CFCC Update

Yoshiaki Yamamoto
Tokyo Rope and Tokyo Rope USA
CFCC projects in the United States

<table>
<thead>
<tr>
<th>DOT</th>
<th>Name of the project or bridge</th>
<th>construction</th>
<th>application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Michigan DOT</td>
<td>Bridge Street Bridge</td>
<td>2001</td>
<td>Unbonded Transverse Post tensioning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Externally Draped Longitudinal Post–tensioning</td>
</tr>
<tr>
<td>2 M-39</td>
<td></td>
<td>2011</td>
<td>Unbonded Transverse Post tension</td>
</tr>
<tr>
<td>3 M-50</td>
<td></td>
<td>2012</td>
<td>Unbonded Transverse Post tension</td>
</tr>
<tr>
<td>4 M-102</td>
<td></td>
<td>2013</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deck reinforcement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stirrups</td>
</tr>
<tr>
<td>5 M-102</td>
<td></td>
<td>2014</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deck reinforcement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stirrups</td>
</tr>
<tr>
<td>6 I-94</td>
<td></td>
<td>2014</td>
<td>Unbonded Transverse Post Tensioning</td>
</tr>
<tr>
<td>7 I-94</td>
<td></td>
<td>2015</td>
<td>Unbonded Transverse Post Tensioning</td>
</tr>
<tr>
<td>8 M-100</td>
<td></td>
<td>2016</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td>9 M-66 over the West Branch River</td>
<td></td>
<td>2015</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td>10 M-86 over the Prairie River</td>
<td></td>
<td>2016</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td>11 I-75 over Goddard and Sexton Kilfoil Drain</td>
<td></td>
<td>2017</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td>12 M-3</td>
<td></td>
<td>2018</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td>2 Maine DOT</td>
<td>Little Pond Bridge</td>
<td>2012</td>
<td>Unbonded Transverse Post Tensioning</td>
</tr>
<tr>
<td>13 Kittery Overpass Bridge</td>
<td></td>
<td>2014</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td>14 Nimmo Parkway</td>
<td></td>
<td>2012/2013</td>
<td>PC piles (Strands and spirals)</td>
</tr>
<tr>
<td>15 RTE 49 over Aaron’s Creek</td>
<td></td>
<td>2015</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stirrups</td>
</tr>
<tr>
<td>17 Research project</td>
<td></td>
<td>2013</td>
<td>PC piles (Strands and spirals)</td>
</tr>
<tr>
<td>18 Halls River Bridge Replacement Project</td>
<td></td>
<td>2016/2018</td>
<td>PC piles (Strands and spirals) and sheet pile</td>
</tr>
<tr>
<td>5 Louisiana DOTD</td>
<td>I-10 Littlewoods</td>
<td>2014</td>
<td>External Post–tensioning</td>
</tr>
<tr>
<td>19 External Post–tensioning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 North Carolina DOT</td>
<td>HAS 700</td>
<td>2016</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td>20 Research project (Cored Slab)</td>
<td></td>
<td>2014</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td>21 Taylor County Bridge</td>
<td></td>
<td>2014</td>
<td>Longitudinal Prestressing strands</td>
</tr>
<tr>
<td>22 Innovation Bridge</td>
<td></td>
<td>2015</td>
<td>Longitudinal Prestressing strands</td>
</tr>
</tbody>
</table>

FRP for New Construction
CFCC Plant in the United States

Production start in September 2016
Table of Contents

I. What is CFCC?
II. Application of CFCC
III. Benefit of CFCC
I. What is CFCC?

- CFCC is Carbon Fiber Composite Cable.
- CFCC is a stranded CFRP. \(\rightarrow\) FLEXIBLE
- CFCC consists of PAN (Polyacrylonitrile) based continuous carbon fibers, with epoxy resins used as a binding material.

\(\rightarrow\) LIGHT WEIGHT

- CORROSION FREE
- HIGH TENSILE FATIGUE PERFORMANCE

\(\rightarrow\) HIGH TENSILE STRENGTH

- HIGH TENSILE MODULUS
Type of CFCC

- **Tendon**
 - Pre-tensioning cables
 - Post-tensioning cables

- **Non-prestressing reinforcement**
 - Bars
 - Stirrups
 - Spirals
I. What is CFCC?

Reinforcement bars or Pre-tensioning cables

Post-tensioning cables
I. What is CFCC?

Stirrups

Spirals
I. What is CFCC?

CFCC REINFORCEMENT CAGE → Light weight

Easy to carry around by people
I. What is CFCC?

Anchoring systems of CFCC

For Pre-tensioning

- Sleeve
- Buffer material
- Wedges

For Post-tensioning

- Steel sleeve
- Highly Expansive Material
- CFCC
New wedges

• Developing the New wedges for pre-tension and
• Post-tension
Table of Contents

I. What is CFCC?

II. Application of CFCC

III. Benefit of CFCC
There are about 200 applications. (by 2017)
Application of CFCC

<table>
<thead>
<tr>
<th>No.</th>
<th>Category</th>
<th>Number of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Concrete Structures (Reinforcement)</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>Cable for Bridges (Stay or Main Cable)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Ground Anchor</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>Other</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>198</td>
</tr>
</tbody>
</table>
(1). **Concrete Structures** (Pre-tensioning)

Shinmiya Bridge **1988.10** in Japan

World’s first PC bridge using CFRP tendon

Sea of Japan

Fuki chou, Ishikawa, JAPAN
Former Bridge

[After-construction 20 years]
New Shinmiya Bridge

Sea of Japan

Pre-tensioned PC slab bridge
Bridge length: 6.1 m
Overall width: 8.2 m

CFCCs are used for pre-tensioning tendons.

FRP for New Construction
Quantity of chloride ion in the concrete beam

New Shinmiya Bridge

[After-construction 23 years]

CFCC position from the surface

1.2 kg/m³ Rust generating limit of steel

Depth from the concrete surface (cm)

Quantity of chloride ion (kg/m³)
Former Bridge [After-construction 20 years]

New Shinmiya Bridge [After-construction 23 years]

FRP for New Construction
(2). Concrete Structures (Post-tensioning)

Bridge Street Bridge May. 2001 in Southfield, Michigan

Funded by FHWA and MDOT United States’s first bridge constructed using CFRP

- TPT
 - CFCC 1x37 40.0φ: 9.2 m x 10 tendons,
 - 9.4 m x 7 tendons
 - CFCC 1x19 21.8φ: 9.0 m x 6 tendons

- External Tendons
 - CFCC 1x37 40.0φ: 16.8 m x 24 tendons,
 - 17.0 m x 30 tendons

Transverse Cables

External Cables

CFCC 1x37×40 (Post-tensioned material, exterior cable)
(3). **Concrete Structures** (Pre-tensioning & Deck Reinforcement)

M-102 over Plum Creek **Jun. 2013** **in Michigan**

- **Deck Reinforcement** CFCC $1 \times 7 \ 15.2\phi$

- **8 beams × 2 bridges = 16 beams**

- **4’ × 2’-9” Box beam**
- 37 strands: CFCC $1 \times 7 \ 15.2\phi$
- Stirrups: CFCC $1 \times 7 \ 15.2\phi$
- Top rebar: CFCC $1 \times 7 \ 15.2\phi$

FRP for New Construction
FRP for New Construction
(4). Concrete Structures (Pre-tensioning)

RTE. 49 Bridge over Aaron’s Creek (Bulb-T beam)

Jun. 2015 in Virginia

48 strands - CFCC 1×7 15.2φ

Stirrups - CFCC 1×7 15.2φ, CFCC 1×7 17.2φ

Bridge Length: 168’ – 10”
Bridge Width: 32’ - 4”

48 strands × 8 beams

FRP for New Construction
(5). **Concrete Structures** (Pre-tensioning)

Innovation Bridge (Hecht Athletics Pedestrian Bridge)

Oct. 2015 in Miami

Bridge Length: 70’ – 0”
Bridge Width: 14’ – 3”

18 strands × 2 beams
(6). Concrete Structures (Pre-tensioning)
Other beams

63 strands

West fascia beam (WFB)

69 strands

AT BEAM ENDS

AT MID-SPAN

INTERIOR BEAMS B–J
MEDIAN FASCIA BEAM K
STRAND LOCATIONS

+ DEBOND 6 FT EACH END
★ DEBOND 8 FT EACH END
◆ DEBOND 12 FT EACH END
▲ DEBOND 16 FT EACH END
✖ DEBOND 20 FT EACH END

+ DEBOND 3 FT EACH END
★ DEBOND 22 FT EACH END
◆ DEBOND 15 FT EACH END
▲ DEBOND 28 FT EACH END
✖ DEBOND 6 FT EACH END
FRP for New Construction
(7). **Concrete Structures** (Post-tensioning)

I-94 Bridge over Lapeer Rd.
Jun. 2015
in Port Huron, Michigan

- **East bound (14 box beams)**
 - Bridge Length: 164’ – 0”
 - Bridge Width: 57’ – 7.5”

- **West bound (15 box beams)**
 - Bridge Length: 164’ – 0”
 - Bridge Width: 61’ – 9”

TPT CFCC 1×37 40.0φ

East bound: 59’ - 2” (18.0 m) × 20 tendons
West bound: 63’ – 3.5” (19.3 m) × 20 tendons

FRP for New Construction
(8). Concrete Structures (Prestressed Concrete Pile)

NIMMO PARKWAY in Virginia

2 Test Piles Nov. 2012
16 Piles Nov. 2013

24” square pile
16 strands: CFCC 1x7 15.2mm
Spiral: CFCC U 5.7mm

FRP for New Construction
(9). **Concrete Structures** (Prestressed Concrete Pile)

Pilot project

Jul. 2013 in Florida

- **24” square pile**
- 20 strands: CFCC 1x7 15.2φ
- Spiral: CFCC U 5.0φ
- Pile length:
 - 40 feet × 3 beams
 - 100 feet × 2 beams

FRP for New Construction
(10). Concrete Structures (Prestressed Concrete Pile)

Halls River Bridge project 2017 in Florida
FRP for New Construction
Ⅲ. Benefit of CFCC

Bridge Life Cycle Cost

- Black Steel Bridge
- Epoxy-Coated Steel Bridge
- CFRP Bridge

Construction
Deck Shallow Overlay
Deck Replacement
Superstructure replacement

Breakeven year: 20

0 10 20 30 40 50 60 70 80 90 100

Year

$0 $1,000,000 $2,000,000 $3,000,000 $4,000,000 $5,000,000 $6,000,000 $7,000,000

Life-cycle cost

5.98 M$
5.63 M$
2.29 M$

Lawrence Tech

Prof. Grace
Thank you