acting for 20,000 cycles. According to the superposition principle, the correction ∆ε21 
is algebraically added (in this case subtracted because the stress is dropping) and represents the 
accumulated creep strain due to ∆S21 acting for 10,000 cycles, between the ends of cycle 
increments 1 and 2. The process can then be repeated for subsequent blocks of cycles. The 
solution method requires some bookkeeping to keep track of corrections, which increase with the 
number of cycle increments. Nevertheless, programming the process is quite straightforward.  
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Figure 2.13: Principle of superposition for cyclic creep strain calculations 

 

2.7 Beam Deflection Calculation 

Beam deflections are calculated using the stiffness approach. The stiffness method relates nodal 
displacements to nodal forces through the global stiffness matrix. Displacements at nodes 
(translational and rotational) are unknown and are solved for incrementally to account for 
nonlinear behavior. Since only beam structures are of interest, nodal degrees of freedom are 
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limited to vertical translations and rotations, i.e. the beams are considered axially rigid (Fig. 
2.14). The stiffness matrix of the beam is 
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where EI is the flexural stiffness and L is the member length.  

Prior to an analysis, the moment-curvature response for each finite element is calculated using 
the fiber section method. The moment-curvature response is obtained for both positive and 
negative bending and is used to compute the flexural stiffness of each element. The slope of the 
moment-curvature curve is the tangential EI (Figure 2.15). Since most bridges have cross-
sections that do not vary much over the length, many finite elements in a particular problem will 
have similar properties. Hence the cross-section analysis needs to be run for only a few 
representative elements.  
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Figure 2.14: Degrees of freedom of beam elements used in this research 
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Figure 2.15: Calculation of flexural stiffness from moment-curvature relationship 
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The solution process is of the Euler type, i.e. simple incremental. After each load increment is 
applied, the condition of the structure is evaluated and the stiffness matrix is updated. No attempt 
is made to iterate on the unbalanced forces resulting from this process. Acceptable accuracy can 
be achieved because the applied load increments are kept small. Although the solution process is 
well known, it is summarized here for completeness. 

1. The incremental load vector, which is a small fraction of the total applied load, is assembled. 
The applied load increments are kept constant throughout the analysis.  

2. For the first load increment, the member flexural stiffness is equal to the initial value of EI  
calculated from the moment-curvature response. 

3. Once the global stiffness matrix and incremental force vector are assembled, the incremental 
nodal displacements are computed. The total nodal displacements are then updated by adding 
the incremental displacements to the total displacement vector.  

4. The incremental member displacements are extracted from the incremental global 
displacements, and the incremental member forces are obtained by multiplying the member 
stiffness matrix by the incremental member displacements. The total member forces are then 
updated by adding the incremental forces to the total member force vector.  

5. The new member forces are used to calculate the member flexural stiffness from the moment 
curvature relationships.  

6. The member stiffness matrix is then updated and analysis steps 3 through 6 are repeated until 
a specified maximum load is reached or until the ultimate load is reached.  

2.8 Computer Implementation - T-DACS Program 

The static and fatigue analysis procedures described in this chapter have been implemented in a 
computer program T-DACS (Time-Dependent Analysis of Composite Sections), which was 
developed and runs within MatLab. T-DACS is verified and exercised in Chapter 4 by 
comparing analytical results to test data in Shahawy and Beitelman (1999, 2000) and Barnes and 
Mays (1999). Numerical studies using T-DACS show that accuracy of the analysis does not 
increase significantly when the number of cycles per step is less than 10,000, and so all 
calculations in this work are conducted using 10,000 cycle increments.  

2.9 Computer Implementation - MACS Program 

T-DACS is rather cumbersome to use because it runs within MatLab, and needs text input. A 
more user friendly computer program was developed to run the static fiber section model only; 
i.e. it computes monotonic moment-curvature and load-deflection response. This program 
(MACS - Monotonic Analysis of Composite Sections) was developed within the Visual Basic 
programming environment and has a sophisticated a graphical user interface.  



 

 26 

Visual Basic was chosen for development of MACS because it provides a flexible programming 
environment that allows the creation of user-friendly software. In VB, coding is stored in forms 
and modules. Forms are windows that appear on the screen. Visual Basic allows the user to move 
from one window (form) to another to enter data or receive results in a user-friendly manner. 
Modules are where most of the VB coding is stored. Algorithms with numerically intensive 
calculations are implemented within these modules.  

MACS was developed by linking two existing pieces of code: the monotonic portion of T-DACS 
and a program that performs structural analysis of beams using the stiffness method developed 
by Okeil (1999). Modifications were done to the linked code to allow the execution of nonlinear 
analyses. The program stores input data in files with extension  *.bdt and saves the analysis 
results in two output files; namely PD.dat and MPhi.dat. The former contains load-mid-span 
deflection data, while the latter stores the moment-curvature data. 

Figure 2.16 shows the main window of the program that allows the user control over dependent 
windows. Figure 2.17 shows the first dependent form that is used to enter cross section type, 
geometric and material properties of reinforcing bars, concrete, CFRP and prestressing steel bars. 
In order to minimize input errors, reinforcing steel bars, CFRP and prestressing steel bars groups 
are inactive by default until the user activates them by clicking on a check box. The program is 
capable of analyzing cross sections with any or all of these reinforcement groups combined. 
Figures 2.18 and 2.19 show windows that allow the user to enter beam name, span length and 
loading configurations and to make necessary changes in the input data. During the analysis the 
load-deflection and moment-curvature relationships are plotted and updated as the analysis 
proceeds (Fig. 2.20). After the analysis is completed, detailed plots of load-deflection and 
moment-curvature relationships are displayed as a part of the main window as shown in Figs. 
2.21 and 2.22. The window also shows the moment and curvature values at cracking, steel 
yielding, ultimate capacity of the cross section, failure type under positive and negative bending 
and the time spent during the analysis. Displacement, bending moment and shear force diagrams 
also plotted as shown in the Fig. 2.23. 

 

 

 

Figure 2.16: Main window that controls input data and analysis results 
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Figure 2.17: Reinforcement types, geometric and material properties window 

 

 

 

Figure 2.18: Input window for beam name and length 
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Figure 2.19: Input window for definition of loading 

 

 

 

 

Figure 2.20: Status window that runs during the analysis 
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Figure 2.21: Mid-span load-deflection results window 
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Figure 2.22: Positive and negative moment-curvature relationship of the cross-section 
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Figure 2.23: Displacement, bending moment and shear force diagrams 
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3 SHORT-TERM CFRP LAMINATE STRENGTH 

 

3.1 Introduction 

Despite the fact that fiber reinforced polymer materials are no longer considered new products, 
established methods for estimating the design tensile strength are absent.  ACI's state-of-the-art 
report (1996) acknowledges the issue; however, it falls short in recommending values or a 
specific method for estimating the design tensile strength of the product.  This position is 
understood since products vary greatly by manufacturer, fiber type, fiber structure, and resin 
type.  The state-of-the-art report suggests that loading conditions for the CFRP product be 
determined in advance and that the material characteristics corresponding to those conditions be 
obtained in consultation with the manufacturer.  The work of Bakht et al. (2000) suggests the use 
of coupons for estimating the strength of FRP materials. While some researchers investigating 
uses of CFRP materials for strengthening applications have performed coupon tests to estimate 
the tensile strength of CFRP laminates (e.g. Ritchie et. al. 1991), there are some instances in the 
literature where laminate strength was assumed equal to the manufacturer reported fiber strength.  
This could be unconservative since the strength of a single fiber or dry strand is generally greater 
than the laminate strength. Nevertheless, an unconservative estimate of laminate strength is 
inconsequential if the modes of failure under study do not involve laminate rupture, but rather 
concrete and bond related failures.  

Fibers are assembled together to form tows or yarns, which are then woven into a fabric that 
forms the laminate.  Experimental testing and analyses (Bullock 1974, Harlow and Phoenix 
1981, Batdorf and Ghaffarian 1984, Duva et al 1996, Mahadevan et al 1997, and Yushanov and 
Bogdanovich 1998) have shown that the strength of the final composite product (i.e. laminate), 

laminateσ , is normally much lower than the strength of the fiber, fiberσ , in some cases, as low as 40-

50%.  The above listed researchers have investigated the relationship between fiberσ  and laminateσ  

and presented techniques for estimating laminate strength from fiber characteristics.  However, 
these methods have yet to be adopted by structural engineers designing structures strengthened 
with CFRP laminates. 

In this chapter, the Weibull theory is used to establish a relationship between the fiber tensile 
strength and the tensile strength of CFRP laminates attached to a concrete girder. Such a 
relationship facilitates the design process and enables structural engineers to estimate laminate 
strength from fiber properties published by the manufacturer. While coupon and component tests 
are valid means for estimating the short-term tensile strength of CFRP sheets, they are not 
practical for everyday use and, as will be illustrated in this work, composite strength is affected 
by the coupon size. To verify the theory presented in this chapter, the short-term tensile strength 
of CFRP sheets calculated using the proposed theory is compared to published experimental 
results of concrete T-beams strengthened with a varying amount of CFRP laminates. Good 
agreement is found between theoretical calculations and test results. 
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3.2 Weibull Theory for Composite Materials 

The tensile strength of composite materials is assumed to follow the Weibull Theory.  This 
assumption is well established in the literature (Harlow and Phoenix 1981, Batdorf and 
Ghaffarian 1984, Batdorf 1994) and has been verified experimentally through tests of composite 
specimens with different size and stress distribution (Bullock 1974, Kaminski 1973, Lavoie 
1997), especially for unidirectional and 0o/90o laminates.  The basic concepts of the Weibull 
theory can be found in many textbooks (e.g. Batdorf 1994) and are summarized below for 
completeness.  

If the average number of flaws per unit length of a fiber of a Weibull material is n , and the 
length of a fiber is L , the expected number of flaws in the entire length, Q , is nL .  Weibull 
theory expresses the number of flaws per unit length, n , in terms of the applied stress, σ , a 
shape parameter, m , and a scale parameter, oσ : 

( )
m

o

n 





=

σ
σσ  (3.1) 

which leads to the following expression for the expected number of flaws for a fiber of a Weibull 
material of length L  subjected to a strength less than σ  

m

o

LQ 





=

σ
σ

 (3.2) 

To study the effect of the length of the fiber on the failure strength of a Weibull material, the 
expected number of flaws, Q , has to be investigated.  Failure takes place if there is a probability 
that one complete flaw exists; i.e. 1=Q .  By setting 1=Q  in Eq. 3.2, the following expression 
is obtained for the expected failure stress:  

m
of L 1−= σσ  (3.3) 

Figure 3.1 shows the effect of the length of the fiber on the expected failure stress of a Weibull 
material. It is clear that the strength of a fiber decreases as its length increases.  

To generalize the theory, an infinitesimal fiber length, jL∆ , is considered.  The probability that 

the segment contains a flaw, which is equal to the probability of failure of the segment, is  

( ) jjf LnP ∆=∆  (3.4) 

 



 

 34 

ln(L)

ln
f

o)
slope = -(1/m)

 

Figure 3.1: Effect of fiber length on failure stress (Weibull size effect) 

 

The probability of failure of an entire fiber of length L (comprised of N segments) is therefore 
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For infinitesimal segment lengths jL∆ , the probabilities of failure ( ) jjf LnP ∆=∆  are also 

infinitesimal, and hence the probability of failure of an entire fiber can be approximated as 
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Making use of Eq. 3.1, Eq. 3.6 can be expressed in the following alternative form. 

( )













−−= ∫

L

m
of dLP σσexp1  (3.7) 

Equation 3.6 expresses the probability of failure, fP , of a single fiber of a Weibull material in 

terms of its length, L, and the applied tensile stress, σ.   It is useful to have a general form for the 
probability of failure expressed in terms of the volume instead of the length.  This can be done 
by modifying Eq. 3.7 to read as follows. 
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The relationships in Eq. 3.7 and Eq. 3.8 are usually referred to as the Weibull cumulative 
distribution functions. The shape and scale parameters in these equations are determined by 
calibration to test results and are related to the mean, σµ , and coefficient of variation, COV , 

through the following expressions.  
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where [ ]Γ  is the gamma function. The approximations in Eqs. 3.9 and 3.10 have been made by 
several researchers including Batdorf (1994) and yield good results for the practical range of 
application. 

Harlow and Phoenix (1981) provided an "exact" formulation based on the chain-of-bundles 
model for the strength of composite materials comprised of many fibers.  In their model, it is 
assumed that the composite material is formed of a chain of bundles in which each bundle 
consists of a number of fibers.  Each of the fibers is assumed to have a Weibull distribution for 
the tensile strength; i.e. a Weibull material.  Failure occurs when the weakest link of the entire 
formation reaches its load carrying capacity. The formulation of the problem provides a 
relationship between the failure of the composite material and the size of the specimen.  The 
work of Harlow and Phoenix is laborious and is limited to two-dimensional applications.  This 
led to several approximations of the exact behavior (Batdorf and Ghaffarian 1984, Duva et al 
1996, Mahadevan et al 1997, Yushanov and Bogdanovich 1998, and Batdorf 1994).  The 
following section summarizes the approximate method adopted in this research. 

3.3 Application of Weibull's Theory to CFRP Laminates Used to Strengthen RC 
and PC Beams 

The tensile strength of CFRP laminates used to strengthen concrete girders can be estimated by 
assuming that the fibers follow the Weibull theory. This goal will be achieved in two steps.  The 
first step deals with the size effect aspect of the behavior.  After establishing a relationship 
between the strength of an individual fiber and a uniformly stressed laminate, a second treatment 
is needed to account for stress gradients. 
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3.3.1 Size Effect 

The size effect is accounted for following the approximate theory reported by Batdorf and 
Ghaffarian (1984). It is assumed that the number of flaws, iQ , in a composite product that is 

uniformly-stressed and uniaxially-reinforced by a group of Weibull material fibers is 

∏
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in which N  is the number of fibers in the final product, L  is the length of each fiber.  The 
product of NL  represents the entire volume of fibers in the composite; i.e. this formulation 
accounts for the volume or size effect.  σ  is the uniform stress acting on the composite product, 

kn  is the number of fibers immediately adjacent to a ruptured fiber that are affected by its 

failure, kλ  is the effective length of the overloaded region affected by the rupture, kc  is the stress 

concentration factor in that region, oσ  and m  are the scale and shape parameters of the Weibull 

distribution representing the single fiber, and finally i  is the number of adjacent fibers that are 
ruptured at the time of failure of the composite product.  In the case of 1=i , it is said that a 
singlet has formed.  The formation of a singlet causes stresses in the adjacent fibers to increase 
due to stress concentrations.  When an adjacent fiber ruptures, i  increases to two and the 
condition is that of a doublet.  As the stress increases, triplets and quadruplets …etc. form.  Once 

iQ  reaches unity, i.e. it is probable that a complete flaw exists in the product, failure is eminent.  

Solution of Eq. 3.11 leads to the following relationship between the failure stress, uniformσ , of a 

uniformly stressed laminate and that of the scale parameter, oσ , of a single fiber 
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The value of m  and oσ  in the previous equation can be estimated using Eqs. 3.9 and 3.10. When 

applied to 0o/90o laminates, the total fiber length NL in Eq. 3.12 pertains to fibers aligned in the 
direction of the beam axis only. Transverse fibers do not participate significantly in flexural 
strengthening applications, and their contribution to the size effect will be negligible.  

While N  and L  are physical quantities that can be easily estimated, kn , kλ , kc  are harder to 

quantify.  Batdorf and Ghaffarian (1984) report that measured values for kλ  are around 0.1 mm.  

The number of adjacent fibers affected by a rupture at any stage, kn , is taken between 2 and 15.  

The stress concentration factor, kc , can be dealt with as a random variable (Harlow and Phoenix 

1981) or a simplified form can be used as reported by Batdorf (1994). 

kck 5.01+=  (3.13) 
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The size effect expressed by Eq. 3.12 is illustrated in Fig. 3.2.  The plot makes use of Eq. 3.13 
and assumes that kλ  = 0.1 mm and kn  = 8 for all values of k.  It should be noted that the failure 

surface (upper bound) of all possible i-plets defines whether failure is due to a singlet, doublet, 
etc.  For example at ln(NL/λ) = 10, singlets first form and as the stress increases doublets form.  
The material cannot resist stresses beyond the doublet level (failure surface bound) since it is 
clear from the figure that at this level triplets and beyond provide less resistance. The failure 
surface obtained from this approximate method is in good agreement with the more exact failure 
surface based on the theory of Harlow and Phoenix (1981). 
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Figure 3.2: Effect of composite size on damage sequence based on approximate method. ( kn =8, 

kλ =0.1 mm, kc =1+0.5 k ) 

 

3.3.2 Stress Gradient Effect 

The previous derivation assumes that the composite is uniformly stressed.  In many cases the 
stress distribution in the laminate is not uniform and another treatment of uniformσ  is needed to 

adjust the results derived in the previous section. For the case of a composite laminate subjected 
to a stress gradient (such as that attached to the web of a beam), the probability of failure can be 
expressed in integral form as follows  
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The difference between Eq. 3.14 and Eq. 3.8 is that m is replaced with im, where i is the number 
of i-plets expected at failure.  This modification follows directly from the work of Batdorf and 
Ghaffarian (1984) and is necessary to account for the decrease in coefficient of variation of the 
laminate strength that has been observed experimentally (Bullock 1974).  

For the case of a composite laminate subjected to a uniform stress, Eq. 3.14 yields 



















−−= uniform

uniformuniform exp1 VP

im
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where uniformV  is the volume of the uniformly stressed composite, and uniformσ  is the uniform 

stress it is subjected to.  

The relationship between the failure strength of a uniformly stressed composite and that of a 
nonuniformly stressed composite is established by equating the expressions for the probability of 
failure; i.e. uniformbeam

ff PP = .  The following section establishes the value of failure stress for the 

constant moment case and for several other common configurations.  

3.3.3 Constant Moment Case 

The derived expressions are for CFRP laminates that are wrapped around the web of a concrete 
girder. The wrap-around detail is considered in this derivation because it has been shown to 
provide better performance than attaching the CFRP sheets to the bottom of the girder.  
Wrapping the girder web with CFRP reduces the possibility of concrete delamination and bond 
failure between the concrete and CFRP (Shahawy and Beitelman 1999). In deriving the 
following expressions it was assumed that the stress at the top laminate fiber is equal to zero as 
shown in Fig. 3.3.  This assumption is justified because the top of the laminate is close to the 
neutral axis. For the cases where CFRP sheets are only attached to the bottom of the girder (e.g. 
slab bridges), a value of zero can be used for webV  below. The coordinate system used in deriving 

the following expressions is shown in Figs. 3.3 and 3.4. 

The stress state is different in the bottom part (having volume bottomV ) of the CFRP sheet than it is 

in the webs (having volume webV ).  Hence, the integral portion of Eq. 3.14 will be evaluated 

separately. 

Bottom Contribution:  

A uniform stress distribution is assumed for the bottom part, since no stress variations exist in 
this case.  The integral in Eq. 3.14 is determined as  
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Web Contribution:  

A linear stress distribution is assumed for the web parts: 
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Accordingly the integral in Eq. 3.14 is determined as  
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Figure3.3: Normal stress distribution in CFRP sheets due to flexure (a-wrap-around detail, b-
normal stress distribution on bottom and web parts). 
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Total (Web and Bottom) Contribution:  

Adding both integrals 

( ) ( )

im

o

im

o

im

oV

im

o im

V
V

im

V
VdV 











+

+=





+

+





=





∫ σ

σ
σ
σ

σ
σ

σ
σ

1
2

1
2 web

bottom
web

bottom  (3.19) 

In the previous expressions, bottomV  is the volume of the bottom part of the wrapped laminate, and 

webV  is the volume of the laminate attached to each side of the web. 
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Figure 3.4: Coordinate system for integration purposes (Case of constant moment) 

 

Using Eq. 3.14, the probability of failure can be expressed in terms of the volumes of the CFRP 
parts. 
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The ratio between the failure stress of the beam laminate, beamσ , and that of a uniformly stressed 

laminate, uniformσ , can be obtained by setting uniformbeam
ff PP =  which will lead to 
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This results in the following expression relating the failure stress of a uniformly stressed 
composite and that of a composite sheet wrapped around the web of a beam subjected to constant 
bending moment. 
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In Eqs. 3.20 and 3.21, both uniformly and nonuniformly stressed laminates must be of similar 
size to develop the same type of i-plet failure. 

3.3.4 Concentrated Load at Mid-Span (Fig. 3.5) 

Following the procedure for accounting for stress gradients described above, an expression can 
be obtained for the case of a beam subjected to a concentrated load acting at midspan.  In this 
case the stress varies linearly in the longitudinal direction with a peak at midspan.  This leads to 
the following expression for the stress in the bottom part of the CFRP sheet 

( ) σσ
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x
zyx

2
,, =  (3.23) 

and similarly the next expression for the web parts: 
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These stress expressions lead to the following relationship between uniformσ  and beamσ  
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3.3.5 Four Point Loading (Fig. 3.5) 

The integrals for both the web parts and the bottom part are evaluated in two steps since each 
part comprises of two regions; a constant moment region, and a linear moment region.  The 
CFRP sheet volumes will be designated using a superscript for the part they represent; e.g. linear

webV  

and constant
webV .  The following relationship is obtained: 
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3.3.6 Uniformly Distributed Load (Fig. 3.5) 

A general closed-form solution for the integral is only possible in terms of the gamma function, 
[ ]Γ .  The evaluation of the integral leads to the following stress relationship 
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Figure 3.5: Common loading configurations: (a) concentrated load, (b) four-point loading, (c) 
uniform load. 

 

3.4 Verification of Theory 

The experimental work reported by Shahawy and Beitelman (1999) is used to verify the 
applicability of the theory to strengthening schemes involving the use of CFRP sheets.  The 
tested beams serve the purpose of the verification study because the CFRP laminates ruptured in 
the high flexure region.  Many of the experimental results reported in the literature cannot be 
used for verification because other modes of failure were observed (concrete crushing, 
delamination of CFRP, …etc.). Figures 3.6 and 3.7 show the dimensions of the tested beams.  
The properties of the CFRP fibers of which the laminates were woven are given in Table 3.1. 
Table 3.2 gives the reinforcing steel and concrete properties for each of the studied beams. 
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3.4.1 Short-term Tensile Stress 

The first step in the process is to find uniformσ  based on fiber strength provided by the 

manufacturer, fiberσ .  At this stage, it will be first assumed that the total volume (803 mm x 5791 

mm x CFRPt  [31.6in x 228in x CFRPt ]) of the CFRP laminates is uniformly stressed.  The number of 

longitudinal yarns in a single layer of CFRP laminate is equal to (14+3.6+14) in x (6) yarns/in = 
190 with 12,000 fibers in each yarn; i.e. N  = 2275200 fibers.  The data provided by the 
manufacturer (Table 3.1) does not give the COV of CFRP fibers.  It was therefore assumed that 
COV is 6.86% which corresponds to values of m = 18 and oσ =546 ksi according to Eqs. 3.9 and 

3.10.  The choice of m = 18 is based on a review of the experimental results reported by several 
researchers (Bullock 1974, Kaminski 1973, and Lavoie 1997), which showed that for FRP fibers 
m ranges between 10 and 29. The length of each fiber is L = 5791 mm [228 in]. Using kn  = 8, 

kλ  = 0.1 mm, and kc  as suggested in Eq. 3.13, it was found that a triplet failure (i = 3) will take 

place for W-1L5, and that oσσuniform  is equal to 0.5435 according to Eq. 3.12. 

 

Table 3.1: Properties of CFRP Laminates (Provided by manufacturer) 

Property Value 

Fiber Tensile Strength ( fiberσ ) 3.65 GPa [530 ksi] 

Modulus of Elasticity (Tension) 231 GPa [33,500 ksi] 

Filament Diameter 7 µm 

Filaments/yarn 12,000 

Yarn density 0.23/mm [6/inch] 

Ultimate Elongation 1.4% 

 

 

76 7676

CFRP LaminateElastomeric bearing pad
 

Figure 3.6: Loading setup for FDOT girders (dimensions in inches) 
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Table 3.2: Comparison of Failure Moments 

Material Strength, MPa [ksi] Flexural Capacity (Mmax) Specimen 

Yield  

Stress 

( yf ) 

Concrete 

Strength 

( '
cf ) 

CFRP 

Strength 

( fσ ) 

Experiment 

kN-m [kip-in] 

Analysis 

kN-m [kip-in] 

Difference* 

(%) 

W-1L5 35.9 [5.2] 2200[314.4] 211.4 [1871] 205.0 [1813] -3.1 

W-2L5-A 37.2 [5.4] 2140[310.4] 259.5 [2300] 243.5 [2155] -6.3 

W-2L5-B 35.1 [5.1] 2140[310.4] 259.9 [2300] 242.2 [2143] -6.8 

W-3L5 35.1 [5.1] 2120[308.1] 282.5 [2500] 278.5 [2464] -1.4 

W-4L5 

441[64] 

35.1 [5.1] 2110[306.4] 305.1 [2700] 313.1 [2770] +2.6 

Average -3.0 

* (+) indicates unconservative prediction, (-) indicates conservative prediction 

 

3.6

6

23

2

3.
5

12
.6

25

14
.3

75

17
.5

A’
s=0.44 sq. in

As=1.76 sq. in

 
Figure 3.7: Cross-section details (dimensions in inches) 

 

Since failure happened due to the formation of a triplet flaw (i.e. i = 3), then im = 3x18 = 54 is 
used in the following stress gradient calculations.  The effect of the stress gradient in the web 
portions is accounted for in the second step, which is performed by substituting the cross-
sectional properties into Eq. 3.26.  The result is uniformbeam/σσ  equal to 1.059.  Combining both 

effects leads to a oσσ /beam  ratio of 0.576; i.e. beamσ =2.17 Gpa [314.4 ksi].  It is clear that the size 

effect has a much greater impact on the short-term strength of the composite sheet than the stress 
gradient effect has.  The same procedure was repeated for the other specimens using the 
appropriate number of fibers for each case (e.g. N  = 6825600 fibers for W-3L5).  The failure 
stress predicted by the theory is used as input for a fiber section analyses of the test beams. 
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3.4.2 Comparison of Flexural Capacities  

The verification study is conducted by performing fiber-section analyses of the specimen cross-
sections.  The analyses are conducted using the computer program discussed in Chapter 2. Table 
3.2 summarizes the results of the verification study. The designation of the beams describes the 
number of CFRP layers used and concrete strength; e.g. W-3L5 is strengthened with 3 layers and 
has a nominal concrete compressive strength of '

cf =5 ksi.  It can be seen from Table 3.2 that the 

flexural capacities ( maxM ) obtained from the analyses and the values observed from the tests are 

in good agreement (average difference of -3.0%).  The maximum difference is -6.8%.  The 
flexural capacity as predicted by the analysis based on the suggested short-term tensile strength 
is on the conservative side for all beams except Beam W-4L5 where the analysis predicts a 
slightly higher maxM  ( %6.2maxmax +=∆ MM ).  

While this verification study is rather limited, it does suggest that the proposed method can be 
used to reasonably estimate the short-term tensile strength of CFRP laminates.  Nevertheless, 
further verification of the method should be sought through comparisons to additional tests of 
beams with different size and load configurations. 

3.5 Design Implications  

The work described in this report has important implications regarding the applicability of 
coupon test results.  Coupon tests are typically conducted using relatively small specimens, and 
may therefore lead to unconservative estimates of strength if the size effect is not properly 
considered. For coupons to be representative of the final structure, they should be large enough 
to develop the same type of multi-plet that is expected in the actual-size structure.  While such a 
size may be relatively small, the size of the specimen should be studied before the results can be 
considered reliable for design purposes. The methodology described in this chapter and 
represented by Eq. 3.12 and Fig. 3.8 can be used for this purpose.  

An alternative approach that is more suited for implementation in design guidelines is to develop 
design charts from which engineers can extract the short-term strength of CFRP laminates.  
Figure 3.8 is a plot of the relationship between the total length of fibers in a composite, NL , and 
the strength ratio, of σσ  calculated according to Eq. 3.12.  The plot is obtained using the same 

parameters used to compute Fig. 3.2, i.e. m = 18, kc  from Eq. 3.13, kλ  = 0.1 mm, and kn  = 8 for 

all values of k.  These parameters are chosen following Batdorf and Ghaffarian (1984) and 
Batdorf (1994) and were found to give reasonable results in the verification study described in 
the previous section.  

The input to the developed design chart is the total length of all the fibers in the composite 
structure, NL , and the output is the ratio of the short-term tensile strength, fσ , to the scale 

factor, oσ , which can be taken equal to fiberσ  for all practical purposes following the 

approximation in Eq. 3.9.  To illustrate the method, the dimensions of verification beam W-1L5 
will be used.  The total length of fibers can be estimated as 5791 (mm) x 190 (yarn) x 12,000 
(fibers/yarn) = 13.2x109 mm. The corresponding short-term tensile strength is 
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50.5435x3.6max, =fσ =1.984 GPa [287.7 ksi] and a triplet failure type is expected ( 3=i  from 

chart). This stress still needs to be adjusted to account for the stress gradient effect using 3=i   
(previously calculated to be 1.059). The stress gradient effect is typically less than 10% and can 
be conservatively ignored when estimating the short-term tensile strength of CFRP laminates. 
The developed chart is suitable for general-purpose carbon fiber reinforced polymer laminates. 
Similar charts can be developed for other types of CFRP laminates. 

The chart in Fig. 3.8 is developed assuming that the reported fiber strength is for fibers with a 
gauge length of 25.4mm [1in].  This gauge length is frequently used in fiber and dry strand tests 
(McMahon 1973).  In cases where the manufacturer reports a different gauge length, the reported 
stress can be adjusted to the 25.4mm [1in] gauge length strength using the following factor, 
which stems from Eq. 3.7.  

m

fiber

fiber

L

L
1

2

1

2

1
FactorLength  Gauge

−







==

σ
σ

 (3.28) 

The tensile strength computed from the chart represents the short-term strength. The design 
tensile strength should account for additional reductions due to environmental exposure 
conditions (temperature, humidity, and chemical exposure) as well as load characteristics (long 
term and repeated).   
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Figure 3.8: Proposed chart for predicting the short-term tensile strength of uniformly stressed 

CFRP sheets. 
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3.6 Summary and Conclusions  

The short-term tensile strength of CFRP laminates used for strengthening concrete girders can be 
estimated by applying the Weibull Theory. Two steps are needed to calculate the short-term 
tensile strength. The first step accounts for the size effect and predicts the tensile strength of a 
uniformly stressed volume that shares the size of the CFRP used in the real structure. The second 
step accounts for the effect of stress gradients. Expressions that account for the stress gradient 
effect in several common load configurations are derived and presented. Analytical results 
calculated using the developed theory are compared to published test results of reinforced 
concrete T-beams strengthened with CFRP laminates. Good agreement is found between 
theoretical calculations and test results. The work described herein suggests that coupon tests 
may lead to unconservative estimates of strength if the size effect is not properly considered.  
Based on the work presented in this chapter, a design tool is provided in the form of a chart, 
which can be used to estimate the effect of size on the short-term tensile strength of CFRP 
laminates.  
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4 STATIC AND FATIGUE BEHAVIOR 

 

4.1 Introduction 

Information on the short-term behavior of RC beams strengthened with CFRP laminates is 
relatively abundant and well documented (Plevris et al 1994 and 1995, Shahawy et al 1996, and 
Saadatmanesh and Malek 1998). However, data on long term behavior, especially fatigue 
response, is still rather limited. Meier et al. (1992) conducted some of the earliest fatigue tests on 
RC beams strengthened with hybrid glass/carbon laminates. The test results showed that in 
addition to improving the short-term behavior of the RC beams, the use of CFRP also improved 
fatigue behavior. Inoue et al. (1995) conducted fatigue tests of rectangular RC beams 
strengthened with CFRP plates. They observed that the behavior of the beams became quite 
complex leading to several possible secondary modes of failure after the steel reinforcing bars 
ruptured due to high-cycle fatigue. They concluded that CFRP reinforcement was beneficial to 
the fatigue performance of the beams, reducing crack width, and improving its distribution prior 
to failure. Shahawy and Beitelman (1999) conducted accelerated fatigue testing of several RC T-
beams strengthened with a varying number of CFRP laminates including a test specimen that 
was cycled to about half its fatigue life then rehabilitated using CFRP. Test results showed that 
the application of the CFRP laminates significantly extended the fatigue life of the reinforced 
concrete beams, including the beam that had accumulated fatigue damage prior to rehabilitation 
using CFRP. These test results along with other fatigue tests reported by Barnes and Mays 
(1999) highlight the benefits of using CFRP laminates and plates to rehabilitate deficient 
reinforced concrete bridge girders.  

This chapter discusses the static and accelerated fatigue behavior of reinforced concrete beams 
strengthened with CFRP. The computer program developed in Chapter 2 is first verified by 
comparing its results to experimental data in Shahawy and Beitelman (1999, 2000) and Barnes 
and Mayes (1999). The program is then used to conduct parametric studies of CFRP 
strengthened beams. Based on the analyses, design considerations are suggested for the repair 
and/or strengthening of reinforced concrete beams using CFRP laminates.  

4.2 Shahawy and Beitelman's (1999, 2000) Tests 

Tests of reinforced concrete beams strengthened with CFRP laminates were conducted at the 
FDOT Structures Lab (Shahawy and Beitelman 1999 and 2000). The four-point flexural tests 
were designed to study the effect of concrete strength and number of laminates on the fatigue 
behavior of reinforced concrete beams rehabilitated with CFRP laminates. The test program 
consisted of both static and fatigue tests of 23 specimens. Figures 3.6 and 3.7 (Chapter 3) show 
the test setup and cross-section details, while material properties are listed in Tables 3.1 and 3.2. 
The CFRP fabric utilized in the tests was composed of unidirectional dry carbon material formed 
by weaving individual yarns into a fabric. The strength of the composite laminates was 
calculated to be 310 ksi by assuming the strength of the carbon fibers to follow a Weibull 
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statistical distribution as described in Chapter 3. Further details about the test setup may be found 
in Shahawy and Beitelman (1999 and 2000). 

Two series of specimens were tested. The first series (Shahawy and Beitelman 1999) was 
subjected to fairly low moments ranging from 44 to 89 kN-m which correspond to 25 to 50% of 
the flexural capacity of the reinforced-concrete cross section. The second series (Shahawy and 
Beitelman 2000) was subjected to moments that were somewhat higher ranging from 44 to 132 
kN-m which correspond to 25 to 75% of the flexural capacity of the reinforced concrete cross 
section. The stirrups in the first series were tack welded to the main bar reinforcement, which 
caused the bar reinforcement in the control beam (without CFRP strengthening) to fracture early 
on in the cyclic load history. The beams in the second series did not have any tack welding.  

All specimens subjected to monotonic loading failed by fracture of the CFRP laminates in the 
high moment zone. Specimens subjected to cyclic loads failed in the high moment region by 
high-cycle fatigue fracture of the main steel reinforcement. 

4.2.1 Monotonic Analyses of Shahawy and Beitleman's (1999, 2000) Specimens 

A series of monotonic fiber element analyses were carried out. The analyses were conducted for 
the control beam and beams with 0, 1, 2, 3, and 4 CFRP laminates. Analytically calculated 
moment vs. curvature results for all cross-sections are plotted in Figs. 4.1 through 4.5 along with 
the measured response. It is clear from the figures that the analytical response correlates well 
with the experimental data at all stages of behavior up to failure. The calculated moment vs. 
curvature responses for all specimens are plotted together in Figure 4.6. The following 
observations can be made from the figures: 

1. At concrete cracking, there is a pronounced change in slope of the moment curvature 
response of the control beam.  

2. The cracking moment for beams with CFRP laminates is almost the same irrespective of the 
number of CFRP laminates and is larger than the cracking moment of the control beam. 

3. There is another pronounced change in the moment curvature slope when the lowermost steel 
yields. This is shortly followed by another sudden change when the second layer of steel 
yields. 

4. Moment capacity is greatly affected by the number of CRPF laminates. The strength increase 
per laminate is almost constant.  

5. Cross-sections with different layers of CFRP reach their ultimate strength at approximately 
the same curvature. 

6. There is a sudden drop in the moment-curvature response when the moment capacity is 
attained. The drop corresponds to rupture of bottommost layer of CFRP laminates and 
becomes larger as the number of layers increase. 

7. Immediately after the sudden drop in moment-curvature response, there is a more gradual 
reduction in strength. This portion of the response corresponds to the rupture of the CFRP 
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laminates on the sides of the web. In other words, fracture of the CFRP laminates is 
travelling up the web. The curve is jagged because of the relatively coarse fiber 
discretization. Each little drop in the descending curve corresponds to a fiber fracturing. The 
curve would become smoother as the discretization becomes finer. 

The effect of the number of CFRP laminates on the moment strength is shown in Figure 4.7. It is 
clear from the figure that there is excellent correlation for all cases. The effect of the number of 
CFRP laminates on the yield moment strength is shown in Figure 4.8. Although the comparison 
is not as good as for the moment strength, the results are still very good.  
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Figure 4.1: Experimental vs. analytical moment curvature. Specimen C-L0-5 
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Figure 4.2: Experimental vs. analytical moment curvature. Specimen W-L1-5 
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Figure 4.3: Experimental vs. analytical moment curvature. Specimen W-L2-5 
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Figure 4.4: Experimental vs. analytical moment curvature. Specimen W-L3-5 
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Figure 4.5: Experimental vs. analytical moment curvature. Specimen W-L4-5 
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Figure 4.6: Moment curvature relationships for beam with different number of CFRP layers. 
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Figure 4.7: Analytical and experimental ultimate moment increase vs. number of CFRP layers 
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Figure 4.8: Analytical and experimental yield moment increase vs. number of CFRP layers 

 

4.2.2 Cyclic Analyses of Shahawy and Beitleman's (1999, 2000) Specimens 

The measured and computed mid-span deflections for beams with 2 and 3 CFRP layers are 
plotted versus the number of cycles in Fig. 4.9. In the figure, beams in which only the end 
designation is different (i.e. A or B) are identical in all respects, and were tested in the same 
manner (Shahawy and Beitelman 1999 and 2000). It is clear from the figure that the computed 
response compares favorably to the measured deflections, with the exception of Beam F-3L5-A, 
which suffered a sudden jump in deflection at about 1.7 million cycles. This sudden increase in 
deflection is attributed to an early fatigue fracture of one of the reinforcing bars. However, in 
spite of the loss of one of the bars, the beam was still capable of sustaining the applied load for 
over 3 million cycles.  

The internal redistribution of stresses due to cyclic creep within a cross section is illustrated in 
Fig. 4.10.  The calculated stress in the topmost concrete fiber of the specimen with 2 CFRP 
layers is plotted versus the number of cycles in Fig. 4.10(a). As is typical of creep behavior, the 
concrete stress drops rapidly during the initial loading cycles then flattens out. The stress in the 
steel exhibits an opposite trend, rising rapidly then slowing considerably as can be seen in Fig. 
4.10(b). The overall rise in steel stress is mild, increasing from 324 MPa to 340 MPa - a less than 
5% increase. The stress in the carbon fiber also increased by about the same percentage. The 
increase in steel and CFRP stresses in all the other specimens was also less than 5%. 

Time dependent moment vs. curvature plots for specimens C-L0-5 and W-L1-5 are shown in 
Figures 4.11 and 4.13. It is clear from the figures that the moment vs. curvature plot is shifting to 
the right as N increases. The shift also appears to be rather uniform. This was observed in the test 
results for applied cycles almost up to failure. The steel stresses at minimum and maximum 
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applied moments for specimens C-L0-5 and W-L1-5 are shown in Figures 4.12 and 4.14. As 
discussed in the previous paragraph, the stresses appear to be increasing slightly as N increases. 
An important observation from the figure is that the stress range is almost constant at any N.  
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Figure 4.9: Calculated versus experimental mid-span deflection for (a) beams with 2 CFRP 
layers (Shahawy and Beitelman 2000) and (b) beams with 3 CFRP layers (Shahawy and 

Beitelman 1999).  
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Figure 4.10: Calculated stresses in (a) top concrete fiber and (b) bottom steel layer versus 
number of cycles for beam with 2 CFRP layers 



 

 57 

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

1.80E+06

0 0.0005 0.001 0.0015 0.002 0.0025

Curvature (1/in)

M
o

m
en

t 
(k

ip
-i

n
)

100,000 Cycles

200,000 Cycles

Virgin

 

Figure 4.11: Time-dependent analysis for Specimen C-L0-5 
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Figure 4.12:  Stress in bottom steel layer as a function of number of cycles. 
Specimen C-L0-5 
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Figure 4.13: Time-dependent analysis for Specimen W-L1-5 
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Figure 4.14: Stress in bottom steel layer as a function of number of cycles. 
Specimen W-L1-5 
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4.2.3 Fatigue Life of Shahawy and Beitleman's (1999, 2000) Specimens  

As discussed in the previous section, it was observed from the analyses that even though the steel 
stress increases mildly as the number of applied cycles increases, the stress range, which is the 
difference between maximum and minimum stresses in the reinforcement, was essentially 
unchanged. In other words, the stress range acting over the life of the specimen can be estimated 
with good accuracy from a cracked section analysis. Such analyses are conducted and the results 
are shown in Table 4.1 along with the observed number of cycles to failure. The modular ratios 
for steel and CFRP are assumed to be 7.4 and 8.4 respectively.  

It is clear from the table that the addition of CFRP laminates appreciably increases the cracked 
moment of inertia, and results in a corresponding reduction in the steel stress range and the 
maximum concrete and CFRP stresses. For example, adding two layers of CFRP laminates 
increases the cracked moment of inertia by 20%, and decreases the steel stress range by 20 %. 
For the control section in the unwelded series, the top fiber stress ranges from 0.81 to 2.41 ksi for 
the given loading conditions. Holmen's equations for number of cycles to failure do not apply 
directly since Smin=0.155 and Smax = 0.46. For a given Smax and a 50% probability of failure, he 
proposed two equations: one for Smin=0.05, and another for Smean = 0.5 (Holmen 1982). 
Nevertheless, substituting into both equations indicates that the number of cycles to failure of the 
concrete is several orders of magnitude greater than the number of cycles to failure observed in 
the tests. Hence it is certain that the control beam did not fail due to concrete fatigue. 
Furthermore, because Smax is low and the corresponding fatigue life so large, concrete 
deterioration due fatigue is unlikely to have appreciably affected the behavior of the beam.  

Table 4.1: Properties of sections (calculated from cracked section analysis) 

Specimen Moment of 
Inertia (in4) 

Steel Stress 
Range (ksi) 

Max. Concrete 
Stress (ksi) 

Max. CFRP 
Stress (ksi) 

Cycles to 
Failure 

Welded Specimens 

C-0L5-FA 1630 17.9 1.62 - 295,000 

F-2L5-A&B 1952 14.5 1.48 44.6 1,800,000 

F-3L5-A&B 2106 13.2 1.43 41.0 3,100,000 

Unwelded Specimens 

C-0L5-FA 1630 35.8 2.41 - 390,000 

F-2L5-A&B 1952 28.9 2.20 67.0 650,000 

F-3L5-A&B 2106 26.4 2.14 61.4 920,000 

UF-4L5-A 2255 24.3 2.07 56.6 1,300,000 

 

Since concrete fatigue did not contribute to the failure of the control beam, it is reasonable to 
assume that the steel precipitated the failure. This is confirmed in Figure 4.15 in which the steel 
fracture surfaces are characteristic of high cycle fatigue failures. For comparison, Figure 4.16 
shows a typical fatigue fracture of a reinforcing bar. This is a #11, grade 60 bar that was 
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embedded in a concrete beam subjected to repeated loading until the bar failed. The fatigue crack 
is the smooth portion of the fracture surface. The jagged region is where the bar finally fractured 
in tension after the propagating fatigue crack weakened the bar. Note that the fatigue crack did 
not initiate at the lower most point of the bar as expected (where the stress is highest), but 
actually started along the side of the bar, at the base of the transverse lugs. Pictures of the 
fractured bars in the FDOT tests (shown in Figure 4.15) have similar failure characteristics. It is 
clear from both figures that the failures are steel bar fatigue failures.  

 

  

(c) (d) 

Figure 4.15:  Different views of the failure surfaces of steel reinforcement. 

 

The Sr-N curves for all test specimens are plotted in Figure 4.17. Corley et al (1971) conducted 
an extensive experimental investigation to determine the fatigue strength of deformed reinforcing 
bars. The experimental program covered many variables and involved hundreds of tests. The 
dotted lines plotted in Figure 4.17 bound the data presented in Corley et al (1971). It is clear 
from the figure that the unwelded specimens fall within these bounds, while the tack-welded 
beams falls well below the lower bound for Corley's data. This is expected since tack-welding 
causes stress-risers, which significantly reduce fatigue life. An obvious conclusion that can be 
drawn from Figure 4.17 and Table 4.1 is that increasing the number of CFRP layers reduces the 
steel stress range leading to an enhancement in fatigue life.  
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Figure 4.16: Typical fatigue fracture of reinforcing bar 
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Figure 4.17: Sr-N Curve for Shahawy and Beitelman's (1999, 2000) fatigue tests 

 

4.3 Analysis of Barnes and Mays' (1999) Specimens 

Further verification of the program is sought by comparing analysis results to test data in Barnes 
and Mays (1999) who also conducted accelerated fatigue tests of a series of reinforced concrete 
beams.  The 2300-mm long beams, which had a rectangular cross-section (130-mm wide, and 
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230-mm deep), were subjected to a cyclic load in four-point bending at a frequency of 1Hz. 
Unidirectional CFRP (Toray T300) plates were bonded to the bottom surface of the beam. 
Figures 4.18 and 4.19 show the calculated and measured mid-span deflection plotted versus the 
number of cycles for the control beam (Beam 2) and another beam reinforced with a CFRP plate 
(Beam 4), respectively. The upper two curves in either figure correspond to the deflection at the 
maximum applied load, whereas the lower two curves correspond to the lower load. Once again, 
the analysis results compare favorably to the test results. 
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Figure 4.18: Calculated versus experimental mid-span deflection for Beam 2 (Barnes and Mays 
1999). 

4.4 Design Considerations 

There is growing consensus among structural engineers that CFRP laminates are suitable for 
repairing or strengthening reinforced concrete beams subjected to flexure. An example of a 
repair situation is when a structure suffers damage such as corrosion of a few steel reinforcing 
bars or prestressing strands and needs to be returned to its original strength.  The latter case is 
normally encountered when an existing structure needs to be strengthened to meet increased 
strength demands, e.g. due to heavier traffic loads. In either case, the CFRP is usually attached to 
the structure while still subjected to dead load. Under such conditions, the steel bars are already 
significantly stressed. Since CFRP ruptures at a strain that is considerably higher than the steel 
yield strain, it is conceivable that steel reinforcement in a flexurally repaired/strengthened beam 
may yield under service conditions, i.e. application of the dead plus full live load. Steel yield 
under service conditions must be avoided because it can cause a reduction in the effective 
stiffness of the member and can result in excessive permanent deformations, both of which lead 
to severe serviceability problems. 
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Figure 4.19: Calculated versus experimental mid-span deflection for Beam 4 (Barnes and Mays 
1999). 

 

This situation can be easily remedied during design of the rehabilitation scheme by limiting the 
steel stress (σs) under service conditions such that  

ys fαβσ  <   (4.1) 

where both α  and β are factors that are less than 1.0. The reduction factor α takes into 
consideration the increase in steel stress, which results from the time-dependent redistribution of 
stresses due creep, shrinkage, and cyclic fatigue. Analyses by Moustafa (1986) and Rao and 
Jayaraman (1989) of rectangular reinforced concrete sections show that reinforcing steel stresses 
increase by less than 3.1% as a result of creep and shrinkage. Cyclic fatigue analyses presented 
in this paper of the test specimens of Shahawy and Beitelman (1999, 2000) and Barnes and Mays 
(2000) show that the beams suffer less than 5% increase in steel stresses until failure. In general, 
the steel stress increase is dependent upon the time elapsed, number of cycles the bridge has been 
subjected to prior to rehabilitation, ambient temperature and humidity conditions, etc. and 
therefore it is difficult to draw a firm conclusion from these numbers regarding a precise and 
conservative value for α.  Until further research is conducted, it is recommended that the factor α 
be taken as 0.90.  
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The reduction factor β accounts for the possibility that the tensile strength of steel is less than the 
assumed nominal stress. A review of the literature shows that steel reinforcement strength is 
normally distributed, has a strength bias of 1.125 (i.e. mean strength is higher than the nominal 
design value by 12.5%), and a coefficient of variation, COV (ratio of standard deviation to mean) 
of 10% (Plevris et al. 1995). For a designer to have 95% confidence that the steel yield stress will 
not fall below the nominal strength, the design stress, desf ,  should be restricted to  

deviation standard  1.645 -mean  ×=desf   (4.2) 

Using the values of the bias and COV listed above, it turns out that the reduction factor β should 
be 0.96 (1.125 yf  - 1.645 x 0.10 yf  = 0.961 yf ).  

Substituting the recommended values of α and β into Eq. 4.1 results in σs < 0.86 - say σs < 
0.85 yf . In other words, a designer involved in the design of a rehabilitation scheme should limit 

the steel stress under service conditions to 85% of the yield strength.  

4.5 Summary and Conclusions 

The computer program T-DACS is exercised in this chapter. The program is shown to compare 
well to test results for all aspects of behavior. A study of the internal stresses obtained from T-
DACS showed that cyclic fatigue leads to an internal redistribution of stresses similar to that 
obtained under static creep. The analyses show that the steel reinforcement stress in the 
specimens of Shahawy and Beitelman (1999, 2000) and Barnes and Mays (2000) increased by 
less than 5% during the fatigue life of the test beams. To account for the increase in steel stresses 
due to cyclic fatigue as well as shrinkage, creep under dead loads and the variability in 
reinforcing steel strength, it is recommended that the service steel stress be limited such that 

ys f85.0 < σ  for repair and/or strengthening of reinforced concrete girders using CFRP 

laminates. The 0.85 factor is affected by a variety of parameters and further research is needed to 
refine it.   
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5 RELIABILITY OF REHABILITATED BRIDGE GIRDERS 

 

5.1 Introduction 

With the exception of a few studies, most of the research conducted on CFRP strengthened 
structures has been done in a deterministic manner, and the statistical variations associated with 
the main design variables have been largely ignored. Reliability-based techniques can be used to 
account for the randomness in important variables that affect the strength of CFRP strengthened 
concrete girders. The use of such methods in structural engineering has greatly increased in the 
past few years as reliability-based models have become better understood and more widely 
accepted. The recent surge in applications of the theory of reliability to structural engineering 
problems may be attributed to two main reasons. First, design codes have, and still are, being 
changed from the Allowable Stress Design approach to the Strength Design approach. Strength 
Design provisions in modern design codes are calibrated through reliability-based methods to 
ensure that the probability of failure, fP , does not exceed a target level (Nowak 1995 and 

Kariyawasam et al. 1997). This approach allows designers to more rationally evaluate the 
possibility of structural collapse as opposed to Allowable Stress Design, which usually results in 
hidden reserve strength. The second reason driving the increasing popularity of structural 
reliability is that it makes possible a new trend in thought whereby structural systems are 
characterized in a probabilistic manner rather than using deterministic strength to achieve a more 
rational balance between safety and life cycle costs (Val et al. 1997, Thoft-Christensen 1998, and 
Estes and Frangopol 1999). 

One of the earliest studies of the reliability of concrete structures strengthened with CFRP was 
conducted by Pelvris et al (1995). In their approach, a virtual design space comprised of a 
number of random parameters was created and used to study flexural reliability of RC beams 
strengthened with CFRP. Pelvris et al proposed the use of a reduction factor for CFRP material 
strength, CFRPφ , together with a general resistance factor, φ, for overall member flexural strength. 

The developed reliability model was used to calibrate the resistance factors for a variety of 
design situations. Although material level reduction factors are adopted by several design codes, 
their use constitutes a divergence from current U.S. practices in which a single overall, albeit 
behavior specific, reduction factor is used. Furthermore, the choice of design factors implied that 
the study was limited to only reinforced concrete beams in buildings. 

In this chapter, the reliability of reinforced and prestressed concrete bridge girders strengthened 
with CFRP laminates is investigated. The study focuses on cross-sectional flexural behavior and 
has two specific goals: a) determine resistance models for RC and PSC cross sections 
rehabilitated with CFRP laminates, and b) develop appropriate design factors.  
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5.2 Reliability Index 

The performance of a structure in flexure, shear, …etc., can be represented by a limit state 
function, also known as a performance function, Z . In its simplest form, the limit state function 
is the difference between the random resistance of the member, R, and the random load effect 
acting on the member, Q. 

QRZ −=  (5.1) 

A general limit state function involves a number of random variables, X X X n1 2, , ,⋅ ⋅ ⋅ , 
representing dimensions, material properties, loads …etc. Accordingly, Z  becomes a random 
vector ( )g ⋅  where 

( )Z g X X X n= ⋅⋅⋅1 2, , ,  (5.2) 

Such a general limit state function represents a failure surface, which divides the design space 
into safe and unsafe designs as can be seen in Fig. 5.1 for a simple 2-dimensional design space. 
The probability of failure, fP , for the limit state under consideration can be represented by the 

Reliability Index, β .  The relationship between the reliability index and the probability of failure 
is 

( )Pf = −Φ β  (5.3) 

where ( )Φ ⋅  is  the Cumulative Distribution Function (CDF) of the limit state function under 
consideration.  The reliability index can be determined using the following expression 

Z

Z

σ
µβ =  (5.4) 

where Zµ  and Zσ  are respectively the mean value and the standard deviation of the Probability 
Density Function (PDF) of Z . Design codes are developed to result in structures with a Pf  

corresponding to a reliability index between 3.0 and 3.75.  The range of β  is due to many factors 
such as the importance of the structure, the expected mode of failure, the ratio of live loads to 
dead loads, …etc. (Allen 1992). 

5.3 First Order Reliability Method (FORM) 

The mean and standard deviation ( Zµ , Zσ ) of the joint PDF of Z in Eq. 5.1 are needed to 
determine the reliability index. Determining these values is not straight forward, especially for 
the case of a complex limit state function. Several methods are used to determine the reliability 
index (Ayyub and McCuen 1997) including the First Order Reliability Method (FORM) which is 
chosen to study the reliability of the analyzed cross sections. FORM is based on a first order 
Taylor series expansion of the limit state function, which approximates the failure surface by a 
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tangent plane at the point of interest.  According to FORM, the mean and variance of Z  are 
evaluated and given as 

µ µ µ µZ ng≅ ⋅ ⋅ ⋅( , , , )1 2  (5.5) 
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The most probable failure point is the mean. In the design space, this point is located on the 
failure surface Z (Eq. 5.1) such that distance from the origin of the design space to the tangent 
plane to the failure surface is shortest (see Fig. 5.1). To locate such a point, an iterative process is 
needed. The iterations are executed on transformed standard normally distributed random vectors 
using a specially developed MatLab computer program.  A detailed description of the process 
can be found in Appendix A and Estes and Frangopol (1998).  
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Figure 5.1: A simple reduced design space showing the design point, reliability index, β, and 
limit state function, Z. 
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5.4 Monte Carlo Simulations 

One hundred and twenty thousand data sets were randomly generated for the RC and PSC 
bridges considered in this study and described later on in Sections 5.4 and 5.5. The data sets were 
generated by assuming appropriate probabilistic distributions for the uncertainties of the various 
parameters. A review of the literature on bridge and building structures was performed to 
identify the statistical properties of the various parameters affecting flexural behavior. Table 5.1 
lists the range of statistical properties found in the literature. The table shows the bias 
(mean/nominal), coefficient of variation (COV =standard deviation/mean), and distribution type 
assumed by other researchers including Lu et al. (1994), Nowak et al. (1994), Pelvris et al. 
(1995), Thoft-Christensen (1998), Val et al. (1998), Crespo-Minguillon and Casas (1999), Estes 
and Frangopol (1999), Stewart and Val (1999). It is obvious from Table 5.1 that there is no clear 
consensus on specific values for many of the parameters involved.  

The bias and coefficient of variation adopted in the current study are also listed in Table 5.1.  
Based on the survey, all parameters were assumed to have a normal distribution except for the 
CFRP laminates, which were assumed to be a Weibull material. It is important to note that CFRP 
laminates have a relatively low bias and COV compared to steel or concrete. Both analytical and 
experimental results confirm this observation (Bullock 1974, Harlow and Phoenix 1981, Batdorf 
1994, Bakht et al. 2000). 

5.5 Reliability of Reinforced Concrete Bridge Girders 

The reliability of RC bridge girders is evaluated through the following process. A pool of bridge 
designs that cover a wide range of design parameters is created. The pool is comprised of a 
number of reinforced concrete bridges with different spans designed according to AASHTO-
LRFD (1998). Each of the bridge designs is assumed to have suffered various degrees of damage 
to the main steel reinforcement and is then strengthened back to its original design strength 
through externally bonded CFRP laminates. Monte Carlo simulations are conducted on each of 
the designed and rehabilitated bridges and use the resulting randomly generated data sets to 
develop a resistance model for cross-sectional flexural strength. The probability of failure of the 
designed sections and the reliability index, β , are determined using the specially developed 
computer program which implements the first order reliability method (FORM). The calculated 
probability of failure is used to calibrate the flexural resistance factor, φ. 

Since flexural behavior is the focus of this study, it is implicitly assumed that other modes of 
failure such as shear failure, laminate peel-off, and bond failure between laminates and concrete 
do not control behavior. Such modes of failure can be precluded by additional strengthening or 
through special detailing (Shahawy and Beitelman 1999).  
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Table 5.1: Statistical properties of variables involved in the study 

Other Researchers Current Study 
Variable 

Bias COV (%) Distribution 

Type 

Bias COV (%) Distribution 

Type 

Dimensions (h, d, b) 1.00 - 1.03 0.5 - 7.0 Normal 1.00 3.0 Normal 

Area of steel ( sA ) 1.00 0.0 - 4.0 Normal - 
Deterministic 

1.00 1.5 Normal 

Concrete strength ( cf ′ ) 0.81 - 1.25 9.0 - 21.0 Normal - 
LogNormal 

1.10 18.0 Normal 

Strand strength ( puf ) 1.00 - 1.04 1.7 - 2.5 Normal - 
LogNormal 

1.04 2.0 Normal 

CFRP failure Analytical 1.33 7.4 - 10.0 Weibull 1.10 2.2 Weibull 

strain ( CFRP,uε )* Experimental -- 2.2 - 5.1 -- -- -- -- 

Model Uncertainty (α ) 1.01 - 1.10 4.5 - 12.0 Normal 1.01 4.5 Normal 

Uncertainty of Girder DF (η) 0.89 - 1.02 9.1 - 14.0 Normal 0.924 13.5 Normal 

Wearing Surface Load (WS) 1.00 - 1.44 8.0 - 53.2 Normal 1.10 20.0 Normal 

Dead Load ( D ) 1.00 - 1.05 8.2 - 25.0 Normal 1.05 10.0 Normal 

Buildings 1.20 9.0 - 25.0 Extreme Event I -- -- -- 
Live Load ( L) 

Bridges 1.25-1.52 12.0 - 41.0 Normal - Modified 
Normal 

1.35-1.38 18.0 Normal 

* Analytical results used by Pelvris et al. (1995); experimental results are reported in Bakht et al. (2000). 
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5.5.1 Design of RC Bridges 

A broad range of realistic designs are required to investigate reliability and recommend 
resistance factors for reinforced concrete girders strengthened with CFRP laminates. Three 
simply supported bridges with the following spans are considered: 22,860mm (75ft), 18,288mm 
(60ft), and 13,716mm (45ft). The bridges are designated as RC75, RC60, and RC45, 
respectively. An interior girder for each bridge was chosen for this study and designed for 
flexure according to AASHTO-LRFD (1998).  

The designed cross sections are then assumed to have lost a significant portion of the main 
reinforcing steel (possibly due to corrosion, vandalism, or collision by a truck). Three levels of 
damage are considered; namely a loss of 10%, 20% and 30% of the main steel. Rehabilitation 
schemes are then designed to return the damaged bridge sections to their original strength by 
externally bonding CFRP laminates to the beam stems. The CFRP laminates are wrapped around 
the stem of the beams and attached using epoxy adhesives. This technique has been shown to be 
successful for repair purposes as it reduces the likelihood of laminate peel-off or debonding 
(Shahawy and Beitelman 2000). 

Although arbitrary, the chosen damage levels are realistic in that rehabilitation of the girders 
using CFRP is a feasible and practical alternative. The damaged bridges are referred to hereafter 
by appending D1, D2, or D3 (which correspond to 10, 20, or 30% damage) to the bridge 
designation listed above. For example, for the 60-ft span design, the damaged bridges are 
designated RC60-D1, RC60-D2, and RC60-D3 for 10, 20, and 30% damage levels respectively. 
Altogether, the number of bridge designs chosen for the reliability study is twelve. The inventory 
is comprised of 3 undamaged bridges, each having three variations reflecting the three damage 
levels considered.   

5.5.2 Bridge Geometry, Material Properties, and Loading 

Figure 5.2 shows the cross section used for all bridge spans.  The supported road is 10059mm 
wide (33ft 2in).  The bridge cross-section is comprised of a 191mm-thick (7.5in) slab monolithic 
with five girders spaced at 2134mm (ft). The concrete compressive strength is assumed to be 

'
cf =27.6MPa (4ksi) whereas the steel yield strength is yf = 414MPa (60ksi).  

It is assumed that the laminates used for strengthening are similar to those successfully used by 
the Florida Department of Transportation (FDOT) for repair purposes (Shahawy and Beitelman 
1999). The tensile strength of CFRP fibers is assumed to be fiberσ =3.65GPa (530ksi). However, 

the laminate strength, which is different than the fiber strength, is estimated using the Weibull 
theory as discussed in Chapter 3. Application of this method to the designed bridges results in 
the laminate strengths listed in Table 5.2. The small variations in the design tensile strength of 
the CFRP laminates are due to differences in the volume of carbon fibers in the different designs; 
i.e. size effect.  The theory also provides the coefficient of variation, COV, for the laminate 
strength, which turns out to be 2.2%.  
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The design bending moments for the interior girder are calculated for the dead loads and live 
loads according the AASHTO-LRFD specifications (AASHTO 1998). The maximum of "Lane 
Load/Standard Truck" and "Lane Load/Tandem Load" cases is considered as shown in Fig. 5.3.  
The truck or tandem portion of the live load moments is increased by an impact factor of 33%. 

190.5 mm

4 x 2133.6=8534.4 mm

10058.6 mm

 

Figure 5.2: Cross section of 5-girder bridge 

 

5.5.3 Design of RC Cross Sections 

The designed cross sections of the interior girder of each bridge are shown in Fig. 5.4. The pure 
carbon thickness (in the CFRP laminates) required to return the damaged girders to their original 
strength is calculated using the fiber section model described in Chapter 2 and are given in Table 
5.3. It is worthwhile to note that the expected failure mode of all the rehabilitated cross-sections 
is steel yielding followed by rupture of the CFRP. Concrete crushing is unlikely because of the 
presence of the concrete deck, which acts as a flange for the girders.  

The stress in the main reinforcing bars due to service loads (dead, live, and impact; 

IMLDservice ++= MMM ) is also shown in the table and is well below the yield stress for all cases. 

It is important to ensure that the service steel stress is well below yielding since overloading the 
steel can lead to a reduction in the effective stiffness of the member and can result in excessive 
permanent deformations, both of which create severe serviceability problems. Chapter 4 
discusses the maximum appropriate steel stress level for this type of serviceability check.  Table 
3 also shows the ratio of the flexural capacity provided by CFRP to the flexural capacity 
provided by steel reinforcement. For the 30% damage level, the CFRP laminates are providing 
about 45% of the moment capacity due to the steel reinforcement for all three spans.  
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Table 5.2: Usable tensile stress used in design of RC Bridges 

Bridge Case Damage σCFRP 

GPa [ksi] 

10% 1.99 [289.2] 

20% 1.97 [285.7] 

RC75 

30% 1.95 [283.5] 

10% 2.01 [291.4] 

20% 1.98 [287.8] 

RC60 

30% 1.97 [285.7] 

10% 2.02 [292.7] 

20% 2.00 [289.3] 

RC45 

30% 1.98 [287.4] 
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Figure 5.3: Loading cases considered in design of bridges 
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Figure 5.4: Cross sections of undamaged interior bridge girders. 
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Table 5.3: Design summary of bridge cross sections 

Bridge Steel Damage 
Level 

CFRP thickness 
(mm) 

steel

CFRP

M

M  Steel Stress at Service 
(% of fy) 

0% -- -- 66.2 

10% 0.145 0.12 72.4 

20% 0.280 0.26 80.0 

RC75 

30% 0.420 0.44 89.5 

0% -- -- 65.2 

10% 0.135 0.12 71.1 

20% 0.265 0.27 78.3 

RC60 

30% 0.390 0.45 87.3 

0% -- -- 64.8 

10% 0.130 0.13 70.3 

20% 0.247 0.27 77.1 

RC45 

30% 0.365 0.45 85.4 

 

5.5.4 Monte Carlo Simulations for RC Bridges  

Sixty thousand data sets were randomly generated for the designed RC bridges. Each of the 
generated random data sets was analyzed using the fiber section model discussed in Chapter 2. 
The resulting moment-curvature relationships for one of the designed RC cross section is shown 
in Fig. 5.5, where for clarity only 50 curves are drawn. Figure 5.6 shows an idealized moment-
curvature relationship for an RC section strengthened with CFRP which is identified by major 
keypoints; cracking point, threshold moment point (point at which CFRP is bonded), yield point 
(point at which main steel yields), and ultimate point. Of interest in the reliability study is the 
flexural capacity (ultimate point) of the cross section. Figure 5.7 shows the distribution of the 
flexural resistance for Bridges RC60, RC60-D1, RC60-D2, and RC60-D3 combined. A Chi-
squared goodness-of-fit study showed that all the distributions could be substituted with normal 
statistical distributions with reasonable accuracy. 

Table 5.4 shows the results of the Monte Carlo simulations for all the bridges considered in the 
study. The information in Table 5.4 is referred to in the literature as the Resistance Model 
(Nowak and Collins 2000). Resistance models are especially helpful in reliability studies when 
the problem is highly nonlinear, as in this case where parameters such as steel yielding, concrete 
cracking and crushing, CFRP rupture, and CFRP initial condition all contribute to making the 
ultimate flexural strength a nonlinear function. 
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Figure 5.5: Moment-curvature relationship obtained from Monte Carlo simulation (50 cases 
shown) 
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Figure 5.6: Idealized moment-curvature relationship  
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(c) RC60-D2 (d) RC60-D3 

Figure 5.7: Histograms of flexural resistance for Bridges RC60, RC60-D1, RC60-D2, and 
RC60-D3. 
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Table 5.4: Results of Monte Carlo simulation (moment units in kNm) 

RM  Case DL MM  nM  

Value Bias COV 
(%) 

Reliability Index 

β     

RC45 2590  1.149 9.73 3.37 

RC45-D1 2570  1.138 8.62 3.47 

RC45-D2 2560  1.136 7.66 3.59 

RC45-D3 

1.78 2260 

2550  1.132 6.71 3.69 

RC60 4490  1.151 9.80 3.41 

RC60-D1 4410  1.130 8.68 3.49 

RC60-D2 4420  1.132 7.69 3.65 

RC60-D3 

1.28 3900 

4390  1.126 6.79 3.75 

RC75 7380  1.150 9.80 3.44 

RC75-D1 7240  1.127 8.68 3.53 

RC75-D2 7230  1.126 7.74 3.69 

RC75-D3 

0.92 6420 

7210 1.123 6.80 3.83 

 

5.5.5 Results for RC Bridges 

Due to the complexity of the problem, the limit state function used in this study is simplified as 

) ( LDR MMMZ ηα +−=  (5.8) 

Tables 5.1 and 5.4 give the bias and COV  of the load and resistance models used in this study.  
The uncertainty of the analysis model is accounted for by using the random variable, α , which, 
according to Ellingwood et al. (1980), has a bias = 1.01 and COV  = 4.5% for RC sections in 
flexure.  Comparisons of fiber section model results with experimental data show that these 
values are reasonable for RC sections strengthened with CFRP (Okeil et al. 2000). The live load 
moment is also treated to account for the dynamic impact and the number of loaded lanes. 
According to Nowak and Collins (2000) the static live load moment is increased by 10% to 
account for impact caused by two trucks for all lanes.  The COV of the joint live load and 
dynamic load is suggested to be taken as 18%.  The live load is also increased by 5% to account 
for the heavy traffic volume assumed in this study (ADTT=5000 and 2 loaded lanes).  The 
uncertainty of girder distribution factors (DF) is also accounted for by the random variable, η .  
The bias and COV of η  were taken as 0.924 and 13.5%, respectively according to Kennedy et al. 
(1992). 

The calculated reliability index values are listed in Table 5.4 for all 12 cases. An examination of 
Table 5.4 shows that the reliability index for CFRP strengthened beams increases with the 
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increase of CFRP ratio in the cross section. This is expected since the failure mode is governed 
by rupture of the CFRP laminates which have a lower COV  than steel or concrete. Nevertheless, 
it is important to point out that it is desirable for RC sections strengthened with CFRP laminates 
to have greater reliability because failure is more brittle. 

5.5.6 Target β  for RC Bridges 

LRFD design codes typically set the strength requirement in the following form 

iQ QR
i

γφ ≥  (5.9) 

where the resistance factor,  φ , and the load factors, 
iQγ , are calibrated to ensure that a target 

reliability index is achieved. The target reliability index is maintained around 3.5 for structures 
designed according to AASHTO-LRFD (1998). The reliability study showed that β  ranges 
between 3.37 and 3.44 for the unstrengthened RC sections, which is close to the code target. On 
the other hand, the reliability index for CFRP strengthened sections is greater than that for RC 
sections and ranges from 3.47 to 3.83. Although addition of CFRP improves the reliability index, 
the brittle nature of CFRP behavior imposes more stringent demands on the target reliability 
index.  

Allen (1992) investigated the rationale behind defining a target reliability index. According to his 
proposed approach, the choice of β  depends on the component behavior, system behavior, 
inspection level, and traffic category. He suggests that the target reliability index should be 
increased by β∆  = 0.25 for components that fail suddenly with little warning but maintain their 
post-failure capacity, and by β∆  = 0.5 for components that suffer a sudden and complete loss of 
capacity. RC sections provide ample warning if properly designed since steel yielding results in 
significant ductility. The introduction of CFRP laminates changes the behavior and causes failure 
(rupture of CFRP) to happen at smaller deformations. However, the section maintains a post-
failure capacity equal to that of the unstrengthened cross section (see Fig. 5.6).  Following 
Allen's argument, it is proposed to calibrate Eq. 5.9 such that the target reliability index for RC 
sections flexurally strengthened with CFRP target

CFRP-RCβ  is  

25.0RC
target

CFRP-RC += ββ  (5.10) 

where RCβ  is the reliability index of the unstrengthened RC cross section.  Calibrating Eq. 5.9 

can be done by either changing the reduction factor,  φ , the load factors, 
iQγ , or both. Since the 

used load factors are uniform for other AASHTO-LRFD (1998) provisions, it is more convenient 
to recalibrate the reduction factor. 

Figure 5.8 shows the effect of changing the reduction factor,  φ , for Bridges RC60-D1, RC60-
D2, and RC60-D3. The figure is a relationship between  φ  and the sum of the squares of 

2target
CFRP-RC )( ββ − . The lowest point on the relationship curve is the optimum point that would 

maintain the smallest error for all cases and is determined by nonlinear regression.  Results of the 
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optimization are given in Table 5.5.  It can be seen that if all damaged cases are considered a  φ  

of 0.902 is needed to maintain target
CFRP-RCβ .  When considering each damage level separately,  φ  

would be 0.881, 0.904, and 0.918 for the 10%, 20%, and 30% damage levels, respectively.  
Maintaining  φ  at 0.9 would violate target

CFRP-RCβ  for the low damage levels (10%).  To reach a safe 

design that encompasses a wide range of damage levels,  φ  is taken as 0.85.  The next section 

shows the effect of using  φ = 0.85 on the design of a wide range of damage levels and DL  
ratios. 
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Figure 5.8: Determining reduction factor, φ . (Bridges RC60-D1, RC60-D2, and RC60-D3) 

 

5.5.7 Effect of  φ = 0.85 on RC Bridges 

To study the impact of using  φ = 0.85 for the design of RC sections strengthened with CFRP, 

the cross sections in Fig. 5.4 are used.  Each cross-section is subjected to a range of DL MM  
ratios varying from from 0.0 (dead load only) to 4.0 (very high live load).  The reliability index, 
β , is determined for all DL MM  ratios and damage levels using FORM.  Figure 5.9 is a plot of 

the effect of DL MM  on the reliability index.  It can be seen that using  φ = 0.85 results in cross-
sections with a reliability index, β , that conforms to what current codes normally target for a 

wide range of DL MM .  β  falls below acceptable limits only in the case of unrealistically high 

DL MM  ratios.  The figure again shows that the use of more CFRP enhances the reliability of 
the cross section because of the low COV  of CFRP materials as discussed earlier. 
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Table 5.5: Optimum  φ  to achieve target
CFRP-RCβ  

Case Optimum  φ  

D1 0.883 

D2 0.902 

RC45 

D3 0.916 

D1 0.879 

D2 0.904 

RC60 

D3 0.917 

D1 0.881 

D2 0.905 

RC70 

D3 0.921 

All D1 cases 0.881 

All D2 cases 0.904 

All D3 cases 0.918 

All cases 0.902 

 

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0.00 1.00 2.00 3.00 4.00
ML/MD

R
ei

ab
ili

ty
 In

de
x,

 

Dmg=30%

Dmg=20%

Dmg=10%

Dmg=0%

 

Figure 5.9: Effect of DL MM  on Reliability Index, β . (Bridge RC45, φ=0.85) 
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5.5.8 Design Implications for RC Bridges  

A study using the developed resistance models showed that the reliability index of the 
strengthened cross sections is greater than that of the reinforced concrete sections and increases 
with increasing CFRP ratio. This is attributed to the low coefficient of variation for CFRP 
ultimate strength, which is lower than the coefficient of variation of the strength of steel or 
concrete. Although the reliability index improves with addition of CFRP, the flexural resistance 
factor is recommended as φ=0.85, which is lower than that recommended by AASHTO-LRFD 
for RC sections under flexure. The reduced φ  value is calibrated to result in a larger target 
reliability index than is normally specified in recognition of the brittle nature of CFRP behavior. 

5.6 Reliability of Prestressed Concrete Bridge Girders 

To evaluate the reliability of PSC girders, a number of realistic PSC bridge designs are 
generated, i.e. a design space is created.  The designs have different spans and are based on 
current code provisions in AASHTO-LRFD (1998).  Each of the bridge designs is assumed to 
have lost a variable number of prestressing strands and is then strengthened back to its original 
design strength through externally bonded CFRP laminates. As was done for the reinforced 
concrete bridges in Section 5.4, Monte Carlo simulations are performed on each of the designed 
and rehabilitated PSC bridges and the resulting data sets are used to develop resistance models 
for cross-sectional flexural strength. The developed resistance models are then used to calibrate 
the flexural resistance factor, φ, to achieve a preset target probability of failure.  

5.6.1 Design of PSC Bridges  

Three simply supported bridges with varying spans are designed according to AASHTO-LRFD 
(1998).  These bridges form the core of the design space that is used as a basis for the reliability 
calculations.  All bridges share the same road cross section shown in Fig. 5.10 (road width = 
14180mm [46ft 6in], slab thickness = 205mm [8in], number of girders = 6, and girder spacing = 
2440mm [8ft]), but have different span lengths (18290mm [60ft], 24380mm [80ft], and 
30480mm [100ft]).  The bridges are designated PS60, PS80, and PS100, with the numbers 
corresponding to the span length in feet.  The concrete deck is assumed to be a cast-in-place 
(CIP) slab acting compositely with the girders. 

Following the provisions of AASHTO-LRFD (1998), each of the bridges is first designed to 
resist the applied dead and live loads.  Only interior girders are designed, and since all bridges 
have simple spans, only positive moments are accounted for.  The precast prestressed AASHTO 
girder is assumed to resist the dead loads (self-weight of girders and slab), while the composite 
section (AASHTO girder and CIP slab) is assumed to resist live loads and additional dead loads 
(wearing surface and parapet load).  Forces due to live loads are computed by superimposing the 
effect of a uniformly distributed lane load and the effect a standard truck or a tandem load 
whichever is greater (see Fig. 5.3). The truck/tandem portion of the live load moments are 
increased by an impact factor (IM) of 33% for the strength limit state and 15% for the fatigue 
limit state. When computing bending moments due to the standard truck for the strength limit 
state, the axle configuration used is based on a rear axle distance of 4300mm [14ft] (AASHTO 
minimum value).  For fatigue calculations, a similar configuration is used, however, the rear axle 
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distance is taken as 9000mm [30ft].  Table 5.6 summarizes the bending moments computed for 
the design of an interior girder of each bridge.  The table also lists the distribution factor (DF) for 
the cases of one-lane (used for fatigue limit state) and two-lane loading (used for service and 
strength limit states). 

 

Table 5.6: Design moments for interior girder of reinforced concrete bridges.  

Distribution 
Factor 

Service Moments (kN.m) Bridge 

1 Lane 2 Lanes Dead Load Service III Service I Fatigue 

Factored 
Moment 

uM  

(kN.m) 

PS60 0.4927 0.6735 727 1900 2151 346 3358 

PS80 0.4749 0.6657 1509 3301 3674 531 5600 

PS100 0.4676 0.6684 2762 5298 5814 719 8678 

 

14180 mm

5 x 2440=12200 mm

205 mm

13420 mm

 

Figure 5.10: Cross section of 6-girder bridge 

 

Flexural design of the cross section is performed using the fiber section program described in 
Chapter 2.  The following material properties are assumed: compressive strength of CIP deck 
concrete = 27.6MPa [4-ksi], compressive strength of precast AASHTO girders = 48.3MPa [7-
ksi], prestressing strands ultimate stress = 1860MPa [270-ksi] for 12.5 mm diameter 7-wire low 
relaxation strands. Details of the designed cross section are shown in Fig. 5.11.  A summary of 
the design stresses at transfer and at different service levels is given in Table 5.7.  It is 
noteworthy that the flexural capacity of the designed cross sections is more than needed 
(compare the last columns in Tables 5.6 and 5.7) because serviceability conditions control the 
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design (top cracking of girder at transfer, bottom cracking of girder at service, fatigue stress 
limit, …etc.).  This observation directly impacts the strengthening scheme described next. 

To complete the design space, each girder designed above is assumed to have suffered some 
damage through the loss of a variable number of prestressing strands. The damaged girders are 
then strengthened to meet AASHTO LRFD standards through CFRP rehabilitation. For each 
unstrengthened girder in the core design space, three levels of damage are considered, D1, D2, 
and D3, which correspond to nominal strand losses of around 10, 20, and 30% respectively.  A 
beam that suffered a damage level of D1 and then is strengthened using CFRP is designated as 
such by appending D1 to the naming system described above, e.g. PS60-D1.  The three 
unstrengthened beams along with the nine strengthened beams (three strengthened designs for 
each original design) form a pool of bridge designs that account for design parameters of interest 
in this study. The developed pool of 12 designs forms the basis of the reliability calibration.  

 

Table 5.7: Summary of design stresses and capacities. 

Cross Section Concrete Stresses (MPa) 

Transfer Ser. III Service I 

Bridge 

Deck 

thickness 
(mm) 

Girder 
Type 

Number 
of 

Strands tgif  bgif  bgf  tgf  tdf  

Fatigue 
Strand 

Stresses 

PSf∆  

(MPa) 

Flexural 
Capacity 

nM  

(kN.m) 

PS60 205 II 26 -1.80 -21.57 +3.37 -16.74 -4.71 15.86 4050 

PS80 205 III 34 -0.76 -19.66 +3.28 -15.94 -4.94 15.35 6756 

PS100 205 IV 44 -1.58 -17.70 +3.50 -16.55 -5.12 13.92 10520 

 

 

CIP deck

AASHTO
Type II

26
1/2'' 7-wire

strands
 

CIP deck

AASHTO
Type III

34
1/2'' 7-wire

strands  

CIP deck

AASHTO
Type IV

A
T

44
1/2'' 7-wire

strands  

(a) PS60 (b) PS80 (c) PS100 

Figure 5.11: Cross sections of undamaged interior bridge girders. 

 



 

 85 

The damage scenario considered in this research is representative of a feasible situation that can 
occur over the life of a girder where strands are lost to corrosion, vandalism, or impact between 
over height vehicles and girders. As a result of the assumed damage the affected girders may or 
may not violate strength requirements. However, the girders no longer satisfy code provisions 
pertaining to service limit state stresses and are therefore in need of repair. The three levels of 
damage investigated are carefully chosen to represent realistic situations where repairing a 
damaged beam is more economical than replacing it. 

Rehabilitation is achieved through the use of externally bonded CFRP laminates that are 
wrapped around the stem of the beams. This technique has been shown to be effective by several 
investigators including Shahawy and Beitelman (2000). Since the repair method does not involve 
additional prestressing, the service stress levels specified by AASHTO can no longer be 
satisfied.  These stress limits are imposed to insure that PSC girders do not have significant 
service cracks in the tension region, which can promote strand corrosion, and are therefore of no 
consequence since the bonded CFRP laminates cover up any existing cracks and will achieve this 
objective indirectly.  

It is assumed that the CFRP laminates are similar to those used in the RC bridges in Section 1.4. 
As was done for the RC bridges, the usable tensile strength of the CFRP laminate is determined 
based on the Weibull Theory as discussed in Chapter 3. The results are shown in Table 5.8 for 
the different girder designs.  

 

Table 5.8: Usable tensile stress used in design of PS Bridges 

Damage Bridge Case 

Strands Aps (%) 

σbeam  

Gpa [ksi] 

PS60-D1 3 11.54 1.97 [286] 

PS60-D2 6 23.08 1.95 [283] 

PS60-D3 9 34.62 1.92 [278] 

PS80-D1 4 11.76 1.99 [289] 

PS80-D2 8 23.53 1.96 [284] 

PS80-D3 12 35.29 1.94 [281]  

PS100-D1 5 11.36 1.97 [286] 

PS100-D2 10 22.72 1.95 [283] 

PS100-D3 15 34.09 1.92 [278] 

 

As a result of being proportioned to satisfy service stresses, the bridges with the lowest level of 
damage (PS60-D1, PS80-D1, and PS100-D1) have sufficient remaining flexural capacity after 
strand loss to resist the applied factored loads.  A minimum CFRP amount of one layer (with 

CFRPt  = 0.0109mm) was nevertheless provided.  The second and third damage levels (D2 and D3) 
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had a more significant deficiency in flexural capacity, and hence required more than one layer of 
CFRP laminates.  Table 5.9 lists the ratio of the flexural capacity generated by CFRP to the 
flexural capacity provided by the remaining prestressing strands.  This ratio is of importance for 
evaluation of results as will be seen later on in the Chapter.  One of the other advantages of using 
CFRP for strengthening PS girders is that the service stresses in prestressing strands drop.  This 
is shown in Table 5.9 which lists the strand stress at Service I limit state 
( IMLDI Service ++= MMM ) for both damaged and strengthened cross sections.  For the third 

damage level, it can be seen that the strand stress drops by around 12% after strengthening.  This 
is beneficial to the behavior of the PSC beams from the fatigue point of view (as discussed in 
Chapter 4). 

 

Table 5.9: Design summary of bridge cross sections 

Flexural Capacity 

(kN.m) 

Strand Stress at Service I Bridge CFRP 

thickness 

CFRPt  

(mm) 

Damaged Strengthened 

PS

CFRP

M

M  

Damaged 

(GPa) 

Strengthened 

(GPa) 

Diff. 

(%) 

PS60 -- 4050 -- 1.13 --
PS60-D1 0.109* 3557 3683 0.0827 1.22 1.17 3.5 
PS60-D2 0.179 3059 3357 0.1579 1.39 1.27 8.4 
PS60-D3 0.381 2584 3358 0.4015 1.59 1.41 11.2 

PS80 -- 6756 -- 1.12 --
PS80-D1 0.109* 5971 6095 0.0713 1.19 1.16 2.2 
PS80-D2 0.198 5175 5606 0.1496 1.40 1.27 9.0 
PS80-D3 0.430 4386 5607 0.3837 1.59 1.40 12.0 

PS100 -- 10520 -- 1.12 --
PS100-D1 0.109* 9374 9495 0.0614 1.17 1.15 1.5 
PS100-D2 0.184 8220 8678 0.1192 1.35 1.24 8.3 
PS100-D3 0.433 7078 8677 0.3250 1.54 1.36 11.7 

* a minimum thickness is used equal to thickness of one layer. 

 

Figure 5.12 shows the moment curvature relationships for Bridge PS100.  Each graph 
corresponds to one of the three damage levels.  Three θ−M  relationships are included in each 
plot; the original θ−M  for the undamaged section (bold line), θ−M  for the damaged cross 
section before strengthening, and θ−M  for the strengthened cross section after bonding the 
CFRP laminates.  Also shown is the required capacity according to AASHTO-LRFD (horizontal 
line). The plots clearly show that adding CFRP to the system increases the flexural capacity of 
the cross section. This is however, accompanied by a substantial reduction in the ductility.  The 
loss of ductility is accounted for in the calibration of the strength reduction factor. 
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(a) 1st damage level (PS100-D1) 
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(b) 2nd damage level (PS100-D2) 
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(c) 3rd damage level (PS100-D3) 

Figure 5.12: Moment - curvature relationships for interior girder (PS100) 
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5.6.2 Resistance Models 

As was done for the RC bridges, flexural resistance models are calculated by performing Monte 
Carlo simulations for the design space comprised of the original and strengthened cross sections. 
Five thousand data sets were randomly generated for each cross section, and therefore a total of 
sixty thousand cases were considered (4 cross sections [original + 3 strengthened] x 3 spans x 
5000 data sets).  

 

Table 5.10: Results of Monte Carlo simulation (moment units in kN.m) 

RM  Case DL MM  nM  

Value Bias COV  
(%) 

Reliability Index 

β     

PS60 4050 4232 1.045 2.84 3.93 

PS60-D1 3683 3892 1.057 2.37 3.34 

PS60-D2 3357 3559 1.060 2.26 2.70 

PS60-D3 

1.40 

3358 3589 1.069 2.08 2.77 

PS80 6756 7055 1.044 2.89 4.03 

PS80-D1 6095 6436 1.056 2.36 3.35 

PS80-D2 5606 5942 1.060 2.25 2.74 

PS80-D3 

1.04 

5607 5988 1.068 2.12 2.81 

PS100 10520 10980 1.044 2.87 4.24 

PS100-D1 9495 10020 1.055 2.42 3.52 

PS100-D2 8678 9180 1.058 2.28 2.81 

PS100-D3 

0.80 

8677 9253 1.066 2.13 2.88 

 

Analyzing each of the data sets results in a unique θ−M  relationship.  Of interest in this study 
is the statistical variations in the ultimate moment strength ( RM ).  Analysis of data for the 5000 
values of moment capacity for each design yielded the resistance models shown in Table 5.10.  
The table lists the nominal moment, nM , obtained from a calculation based on the nominal value 

of the variables involved.  Also listed in the table are the flexural resistance models, RM , for 
each cross section based on the Monte Carlo simulations.  Each resistance model is represented 
by mean value, bias, and COV . Sample histograms of the resistance models are illustrated in 
Fig. 5.13 for Bridge PS80. As in the RC study, a Chi-squared goodness-of-fit study showed that 
all 12 distributions could be substituted with normal statistical distributions with good accuracy.  
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(c) PS80-D2 (d) PS80-D3 

Figure 5.13: Histograms of flexural resistance for Bridges PS80, PS80-D1, PS80-D2, and PS80-
D3. 
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5.6.3 LRFD Calibration - β  based on current AASHTO provisions (LRFD - 1998) 

The resistance models obtained are utilized to study the reliability of the designed cross sections. 
Equation 5.11 gives the limit state function used in this study.  

) ( LDWSR MMMMZ ηα ++−=  (5.11) 

The uncertainties in the analysis model and live load moment are accounted for through the 
factors α and η  described in Section 5.4.5. The wearing surface moment ( WSM ) was separated 

from dead load moments ( DM ) to account for the different uncertainties associated with each 
variable (see Table 5.1). 

The calculated twelve β  values are given in Table 5.11 for the corresponding cross sections. The 
reliability index for the undamaged cross-sections is greater than 4.0, which significantly exceeds 
the AASHTO LRFD target.  This is expected since the design for these undamaged cross 
sections was controlled by limit states other than strength (cracking, fatigue, …etc.).  The 
strengthened cross sections had lower β  values because strength was the controlling factor in the 
design process, which assumed that φ=1.0 according to AASHTO-LRFD.  The listed values 
show that the current AASHTO design procedure is deficient when used for designing the PSC 
girders strengthened with CFRP laminates, i.e. results in cross sections with a reliability index 
below what is normally accepted.  

 

Table 5.11: Optimum  φ  to achieve target
CFRP-PSβ  

Case Optimum  φ  

D1 0.936 

D2 0.875 

PS60 

D3 0.884 

D1 0.939 

D2 0.887 

PS80 

D3 0.893 

D1 0.954 

D2 0.899 

PS100 

D3 0.905 

All D1 cases 0.944 

All D2 cases 0.888 

All D3 cases 0.895 

All cases 0.910 
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An examination of Table 5.11 shows that β  decreases with the increase of damage level up to 
D2, but climbs slightly for D3.  This can be explained as follows. For the D1 damage level, the 
cross-sections have greater strength than needed and hence the relatively high reliability index 
(compare Table 5.6 column 8 and Table 5.9 column 4).  The reasons for this are: 1) the original 
sections are overstrength to start with because serviceability checks controlled; 2) the assumed 
amount of damage was mild so that the damaged sections still satisfied strength provisions; and 
3) a minimum of one layer of CFRP was added anyway to protect the damaged girders since 
serviceability stresses could not be satisfied.  For the D2 damage level which violates strength 
provisions, just enough CFRP is added to reach the target strength using an unconservative 
φ=1.0 value, and so the reliability drops compared to D1.  As the damage level increases to D3, 
more CFRP is needed for repair than for D2.  Since the CFRP has a relatively low COV  as 
discussed earlier, the reliability of the cross-section improves slightly as more CFRP is used, 
thereby increasing β .  This is a desirable property of CFRP because the added brittleness 
introduced by the CFRP is somewhat tempered by improved reliability.  The previous discussion 
is valid for the failure mode observed in this study which was mostly controlled by CFRP 
rupture.  Although other modes of failure may lead to other conclusions, it is unlikely for 
properly designed T-shaped bridge girders strengthened with CFRP laminates to fail by concrete 
crushing (due to the abundance of concrete in the deck) or steel rupture. 

5.6.4 LRFD Calibration of the design procedure 

As discussed in Section 5.5.6, the target reliability index for PSC girders strengthened with 
CFRP is assumed to be target

CFRP-PSβ  = 3.75, which is greater than the 3.5 targeted by AASHTO to 

account for the brittle nature of CFRP rupture. The impact of changing  φ  on β  is illustrated in 
Fig. 5.14-a for a wide range of  φ = 0.75 - 1.0.  The plot shows that low  φ  values result in 
overly conservative designs ( β  more than 4.5).  A  φ  value of 1.0 (current AASHTO provision 
for flexural design of PSC girders) is clearly unconservative, especially for the second and third 
damage levels.  To reach a  φ value that results in cross-sections with β  equal to 3.75 (target 
value), the plot in Fig. 5.14-b is used.  The abscissa in this plot is the  φ  value and the ordinate is 

the square of the difference between the resulting β  and target
CFRP-PSβ ; i.e. 2target

CFRP-RC )( ββ − .  The 

lowest point on the curve corresponds to  φ  that would result in β  closest to target
CFRP-PSβ  and is 

determined through nonlinear regression.  The first nine values in Table 5.11 are the computed 
strength reduction factors obtained for the damaged cross sections.  If the results for each 
damage level are considered together, a plot similar to the one in Fig. 5.14-b would be used, 
however, the ordinate would be the sum of 2target

CFRP-RC )( ββ −  from all cross sections.  The resulting 

 φ  in this may be called an optimum since it results in the least differences between β  and 
target

CFRP-PSβ  for a wider range of cross sections.  A calibration of all the obtained data together shows 

a  φ  value of 0.91 is needed to design cross sections with β  values of 3.75.   
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Figure 5.14: (a) effect of changing φ  on the β , (b) determining the optimum reduction factor, 
φ . (Bridges PS80-D1, PS80-D2, and PS80-D3) 

 

5.6.5 Proposed Resistance Factor,  φ  

A review of Table 5.11 shows that the choice of the lowest value of  φ  (say 0.85) for design may 
result in overconservative cross sections, especially for low damage levels. It is therefore 
proposed that a transition relationship for  φ be used as shown in Fig. 5.15.  The proposed 
reduction factor uses the ratio of cross-sectional capacity from CFRP laminates to the capacity 
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from prestressing strands ( PSCFRP MM ) as the controlling parameter.  This ratio is believed to 

better represent the amount of CFRP laminates in the cross section than the actual area, which is 
to be determined in a design situation, thus eliminating the need for unnecessary design cycles.  
The calibrated  φ values for the 12 cross sections are plotted in Fig. 5.15 versus PSCFRP MM . 
The undamaged cross sections are represented by the points on the ordinate axis; i.e. 

PSCFRP MM =0.0.  The damaged cross sections are represented by the other nine points in the 

plot.  The proposed reduction factor (dashed line) is a lower bound for the computed values, 
which is given by the following equation 

85.00.1
PS

CFRP ≥−=
M

Mφ  (5.12) 

The minimum limit of 0.85 is imposed on  φ to follow the trend observed in this plot.  

The effect of using the proposed  φ for a wide range of dead load to live load ratios is given in 
Fig. 5.16 for Bridge PS60.  It can be seen that using the proposed equation for  φ results in 

acceptable β  values for a wide range of DL MM .  The difference between the four curves 
plotted in Fig. 5.16 is small since the  φ  proposed in Eq. 6 is used in the calculations. 
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Figure 5.15: Proposed reduction factor,  φ . 
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Figure 5.16: Effect of DL MM  on Reliability Index, β . (Bridge PS60, proposed φ ) 

 

5.6.6 Design Implications for PSC Bridges  

Monte Carlo simulations were performed using the developed model to determine resistance 
models for a limited number of PSC girder cross sections strengthened with CFRP. It is proposed 
that the strength reduction factor, φ, follow Eq. 5.12, which is shown to result in acceptable 
reliability for a wide range of dead load to live load ratios. This study focused solely on flexural 
behavior of cross-sections strengthened with CFRP. Further research is needed to investigate the 
probabilistic nature of other modes of failure including shear resistance of PSC beams 
strengthened with CFRP laminates as well as peel-off and debonding of laminates.  
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6 SUMMARY AND CONCLUSIONS 

 

6.1 Summary of Work 

Externally bonded carbon fiber reinforced polymer (CFRP) laminates are a feasible and 
economical alternative to traditional methods for strengthening and stiffening deficient 
reinforced concrete and prestressed concrete girders. Concrete bridge girders become structurally 
deficient for many reasons including corrosion of reinforcing bars or prestressing strands, change 
in load requirements, vandalism, collision between vehicles and bridge components, etc. Carbon 
fiber reinforced plastic laminates are attached using epoxy adhesives to the bottom surface of 
beams or are wrapped around the girder stems to provide additional tensile reinforcement. 
Extensive testing has focused on the effect of CFRP rehabilitation on the stiffness, strength, 
fatigue, ductility, mode of failure, and reliability of reinforced concrete girders strengthened with 
CFRP laminates.  Research in this field has matured to the extent that code committees are 
starting to crystallize available knowledge into code provisions.  

The majority of research conducted to date for investigating both short term and long term 
behavior of CFRP strengthened bridge girders has been experimental in nature. Furthermore, 
while some studies have proposed design models and methodologies to identify the necessary 
number of laminates to achieve a target strength or stiffness, many important design issues still 
remain unresolved. The objective of the research reported herein is to use state-of-the-art 
numerical techniques to resolve some of these questions. The intent of this work is to provide 
information that will be useful for the development of comprehensive design guidelines for 
rehabilitation schemes employing CFRP technology.  

To this end, models for simulating the static and accelerated fatigue behavior of reinforced and 
prestressed concrete beams strengthened with CFRP were developed. The models are based on 
the fiber section technique and account for the nonlinear time-dependent behavior of concrete, 
steel yielding, and rupture of CFRP laminates. The cyclic fatigue response of concrete is based 
upon test data in Holmen (1982) and Bennet and Raju (1971). The Weibull Theory is used to 
calculate the short-term tensile strength of CFRP laminates through a two step process, which 
accounts for the effects of size and stress-gradient.  

The models were implemented in a MatLab computer program, T-DACS (Time-Dependent 
Analysis of Composite Sections), and were verified and exercised by comparing analytical 
results to data from several experimental investigations. A second computer program, MACS 
(Monotonic Analysis of Composite Sections), was developed to run only the static portion of the 
developed models. MACS is user-friendly and features an easy to use graphical user interface. Its 
user-friendly design allows repetitive calculations to be conducted in a convenient manner and 
the program is therefore ideal for design office use. 

The developed computer programs were used to investigate the static and fatigue response of 
concrete girders strengthened with CFRP laminates. Both reinforced concrete and prestressed 



 

 96 

concrete beams were considered in the investigation. An additional 120,000 Monte-Carlo 
simulations were conducted on MACS to develop resistance models for both reinforced and 
prestressed concrete bridge girders flexurally strengthened with externally bonded CFRP 
laminates. The resistance models were used to calculate the probability of failure and reliability 
index of CFRP strengthened cross-sections. The first order reliability method was employed to 
calibrate the proposed flexural resistance factors for a broad range of design variables. 

6.2 Main Conclusions 

The following conclusions can be drawn from the research reported herein.  

6.2.1 Tensile Strength of CFRP Laminates  

The short-term tensile strength of CFRP laminates can be calculated by applying the Weibull 
Theory. Two steps are needed to compute the short-term tensile strength. The first step accounts 
for the size effect and predicts the tensile strength of a uniformly stressed volume that shares the 
size of the CFRP used in the real structure. The second step accounts for the effect of stress 
gradients. Good agreement was found between theoretical calculations and test results.  

The work described in this report suggests that coupon tests may lead to unconservative 
estimates of strength if the size effect is not properly considered.  

6.2.2 Static Response of CFRP Strengthened Girders 

A series of monotonic analyses were carried out using MACS. The analyses were conducted for 
the control beam and beams with 1, 2, 3, and 4 CFRP laminates tested at FDOT. The following 
conclusions were drawn: 

• The analytical results compare well to the experimental.  

• The cracking moment for beams with CFRP laminates is almost the same irrespective of the 
number of CFRP laminates and is somewhat larger than the cracking moment of the control 
beam. On the other hand, moment capacity is significantly affected by the number of CRPF 
laminates and the strength increase per laminate is almost constant.  

• Cross-sections with different number of CFRP layers reach their ultimate strength at 
approximately the same curvature. 

6.2.3 Fatigue Response of CFRP Strengthened Girders 

A study of cross-section internal stresses obtained from T-DACS showed that cyclic fatigue 
leads to an internal redistribution of stresses similar to that obtained under static creep. The 
analyses show that the steel reinforcement stress in the specimens of Shahawy and Beitelman 
(1999, 2000) and Barnes and Mays (2000) increased by less than 5% during the fatigue life of 
the test beams. To account for the increase in steel stresses due to cyclic fatigue as well as 
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shrinkage, creep under dead loads and the variability in reinforcing steel strength, it is 
recommended that the service steel stress be limited such that  

ys f85.0 < σ   (6.1) 

Equation 6.1 should be applied when designing CFRP repair and/or strengthening schemes for 
reinforced concrete girders.  

6.2.4 Flexural Reliability of Prestressed Concrete Girders 

Monte Carlo simulations were performed using MACS to determine the resistance models for 
bridge girder cross sections strengthened with CFRP. A study using the developed resistance 
models showed that the reliability index of the strengthened cross sections is greater than that of 
the reinforced concrete sections and increases with increasing CFRP ratio. This is attributed to 
the low coefficient of variation for CFRP ultimate strength, which is lower than the coefficient of 
variation of the strength of steel or concrete. Although the reliability index improves with 
addition of CFRP, the flexural resistance factor is recommended as 

φ=0.85 (6.2) 

which is lower than that recommended by AASHTO-LRFD for RC sections under flexure. The 
reduced φ  value is calibrated to result in a larger target reliability index than is normally 
specified in recognition of the brittle nature of CFRP behavior. 

6.2.5 Flexural Reliability of Prestressed Concrete Girders 

Monte Carlo simulations were performed using MACS to determine resistance models for a 
limited number of PSC girder cross sections strengthened with CFRP. The developed resistance 
models were then used to calibrate the AASHTO-LRFD strength provisions using the first order 
reliability method. It is proposed that the strength reduction factor, φ, be calculated as follows 

85.00.1
PS

CFRP ≥−=
M

Mφ  (6.3) 

Equation 6.3 is shown to result in acceptable reliability for a wide range of dead load to live load 
ratios.  

Since Eqs. 6.2 and 6.3 were calibrated using a limited design space, further studies are needed to 
confirm that they work well for a wider range of parameters. Furthermore, this study focused 
solely on flexural behavior of cross-sections strengthened with CFRP. Additional research is 
needed to investigate the probabilistic nature of other modes of failure including shear resistance 
of beams strengthened with CFRP laminates as well as peel-off and delamination of laminates.  



 

 98 

6.3 Future Work 

The delamination mode of failure in CFRP strengthened girders is among the least understood. 
Yet its effect is undesirable from the design point of view because it is a brittle failure mode that 
can have catastrophic consequences. Figure 6.1 illustrates two common delamination situations. 
It is recommended that future work focus on developing a good understanding of the 
mechanisms governing this mode of failure. Such an understanding is crucial for the 
development of comprehensive design provisions for CFRP strengthened beams.  

 

 

 Delaminated CFRP Laminate

RC Beam

Fractured concrete surface

 

ruptured concrete
surface

delaminated
CFRP/concrete  

(a) FRP delamination due to flexural action (b) FRP delamination in shear region 

Figure 6.1: Delamination due to shear and flexural actions. 
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8 APPENDIX A - IMPLEMENTATION OF FORM 
ALGORITHM IN MATLAB 

 

8.1 First Order Reliability Method (FORM) 

This research adopted the First Order Reliability Method (FORM) in determining the reliability 
index.  From basic principles of the theory of reliability, the reliability index is defined as 

Z

Z

σ
µβ =  (A.1) 

where Zµ  and Zσ  are respectively the mean value and the standard deviation of the Probability 
Density Function (PDF) of Z , which is a limit state function (performance function) that is equal 
to the difference between the random resistance of the member, R, and the random load effect 
acting on the member, Q .   

QRZ −=  (A.2) 

The previous equation gives the simplest form of Z , which is also illustrated in Fig. A.1.  In the 
figure the shaded area represents Z  < 0.  In general, R and Q  are not single random vectors.  
They are rather affected by many other random variables such as the case for the resistance 
which is a function of material properties, dimension, …etc. This leads to a complex Z  which 
instead of being a random variable, becomes a random vector ( )g ⋅  where 

( )Z g X X X n= ⋅⋅⋅1 2, , ,  (A.3) 

where X X X n1 2, , ,⋅ ⋅ ⋅  are the random variables involved in determining Z . 

Determining Zµ  and Zσ  for use in estimating β  according to Eq. A.1 is not straightforward. 
The First Order Reliability Method (FORM) assumes a first order Taylor series expansion of the 
limit state function, which approximates the failure surface by a tangent plane at the point of 
interest.  According to FORM, the mean and variance of Z  are evaluated and given as 

µ µ µ µZ ng≅ ⋅ ⋅ ⋅( , , , )1 2  (A.4) 
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where the partial derivatives 
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random variables.  In the case of uncorrelated variables, Eq. A.5 reduces to 
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≅  (A.6) 

The most probable failure point in the design space is located on the failure surface Z such that 
distance from the origin of the design space to the tangent plane to the failure surface is shortest 
(see Fig. A.2). To locate such a point, an iterative process is needed. The following section 
describes the details of this iterative algorithm. 

8.1.1 FORM Algorithm  

The iterations are executed on transformed standard normally distributed random vectors.  A 
detailed description of the process can be found in Estes and Frangopol (1998). The procedure 
was implemented in a MATLAB script to utilize the symbolic manipulation capabilities in 
determining the partial derivatives in Eq. A.5 and A.6.  A flowchart for the program can be seen 
in Fig. A.3. 

The procedure is best explained through an example.  The reliability of a reinforced concrete 
cross section in flexure is used for that purpose. The flexure strength of a properly-designed 
singly-reinforced rectangular RC cross section is  
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'7.1 c
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ysn
bf

fA
dfAM  (A.7) 

Thus the limit state function becomes 

( )LD
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ys MM
bf
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dfAZ +−





−=

'7.1
 (A.8) 

where DM  and LM  are the applied moments due to dead and live loads, respectively. 

Each of the variables in Eq. A.8 has its own statistical properties (bias and coefficient of 
variation) that can be found in the literature.  The bias is the ratio between the mean and nominal 
value for a random variable.  The coefficient of variation is the ratio of the standard deviation to 
the mean. 

The nominal values for all variables (dimensions, material properties, …etc. can be easily 
estimated by measurements.  The magnitude of DM  and LM  can be estimated according to the 
following assumptions.  If the cross section is perfectly designed, the factored moment, 
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LDu MMM 7.14.1 += , should be equal to the factored nominal moment, nMφ .  By assuming 

that the ratio between LM  and DM  is 1.5, the resulting limit state function becomes 

( ) ( )( )
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DDDLDn

MM

MMMMMM

228.0
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39.45.17.14.1
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=+=+=
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 (A.10) 

The values for DM  and LM  from Eqs. A.9 and A.10 still need to be treated statistically to 
account for the uncertainty in the applied loads.  Therefore, a bias factor and a COV are applied 
to both DM  and LM  like all other variables. 

The FORM algorithm is executed to find the reliability index, β , for a T-shaped RC beam.  
Dimensions of the cross section can be found in Section 5.5.3.  The partial derivatives of the 
limit state function are found after transforming the variables into the reduced standard normal 
space.  The derivatives are: 
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The initial guess for the design point should be the mean values for each variable.  However, the 
initial values are intentionally assumed away from the mean to show the convergence capability 
of the algorithm.  Convergence in case of using the mean values as the initial guess is generally 
faster. 

Table A.1 lists the results of the progress of the iterative procedure for the example.  For each 
iteration, the coordinates of the design point in the original space and the reduced space are 
given.  Also listed in the table are the direction cosines, which are determined at the end of each 
iteration and used for determining the design point values for the next iteration.  It is said that 
convergence has been achieved if the change in the reliability index, β∆ , is less than a user 
specified tolerance (taken as 10-6 in this study).  Eight iterations were needed to achieve 
convergence.  Only the results for the first four iterations are given in Table A.1.  The reliability 
index converged to a value of 3.09201.  This value is expected as it falls within the range 
targeted by most design codes. 5.30.3 −=β . 
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Table A.1: Progress of FORM algorithm 

1st iteration 2nd iteration 3rd iteration 4th iteration Variable 

*
ix  *

iu  *
, iUgα  *

ix  *
iu  *

, iUgα  *
ix  *

iu  *
, iUgα  *

ix  *
iu  *

, iUgα  

'f 3000 -1.7677 0.0472 4355 -0.0564 0.0271 4333 -0.0851 0.0198 4351 -0.0614 0.0198 

yf  65000 -0.3704 0.6540 62218 -0.7826 0.6984 52713 -2.1906 0.7007 52876 -2.1665 0.7012 

b  80.00 -1.5873 0.0056 83.98 -0.0067 0.0045 83.96 -0.0140 0.0033 83.97 -0.0101 0.0033 

d  48.00 5.4252 0.0949 44.31 -0.1135 0.1041 44.17 -0.3267 0.0887 44.21 -0.2743 0.0890 

sA  8.000 -11.6612 0.1178 9.675 -0.1410 0.0997 9.651 -0.3128 0.0854 9.658 -0.2641 0.0857 

( )610xDM 5.000 -1.7166 -0.1681 6.158 0.2011 -0.1592 6.338 0.4993 -0.1596 6.334 0.4935 -0.1595 

( )710xLM 1.500 1.7984 -0.7203 1.258 0.8619 -0.6822 1.588 2.1401 -0.6841 1.582 2.1151 -0.6835 

β∆  1.19653 1.94036 -0.04497 0.00009 

β  1.19653 3.13689 3.09192 3.09201 
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Figure A.1: Statistical distribution (PDF) of resistance (R), loads (Q), and performance function 
(Z). 

 

 

 



 

 109 

 

 

 

 

 

 

Safe Design

Unsafe Design

tangent
plane

β

design
point

failure surface, Z=0

1st Design Variable

2nd Design
Variable

 

Figure A.2: A simple reduced design space showing the design point, reliability index 



 

 110 

 

Figure A.3: Flow chart for MATLAB implementation of FORM 
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9 APPENDIX B - USER'S MANUAL FOR MACS© 

 

This section is a manual to accompany the MACS© (Monotonic Analysis for Composite 
Strengthening) computer program.  The manual helps the user in installing the program on 
personal computers running MS-Windows operating system.  The manual also describes the 
basic features of the program with few illustrations. 

9.1 Program Installation 

MACS© may be downloaded from its home page hosted by UCF at 
http://pegasus.cc.ucf.edu/~el-tawil. The following steps should be followed to install MACS© on 
a PC: 

1. Download the Zip archive (MACS.zip - 1970 kB) from the web site and save the file in a 
temp directory.  The archive includes 4 files 

- Readme file (MACSReadme.txt) (1 kB) 

- Cabinet file (MACS.cab) (1500 kB)  

- Setup control (Setup.lst) (4 kB) 

- Setup program (Setup.exe)  (138 kB) 

2. Extract all four files from the Zip file in the temp directory using Winzip or any other 
archiving program. 

3. Exit all running programs that may interfere with the installation, especially virus 
scanners. 

4. Execute the program Setup.exe in one of the following two ways: 

- Visit the temp directory where the files were extracted using Windows Explorer 
and double click on Setup.exe. 

- Click on Start->Run… from the Start menu.  Browse to the temp directory and pick 
Setup.exe. Click OK. 

5. Follow the installation instructions from the setup program.  During the procedure, the 
user will be asked for an installation directory, which by default will be installed in 
"C:\Program Files\MACS".  If another folder is desired, the user is allowed to feed 
the path to this folder. 

A successful installation creates the appropriate icons and groups.  It will also add a link to 
MACS© in Start->Programs->MACS the menu.  After a successful installation, it is 
possible to start using MACS©. 
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9.2 Using MACS© 

MACS© can be invoked using any of the following methods: 

- Click on Start->Programs->MACS from the Start menu. 

- Click on Start->Run… from the Start menu.  Browse to the folder where MACS© is 
installed and pick MACS.exe.  Click OK. 

- Open the MACS© group and double click on MACS.exe. 

The MACS© main window will appear on the upper left corner of the screen.  The main window 
has several options and menus.  Each performs a specific task depending on the type of problem 
being analyzed.  The possible scenarios are: 

- Inputting data for the analysis a new beam. 

- Retrieving the input data of a previously analyzed beam. 

 

 

Figure B.1: Main window of the MACS© program. 

9.3 Starting a New Analysis 

The analysis is performed in three major steps: 

- Data Input. 

- Solving Problem. 

- Retrieving Results. 

Data of a new beam is entered in following order: 

9.3.1 Span Length 

The first step in a new analysis is to enter the span length of the girder.  By clicking on the 

 button, the span data window will appear in the upper right corner. Of the many fields 
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in the span window, the user is required to fill the Span Length field only.  Other fields (BEAM 
NAME, Span Name, and Span No.) are optional for clarity of results.  After typing the span 
length, click OK.  The first span length is stored and the  icon disappears.  Adding, 
Deleting, and Browsing spans is possible using the provided buttons. Note that the current 
version of MACS© is capable of analyzing single span structures only. 

 

 

Figure B.2: MACS© Span data window. 

9.3.2 Span Loads 

Loads are grouped in load sets.  Each load set consists of a concentrated load and a uniformly 

distributed load.  As many as 20 load sets are allowed.  By clicking the  button, the span 
loading window will appear below the span data window.  The fields should be filled with loads 
representing the analyzed case.  Figure B.3 shows one of the concentrated loads for the T-shaped 
beams tested by Florida DOT. 

9.3.3 Section Details 

The details of the cross section are entered in the Section Details window, which is invoked by 

clicking the  button. The current version of MACS© is capable of analyzing two 
geometries; I-girders and T-girders.  Three possible reinforcement type may be entered; namely 
steel reinforcement, prestressing strands, and CFRP sheets.  Any combination of these 
reinforcements is allowed including adding all types.  At least one type should be provided, since 
the program prohibits analyzing plain concrete cross sections.  Clicking Save after filling the 
appropriate fields stores the cross sectional data. 
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Figure B.3: MACS© Span Loading window. 
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Figure B.4: MACS© cross section interface for Florida DOT tested T-girders. [All fields in US 
customary units (i.e. inch and pound)] 

 

In the Section Details window, the Threshold Moment field is the moment value at the time of 
CFRP application, which in real life scenarios is equal to the dead load moment acting on the 
girder.  For the example of FDOT T-girders, this field is empty (zero) since CFRP sheets are 
attached from at beginning of loading. 

9.3.4 Problem Execution 

Completion of the previous steps ends the data input phase of the analysis.  The second phase is 
solving the problem which first requires specifying the type of the analysis.  From the analysis 

menu, the user should chose Elastic or Nonlinear Analysis.  Clicking the  
button started solution algorithms. During a nonlinear analysis, a Status window appears in the 
upper right corner to show the analysis progress.   
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Figure B.5: Status window of the MACS©. 

 

The analysis proceeds as follows: 

- Prepare positive Moment-Curvature relationship for cross section. 

- Prepare negative Moment-Curvature relationship for cross section. 

- Analyze beam based on the obtained Moment-Curvature relationships. 

During the solution phase, the status bar in the main windows shows message to help the user 
understand the solution progress.  The following message appears at the end of an analysis 
"Analysis of beam (done) at hh:mm:ss on mm-dd-yyy - Elapsed Time 
= ss.s seconds" 

9.3.5 Viewing Results 

Results can be viewed using the Graphics menu.  Choosing any of the options expands MACS© 
main window and shows the type of result chosen by the user.  The program is capable allows 
the user to view the Moment-Curvature relationship of the cross section.  It also allows the user 
to view the Load-Deformation relationship for the midspan point.  Figures B.6 and B.7 show the 
show these curves for FDOT T-beam strengthened with 3 layers of CFRP sheets.  

In addition to the plots, MACS© writes the following two files: 

- Mphi.dat  holds the moment curvature data for the analyzed cross section. 

- Pd.dat holds the load deflection results for the analyzed beam. 
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Figure B.6: Main Interface of MACS© showing Moment-Curvature for Specimen W-3L5. 
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Figure B.7: Main Interface of MACS© showing Load-Deflection relationship for 
Specimen W-3L5. 
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10  APPENDIX C - REHABILITATION EXAMPLE 

 

In this section a complete example is illustrated for the strengthening design of a deficient RC 
beam using MACS.   

10.1 Cross Section Geometry 

The beam is originally designed for the simply supported slab/girder bridge.  The span length is 
18 meters and the cross section is given in Fig. C.1. An analysis of the bridge showed that 
interior girders are subjected to a dead load moment, DLM =1005kN.m. [741k.ft.], and a live load 

moment including the dynamic allowance factor, IMLL+M =1290kN.m. [951k.ft.].  The cross 
section was designed using a reduction factor, φ=0.9, which leads to a required nominal flexural 
capacity: 

φ
IMLLDL

n
MM

M ++= 75.125.1
=3904kN.m. [2879k.ft.] 

From basic RC principles, it can be shown that the cross section in Fig. C.1-b has a flexural 
capacity equal to 3917kN.m. [2888k.ft.] for the given dimensions and reinforcement, 

sA =8900mm2 [13.795in2]. Analyzing this cross section using MACS results in a capacity of 

3883kN.m. [2863k.ft.], which is a difference of less than 1% than the value obtained from basic 
principles.  It should be noted that not only is this difference small, it is also on the conservative 
side. 

10.2 Design of Damaged Cross Section 

The case of 15% damage to main steel (e.g. due to corrosion) will now be considered to illustrate 
how MACS can be used for that purpose. The nominal capacity of the damaged cross section 
( sA =0.85x8900=7565mm2 [11.726in2]) is calculated to be nM =3347kN.m. [2468k.ft.] 

(3312kN.m. [2442k.ft.] from MACS), which is less than the required φuM =3904kN.m. 

[2879k.ft.].  This violation of strength requirement will be compensated for by bonding FRP 
sheets to the stem of the cross section.  The following steps are to be followed: 

1. The required nominal capacity for a RC bridge girder strengthened with CFRP sheets is 
first calculated based on a reduction factor, φ=0.85 to account for the brittle nature of the 
behavior of the strengthened cross section 

===
85.0

uu
n

MM
M

φ
4133kN.m.[3047k.ft]  
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2. The data for the damaged cross section is used to perform the analysis.  The strengthening 
of the cross section is achieved via CFRP sheets that are wrapped about the stem; i.e. 

CFRPh = 1104.9mm[43.5in]. The sheets used in this example are of the same properties as 

tested in the Structural Research Center of Florida DOT.  The longitudinal direction of the 
sheets has a yarn density of 0.23/mm [6/inch].  Each of the yarns consists of 12000 fibers.  
The diameters of each fiber is 7 µm.  This arrangement results in a pure carbon thickness 
of 0.109mm[0.004295in]. At the time of application of CFRP, the girder is probably 
subjected to dead loads.  This is taken into account by inputting a threshold moment equal 
to the design dead load moment, DLM =1005kN.m. [741k.ft.] [8893k.in]. 

3. Several design trials are executed.  It is first assumed that one layer of CFRP sheets is 
glued to the sides and soffit of the girder.  The analysis of this first trial shows that the 
capacity of the girder is nM =3695kN.m. [2725k.ft.].  It is obvious that this arrangement is 

not sufficient for the required capacity.  Therefore, the number of layers is increased until 
the required capacity is achieved.  Table 1 lists the nominal flexural capacity for each 
attempt (1 layer through 3 layers).   

It is clear from the Table C.1 that 3 layers of CFRP are sufficient. Figures C.2 and C.3 are 
provided to show the how main windows the designer deals with.  The data in Fig. C.3 are for 
the 3rd design trial.  It should be noted that the program in its current version requires that all data 
be in US customary units (i.e. inch and pound). Fig. C.3 shows the data for the cross section after 
converting them into these units. 

 

Table C.1: Design trials for damaged cross section 

 

Trial 

Number of 
Layers 

LN  

Pure CFRP 
thickness 

CFRPt  

mm [in] 

Nominal Flexural 
Capacity 

nM * 

kN.m. [k.ft.] 

 

Acceptable 

Design? 

-- -- -- 3883 [2863] undamaged 

0 0 0 3312 [2442] damaged 

1 1 0.109 [0.004295] 3695 [2725] Not O.K., deficient 

2 2 0.218 [0.008590] 4038 [2977] Not O.K., deficient 

3 3 0.327 [0.012885] 4381 [3230] O.K. 

* Target ===
85.0
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n

MM
M

φ
4133kN.m.[3047k.ft] 



 

 121 

 

 

 

190.5 mm

4 x 2133.6=8534.4 mm

10058.6 mm

 

(a) 

A =8900 mm

2134 mm

s

11
00

 m
m

12
95

 m
m

191 mm

457 mm

2

 

(b) 

Figure C.1: Cross sections of undamaged interior bridge girders. 
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Figure C.2: Main Interface of the MACS program. 
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Figure C.3: MACS cross section interface for 3rd design trial. [All fields in US 
customary units (i.e. inch and pound)] 
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