TABLE OF CONTENTS

Purpose ... 1
 - What is a Sketch Plan ... 3
 - Introduction to the Interstate System .. 3
 - Characteristics of Interstate 75 .. 4
 - Sketch Plan Process ... 5
 - Problem Definition ... 6

Approach ... 8
 - Traffic .. 9
 - Results .. 9
 - Freight Mobility .. 12
 - Results .. 12
 - Safety Analysis .. 17
 - Results .. 17
 - Environmental and Land Use .. 20
 - Results .. 17
 - Planned Improvements and Corridor Mobility Opportunities ... 21
 - Results .. 22

Approach Summary .. 24

Improvement Cost ... 25
 - Construction .. 25

Interstate 75 Sketch Interstate Plan Vision ... 27
 - Next Steps ... 29
Project Team

Florida Department of Transportation
- Systems Planning Office
- Safety Office
- Transportation Statistics Office

Florida Department of Transportation, Districts Two and Five Representatives

Department Consultants
Purpose

The Florida Department of Transportation’s (FDOT) Central Office, in coordination with the District Offices, has prepared a Sketch Interstate Plan for the 165 mile I-75 corridor from the Florida-Georgia border south through Sumter County, Florida. The major purpose of this Sketch Interstate Plan is to improve the mobility of users of I-75 by examining the existing interstate system, with respect to planned improvements, and reveal general problem areas and trends that will be examined in more detail in a later phase. Ultimately, the Plan will identify potential corridor mobility opportunities or shortfalls that may merit additional study.

The preparation of a Sketch Interstate Plan in this corridor is an integral part of the continuing process for the development of the Strategic Intermodal System (SIS). The plan differentiates itself from other studies in that it identifies future travel demand for year 2035 and in place of coming up with a mainline alternative suggestion, the sketch plan proposes various mobility improvements that may accommodate future travel demand for passengers and freight moving through the existing corridor. The Sketch Interstate Plan accomplishes this by compiling previous studies within the limits of the corridor, identifying and updating sections where the traffic analysis is dated, identifying implementation schedules of proposed improvements, and identifying any segments within the corridor that will not meet acceptable levels of service for future year 2035.

The Sketch Interstate Plan will ensure high-speed, high-volume traffic movements facilitating interstate and regional commerce and long distance trips. Where appropriate, the Sketch Plan has included the identification of right-of-way within the corridor in order to permit future construction. The support of energy conservation, reduced congestion, and minimized pollution generation has been incorporated into the Sketch Interstate Plan by considering facilities, which favor the utilization of advanced technologies, public transit, and high-occupancy vehicles for commuting and for local trips where appropriate. A significant focus of this study will be on movement of the high volume of trucks and freight through the corridor. This should be accomplished through a planned multi-modal systems approach to serve and enhance intermodal connections.

The Sketch Plan is designed to be a high-level preliminary planning study prior to a National Environmental Policy Act (NEPA) assessment. However, environmental considerations are taken into account and documented using Geographical Information Systems (GIS). It has been developed in accordance with all applicable Department procedures, standards, policies, and guidelines. The Sketch Interstate Plan is consistent with and supports the implementation of the Safe, Accountable, Flexible, Efficient Transportation Equity Act – A Legacy for Users (SAFETEA-LU) and be developed cooperatively with state, regional, and local agencies.

The Sketch Interstate Plan has been developed with the understanding that I-75 is a core element of the regional and statewide transportation systems and is consistent with the Statewide Long-Range Transportation Plan. The results of the Sketch Interstate Plan will direct future capacity improvements in the corridor and the SIS Needs Plan, as well as the Long-Range Transportation Plans of the Metropolitan Planning Organizations that I-75 traverses. Exhibit 1 displays the I-75 corridor study area.
I-75 Sketch Interstate Plan

Exhibit 1: Study Area
What is a Sketch Plan

Improvements to Florida’s interstate highway system must keep pace with increases in congestion due to population growth and freight mobility. Further widening of the existing system is anticipated but no additional extensions are being planned. In many locations, the interstate is built out to its maximum limitations because of various constraints. The sketch plan examines the existing interstate system, with respect to planned improvements, and reveals general problem areas and trends that will be examined in more detail in a later phase. Underlying questions focused on within the plan center on what improvements should be made to the existing system, what new facilities should be built, and what concepts may be incorporated to address future needs. Suggested policies or actions may then be created and applied to meet those current and projected needs.

The Sketch Interstate Plan will define a system concept for improving the interstate system to guide and accommodate growth. Suggested actions and policies should be examined closely and coordinated with the Florida Transportation Plan. The availability of a high speed, limited access transportation facility to increase efficiency is vital to the economy and careful planning is essential for preserving the integrity of such facilities. Finally, the plan ultimately will provide for a mainline vision summarizing the future needs for passenger and freight in the corridor and possible concepts or visions to satisfy the future demand.

Introduction to the Interstate System

Over the past two decades, Florida has experienced one of the highest growth rates in the nation. These new residents will need jobs, housing, schools, and will generate demands for more governmental services. Transportation is one of the major factors in directing and accommodating this growth. A good transportation system allows for both the movement of people and goods and services. The highway system is the critical element in providing adequate transportation facilities. Highways provide access to other modal facilities; provide the travel-way for cars, buses, trucks, and bicycles.

In a like manner, Florida’s climate, beaches, and recreational areas combine to bring more than 80 million annual visitors to the state. Many of these visitors drive to Florida or use a vehicle while in the state. Good transportation is a vital component of our tourist industry.
Characteristics of the I-75 Sketch Plan Corridor

I-75 is a limited access system which provides for the high volume, high speed portion of the highway system including the interstate highways, Florida Turnpike, and other toll and expressway facilities. These routes primarily serve interstate and interregional movements while providing access to and through the major cities of the state. They carry many of the goods needed for our quality of life. In urban areas, these roads often provide access to other modal facilities (airports, ports, etc).

The limits of the section of I-75 under the study range from the Florida/Georgia border south to the southern limits of Sumter County. Below outlines the general characteristics of the corridor:

- Covers approximately 165 miles,
- Crosses through FDOT Districts Two and Five,
- Has 26 interchanges including a system to system interchange with the Turnpike,
- I-75 along the length of the corridor ranges from 4 to 6 lanes,
- South of the Florida Turnpike I-75 transitions from 6 lanes to 4 lanes,
- There are only two designated area types: rural and urban,
- The typical section of I-75 consists of 12-foot lanes with a minimum 40-foot median. At certain locations, the median may extend to 140 feet, or at times, be less than 40 feet for short intervals.

Right-of-way consists of the strip of land that is normally owned and maintained by the governing agency, in this case FDOT. The right-of-way that I-75 traverses consumes approximately 300 feet across. The space provides for the existing system, maintenance access, and future expansion.
Sketch Plan Process

The Sketch Plan results provide strategies to guide transportation decisions along I-75 over the next 25 years. The plan process will provide guidance on how transportation investments should be focused as well as provide a tool for public and private transportation partners so they may effectively work together to make decisions. The process followed by the Department is outlined below.

Interstate 75 is guided by a multitude of policies from various transportation organizations including Federal Highway Administration (FHWA), FDOT, Metropolitan Planning Organizations (MPOs), and local communities. The I-75 Sketch Plan will consist of goals and recommendations paralleling those of the Florida Transportation Plan (FTP). FTP identifies goals, objectives, and strategies to guide transportation decisions in Florida over the next 20 years. The Sketch Plan’s focus will drill down to more detail and shift more to the efficient movement of goods and people on a specific roadway, rather than community initiatives given the regional importance the I-75 corridor has on mobility. For this reason, the process following a Sketch plan would be Master Planning, Corridor Planning, and Feasibility Studies. The Florida Department of Transportation follows a specific Planning and Programming Process that must be followed for a project to be funded, engineered, and constructed.
Problem Definition

In order to keep pace with growing populations, highway systems are in a constant state of flux. Capacity expansion is the primary tool used to combat increased demand. Interstate 75 displaces a wide area of right of way, approximately 300 feet. The planning for and purchasing of this land occurred well before the interstate construction began by using existing networks such as railways, rural roadways, physical and political boundaries.

Today, dense land use patterns parallel the facility, which prohibit further acquisition of land due to high costs. Further widening of the interstate within the given confines is anticipated, but no additional extensions are being planned. The costs associated with extending the interstate networks are very constraining and allow only for expanding development within existing confines. Engineers and planners must develop unique measures to anticipate, provide for, and sustain growing populations.

The I-75 interstate corridor must balance access with capacity for regional/through trip movement. It must also provide access to other modal facilities and be designed to be compatible with other modes. Some deficiencies facing today’s corridors may include:

1.) High traffic volumes
2.) Density of interchange access points
3.) Localized traffic accounts for high volumes
4.) Construction delays and safety concerns
5.) Driver behavior

Along with these potential deficiencies facing I-75, the state of Florida will be experiencing rapid growth over the next half century. Growth is predicted to quickly outpace existing and planned network capabilities leading to spillover effects. The following includes a sample from 1000 Friends of Florida report Florida 2060.
“Central Florida - This region will experience "explosive" growth, with continuous urban development from Ocala to Sebring, and St. Petersburg to Daytona Beach. The I-75 and I-4 corridors are expected to be fully developed. Most of Florida's Heartland will convert to urban development, resulting in a dramatic loss of agricultural character and native Florida landscape that define this region today. Land use patterns north of Gainesville within northwest Florida and the Panhandle are projected to retain significant areas of open space, and this is only if current growth and development patterns continue."\(^1\)

The resulting study includes the conclusions that by 2060:

- Roughly 7 million acres of additional land will be converted from rural to urban uses in Florida, including 2.7 million acres of existing agricultural lands and 2.7 million acres of native habitat.
- More than two million acres within one mile of existing conservation lands will be converted to an urban use, which will complicate their management and isolate some conservation lands in a sea of urbanization.
- The counties projected to undergo the most dramatic transformation, in rank order, will be Glades, Hardee, DeSoto, Hendry, Osceola, Baker, Flagler and Santa Rosa.

The first five counties projected to undergo the most dramatic transformation rely on I-75 for interstate commerce. 1000 Friends of Florida report Florida 2060 paints a picture of growth and rapid consumption of land transitioned to urbanized development.

\(^1\) 1000 Friends of Florida, Florida 2060: http://www.1000fof.org/planning/2060.asp
Approach

As part of the Sketch Plan process, the Project Team, which included Department Staff and their consultant, developed multiple reports to analyze different concepts encompassing the following focus areas:

- Traffic Analysis
- Freight Mobility Analysis
- Safety Results
- Environmental and Land Use Approach
- Planned Improvements and Corridor Management Opportunities

The purpose of these technical reports is to establish trends and patterns in existing and future year 2035 movements along the I-75 corridor. A goal of the Sketch Plan is to enhance intermodal transfer and support regional, interstate, and international commerce by providing future trends, which support policy decision making. This section outlines the results of that approach and offers further insight and direction to guide development into the future.
Traffic

The purpose of this Traffic Technical Report was to determine existing and future traffic conditions along the I-75 Sketch Plan corridor. The report identified existing and future travel demand and forecasted capacity needs through year 2035 for the I-75 mainline. Outlined within the final report are the detailed methods and techniques used in the analysis. Below is a summary of the results.

Results

The Traffic Technical Report described the analytical techniques used to assess the traffic conditions along the corridor. Existing traffic volumes were presented and alternative sources of future traffic forecasts were compared. A summary of lane requirements on I-75 mainline for year 2035 was also presented. It should be noted the purpose of the I-75 Sketch Plan traffic forecast is to summarize the demand along the mainline only. Ramp and cross street traffic demand was not taken into account for the purposes of this section.

Traffic for the Sketch Plan is portrayed as annual average daily traffic (AADT). Actual AADT data is collected from permanent, continuous counters. AADT counts are estimated for all other locations using portable counters. Adjustment factors are applied to short-term traffic counts taken by portable axle and vehicle counters to estimate AADT every section break of the State Highway System. Tables 1 and 2 below depict the existing year 2006 traffic conditions along the corridor.

Table 1
District Two Existing AADT (2006)

<table>
<thead>
<tr>
<th>Site #</th>
<th>Description</th>
<th>Area Type*</th>
<th>Existing AADT</th>
<th>Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I-75, north of CR 143, Hamilton County</td>
<td>Rural</td>
<td>40,400</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>I-75, south of I-10, Columbia County</td>
<td>Rural</td>
<td>43,400</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>I-75, south of SR 25 (US 441), Columbia County</td>
<td>Rural</td>
<td>47,700</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>I-75, south of SR 20 (US 441), Alachua County</td>
<td>Urban</td>
<td>54,300</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>I-75, south of SR 26, Alachua County</td>
<td>Urban</td>
<td>80,600</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>I-75, south of SR 121, Alachua County</td>
<td>Rural</td>
<td>57,900</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: 2006 FTI CD, Local Plans/Studies
*Rural LOS standard is ‘C’ while Urban LOS standard is ‘D’
Table 2
District Five Existing AADT (2006)

<table>
<thead>
<tr>
<th>Site #</th>
<th>Description</th>
<th>Area Type*</th>
<th>Existing AADT</th>
<th>Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>I-75, northern FDOT District Five limits, Marion County</td>
<td>Rural</td>
<td>58,300</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>I-75, north of Ocala, Marion County</td>
<td>Urban</td>
<td>69,200</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>I-75, south of Ocala, Marion County</td>
<td>Urban</td>
<td>75,000</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>I-75, north of Florida’s Turnpike, Sumter County</td>
<td>Rural</td>
<td>69,600</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>I-75, south of Florida’s Turnpike, Sumter County</td>
<td>Rural</td>
<td>35,700</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Florida’s Turnpike, east of I-75, Sumter County</td>
<td>Rural</td>
<td>34,900</td>
<td>4</td>
</tr>
</tbody>
</table>

Source: 2006 FTI CD, Local Plans/Studies

*Rural LOS standard is ‘C’ while Urban LOS standard is ‘D’

Based on analysis of the per lane capacity from the FDOT 2002 Quality/Level of Service Handbook (revised 2007) for both urban and rural areas, the existing interstate capacity is sufficient to handle the 2006 daily traffic demand. Acceptable capacity thresholds by lane must also be obtained from FDOT. Capacity thresholds are maximum volumes given a specific Level of Service (LOS) and lane count. LOS standards are rated from ‘A’ to ‘F’ and indicate a driver’s perception of the roadway. Sites 1 through 4 have capacity needs well under the existing lane configuration. Urban area types apply LOS standards that allow a greater density of traffic before surpassing the threshold.

Traffic forecasting data is usually available from several sources. In urbanized areas with a Metropolitan Planning Organization (MPO) or Transportation Planning Organization (TPO), a regional travel demand model that complies with the Florida Statewide Urban Transportation Model Structure (FSUTMS) is a good resource for future traffic forecasts. In rural areas, historic growth trends from the Florida Traffic Information (FTI) database together with the Florida Statewide Model will provide future traffic. Table 3 on the following page provides the 2035 lane requirements based upon forecasted traffic conditions.
Table 3
I-75 Forecasted Lane Demand by 2035

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-75, north of CR 143, Hamilton County</td>
<td></td>
</tr>
<tr>
<td>I-75, south of I-10, Columbia County</td>
<td></td>
</tr>
<tr>
<td>I-75, south of SR 25 (US 441), Columbia County</td>
<td></td>
</tr>
<tr>
<td>I-75, south of SR 20 (US 441), Alachua County</td>
<td></td>
</tr>
<tr>
<td>I-75, south of SR 26, Alachua County</td>
<td></td>
</tr>
<tr>
<td>I-75, south of SR 121, Alachua County</td>
<td></td>
</tr>
<tr>
<td>I-75, northern FDOT District Five limits, Marion County</td>
<td></td>
</tr>
<tr>
<td>I-75, north of Ocala, Marion County</td>
<td></td>
</tr>
<tr>
<td>I-75, south of Ocala, Marion County</td>
<td></td>
</tr>
<tr>
<td>I-75, north of Florida’s Turnpike, Sumter County</td>
<td></td>
</tr>
<tr>
<td>I-75, south of Florida’s Turnpike, Sumter County</td>
<td></td>
</tr>
<tr>
<td>*Florida’s Turnpike, east of I-75, Sumter County</td>
<td></td>
</tr>
</tbody>
</table>

*Turnpike shown because of its influence on the interstate. Widening would need to be coordinated closely with I-75.

The traffic analysis was completed for constrained and unconstrained growth scenarios. Unconstrained results maximize forecasted traffic conditions by selecting the highest projected volume from the sources while constrained results blend multiple forecasts. Based on these results and to satisfy lane continuity, it is concluded that I-75 south of the Turnpike interchange needs to be widened to 6 lanes and I-75 north of Turnpike needs to be widened to 8 lanes by 2035 under constrained conditions. Unconstrained results call for I-75 to be widened to 10 lanes between the Turnpike interchange and Gainesville, with 8 lanes needed along the remainder of the corridor to satisfy lane continuity. Again, it should be noted unconstrained demand maximizes forecast results. Other measures such as auxiliary lanes may prove effective in reducing congestion concerns and eliminate the need to widen to 10 lanes.
Freight Mobility

The purpose of this Freight Mobility report was to establish trends in existing and future year 2035 trucking patterns and movements along the I-75 corridor. This has been completed by reviewing existing industrial and trucking patterns, and analyzing existing and future commodity flow data. A goal of the Sketch Plan is to enhance intermodal transfer and support regional, interstate, and international commerce by providing future trends, which support policy decision making. The final report consisted of two sections; industrial and trucking pattern characteristics along the corridor including truck traffic projections and results from future commodity flow characteristics provided through the Freight Analysis Framework (FAF). The FAF estimates commodity flows and related freight transportation activity over the national highway network, waterways, and rail system among states, sub-state regions, and major international gateways. Additional technical memorandums within the final Freight Mobility Report addressed existing and forecasted truck traffic and historical weight flows by tonnage along the corridor.

Results

Along the I-75 corridor, there are a limited number of intermodal facilities and no seaports. However, given the rural characteristics of the region, I-75 plays an important role as a connector. The results from InfoUSA, a provider of comprehensive economic databases, which include detailed consumer and business information, confirm that the location patterns of large businesses are directly impacted by the proximity to major access routes such as I-75. Travel data showed that I-75 more efficiently serves interstate freight demand and not intrastate shipping needs.

The FAF estimates commodity flows and related freight transportation activity over the national highway network, waterways, and rail system among states, sub-state regions, and major international gateways. The vast majority of commodities shipped to, from, and within the state are shipped by trucks and routed through the interstate system. Origin and destination data is used to make broad inferences and predict impacts the flow of tonnage may have on the interstate. For the purposes of the Sketch Plan, three FAF regions have been analyzed: Tampa, South Florida, and Orlando regions.

Figure 1 on the following page displays the differences and trends in predicted tonnage moved by truck and rail modes. Shipment mode by truck is the dominant form of transportation within the state and tonnage is projected to nearly double by 2035. Shipment tonnage to the state by truck is projected to more than triple by
However, annual rail shipments by tonnage *within* the state are projected to reduce by 5 million tons from approximately 60 million tons in 2002 to 55 million tons by 2035.

Figure 1: Shipments by Mode

<table>
<thead>
<tr>
<th></th>
<th>2002 (Millions of Tons)</th>
<th>2035 (Millions of Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within State</td>
<td>450</td>
<td>500</td>
</tr>
<tr>
<td>From State</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>To State</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Within State</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>From State</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>To State</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 2 below depicts the total inbound and outbound movements for the I-75 FAF regions for years 2010 and 2035. Due to the rural nature of the region and importance I-75 serves as a connector to outside markets, inbound/outbound movements are considered substantial when compared to “within” state movements. Inbound tonnage is projected to increase 178 percent by 2035.

Figure 2: Forecast Total Inbound/Outbound for I-75 FAF Regions

Internal commodity tonnage is forecasted to increase 100 percent by 2035 and inbound commodity tonnage is projected to increase by approximately 200 percent, a much higher percentage increase compared to the 2035 truck forecast determined by the *Truck Traffic Development* document. Results of that document are included in Table 4 on the following page. The report determined internal
commodity movements have less impact on I-75 compared to inbound/outbound commodity flow; however, results provide general statewide trends projected by 2035. This projected growth in commodity movement may lead to spillover effects on US 301 and influence I-75.

Table 4
Truck AADT

<table>
<thead>
<tr>
<th>Location on I-75</th>
<th>2008 Count</th>
<th>2035 Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia State Line</td>
<td>11,436</td>
<td>20,600</td>
</tr>
<tr>
<td>South of I-10</td>
<td>11,138</td>
<td>18,800</td>
</tr>
<tr>
<td>Alachua/Marion County Line</td>
<td>13,274</td>
<td>25,700</td>
</tr>
<tr>
<td>Williams Road, Marion County</td>
<td>15,277</td>
<td>27,400</td>
</tr>
<tr>
<td>South of Turnpike</td>
<td>9,857</td>
<td>17,800</td>
</tr>
<tr>
<td>Bushnell, Sumter County</td>
<td>8,729</td>
<td>14,500</td>
</tr>
</tbody>
</table>

According to the projected growth rates, I-75 is facing truck volumes in the range of 15,000 to nearly 30,000 trucks per day. Given the projected growth conditions provided through a multitude of sources used in this analysis, the I-75 Sketch Plan corridor is facing many challenges. It should be noted future truck traffic is an object derived from forecasted general traffic conditions, meaning that a projected truck volume is a percentage of that general traffic volume. True demand on I-75 may be much higher when commodity flow characteristics are factored in. Commodity flows are forecasted to increase at a percentage substantially higher than general traffic is projected to increase, which indicates future truck demand may be underestimated.

The chart on the following page outlines the specific findings for each of the sections within the final Freight Mobility Report. The final report consisted of two sections; industrial and trucking pattern characteristics along the corridor including truck traffic projections and results from future commodity flow characteristics provided through the FAF.
The Freight Mobility report provided detailed information on the flow of commodities among regions and along major intrastate and interstate transportation links. This information is essential for understanding key trends and issues. A primary function of the I-75 Sketch Plan is to protect the very nature of the interstate facility, which is to provide for long distance, high speed and high volume movement of people and goods. The Freight Mobility report has provided insight into further areas of study including:

- Truck volumes and freight tonnage are projected to significantly increase by 2035. Disparities between each may result in truck volumes and demand being underestimated. From a capacity and design perspective, forecasted truck volumes and future commodity flow may not be sustainable under existing I-75 lane configurations and pavement design.

- Truck spillover effects may be compounded as networks become increasingly clogged to meet demand. Specifically, further study on US 301 would provide its role as a regional connection serving major modal destinations. US 301 moves as much truck volume as I-10 and may more efficiently serve regional commerce by transitioning it to a higher access control facility.

- Further study on cross streets such as a comprehensive county road review would indicate trucking patterns off system. This would more accurately strengthen the connect or disconnect between regional shipping patterns and the importance of local facilities supporting commodity flow to distant places.

- Federal Policies and initiatives are moving away from truck and focusing on alternative methods to meet demand and air quality standards such as freight rail movement.

- CSX has taken freight mobility initiatives such as selling rail lines. The rail company has recently sold its A Line and will be moving the majority of its freight to their S Line. The S Line parallels

Section 1

- No parallel rail facilities exist that extend the length of the entire corridor as with I-10 and I-95.
- It is unpractical from a time and distance perspective to utilize I-75 to I-10 as a route to Jacksonville from in state locations.
- Travel data shows that I-75 more efficiently serves interstate freight demand and not intrastate shipping needs.

Section 2

- Georgia is projected to be Florida’s top trading partner outside of foreign shipment and increases its total trading tonnage by approximately 175 percent by 2035.
- Total tonnage for the top five commodities inbound for each region is forecasted to increase by approximately 200 percent by 2035.
- Total tonnage originating from Tampa can be seen increasing by nearly 100 percent by 2035.

Report Attachments

- Truck volumes are projected to grow within a range of 66 percent to over 90 percent with volumes ranging from 14,500 to over 27,000 by 2035.
- Disparities determined between directional truck volumes in terms of weight. Southbound truck volumes are predominantly loaded trucks while northbound consists of both loaded and unloaded.
US 301, which is a major truck route. The primary regional transfer station is to be located in Polk County. From FDOT’s perspective, further insight may facilitate better integration between Truck/Freight Rail to reduce impacts to the state and interstate highway system.

- Further study needed on the applicability of constructing truck only lanes that separate trucks from high-speed traffic. Barrier separated dedicated truck lanes achieve optimum feasibility when truck volumes exceed 30% of the total vehicle mix. Existing volumes exceed 20% and given the potential growth forecasted to occur along I-75 when commodity demand factored in, truck volumes may far exceed 30% of the total vehicle mix.

Understanding trucking patterns and commodity flow is vital to the enhancement of intermodal transfer and to the support of regional, interstate, and international commerce. Tonnage traffic passing along I-75 between distant origins and destinations indicates the future effects of external demand on local transportation facilities. Florida is served by an extensive highway, rail, air, and water transportation system. Vital commerce and passenger mobility within, to, and from the state of Florida depends upon the continued efficient operation of this network. The Department of Transportation is continually analyzing and developing transportation initiatives to help shape the multimodal network necessary for the efficient movement of both freight and people.
Safety Analysis

The purpose of the Safety Technical Report was to analyze crash data reported on the I-75 Sketch Plan Corridor obtained from the Florida Department of Transportation Crash Analysis Reporting system (CAR) for years 2003 through 2007. The results of the analysis represent the latest trends in police reported motor vehicle crashes along the I-75 corridor. The memo also attempted to identify potential safety challenges and concerns. Due to the delicate nature of crash statistics, the Project Team coordinated, reviewed and worked with the Florida Department of Transportation Safety Office when developing this Technical Report.

Results

Crash data reported on the I-75 Sketch Plan corridor was examined from the Florida-Georgia border south through Sumter County, Florida. Crash statistics provided valuable information when attempting to identify potential safety challenges and concerns. The following two locations were found to have the highest number of crashes and crash rates:

- Alachua County: High rates among both number of crashes and crash rates, specifically within the urban limits of Gainesville. These results may be attributed to local trips between interchanges and relatively higher traffic volumes.

- Sumter County: High crash counts were reported near the Florida Turnpike merge and high crash rates along the southern portions of the county where I-75 drops to four lanes.

Figure 3 on the following page portrays a frequency analysis of crashes along the I-75 corridor. Areas with high frequency surround Alachua County (centered) and Sumter County (right). The Florida Turnpike northbound merge creates a high number of crashes located at the southern portion of the corridor. Alachua County has a high number of crashes, which can be attributed to short trips by localized traffic. Outside of these two areas, I-75 at US 90 in Lake City remains a regional outlier for a high number of crashes.
Figure 4 below displays the “actual” crash rates relative to the “average” crash rates along the I-75 corridor. The average rates are determined specifically by District characteristics and applied based on similar facility type to rural and urban interstate segments. Supportive of previous results, the highest actual crash rates occur through Alachua County and Sumter County.

Crash counts and crash rates were the two primary elements reviewed because they most accurately reflect the crash patterns along the corridor. Crash counts show specific numbers of crashes that have occurred on a given segment within a given timeframe. Crash rates account for segment length, average daily traffic (ADT), timeframe, and counts. Further detail provided in the complete Safety Report.
Table 5
Corridor Crash Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Actual</th>
<th>Average*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sketch Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridor</td>
<td>165</td>
<td>0.45</td>
<td>0.39</td>
</tr>
<tr>
<td>Rural</td>
<td>128</td>
<td>0.42</td>
<td>0.36</td>
</tr>
<tr>
<td>Urban</td>
<td>37</td>
<td>0.55</td>
<td>0.51</td>
</tr>
</tbody>
</table>

*Average rates applied to I-75 are District specific and based on similar urban and rural facility types including other interstates and limited access freeways.

The average rate for the combined rural/urban corridor was determined to be 0.39 while the actual rate was 0.45 determined from the raw crash data. The actual rate of 0.45 indicates that the corridor generally has a higher number of crashes and crash rates when compared to average rates (0.39) determined by the Districts. Crash rates were further organized and compared to average statewide rates. It should be noted statewide rates are not District specific and include urbanized segments of south Florida and Tampa. This may lead to slightly inflated urban rates when compared to I-75.

- rural interstate is 0.373
- urban interstate is 0.743

Additional detail is provided within the final Safety Report. These results may further be compared to existing and subsequent planning studies.

Crashes throughout the I-75 corridor can be attributed primarily to merge/diverge locations associated with interchange movement. Further insight into the causes of crashes may be provided within individual crash reports, which were not analyzed in detail for the purposes of the Sketch Plan. Only the Long Form crash reports were reviewed for the purposes of this analysis. As the analysis showed, heavy volumes and traffic conflicts due to interchange access points within urbanized sections of interstate create safety challenges and concerns.
Environmental and Land Use Approach

The purpose of the Environmental Documentation Technical Report was not to document the adjacent land composition in detail but to provide preliminary analysis and results. Further detail will be provided in subsequent planning and design stages. The Sketch Plan is designed to be a high-level preliminary planning study before a NEPA assessment. However, environmental considerations are taken into account and documented and GIS maps are attached within the final report. However, for the purposes of the Sketch Plan, a preliminary planning screen, using FDOT’s Efficient Transportation Decision Making (ETDM) was performed and wetlands, floodplains, drainage, and land use within one mile along I-75 were documented and mapped.

Results

The Project Team reviewed environmental documentation along the Sketch Plan corridor. ETDM screening was used as a preliminary assessment tool, as opposed to a detailed environmental assessment or impact statement consistent with the NEPA.

ETDM is a process for accomplishing transportation planning and project development for major capacity improvement projects. Early in the planning process, interest groups become involved by screening potential environmental effects. The public can become involved through workshops, emails, phone correspondence and the ETDM website.

ETDM provides an environmental screening process early in a capacity improvement project and provides for input through a partner agency review. However, the purpose of the Sketch Plan is not to analyze specific alternative capacity improvements along the I-75 corridor in detail but to provide conceptual capacity enhancements. For this reason, the Sketch Plan outlines a high-level course of action prior to a detailed ETDM screening using the Environmental Screening Tool.

After analysis of this screening tool process, it was determined to refine the method down to five categories: wetlands, drainage, floodplains, and existing and future land use characteristics. Maps detailing these environmental characteristics are included within the final Environmental Documentation Technical Report.
Planned Improvements and Corridor Mobility Opportunities

The purpose of this Technical Report is to provide corridor background information and to identify potential corridor improvement options for further study. The background information in this memorandum focuses on existing conditions of the I-75 Sketch Plan corridor, specifically the structural aspects, as well as the planned improvements anticipated to occur on the I-75 corridor during the planning horizon.

The structural aspects reviewed during this existing conditions analysis include the typical cross section of I-75, and a review of the interstate structures including the bridges and overpasses. The bridges and interchanges were reviewed for clearance requirements and sufficiency ratings. In order to complete this existing conditions analysis and to better fit potential corridor improvements, the project team determined the need to review existing planned improvements anticipated to be completed during the planning horizon.

The objective of the planned improvements review along the corridor was to ensure that potential corridor improvement recommendations did not duplicate or conflict with existing planned or programmed improvements. In addition, while examining plans for I-75, the project team also reviewed other local plans that may have improvements anticipated to impact the I-75 corridor. For example, the project team reviewed local Long Range Transportation Plans (LRTPs) that anticipate reducing the impact of local commuter traffic utilizing I-75 by improving cross streets.

The review of planned improvements was completed through review of a variety of sources including the Florida Department of Transportation’s Five Year Work Program, and the SIS Multi-Modal Needs Plan, various District level corridor studies, and local LRTPs. For the purposes of the Sketch Plan, these programs, plans, and studies have been reviewed with the goal of establishing a long-range plan to accommodate future traffic and establish a framework for future improvements.

The final aspect of this Technical Report was to introduce potential Corridor Mobility Opportunities. While there is no identification or selection of a preferred alternative in a Sketch Plan because of National Environmental Policy Act (NEPA) requirements, the project team has researched potential Corridor Opportunities that would enhance mobility. The Corridor Mobility Opportunities identified in this memorandum are for informational purposes, but the Sketch Plan will identify potential Corridor Mobility Opportunities that may need additional study.

Future conceptual mobility opportunities consist of interstate improvements and enhancements other than typical capacity expansion. Typical capacity expansion involves adding additional general-purpose lanes. The mobility concepts listed were not analyzed in detail but rather are provided to gain knowledge of existing concepts that will enhance mobility.

<table>
<thead>
<tr>
<th>Potential Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Build</td>
</tr>
<tr>
<td>General Purpose Lanes</td>
</tr>
<tr>
<td>Auxiliary Lanes</td>
</tr>
<tr>
<td>Managed Lanes</td>
</tr>
<tr>
<td>Truck Only Lanes</td>
</tr>
<tr>
<td>Beltways</td>
</tr>
<tr>
<td>Rail</td>
</tr>
<tr>
<td>Intelligent</td>
</tr>
<tr>
<td>Transportation Systems</td>
</tr>
</tbody>
</table>
Results

The purpose of this Technical Report was to catalogue and analyze existing conditions of structures along the corridor and outline any improvements being considered by both the Florida Department of Transportation and local transportation plans. The transportation plans reviewed have alluded to the idea of creating other means to reduce congestion such as parallel facilities on the interstate. Local traffic using the interstate for short trips between interchanges has continually posed a problem. However, local governments and planning organizations are now realizing the impact localized traffic pose to the interstates. These impacts have been shown in the form of high demand in urbanized sections of interstate, deterioration of the pavement conditions, and safety concerns.

Using this information, the Project Team developed both conventional capacity improvements and conceptual improvements with the goal of providing capacity support and improving operations. Conceptual improvements outlined have state and national recognition; however, are currently not being considered as capacity improvements along I-75. The need to expand up on the existing interstate has been completed. Findings include the following:

SIS Multi-Modal Needs Plan

- **2015**
 - Add 2 lanes from south Marion County line to US 27.
 - Add 4 lanes from the Turnpike north to south Marion County Line.

- **2030**
 - Add 2 more additional lanes from south Marion County line to SR 27.
 - Add 2 lanes from US 27 north to I-10.
 - Add 2 lanes from the Turnpike south to southern Sumter County line.

The SIS Multi-Modal Plan Needs Plan was reviewed for capacity improvements along the Sketch Plan corridor. It should be noted the Needs Plan has been developed without regard to funding or lane continuity along the corridor. The updated SIS Needs Plan scheduled to be finalized in January 2011 will include recommendations from the Sketch Plan. Results coincide with those found within the Traffic Technical Report. Further findings include:

- It has been found that there are no improvements currently planned by the Florida Department of Transportation for the I-75 corridor that address capacity needs outside of traditional lane expansion.
- LRTPs are addressing local traffic on the interstate by planning for parallel facilities and overpasses for use by motorists in order to reduce localized congestion on I-75.
- The concepts discussed offer capacity enhancements at generally less cost than widening and improve safety conditions.
Performance objectives must be developed which provide a tool that decision makers may use to select which option may prove most effective to reach desired goals. Performance objectives for increased mobility benefits include the following:

- Reduced congestion
- Reduced travel times
- Decreased interference between “through traffic” and “short trips”
- Improved emergency response
- Improved freight flow
- Increased connectivity

Once performance objectives are in place, performance criteria may then be developed to include in the analysis. The following criteria may be included when selecting which option may prove most effective:

- Description/Definition of concept
- Pros and cons of implementation
- Impact to mobility in the corridor
- Impact to emergency response in the corridor
- Impact to economic development in the corridor
- Implementation costs
- Policy implications

Adding capacity to the interstate through general-purpose lanes remains the primary means undertaken to combat growing demand and increase mobility. However, it should be noted The Traffic Report as well as other supporting documents indicate the impacts traffic growth will have on the corridor. Demand is anticipated to grow beyond what the existing configuration can accommodate. Conventional capacity expansion should take place only after efforts have been made to optimize capacity and use of existing facilities and arterial networks.

The purpose of the Sketch Interstate Plan is not only to catalogue and present existing and future planning improvements but also to utilize that information when developing conceptual improvements. The data provided within this report represents all major improvements, both funded and unfunded, the I-75 corridor has planned. It should be noted that the major improvements currently being considered are capacity expansion projects, which add additional directional lanes to alleviate congestion. The Department of Transportation is continually analyzing and developing transportation initiatives to help shape the multimodal network necessary for the efficient movement of both freight and people. With current budget constraints, other means of congestion support have proven effective from both an operational standpoint and costs.
Approach Summary

The major purpose of the I-75 Sketch Interstate Plan was to examine the existing interstate system, with respect to planned improvements, and reveal general problem areas and trends that will be examined in more detail in a later phase. This approach consisted of developing multiple reports to analyze different concepts encompassing the following focus areas:

- Traffic
- Freight Mobility
- Safety
- Environmental Analysis
- Planned Improvements and Conceptual Mobility Opportunities

The purpose of these technical reports was to establish trends and patterns in existing and future year 2035 movements along the I-75 corridor to provide the mobility that will adequately serve high speed, high volume travel facilitating interstate and regional commerce and long distance trips. An examination of the existing I-75 interstate corridor reveals several general problem areas:

1) Lack of capacity, specifically between I-10 and the Turnpike. I-75 south of the Turnpike is currently planned to be widened.
2) Heavy congestion in the urbanized areas of Ocala and Gainesville due to local traffic.
3) Safety concerns at the Turnpike, rural Sumter County, Ocala and Gainesville.
4) Increased demand for trucks may result in future truck traffic projections being underestimated.
5) Lack of sufficient, limited access, high speed and volume east west and parallel facilities, specifically between the Turnpike and Ocala.

Each section within the technical report may be directly influential on the other. Heavy congestion was found to directly correspond to safety concerns within the urbanized sections of the I-75 corridor. Rural, 4-lane portions of I-75 tend to have increased crash rates due to the lack of lane maneuverability. Further results show a high volume of motorists using the interstate for short trips between interchanges. Limited east west and parallel facilities result in motorists utilizing the interstate to gain access to locations not easily accessible by non-interstate routes.

The focus areas analyzed within this report provide an overview of the existing and future operations and trends influencing the I-75 corridor. The Sketch Plan stands out among others initiatives in that it not only provides policy guidance, but supports that policy direction with technical background. The FDOT planning process is structured and guides future development. Subsequent planning and design studies are now presented an additional catalyst to aid in streamline future initiatives.
Improvement Cost

The Sketch Plan provided insight into existing and future conditions along the I-75 corridor ranging from Georgia, south through Sumter County. Problem areas were shown based upon technical results and data collection efforts. The challenges facing the I-75 corridor do not only lie within results provided in the technical reports but also include future planning initiatives and fund allocation. This section will outline general costs associated with expansion and include potential policies that may shape the outlook of the I-75 corridor.

Construction

The recent rise in construction costs has posed a threat to the ability of the Florida Department of Transportation to maintain its “commitment” to project construction and development and has forced project deferrals. Tables 6A and 6B below compare the approximate cost per mile to add additional general purpose lanes to the interstate for years 2000 and 2009. It should be noted that the models are generic in nature and are for reference purposes only.

Table 6A
2000 Construction Costs

<table>
<thead>
<tr>
<th>Classification</th>
<th>Project</th>
<th>Approximate Cost Per Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Widen 6 Lanes to 8 Lanes</td>
<td>$2,900,000</td>
</tr>
<tr>
<td>Rural</td>
<td>Widen 6 Lanes to 8 Lanes</td>
<td>$2,500,000</td>
</tr>
</tbody>
</table>

Source: 2000 Transportation Costs, Office of Policy Planning

Table 6B
2009 Construction Costs

<table>
<thead>
<tr>
<th>Classification</th>
<th>Project</th>
<th>Approximate Cost Per Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Widen 6 Lanes to 8 Lanes</td>
<td>$7,800,000</td>
</tr>
<tr>
<td>Rural</td>
<td>Widen 6 Lanes to 8 Lanes</td>
<td>$4,500,000</td>
</tr>
</tbody>
</table>

Source: State Estimates Office, Office of Policy Planning

A major component of increased costs are material prices. Asphalt costs have increased over 80% since 2003 while structural concrete and steel has increased over 40%.

Outside of political or economic events that may trigger spikes, it appears unlikely that costs will reduce over the planning period but will fluctuate and steadily increase. Inflationary measures will continue to be taken into account by the Department to ensure adequate funds are available to meet desired commitments even if, at times, deferrals must occur. Tables 7A and 7B on the following page represent an approximation of what it would cost to widen the I-75 Sketch Plan corridor based upon 2009 construction costs. A comparison to 2000 cost estimates is also provided.

2 Update on Highway Construction Cost Trends in Florida, April 2007
Table 7A
2000 Widening Cost Estimate

<table>
<thead>
<tr>
<th>Classification</th>
<th>Miles</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>37</td>
<td>$107,300,000</td>
</tr>
<tr>
<td>Rural</td>
<td>128</td>
<td>$320,000,000</td>
</tr>
<tr>
<td>Corridor Total</td>
<td>165</td>
<td>$427,300,000</td>
</tr>
</tbody>
</table>

Table 7B
2009 Widening Cost Estimate

<table>
<thead>
<tr>
<th>Classification</th>
<th>Miles</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>37</td>
<td>$288,600,000</td>
</tr>
<tr>
<td>Rural</td>
<td>128</td>
<td>$576,000,000</td>
</tr>
<tr>
<td>Corridor Total</td>
<td>165</td>
<td>$864,600,000</td>
</tr>
</tbody>
</table>

Given the current construction costs outlined above, it would cost over $850 million to widen the interstate by one lane per direction along the complete length of the corridor; double that based upon 2000 cost estimates. It should be noted that these totals do not include structural modifications or detailed right-of-way costs. Inflationary rates at this level limit both the funding capabilities and the Department’s capacity to adequately plan for future needs.

The Traffic Technical Report suggested that in order to maintain lane continuity, one lane per direction would be the minimum required along the length of the corridor by the 2035 forecast year to meet demand. There are micro locations that may require additional lanes beyond what was called for according to the unconstrained forecast demand. Because of the extreme costs associated with widening coupled with the idea of interstate lane continuity, planning must be achieved now to not only make sure an appropriate level of funding remains in place to reach the Department’s obligations and commitments but to develop new efficient concepts to handle demand.

Best Practices to avoid inefficiencies and help streamline the process may include:

- Develop a concept of operations early—This provides direction and guidance for the planning, design, and implementation of the managed lane system. Identifying operational challenges early and engineering solutions as early as possible provides for more seamless transition into implementation. District Five is currently working on a coordinated Systems Operational and Analysis Report (SOAR) for I-75. This initiative includes identifying staged operational improvements for all the interchanges along the corridor including right-of-way. A web based tracking system is also a key part of the implementation strategy, which allows partners to track improvements and provide feedback.
- Involve design/operations professionals in planning process—In order to achieve swift implementation; it is crucial that design/operations/construction professionals have opportunity for input in the planning process
- Clearly define performance objectives and criteria, which enable decision makers to select which option may prove most effective to reach desired goals.
Interstate 75 Sketch Interstate Plan Vision

The Sketch Plan examined the existing interstate system, with respect to planned improvements, and revealed general problem areas and trends that will be examined in more detail in a later phase. Questions focused on within the plan were what improvements should be made to the existing system, what new facilities should be built, and what concepts may be incorporated to address future needs. The technical reports provided further insight into these questions.

The availability of a high speed, limited access transportation facility to increase efficiency is vital to the economy and careful planning is essential for preserving the integrity of such facilities. The I-75 Sketch Plan provides one piece of the statewide vision summarizing the future needs for passenger and freight along its extensive network of limited access corridors and provides further insight into strategies to satisfy future demand. Ultimately, Sketch Plans will be completed along all primary corridors or regional importance, which will provide comprehensive insight into future trends and conditions.

Through coordination efforts and technical analysis of the corridor, results have shown multiple areas in need of improvement. The following page lists the I-75 Sketch Plan Action Items. Each item provides direction FDOT may use when initiating the planning process.
I-75 Sketch Plan Action Items

Traffic Analysis

- No existing LOS problems
- Determined the need to expand by the 2035 planning horizon
 - Corridor rapidly becoming congested
 - Critical segment determined between the Florida Turnpike and I-10
 - High volumes along urbanized segments of interstate
 - Unconstrained growth scenario may require 10 lanes
 - 8 lanes would be minimal lane configuration required based upon forecasted demand

Freight Mobility Analysis

- Improved forecasting methods are needed that account for growth in commodities
 - Disparities found in growth of future commodities and trucks. Tonnage transported to and from Florida projected to grow at levels much higher than Truck AADT forecast depicts
 - Truck traffic forecasted to grow at unsustainable levels, even without capturing increased commodity flow
 - Directional flows of commodities in need of further study
 - Southbound traffic significantly heavier (by tonnage) than northbound traffic. Results may call for over or under designing pavement

Safety Results

- Problem areas posing safety challenges and concerns outlined
 - Urban interstate segments pose most serious concerns
 - Acceleration/deceleration lanes
 - High truck percentage
 - Areas of further study include constructing auxiliary lanes to reduce impacts on through traffic by channelizing short trips
 - ITS expansion to inform drivers when ramps are queued

Environmental and Land Use Approach

- Sketch plans are designed to be pre-NEPA documents
- Preliminary screening has been performed
- Detailed wetlands, floodplains, land use, and drainage catalogued
- Preservation of right-of-way is a critical element in order to maintain the integrity of the interstate system

Planned Improvements and Corridor Management Opportunities

- Structures and planned improvements reviewed
 - Vertical clearance requirements should be restored as part of future planned improvements
 - Only funded capacity improvement consisted of widening the mainline south of the Turnpike
 - A toolbox approach determined most useful when planning improvements to the interstate
 - At minimum, I-75 needs to be widened to 8 lanes between the Turnpike and I-10
 - Traffic increases by as much as 100 percent along urban segments of interstate within Gainesville and Ocala
 - Auxiliary lanes would significantly reduce local traffic from impacting through traffic and reduce safety concerns
 - Truck growth is projected to grow between 60 percent and 90 percent by 2035.
 - Commodity flow projections suggest this growth range may be underestimated. True demand may be much higher when commodity data factored into growth scenario.
 - Truck volumes are high enough to support truck only lanes
Next Steps

Policy that shapes the future direction of Interstate 75 is critical knowing the growth that is anticipated to occur, challenges facing the corridor, and rising costs associated with construction. FDOT has recognized these concerns and is developing cost effective initiatives to address the rising demand and support regional visions for future growth and development. Below outlines policy initiatives that are currently being undertaken regarding limited access facilities.

i) Maintaining coordination efforts with cross street facilities is key to efficient expansion and growth of I-75. Local plans have recognized the need to adopt policy to provide cross street access and avoid utilizing the interstate as a “short trip” facility.

ii) Maximizing the use of existing facilities, including operational improvements and identifying new roles for underutilized facilities where possible.

iii) Enhance connectivity with other states and between Florida regions by improving access to markets, with emphasis on interstate and intermodal connectivity.

iv) Support anticipated growth in trade between Florida and other national regions.

v) Refine prototype corridors to include corridors of regional and national importance. This initiative will shape policy, criteria, and implementation strategies for corridors of “vital importance” to connectivity and economic development.

Policy initiatives must encourage proactive planning and intergovernmental coordination regarding future investments in SIS facilities anticipated to help accomplish statewide policy objectives and achieve regional visions. *Florida’s Future Corridor’s Action Plan* outlines statewide initiatives, schedules, and implementation strategies to include within the planning process. The following provides the process outline within Action Plan document:

1. Create Statewide Advisory Group
2. Accelerate Regional Visioning Activities
3. Initiate Prototype Future Corridor Studies
4. Advance Initial Corridor Segments
5. Develop Corridor Work Program
6. Develop Financial Policies
7. Accomplish Additional Technical Activities
8. Accomplish Additional Partner and Public Involvement Activities

The I-75 Sketch Plan further advances and refines the goals and objectives of the planning process defined through Long Range Transportation Plans and Action Plans by providing corridor specific needs. The availability of a high speed, limited access transportation facility to increase efficiency is vital to the
economy. Finally, the plan ultimately provided a mainline vision summarizing the future needs for passenger and freight in the corridor and possible concepts to satisfy the future demand.

The I-75 Sketch Interstate Plan’s role has been determined through participation, process development, and technical initiative. There is no “one-size fits all” approach in today’s dynamic environment. Sketch Plans need to be active documents that are fluid in nature and active in response. This can be achieved through a multifaceted approach supported by technical background, and policy design shaped for future regional visions. The Plan defined a system concept for improving the interstate system to guide and accommodate growth. Proposed actions and policies should be examined closely and coordinated with subsequent planning and design stages.