TENON DETAIL

WITH LOWERING DEVICE

Concrete

Galv. Steel Handhole Box & Coverplate

Grade

1/2" Grid Lug Grounded To Rein. Cage

2 - 3" x 12" Conduit Entry Holes

Varias - Plugged Butt 1/2" Drain Hole

Galv. Steel Handhole Box & Coverplate

1/2" Insert In Ctr. At Bottom Of Handhole Box - Pullout Strength 300 lbs.

2 - 2" Couplings With Caps @ 180° To Handhole Box

Al. Nameplate

1 1/2" Lifting Hole

Air Terminal

(See Index 18102)

Plug Top Of Pole With Concrete A Minimum Depth Of 3"

1/4" Trench For Electrical Conduit Outside Pole

2" Coupling With Cap @ 180° To Handhole Box

Air Terminal

(See Index 18102)

Concrete

Galv. Steel Handhole Box & Coverplate

Grade

1/2" Grid Lug Grounded To Rein. Cage

2 - 3" x 12" Conduit Entry Holes

Varias - Plugged Butt 1/2" Drain Hole

Galv. Steel Handhole Box & Coverplate

1/2" Insert In Ctr. At Bottom Of Handhole Box - Pullout Strength 300 lbs.

2 - 2" Couplings With Caps @ 180° To Handhole Box

Al. Nameplate

1 1/2" Lifting Hole

Air Terminal

(See Index 18102)

Plug Top Of Pole With Concrete A Minimum Depth Of 3"

1/4" Trench For Electrical Conduit Outside Pole

2" Coupling With Cap @ 180° To Handhole Box

Air Terminal

(See Index 18102)

Plug Top Of Pole With Concrete A Minimum Depth Of 3"

1/4" Trench For Electrical Conduit Outside Pole

2" Coupling With Cap @ 180° To Handhole Box

Al. Nameplate

Galv. Steel Handhole Box & Coverplate

1/2" Insert In Ctr. At Bottom Of Handhole Box - Pullout Strength 300 lbs.

2 - 3" x 12" Conduit Entry Holes

Varias - Plugged Butt 1/2" Drain Hole

WITH LOWERING DEVICE

WITHOUT LOWERING DEVICE
SPECIFICATIONS:

<table>
<thead>
<tr>
<th>"L" Pole Class</th>
<th>"H"</th>
</tr>
</thead>
<tbody>
<tr>
<td>25" G</td>
<td>2.016 lbs.</td>
</tr>
<tr>
<td>30" G</td>
<td>2.571 lbs.</td>
</tr>
<tr>
<td>35" G</td>
<td>3.173 lbs.</td>
</tr>
<tr>
<td>40" G</td>
<td>3.976 lbs.</td>
</tr>
<tr>
<td>45" G</td>
<td>4.679 lbs.</td>
</tr>
<tr>
<td>50" G</td>
<td>5.380 lbs.</td>
</tr>
<tr>
<td>55" G</td>
<td>6.444 lbs.</td>
</tr>
<tr>
<td>60" G</td>
<td>7.496 lbs.</td>
</tr>
<tr>
<td>65" G</td>
<td>8.540 lbs.</td>
</tr>
<tr>
<td>70" G</td>
<td>9.760 lbs.</td>
</tr>
<tr>
<td>75" G</td>
<td>11.000 lbs.</td>
</tr>
<tr>
<td>80" J</td>
<td>12.114 lbs.</td>
</tr>
<tr>
<td>85" J</td>
<td>13.278 lbs.</td>
</tr>
<tr>
<td>90" J</td>
<td>14.200 lbs.</td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. All cables shall be run in conduit to prevent them from interfering with or being damaged by the lowering cable that moves within the pole.

2. Lowering arm shall be mounted perpendicular to the roadway or as directed by the Engineer. The CCTV pole shall be positioned so that the dome enclosure can be safely lowered without requiring lane closures.

3. Pole shall include lowering device which includes top J-box, mounting hardware, lowering cable, contact block, waterproof electrical connectors, camera J-box, housing and concrete pole.

5. The contractor shall submit shop drawings and capacity calculations for the design of proposed poles, signed and sealed by a Professional Engineer licensed in the State of Florida, to the Engineer for review and approval.

6. Burial depth "D" and concrete foundation by engineering design. All designs, drawings, and calculations submitted must be signed and sealed by a Professional Engineer licensed in the State of Florida.