The Type K Temporary Concrete Barrier System has been crash tested to NCHRP Report 350 TL-3 criteria or structurally evaluated to meet the requirements of NCHRP Report 350 TL-3 criteria for the installation configurations as shown utilizing the types, sizes, lengths, shapes, strengths and grades of the fabrication and installation materials as shown.

In order to maintain crashworthiness of the system, do not substitute different grades, sizes, shapes or types of reinforcing steel for those shown for constructing Type K Barrier Units. Also, do not substitute different type, size, length or material grade anchor bolts, nuts, washers, adhesives, connector pins, stakes, keeper pins, or guardrail components for installing Type K Barrier Units.

FABRICATION NOTES:

FABRICATOR QUALIFICATION: The Barrier Units shall be made in a prestressed concrete plant that meets the requirements of Specification Section 413 or in a precast plant meeting the requirements of Specification Section 6-6.

CONCRETE: Concrete shall be Class IV in accordance with Specification Section 346. Specification Sections 346-20.2 through 346-20.4 are not applicable. Barrier Units represented by concrete acceptance strength tests which fall below 5300 psi will be rejected.

REINFORCING STEEL: Reinforcing steel shall be ASTM A 416. Grade 60 except for Bar 60, 602 and 603. Bars 60, 602 and 603 shall be ASTM A 416, Grade 60, but not be galvanized in accordance with Specification Section 963 or coated with a cold galvanizing compound in accordance with Specification Section 971. The minimum limit of galvanizing or coating is shown in the Bending Diagrams. At the fabricator's option, the entire length of Bar 60 may be galvanized or coated. Install Bars 60 within 1/8" of the face dimensions. Correct placement of Bars 60 is critical for proper fit up and performance of individual Barrier Units.

At the option of the fabricator, Deformed Welded Wire Fabric in accordance with ASTM A 497 and the details shown on Sheet 2 may be utilized in lieu of Bars 44 and 58.

All dimensions in the Bending Diagrams are cut out to cut. Reinforcing steel shall have a 2" minimum cover except as noted.

LIFTING SLEEVE ASSEMBLY: Inclusion of the Lifting Sleeve Assemblies is optional. Steel for Pipe Sleeve should be in accordance with ASTM A 53. Hot-dip galvanize the Lifting Sleeve Assemblies after their fabrication in accordance with the Specifications.

SURFACE FINISH: Construct Barrier Units in accordance with Specification Sections 400 and 521. Finish the top and sides of the Barrier Units with a General Surface Finish. Finish the bottom of the Barrier Units to a dense uniform surface by floating in lieu of the General Surface Finish. Use stationary metal forms or stationary timber forms with a form liner.

WARNING: Permanently mark the top left end of each Barrier Unit by the use of an embedded and anchored metallic plate with letters and figures a minimum of 0.5" tall. The stamps are not allowed. Permanently mark with the following information:
- Type K1
- Fabricator's name or symbol
- Date of manufacture (day, month and year)

HANDLING: At no time shall the Barrier Units be lifted or moved by use of Bars 60 that extend from the ends of the units. Approximate weight of one unit equals 2.7 tons.

A. TERMINATE DESIGN: Manufacturers seeking approval of proprietary concrete barrier systems for inclusion on the Qualified Products List as pre-approved alternate designs must submit application along with design documentation showing the barrier system is crash tested to NCHRP Report 350 Test Level 3 criteria, is accepted by FHWA for use as a temporary concrete barrier in the configurations shown herein, is a minimum of 2'-8" tall, has transitions and connections comparable to the standard design and has permanent deflections due to 7'-3" crash tests impacts not to exceed 3'-9" in freestanding configuration, 3'-5" in bolted down configuration and 1'-6" in stacked down configuration.
SECTION D-D
(Reinforcement not shown for clarity)

*Measured from end of Barrier Unit to outside edge of Bars 60.

ELEVATION VIEW

SECTION THRU LIFT/Drain Slot

ESTIMATED TEMPORARY CONCRETE BARRIER QUANTITIES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>UNIT</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>CY</td>
<td>129</td>
</tr>
<tr>
<td>Rebar</td>
<td>LB</td>
<td>229</td>
</tr>
</tbody>
</table>

The above quantities are for one Barrier Unit.

Cross References: For Section A-A, Section B-B and Section C-C see Sheet 3.

LIFTING SLEEVE ASSEMBLY DETAIL (OPTIONAL)
NOTES FOR ALL INSTALLATIONS:

LIMITATION OF USE: This Temporary Concrete Barrier System is intended for work zone traffic control and other applications.

This shall not be used for permanent traffic railing construction unless specifically permitted by the Plans. Excess for the Black Filled Roadway Installations, the barrier units must be installed on a flexible pavement (asphalt) or rigid pavement (concrete) surface as shown in a coronal slope of 0.40 or flatter. Except as shown in transition Installations, Type K Barrier Units are not intended to be bolted down or staked down in locations where they can be impacted from the back side.

HANDLING: At no time shall the barrier units be lifted or moved by use of bars 60 that extend from the ends of the units. Approximate weight of one unit equals 2.7 tons.

SURFACE PREPARATION: Except as shown for the Black Filled Roadway Installations, remove all debris, loose dirt and sand from the pavement, bridge deck, or asphalt pavement within the barrier footprint just prior to placement of the Barrier Units.

CONNECTION PIN ASSEMBLY: Steel from Connection Pin and Top Plate assemblies shall be in accordance with ASTM A 335 or ASTM A 2709 Grade 36. Nondestructive testing of welds shall not be required. At the Contractor’s option, a 0.32” diameter hole may be provided at the bottom of the Connection Pin, as shown, for the installation of a vandal-resistant bolt.

CONNECTION PIN INSTALLATION: Primarily set Barrier Units by using a 1” x 1” wooden block between ends of adjacent units. Install Connection Pin between adjacent units as shown, then pull newly placed Barrier Unit away from adjacent Barrier Unit to remove slack between Connection Pin and Bars 60 (except as shown on Sheet 5). Barrier Units shall not be used unconnected.

DEFINITIONS: Mount Type C Steady-Burn Lights on top of Barrier Units that are used as traffic barriers along travel ways in work zones. Space the lights of 50 centers in transit areas, 100 centers on curves and 200 centers on tangent alignments. Refer to “Warning Lights” on Index No. 650 for additional information.

USE OF BINDERS: Barrier units may be reused provided they have the structural integrity and surface qualities of new units. Do not use Barrier Units without Marking Plates.

USE OF CONNECTION PINS: Connection pins may be reused if they have the structural integrity of new pins.

INSTALLATIONS ON CURVED ALIGNMENTS: The details presented in these Standards are shown for installations on tangent alignments. Details for horizontally curved alignments are similar.

TRANSITIONS: Transitions are required between freestanding, bolted down, staked down and back filled Type K Barrier Installations, see Sheets 9 through 13 for transition requirements and details. Transitions are also required between installations of Type K Barrier and other types of temporary barriers, see Index No. 415 for transition requirements and details. Splices and transitions are required between installations of Type K Barrier and permanent bridge or roadway traffic railings, see Sheets 9 through 13 for transition requirements and details.

PAYMENT: Barrier Units for work zone traffic control and other temporary applications shall be paid for under the contract unit price for Barrier Wall (Temporary) (K60) (Type K), I.F. Any relocation of the Barrier Units required for the project shall be paid for under the contract unit price for Barrier Wall (Temporary) (K60) (Type K), I.F. Type C Steady-Burn Lights shall be paid for under the contract unit price for Type C Steady-Burn Lights (K60) (Type K), I.F. The Contractor shall furnish Barrier Units except when the Plans indicate the availability of Department-owned units. Regardless of source, the Contractor shall furnish all hardware and shall be responsible for all handling, including loading, unloading, shockproofing, installation, removal and return. Unless otherwise noted on the Plans, the Barrier Units shall become the property of the Contractor and shall be removed from the site prior to acceptance of the completed project.

NOTES FOR THREE-BEAM GUARDRAIL: GUARDRAILS INSTALLATION:

THREE-BEAM GUARDRAIL: Provide Three-Beam Guardrail for splices in accordance with ASME BU M 380, Type II (Zinc coated) and as follows:

- Two panels per splice (one panel per side) of Class B (1/2 Gauge) or
- Four panels per splice (two panels per side) of Class A (1/8 Gauge).

Guardsrail panel length shall be 12’-6”.

Provide and install all associated metallic guardrail components (Terminal Connectors, Shoulder Bolts, Tie Rods, Hangers, Pin on Plates, etc.) in accordance with Index No. 400.

Install Guardrail Anchor Bolts at each end of each splice in accordance with the standard seven anchor bolt holes in the Three-Beam, Terminal Connector.

If reinforcing steel is encountered when drilling holes for Guardrail Anchor Bolts in Type K Barrier Units, drill Three-Beam, Terminal Connectors so as to clear reinforcing steel or select a different bolt hole to use. Do not drill or cut through reinforcing steel within Type K Barrier Units. Drilling or cutting through reinforcing steel within permanent concrete traffic railings is prohibited. Do not drill or cut through reinforcing steel within permanent concrete traffic railings.

GUARDRAIL OFFSET BLOCKS: Provide and install Timber Offset Blocks meeting the material requirements of Index No. 400, Field trim Offset Blocks as required for proper fit. Unless Offset Blocks are shown and required in order to prevent bending or kinking of Three-Beam Guardrail panels.

CONCRETE FOR FILLING-TAPPED TRAFFIC RAILING TIES: Provide concrete for filling tapered holes of Traffic Railings as shown meeting the material requirements of Specification Section 346, any Class, or a commercially available prebagged concrete mix (2000 psi minimum compressive strength). Sampling, testing, evaluation and certification of the concrete in accordance with Specification Section 346 is not required. Saturate with water the surfaces upon and against which the concrete fill will be placed prior to placing concrete. Place and finish concrete placing forms or by hand methods to the general configuration shown so as to provide a smooth shape transition between the Type K Barrier and the adjacent traffic railing. A low slump is desirable if placing and finishing concrete by hand methods. Cure the concrete fill upon completion with a curing compound or by covering with a wet tarp or burlap for a minimum of 24 hours. Complete the concrete fill upon completion with a curing compound or by covering with a wet tarp or burlap for a minimum of 24 hours. Complete the concrete fill upon completion with a curing compound or by covering with a wet tarp or burlap for a minimum of 24 hours.
TYPICAL SECTION
(BRIDGE DECK SHOWN APPROACH SLAB OR RIGID PAVEMENT SIMILAR: INSTALLATION
ADJACENT TO DROP-OFF SHOWN, MEDIAN TRANSITION INSTALLATION SIMILAR)

NOTES FOR BOLTED DOWN BRIDGE, APPROACH SLAB, ROADWAY AND TRANSITION INSTALLATIONS:

LIMITATION OF USE: This installation technique can only be used on rigid pavement and concrete bridge decks as shown. Barrier units shall be bolted down on bridge superstructures that contain prestressed tendons within the concrete deck (top flange of concrete girder) or on bridge superstructures consisting of longitudinally prestressed, transversely post-tensioned, or post-tensioned concrete slab units. Anchor bolts must not be installed on both sides of the Barrior Units. Do not bolt down Barrier Units across bridge tie-in or modular expansion joints.

ANCHOR BOLTS: NUTS AND WASHERS - Adhesive-Bonded Anchor Bolts shall be fully threaded rods in accordance with ASTM F 2554 Grade 36. Anchor Bolts for through bolted units shall be in accordance with ASTM F 2554 Grade 36. Nuts shall be in accordance with ASTM F 363 or ASTM F 194. Plate Washers shall be in accordance with ASTM D 436 and Plate Washers shall be in accordance with ASTM D 436 or ASTM D 709 Grade 36.

Install three (3) Anchor Bolts per Barrier Unit on the traffic side of the Barrier Units as shown, except for Transition Installations. For the number and positions of Anchor Bolts required in Transition Installations, see Sheets 5 and 9 and Index No. 415. Drilling through deck reinforcing steel to install Anchor Bolts is permitted. Unless otherwise shown in the Plan, at the Contractor's option Barrier Units may be installed by through bolting (where geometrically possible) or the use of Adhesive-Bonded Anchor Bolts. Do not damage or otherwise damage the tops of supporting beams or girders, bridge deck expansion joints or drains. Install Anchor Bolts and Nuts so that the maximum extension beyond the face of the Barrier Units is 0.5". Snug tighten the Nuts on the Anchor Bolts. For through bolted installations, snug tighten the double nuts on the underside of the decks against each other to minimize the potential for loosening.

Unit one (1) Anchor Bolt within a single Barrier Unit if a conflict exists between the Anchor Bolt location and a bridge deck expansion joint or drain. The adjacent Barrier Units must each be installed with the standard three (3) Anchor Bolts.

Unit one (1) Anchor Bolt within a single Barrier Unit as shown in the Treatment at Bridge Deck Expansion Joint Schematic if the Barrier Unit straddles a bridge deck expansion joint. The adjacent Barrier Units must each be installed with the standard three (3) Anchor Bolts.

ADHESIVE-BONDING MATERIAL SYSTEMS: Adhesive Bonding Material Systems for Anchor Bolts shall be Type H5MV in accordance with Specification Section 917 and shall be installed in accordance with Specification Section 416. Prior to installation of the Barrier Units, the Contractor shall run a demonstration Barrier Unit in the Unit using the proposed production installation method, at a location approved by The Engineer. In lieu of the production test requirements of Specification Section 416 and 516, installation of adhesive-bonded anchor bolts in the demonstration barrier unit and test the anchor bolt with a 29,000 pound tensile proof load. Install and test additional demonstration Barrier Units when requested by the Engineer. Remove the demonstration Barrier Unit prior to testing the Anchor Bolts. Remove the test Anchor Bolts after testing as directed by The Engineer.

REMOVAL OF ANCHOR BOLTS: Upon removal or relocation of Barrier Units, remove all Anchor Bolts and completely fill the remaining holes in bridge decks, approach slabs and roadway rigid pavements that are to remain with Magnesium Ammonium Phosphosphate Concrete, in accordance with Specification Section 920 or with an Epoxy Wash Compound, Type 1 or 0, in accordance with Specification Section 925. If a Flexible pavement overlay is present and is to remain completely fill the remaining holes in the flexible pavement with hot or cold patch asphalt material.

BOLTED DOWN BRIDGE, APPROACH SLAB, ROADWAY AND TRANSITION INSTALLATIONS
NOTES FOR STAKED DOWN ROADWAY AND TRANSITION INSTALLATIONS:

LIMITATION OF USE: This installation technique can only be used on flexible pavement or a rigid pavement as shown. Stakes must not be installed on both sides of the Barrier Units.

ASPHALT PAD: Where existing flexible pavement is not present, construct the Asphalt Pad using Miscellaneous Asphalt Pavement in accordance with Specification Section 339 with the exception that the use of a pre-emergent herbicide is not required. No separate pavement will be made for the Asphalt Pad.

STAKES: Provide steel or Stake assemblies in accordance with ASTM A 36 or ASTM A 709 Grade 36. All welding shall be in accordance with the American Welding Society Structural Welding Code (Steel) AWS/ASME IX, 1994. Weld metal shall be E60XX or E70XX. Nondestructive testing of welds is not required.

Install 3.0 ft (0.9 m) of Stakes on the traffic side of the Barrier Units as shown, except for Transition Installations. For the number and positions of stakes required in Transition Installations, see Section 15.1.3 and Stakes No. 855, Install Stakes so that the Step Plate is snug against the bottom of the Anchor Blockout.

BURIED UTILITIES: Prior to installation of Stakes, verify locations of existing buried utilities, drainage structures, pipes, etc. If conflicts between Stake locations and buried elements exist, a maximum of two (2) Stakes within a single Barrier Unit may be omitted if the adjacent Barrier Units are installed with the standard three (3) Stakes.

REMOVING OF STAKES: Upon removal or relocation of Barrier Units, completely remove all Stakes and completely fill the remaining holes in flexible pavement that is to remain with hot or cold patch asphalt material.

REUSE OF STAKES: Stakes may be reused if they have the structural integrity of new stakes.

TYPICAL SECTION (BRIDGE DECK SHOWN, APPROACH SLAB SIMILAR)

NOTES FOR FREE STANDING BRIDGE OR APPROACH SLAB INSTALLATIONS:

KEEPER PIN: Keeper Pins shall be 1/8" diameter, smooth steel bar in accordance with ASTM A 36 or ASTM A 709 Grade 36. As directed by the Engineer in order to limit vibration induced translation at the Barrier Units, install one (1) Keeper Pin per Barrier Unit on the traffic side of the Barrier Unit as shown. Do not drill or otherwise damage bridge deck expansion joints or diaphragms.

REMOVAL OF KEEPERS: Upon removal or relocation of Barrier Units, remove all Keeper Pins and completely fill the remaining holes in bridge decks and approach slabs that are to remain with Magnesium Silicate Phosphate Concrete in accordance with Specification Section 920 or with an Easy-Set Compound, Type 1 or 2, in accordance with Specification Section 926. If a flexible pavement overlay is present and is to remain, completely fill the remaining holes in the flexible pavement with hot or cold patch asphalt material.

FREE STANDING ROADWAY INSTALLATION

NOTES FOR FREE STANDING ROADWAY INSTALLATION:

LIMITATION OF USE: This installation technique can only be used on flexible or rigid pavement or on an Asphalt Pad as shown.

ASPHALT PAD: Where existing flexible pavement is not present, construct the Asphalt Pad using Miscellaneous Asphalt Pavement in accordance with Specification Section 339 with the exception that the use of a pre-emergent herbicide is not required. No separate pavement will be made for the Asphalt Pad.

TYPICAL SECTION

FREE STANDING ROADWAY INSTALLATION
TYPICAL SECTION

NOTES FOR FREE STANDING ROADWAY MEDIAN INSTALLATION:

LIMITATION OF USE: This installation technique can only be used on flexible or rigid pavement or on an Asphalt Pad as shown.

ASPHALT PAD: Where existing pavement is not present, construct the Asphalt Pad using Miscellaneous Asphalt Pavement in accordance with Specification Section 150 with the exception that the use of a pre-emergent herbicide is not required. No separate payment will be made for the Asphalt Pad.

FREESTANDING ROADWAY MEDIAN INSTALLATION

TYPICAL SECTION

NOTES FOR BACK FILLED ROADWAY INSTALLATIONS:

BACK FILL MATERIAL: Provide Back Fill Material consisting of any available clean soil. Compact Back Fill Material until the soil mass is firm and unyielding. Provide erosion controls specified in the Plans. If none is specified in the Plans, provide erosion controls as required to maintain the integrity of the Back Fill embankment.

GEOTEXTILE FABRIC: Provide Type 0-5 Geotextile Fabric in accordance with Index No. 139 to contain Back Fill Material behind Barrier Units. Geotextile Fabric may be continuous over the length and height of the installation or may be individual pieces as required to cover the Lift / Drain Slabs and open vertical joints between Barrier Units.

TYPICAL SECTION

NOTES FOR FREE STANDING BRIDGE OR APPROACH SLAB MEDIAN INSTALLATION:

KEEPER PIN: Keeper Pins shall be 5/8" diameter, smooth steel bar in accordance with ASTM A 36 or ASTM A 709 Grade 36.

As directed by the Engineer in order to limit vibration induced translation of the Barrier Units, install 1 Keeper Pin per Barrier Unit as shown. Alternate Keeper Pin locations from side to side of Barrier Units along the length of the installation. Do not drill or otherwise damage bridge deck expansion joints or drains.

REMOVAL OF KEEPER PIN: Upon removal or relocation of Barrier Units, remove all Keeper Pins and completely fill the remaining holes in bridge decks and approach slabs so that the surface remains flush and is to remain. Complete all the remaining holes in the flexible pavement with hot or cold patch asphalt material.

FREESTANDING BRIDGE OR APPROACH SLAB MEDIAN INSTALLATION

TYPICAL SECTION

2008 FDOT Design Standards

TYPE K TEMORARY CONCRETE BARRIER SYSTEM
APPROACH TRANSITION FROM FREESTANDING TO BOLTED OR STAKED DOWN TYPE K TEMPORARY CONCRETE BARRIERS

NOTE: Where barrier is located within clear zone of opposing traffic, approach transition is required.

APPROACH TRANSITION FROM FREESTANDING TO BACK FILLED TYPE K TEMPORARY CONCRETE BARRIERS

LEGEND:

Disk indicates number and position of bolts or stakes

TRAILING END TRANSITION FROM BOLTED OR STAKED DOWN TO FREESTANDING TYPE K TEMPORARY CONCRETE BARRIERS

TRAILING END TRANSITION FROM BACK FILLED TO FREESTANDING TYPE K TEMPORARY CONCRETE BARRIERS
TRANSITION FROM FREESTANDING TYPE K TEMPORARY CONCRETE BARRIERS TO BRIDGE MEDIAN TRAFFIC RAILING OR ROADWAY MEDIAN CONCRETE BARRIER WALL

TRANSITION FROM FREESTANDING TYPE K TEMPORARY CONCRETE BARRIERS TO BRIDGE TRAFFIC RAILING OR ROADWAY CONCRETE BARRIER WALL

TRANSITION FROM BOLTED OR STAKED DOWN TYPE K TEMPORARY CONCRETE BARRIERS TO BRIDGE TRAFFIC RAILING OR ROADWAY CONCRETE BARRIER WALL

LEGEND:

Dot indicates number and position of Batts or Stakes
32" F or New Jersey Shape
Bolted or Staked Down Type K Barrier Units

PARTIAL PLAN VIEW AT MEDIUM TRAFFIC RAILING

32" F Shape Traffic Railing (shown: 32"
New Jersey Shape and 42" F Shape Traffic
Railings and 8' or 14' Traffic Railing / Sound
Barriers (similar))

PARTIAL PLAN VIEW AT SHOULDER TRAFFIC RAILING

32" F Shape Traffic Railing (shown: 32"
New Jersey Shape and 42" F Shape Traffic
Railings and 8' or 14' Traffic Railing / Sound
Barriers (similar))

PARTIAL ELEVATION VIEW - FLORIDA CORRAL TRAFFIC RAILING

PARTIAL ELEVATION VIEW - VERTICAL SHAPE TRAFFIC RAILINGS

APPROACH TRANSITION SPLICE DETAIL

FOR FLORIDA CORRAL AND VERTICAL SHAPE TRAFFIC RAILINGS

APPROACH TRANSITION SPLICE DETAIL

FOR F AND NEW JERSEY SHAPE TRAFFIC RAILINGS AND 8' & 14'
TRAFFIC RAILING / SOUND BARRIERS (CONCRETE BARRIER WALL SIMILAR)
PARTIAL PLAN VIEW

For F and New Jersey Shape Traffic Railings and 8'-0" & 14'-0" Traffic Railing / Sound Barriers (similar).

PARTIAL ELEVATION VIEW

Cross References:
See Sheet 13 for Section 4-A, Section B-B and Section C-C.

TRAILING END SPlice DETAIL

FOR F AND NEW JERSEY SHAPE TRAFFIC RAILINGS
AND 8'-0" & 14'-0" TRAFFIC RAILING / SOUND BARRIERS

PARTIAL PLAN VIEW

For Florida Corral and Vertical Shape Traffic Railings (shown).

PARTIAL ELEVATION VIEW

Cross References:
See Sheet 13 for Section 4-A, Section B-B and Section C-C.

TRAILING END SPlice DETAIL

FOR FLORIDA CORRAL AND VERTICAL SHAPE TRAFFIC RAILINGS

TYPE K TEMPORARY CONCRETE BARRIER SYSTEM
FREESTANDING TYPE K BARRIER UNITS SHOWN, BOLTED OR STAKED
DOWN UNITS SIMILAR. SEE PLANS FOR SPECIFIC REQUIREMENTS

PARTIAL PLAN VIEW

Bolted or Staked Down Type K Barrier Units

PARTIAL PLAN VIEW

32" F or New Jersey Shape Traffic Railing, Railing Transition & End Post (Beam or Girder Bridge shown, Flat Slab Bridge similar)

32" F or New Jersey Shape Traffic Railing, Railing Transition & End Post (Flat Slab Bridge shown, Beam or Girder Bridge similar)

PARTIAL ELEVATION VIEW

TRAILING END SPLICE DETAIL
FOR 32" F AND NEW JERSEY SHAPE TRAFFIC RAILINGS WITH RAILING TRANSITION AND END POST

PARTIAL ELEVATION VIEW

APPROACH TRANSITION SPLICE DETAIL
FOR 32" F AND NEW JERSEY SHAPE TRAFFIC RAILINGS WITH RAILING TRANSITION AND END POST

Cross References:
See Sheet 3 for Section B-B, Section C-C and Section E-E.
APPROACH TRANSITION FROM FREESTANDING PROPRIETARY TEMPORARY BARRIERS TO BOLTED OR STAKED DOWN TYPE K TEMPORARY CONCRETE BARRIERS

TRAILING END TRANSITION FROM BOLTED OR STAKED DOWN TYPE K TEMPORARY CONCRETE BARRIERS TO FREESTANDING PROPRIETARY TEMPORARY BARRIERS

APPROACH AND TRAILING END TRANSITIONS FROM FREESTANDING TYPE K TEMPORARY CONCRETE BARRIERS TO FREESTANDING PROPRIETARY TEMPORARY BARRIERS

TYPE K–PROPRIETARY TEMPORARY CONCRETE BARRIER TRANSITIONS
Approach Transition from Freestanding Proprietary Temporary Barriers to Back Filled Type K Temporary Concrete Barriers

- **Type K-Proprietary Barrier Replacement Unit A or B (See QPL)**
- Transition Section from Freestanding to Back Filled Barrier Units
- Back Fill
- **Type K-Proprietary Barrier Transition Unit A or B (See QPL)**

Trailing End Transition from Back Filled Type K Temporary Concrete Barriers to Freestanding Proprietary Barriers

- **Type K-Proprietary Barrier Transition Unit A or B (See QPL)**
- Back Fill
- **Type K-Proprietary Barrier Transition Unit A or B (See QPL)**

Median Approach and Trailing End Transitions from Freestanding Type K Temporary Concrete Barriers to Freestanding Proprietary Temporary Barriers

Type K-Proprietary Temporary Concrete Barrier Transitions