Note:
MEDIAN BARRIER WALL FOR SUPERELEVATED SECTIONS
(See Standard Wall Detail)
Symmetrical About | ("L" Wall)
#4 Bars @ 12" Ctrs.

OR FOR VARIABLE ROADWAY PROFILE GRADES
TO BE USED ONLY WHERE TERMINAL LOCATED CLEAR ZONE WIDTH FROM
#3 Bars @ 18" Ctrs.

Design Criteria:
Barrier Wall, LF.
Cost of the steel and concrete footing to be included in the contract unit price for Median Concrete
constructed at the Contractor's option.

Vehicle: 4000 lbs., 60 mph, 25°, Avg. Lat. Impact Deceleration Force- 7G's (28 kips)

CONCRETE BARRIER WALL TERMINAL
"L" Wall
X Varies, 4'-0" Min., 6'-3" Max.

Approaching Traffic Side

DETAIL ~
Height Y
Width X
0'-0" Symmetrical About
Width X

MINIMUM WIDTH
H 5'-3" (5 Equal Spaces @ 5')

APPROACHING TRAFFIC SIDE

MARKERS
Reflective Barrier
Shoulder Or Roadway Pavement

FULL WALL
For concrete barrier wall details at piers, highway lighting and guardrail connections, see other sheets of this index.
Standard barrier to be paid for under the contract unit price for Median Concrete Barrier Wall, LF.

STANDARD BARRIER WALL SECTIONS

GENERAL NOTES
1. Class II concrete shall be used for all reinforced and plain (non-reinforced) concrete barrier walls. In moderately and extremely aggressive environments, Class II concrete shall be used. All reinforcing steel with unalloyed steel shall be "4" bars. Excepted concrete barriers shall have a Class II armor in accordance with Section 316 of the Standard Specifications for Highway Construction.
2. Support of the concrete barrier wall shall be provided by Type A or B precast concrete segments or cast-in-place construction.
3. Expansion joints in wall required only at bridge ends and/or at locations where wall is an integral part of existing or proposed concrete slab; wall joints are to match an existing or proposed expansion joint. Precast construction is allowed as an alternate to cast-in-place construction.
4. When the barrier is installed adjacent to the pavement the top 12" of the subgrade shall be compacted to at least 100% of the density as defined in the AASHTO T-99 specifications.
5. Cast-in-place barrier wall normally will be a continuous pour without transverse contraction joints. Cast-in-place segments with a length >20' shall be joined to adjacent sections by doweling. See Detail B.
6. Precast concrete barrier wall sections shall be connected with a minimum of 2 connectors per 8'-0" segment. The connectors shall be a Type B prestressed concrete segmental post-tensioning system.
7. On roadway designated for reverse lane use the precast segments shall be marked by Type 3 Object Markers.
8. Design of the precast segments shall be facilitated by the use of a prestressed ring or equivalent means to assure uniform bearing.
9. Reinforcement may be required for handling stresses.
10. Concrete barrier wall with New Jersey Safety Shape may not be substituted for the Standard "L" Shape Barrier.

WALL FACE SAFETY SHAPES

GENERAL NOTES
1. For designs speeds >50 mph, see individual details for pay item information.
2. Concrete barrier wall terminal notes for design speeds >50 mph.
3. Expansion joints in wall required only at bridge ends and/or at locations where wall is an integral part of existing or proposed concrete slab; wall joints are to match an existing or proposed expansion joint. Precast construction is allowed as an alternate to cast-in-place construction.
4. When the barrier is installed adjacent to the pavement the top 12" of the subgrade shall be compacted to at least 100% of the density as defined in the AASHTO T-99 specifications.
5. Cast-in-place barrier wall normally will be a continuous pour without transverse contraction joints. Cast-in-place segments with a length >20' shall be joined to adjacent sections by doweling. See Detail B.
6. Precast concrete barrier wall sections shall be connected with a minimum of 2 connectors per 8'-0" segment. The connectors shall be a Type B prestressed concrete segmental post-tensioning system.
7. On roadway designated for reverse lane use the precast segments shall be marked by Type 3 Object Markers.
8. Design of the precast segments shall be facilitated by the use of a prestressed ring or equivalent means to assure uniform bearing.
9. Reinforcement may be required for handling stresses.
10. Concrete barrier wall with New Jersey Safety Shape may not be substituted for the Standard "L" Shape Barrier.

REFLECTIVE BARRIER WALL SPACING ON WALL

MARKERS
Reflective Barrier
Shoulder Or Roadway Pavement

FULL WALL
For concrete barrier wall details at piers, highway lighting and guardrail connections, see other sheets of this index.
Standard barrier to be paid for under the contract unit price for Median Concrete Barrier Wall, LF.

STANDARD BARRIER WALL SECTIONS

GENERAL NOTES
1. Class II concrete shall be used for all reinforced and plain (non-reinforced) concrete barrier walls. In moderately and extremely aggressive environments, Class II concrete shall be used. All reinforcing steel with unalloyed steel shall be "4" bars. Excepted concrete barriers shall have a Class II armor in accordance with Section 316 of the Standard Specifications for Highway Construction.
2. Support of the concrete barrier wall shall be provided by Type A or B precast concrete segments or cast-in-place construction.
3. Expansion joints in wall required only at bridge ends and/or at locations where wall is an integral part of existing or proposed concrete slab; wall joints are to match an existing or proposed expansion joint. Precast construction is allowed as an alternate to cast-in-place construction.
4. When the barrier is installed adjacent to the pavement the top 12" of the subgrade shall be compacted to at least 100% of the density as defined in the AASHTO T-99 specifications.
5. Cast-in-place barrier wall normally will be a continuous pour without transverse contraction joints. Cast-in-place segments with a length >20' shall be joined to adjacent sections by doweling. See Detail B.
6. Precast concrete barrier wall sections shall be connected with a minimum of 2 connectors per 8'-0" segment. The connectors shall be a Type B prestressed concrete segmental post-tensioning system.
7. On roadway designated for reverse lane use the precast segments shall be marked by Type 3 Object Markers.
8. Design of the precast segments shall be facilitated by the use of a prestressed ring or equivalent means to assure uniform bearing.
9. Reinforcement may be required for handling stresses.
10. Concrete barrier wall with New Jersey Safety Shape may not be substituted for the Standard "L" Shape Barrier.

WALL FACE SAFETY SHAPES

GENERAL NOTES
1. For designs speeds >50 mph, see individual details for pay item information.
2. Concrete barrier wall terminal notes for design speeds >50 mph.
3. Expansion joints in wall required only at bridge ends and/or at locations where wall is an integral part of existing or proposed concrete slab; wall joints are to match an existing or proposed expansion joint. Precast construction is allowed as an alternate to cast-in-place construction.
4. When the barrier is installed adjacent to the pavement the top 12" of the subgrade shall be compacted to at least 100% of the density as defined in the AASHTO T-99 specifications.
5. Cast-in-place barrier wall normally will be a continuous pour without transverse contraction joints. Cast-in-place segments with a length >20' shall be joined to adjacent sections by doweling. See Detail B.
6. Precast concrete barrier wall sections shall be connected with a minimum of 2 connectors per 8'-0" segment. The connectors shall be a Type B prestressed concrete segmental post-tensioning system.
7. On roadway designated for reverse lane use the precast segments shall be marked by Type 3 Object Markers.
8. Design of the precast segments shall be facilitated by the use of a prestressed ring or equivalent means to assure uniform bearing.
9. Reinforcement may be required for handling stresses.
10. Concrete barrier wall with New Jersey Safety Shape may not be substituted for the Standard "L" Shape Barrier.

REFLECTIVE BARRIER WALL SPACING ON WALL

MARKERS
Reflective Barrier
Shoulder Or Roadway Pavement

FULL WALL
For concrete barrier wall details at piers, highway lighting and guardrail connections, see other sheets of this index.
Standard barrier to be paid for under the contract unit price for Median Concrete Barrier Wall, LF.

STANDARD BARRIER WALL SECTIONS

GENERAL NOTES
1. Class II concrete shall be used for all reinforced and plain (non-reinforced) concrete barrier walls. In moderately and extremely aggressive environments, Class II concrete shall be used. All reinforcing steel with unalloyed steel shall be "4" bars. Excepted concrete barriers shall have a Class II armor in accordance with Section 316 of the Standard Specifications for Highway Construction.
2. Support of the concrete barrier wall shall be provided by Type A or B precast concrete segments or cast-in-place construction.
3. Expansion joints in wall required only at bridge ends and/or at locations where wall is an integral part of existing or proposed concrete slab; wall joints are to match an existing or proposed expansion joint. Precast construction is allowed as an alternate to cast-in-place construction.
4. When the barrier is installed adjacent to the pavement the top 12" of the subgrade shall be compacted to at least 100% of the density as defined in the AASHTO T-99 specifications.
5. Cast-in-place barrier wall normally will be a continuous pour without transverse contraction joints. Cast-in-place segments with a length >20' shall be joined to adjacent sections by doweling. See Detail B.
6. Precast concrete barrier wall sections shall be connected with a minimum of 2 connectors per 8'-0" segment. The connectors shall be a Type B prestressed concrete segmental post-tensioning system.
7. On roadway designated for reverse lane use the precast segments shall be marked by Type 3 Object Markers.
8. Design of the precast segments shall be facilitated by the use of a prestressed ring or equivalent means to assure uniform bearing.
9. Reinforcement may be required for handling stresses.
10. Concrete barrier wall with New Jersey Safety Shape may not be substituted for the Standard "L" Shape Barrier.

WALL FACE SAFETY SHAPES

GENERAL NOTES
1. For designs speeds >50 mph, see individual details for pay item information.
2. Concrete barrier wall terminal notes for design speeds >50 mph.
3. Expansion joints in wall required only at bridge ends and/or at locations where wall is an integral part of existing or proposed concrete slab; wall joints are to match an existing or proposed expansion joint. Precast construction is allowed as an alternate to cast-in-place construction.
4. When the barrier is installed adjacent to the pavement the top 12" of the subgrade shall be compacted to at least 100% of the density as defined in the AASHTO T-99 specifications.
5. Cast-in-place barrier wall normally will be a continuous pour without transverse contraction joints. Cast-in-place segments with a length >20' shall be joined to adjacent sections by doweling. See Detail B.
6. Precast concrete barrier wall sections shall be connected with a minimum of 2 connectors per 8'-0" segment. The connectors shall be a Type B prestressed concrete segmental post-tensioning system.
7. On roadway designated for reverse lane use the precast segments shall be marked by Type 3 Object Markers.
8. Design of the precast segments shall be facilitated by the use of a prestressed ring or equivalent means to assure uniform bearing.
9. Reinforcement may be required for handling stresses.
10. Concrete barrier wall with New Jersey Safety Shape may not be substituted for the Standard "L" Shape Barrier.

REFLECTIVE BARRIER WALL SPACING ON WALL

MARKERS
Reflective Barrier
Shoulder Or Roadway Pavement

FULL WALL
For concrete barrier wall details at piers, highway lighting and guardrail connections, see other sheets of this index.
Standard barrier to be paid for under the contract unit price for Median Concrete Barrier Wall, LF.
SHOULDER TREATMENT WHEN CRASH CUSHIONS SHIELDING CONCRETE BARRIER WALL END LOCATED INSIDE APPROACH CLEAR ZONE OR HORIZONTAL CLEARANCE

DETAIL A

CONCRETE BARRIER WALL TRANSITION BETWEEN WIDE AND NARROW MEDIANS WHEN BARRIER WALL END LOCATED OUTSIDE APPROACH CLEAR ZONE OR HORIZONTAL CLEARANCE

DETAIL B

DOWELED TRANSVERSE CONSTRUCTION JOINT WHEN ABUTTING SEGMENTS IS LESS THAN 40" IN LENGTH

PRECAST BARRIER TRANSVERSE JOINTS

STRAIGHT TONGUE AND GROOVE

DETAIL C

FREE END REINFORCEMENT

NOTE: Free end reinforcement required for non-reinforced walls at the following locations: All damaged ends, shifting ends of true joints, ends with guardrail connections, ends with redirective crash cushion connections, and ends connecting to bridge traffic rails or other rigid barrier walls.

END VIEW

SIDE VIEW

END VIEW

TOP VIEW

W-BEAM GUARDRAIL CONNECTION TO CONCRETE BARRIER WALL TRAILING ENDS

ENDS WITH REDIRECTIVE CRASH CUSHION SYSTEM. SEE APPLICABLE QPL DRAWINGS.

ENDS WITH GUARDRAIL CONNECTIONS

ENDS WITH FREE END REINFORCEMENT

NOTE: Free end reinforcement required for non-reinforced walls at the following locations: All damaged ends, shifting ends of true joints, ends with guardrail connections, ends with redirective crash cushion connections, and ends connecting to bridge traffic rails or other rigid barrier walls.

CONCRETE BARRIER WALL
CONCRETE MEDIAN BARRIER WALL TRANSITIONS AT BRIDGE PIERS AND OVERHEAD SIGN SUPPORTS

SECTION AA
BRIDGE PIERS

SECTION BB
COMBINATION BARRIER AND SIGN PEDESTAL

SECTION CC
INDEPENDENT BARRIER AND SIGN PEDESTAL

To Be Paid For As Median Concrete Barrier Wall, LF
To Be Paid For As Median Concrete Barrier Wall, LF

2008 FDOT Design Standards
3 of 22
1. Junction boxes are to be fabricated from steel conforming to ASTM A36 and be hot-dip galvanized after fabrication. All seams shall be continuously welded and ground smooth. A neoprene gasket shall be attached to the box to provide a watertight cover. The cover screws shall be fully galvanized.

2. Remove excess concrete while green and hand form chamfers.

3. Junction box complete and conduit risers are incidental to the construction and cost of the barrier wall; there is to be no separate compensation for the box, risers or installation unless specifically called for in the plans.

4. Junction boxes for use on barrier walls with opaque visual barriers shall have a side access cover. All side access junction boxes shall be oriented...
NOTE: All longitudinal reinforcement #4 bars. Minimum segment length for this wall is 20 feet. Wall to be paid for under the contract unit price for Shoulder Concrete Barrier Wall (Rigid-Retaining), LF.

QUANTITIES: Class II Concrete 0.29 CY/LF
Reinforcing Steel 0.135/LF

BENDING DIAGRAMS
EITHER REINFORCED CONCRETE BARRIER WALL (SHOULDER) OR RETAINING WALL WITH CONCRETE TRAFFIC RAILING

CONCRETE BARRIER WALLS ON APPROACHES TO BRIDGES
NOTE:
For transition, sidewalk and sectional cannot be reduced to accommodate hazards; however, hazards located in the stem of the wall may be accommodated by the detail.

The 1.5' offsets to toe of barrier wall cannot be reduced to accommodate hazards; however, hazards located in the area of the wall may be accommodated by the detail.

ONE-WAY TRAFFIC

BRIDGE END HAZARD

CONCRETE BARRIER WALL (RIGID) (CURB & GUTTER)

CURB AND GUTTER WITHOUT UTILITY STRIP AND WITH ADJACENT BICYCLE LANE
CONCRETE BARRIER WALL (RIGID) (CURB & GUTTER) • TRANSITION SEGMENTS • WITH ADJACENT BICYCLE LANE

TWO-WAY TRAFFIC (OPPOSING LANE APPROACH)

ONE-WAY TRAFFIC (TRAILING END)
Note: Drainage slots shall be located at all low points along the sidewalk, and, unless otherwise shown in the plans, slots shall be spaced at intervals not exceeding 50' in fill sections and 20' in cut sections. Slots shall be located such that only one bar is cut away or deleted in front and back lines of vertical reinforcement.

NOTE:
- Transition Segments Shall Be Dowelled Into the End of the Barrier Wall in the Following Manner:
 - Four 1" diameter holes 6" deep on 6" centers shall be drilled in the end of the barrier and 6 bars 12" long set in an adhesive bonded material system. The ends of the dowels extending into the transition segment shall be wrapped with one layer of 15 lb. Type I asphalt-saturated roofing felt with the ends crimped.
- When Construction Joints Are Utilized for Transition Segment Construction, the Stem Shall Be Dowelled to the Footing in the Following Manner:
 - Five #5 bars 15" long shall be embedded 7" into the footing. The dowels shall be spaced 15" on centers with the first dowel located 12" from the barrier wall. Dowels may be placed within or adjacent to the keyway.

RIGHT SIDE SHOWN, LEFT SIDE OPPOSITE HAND

ONE-WAY AND TWO-WAY TRAFFIC (NEAR LANE APPROACH)

CONCRETE BARRIER WALL (RIGID) (CURB & GUTTER) • TRANSITION SEGMENT • WITH ADJACENT BICYCLE LANE

CONCRETE BARRIER WALL 2008 FDOT Design Standards

Sheet No. 11 of 22
Estimated Quantities Per Linear Foot Of Wall:

BENDING DIAGRAM

D=3" 10"

Face Of Barrier Wall

Edge Of Pavement

Departure Line

Point Of Departure

RIGHT SIDE APPROACH SHOWN - LEFT SIDE OPPOSITE HAND

NEAR LANE APPROACH

FOR HIGH SIDE

Begin Concrete Barrier Wall (Rigid) (Curb & Gutter)

FOR LOW SIDE

End Concrete Barrier Wall (Rigid) (Curb & Gutter)

Equation Variables:

Design Speed

Length Of Advancement, Ft. (X)

mph

<45

= 16 (D-d)

Note: The minimum length of advancement for both near and opposing lane approaches is 40'.

Note: The minimum length of advancement for both near and opposing lane approaches is 40'.

Note: The minimum length of advancement for both near and opposing lane approaches is 40'.

LENGTH OF ADVANCEMENT

CONCRETE BARRIER WALL (RIGID) (CURB & GUTTER) • WITH ADJACENT BICYCLE LANE

SECTION TT
CONCRETE BARRIER WALL (RIGID) (CURB & GUTTER)
CURB AND GUTTER WITH UTILITY STRIP AND WITHOUT ADJACENT BICYCLE LANE
CONCRETE BARRIER WALL (RIGID) (CURB & GUTTER) ● TRANSITION SEGMENTS ● WITHOUT ADJACENT BICYCLE LANE

TWO-WAY TRAFFIC (OPPOSING LANE APPROACH)

ONE-WAY TRAFFIC (TRAILING END)
Note: Drainage slots shall be located at all low points along the sidewalk, and, unless otherwise shown in the plans, slots shall be spaced at intervals not exceeding 50' in fill sections and 20' in cut sections. Slots shall be located such that only one bar is cut away or deleted in front and back lines of vertical reinforcement.

SIDEWALK DRAINAGE SLOT FOR BARRIER WALL (RIGID) (CURB & GUTTER)

- Concre Joint Permitted
- See Notes This Sheet

CONCRETE BARRIER WALL (RIGID) (CURB & GUTTER) • TRANSITION SEGMENT • WITHOUT ADJACENT BICYCLE LANE

NEAT LINE PICTORIAL VIEW

PLAN

- With Utility Strip
- Without Utility Strip

- Tactile Surface
- Concrete Joint Permitted
- Sidewalk

RIGHT SIDE SHOWN, LEFT SIDE OPPOSITE HAND

ONE-WAY AND TWO-WAY TRAFFIC (NEAR LANE APPROACH)

SECTION AA

- Utility Strip (Varies)

SECTION CC

- 18" x 2" Drainage Slot

SECTION BB

- 1/2" Expansion Joint

- Type F Curb & Gutter (2')

- 2'-8" 3 7/8" 10 1/2" 10 1/2" 12"

- 4.5' 1.5'

- 6" 18" 2 1/2" Drainage Slot

- 2" Expansion Joint

NOTE:

- Transition Segments Shall Be Doweled Into The End Of The Barrier Wall In The Following Manner:
 - Four 1" diameter holes 6" deep on 6" centers shall be drilled in the end of the barrier and #6 bars 15" long set in Adhesive Bonded Material System. The ends of the dowels extending into the transition segment shall be wrapped with one layer of 15 lb. Type E asphalt-saturated roofing felt with the ends crimped.

- When Construction Joints Are Utilized For Transition Segment Construction The Stem Shall Be Doweled To The footing In The Following Manner:
 - Five #5 bars 15" long shall be embedded 7" into the footing. The dowels shall be spaced 15" on centers with the first dowel located 6" from the barrier wall. Dowels may be placed within or adjacent to the keyway.
Estimated Quantities Per Linear Foot of Wall:

BENDING DIAGRAM

D = 3"
10"

For barrier wall inlet details see Index No. 219.

2"
10" R

3/4 " R

7 3/4 "
10"

6 3/4 "
12"

22"
3"

2"
10 1/2 "
3"

3"
10 1/2 "
3"

3"

Varies

FACE OF BARRIER WALL

D = Distance in feet from near edge of the near approach traffic lane to back of hazard or clear zone on two-way undivided facilities. D is measured from the inside edge of the near approach traffic lane.

D-d = Distance in feet from near edge of the near approach traffic lane to the face of curb (at offset control point). For left side hazards on two-way undivided facilities, d is measured from the inside edge of the nearest opposing traffic lane.

Equation Variables:

\[X = \frac{D}{(D-d)} \times \text{Length Of Advancement, Ft.} \times \text{Speed, mph} \]

Note: The minimum length of advancement for both near and opposing lane approaches is 40.

LENGTH OF ADVANCEMENT

Concrete Barrier Wall (Rigid) (Curb & Gutter) • Without Adjacent Bicycle Lane

2008 FDOT Design Standards

Sheet No. 0701/48 17 of 22

CONCRETE BARRIER WALL
HAZARD PENETRATING STEM OF RIGID CONCRETE BARRIER WALLS

REINFORCED CONCRETE BARRIER WALL APPLICATIONS

When Approach Shielding Is Guardrail And Curb & Gutter, Construct 13' (Min.) Of Concrete Barrier Wall, Section 'TT' Or Section 'QQ'; Construct Curb & Gutter Flare At End Of Wall With Full Height Curb, Index No. 300, And Connect Guardrail To Wall With Transition Rails In Accordance With Sheet No. 20.

The details on this sheet are treatments to the F-shape concrete barrier walls depicted on Sheet Nos. 8 through 18, where site conditions impose reduced clearances between above ground hazards and the walls. Bridge bent supports and piers are shown. These treatments are not applicable to hazards that cannot provide lateral support for the walls. See the plans for limits of wall sections applied and other associated wall treatments.

CONCRETE BARRIER WALL WHEN GUARDRAIL OFFSET FROM BENT OR PIER LESS THAN 3 FEET OR WHERE WALL STEM ABUTS SUPPORTS OR PIER COLUMN

CONCRETE BARRIER WALL WHEN SPAN BETWEEN BENT SUPPORTS OR PIER COLUMNS EXCEEDS 13'
GENERAL NOTES FOR TRAPEZOIDAL BARRIER WALL

1. Concrete trapezoidal barrier wall can be either precast or cast-in-place. The wall is designed for zero deflection and steel has a yield point of 50 ksi. It is made of 70 ksi yield point steel.

2. Where concrete trapezoidal barrier wall height changes from 42" to 48" or from 48" to 54", height change will be uniform for each 6" height change per 30' of wall. Steel placement shall meet the dimension and spacing requirements of "H". Typical reinforcement shall be used for horizontal transition and half wall sections.

3. Welded wire fabric (WWF) made in accordance with ASTM A497 may be used as an option to the conventional reinforcement for precast or cast in place barrier wall, with the exception that only conventional reinforcement shall be used for horizontal transition and half wall sections. These sections shall be cast in place with length, shape and reinforcement as shown in this Section.

4. To attain system length, precast segments shall be interconnected with rebar grids placed in the preformed slots and grouted ahead to typical.

5. For reflective barrier marker requirements, see 'STANDARD BARRIER WALL SECTIONS' and the GENERAL NOTES, Sheet 1.

6. Where concrete trapezoidal barrier wall height changes from 42" to 48" or from 48" to 54", height change will be uniform for each 6" height change per 30' of wall. Steel placement shall meet the dimension and spacing requirements of "H". Typical reinforcement shall be used for horizontal transition and half wall sections. These sections shall be cast in place with length, shape and reinforcement as shown in this Section.

7. For reflective barrier marker requirements, see 'STANDARD BARRIER WALL SECTIONS' and the GENERAL NOTES, Sheet 1.

8. The concrete trapezoidal barrier wall is to be paid for under the contract unit price for Median Concrete Barrier Wall (Trapezoidal), LF. This price will include full payment for transitions, half walls, H10 and alternate cases.
GUARDRAIL CONNECTION TO TRAPEZOIDAL BARRIER WALL

END MEASUREMENT FOR GUARDRAIL PAYMENT

*Field cut and bend vertical bars for full closure.
**Field cut and bend vertical bars for partial closure.

NOTES
1. Where reaming is necessary to fit nested beams the reamed surface shall be metalized in accordance with Index No. 400.
2. The nested beams shall not be bolted to the posts and blocks at post numbers (1), (3) and (5).
3. The nested beams shall not be bolted to the posts and blocks at post numbers (1), (3) and (5).
4. For additional guardrail details, see Sheet 21.

GUARDRAIL TRANSITIONS AND CONNECTIONS

CONVENTIONAL REINFORCEMENT

WELDED WIRE FABRIC REINFORCEMENT

END TREATMENT FOR PRECAST OR CAST-IN-PLACE WALLS

GUARDRAIL CONNECTION TO TRAPEZOIDAL BARRIER WALL

2008 FDOT Design Standards

CONCRETE BARRIER WALL