Evaluation of Pozzolanic Materials for Replacement of Fly Ash in FDOT Concrete

Dale DeFord
Structural Materials Research Specialist
State Materials Office

Presented at the 2016 FCPA/FDOT Concrete Coalition of Florida in Orlando, Florida
March 9, 2016
Current and Planned Research

• Completed Project:
 □ “The Structural and Durability Performance of Glass Modified Concrete.”

• Ongoing Project:
 □ “Evaluation of Alternative Pozzolanic Materials for Partial Replacement of Portland Cement in Concrete.”

• Scheduled Project:
 □ “Development of Calcined Clays as Pozzolanic Additions in Portland Cement Concrete Mixes.”

• Planned Project:
 □ “Development of Ground Glass Pozzolanic Replacement for Fly Ash in Portland Cement Concrete Mixes.”
Acknowledgments

The Data Presented Here are from the Following FDOT-Sponsored Research Project with the University of Florida:

❖ **Project:** “Evaluation of Alternative Pozzolanic Materials for Partial Replacement of Portland Cement in Concrete,” BDV31-977-06.

❖ **Principal Investigator:** Chris Ferraro, Ph.D., P.E.

❖ **PhD Student Researcher:** Jerry Paris
Production and Use of Fly Ash

Is There a Problem with the Supply of Fly Ash?

It looks like the recession had an affect, but was it the only cause?

Fly Ash Production and Price of Natural Gas

How much of an effect does the price of Natural Gas have?

Data from ARTBA (2015), “Production and Use of CCP in the US”
Scheduled 2015 capacity additions mostly wind and natural gas; retirements mostly coal

annual net change:
- wind (9,811 MW)
- natural gas (4,318 MW)
- solar (2,235 MW)
- nuclear (1,122 MW)
- other renewables (471 MW)
- petroleum and other (-800 MW)
- coal (-12,922 MW)

Source: U.S. Energy Information Administration, Electric Power Monthly

Note: Other renewables include hydroelectric, biomass/wood, and geothermal.
Regional Natural Gas vs Coal

July 2015 – for the 2nd time ever natural gas surpassed coal in electricity generation

Source: U.S. Energy Information Administration, *Electricity Monthly Update*

So – Why is Coal-Fired Power Generation Declining?

• The number of coal-fired power plants is decreasing
 - Cheap natural gas is leading some manufacturers to convert from coal to gas.
 - Emissions requirements are steadily becoming more stringent, making coal-fired plants more costly (due to investment in control technologies), leading to reduced operation or conversion to gas..
Combined Cycle Gas Power Generation

Waste heat from the gas turbine is used to create steam to drive a steam turbine

Advantages of Combined Cycle Power Generation

• **High Thermal Efficiency** – more than 50% combined
 - 40% for the gas turbine and Reduced Fuel
 - 43% for the steam turbine Reduced Consumption

• **Reduced Air Pollution** – reduced emissions of
 - Carbon dioxide
 - Nitrogen oxides
 - Sulfur dioxide

• **Reduced Thermal Pollution**
 - lower temperatures of discharge water

Emissions - Why the Push for Regulation?

The exposure of the superstructure of a bridge within 2500 ft of a coal-burning industrial facility is classified as Moderately Aggressive.

http://www3.epa.gov/airquality/powerplanttoxics/powerplants.html
Why the Push for Regulation?

In 1990, about two-thirds of total U.S. mercury emissions came from medical waste incinerators, municipal waste combustors, and power plants.

<table>
<thead>
<tr>
<th>Industrial Category</th>
<th>1990 Emissions (tpy)</th>
<th>2005 Emissions (tpy)</th>
<th>Percent Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Plants</td>
<td>59</td>
<td>53</td>
<td>10%</td>
</tr>
<tr>
<td>Municipal Waste Combustors</td>
<td>57</td>
<td>2</td>
<td>96%</td>
</tr>
<tr>
<td>Medical Waste Incinerators</td>
<td>51</td>
<td>1</td>
<td>98%</td>
</tr>
</tbody>
</table>

Power plants have not complied as much as other industries.

http://www3.epa.gov/airquality/powerplanttoxics/powerplants.html
Reduction of F Ash – Coal Source

• **Coal switching** from eastern bituminous to Powder River Basin coal results in lower availability of low CaO (Class F) ash and higher availability of high CaO (Class C) ash.
 - Class C ash is more reactive than Class F ash
 - Class F ash is more effective at mitigating ASR at low cement replacement levels (<25%).
 - Higher replacement levels (>35%) are needed for ASR mitigation by class C ash.
 - Class F fly ash is typically preferred.

Objective of Current Research

Develop Sources of Pozzolanic Materials That Can Meet the Demands for Pozzolans in Future FDOT Concrete Mixes

- Evaluate candidate materials not in use by FDOT
 - Need to be available in large-scale quantities
 - Require minimal processing to make suitable for use
- Evaluate use of highly reactive pozzolans (SF, MK, UFFA) in amounts sufficient to produce properties similar to those obtained with Class F Fly Ash
- Evaluate both binary and ternary combinations
Methodology

Approach

• Determine suitability of any highly siliceous materials with particle size < 45 µm (passing 325-mesh)
• Preference given based on availability and sustainability
• Testing of portland cement-pozzolan samples
 - Elemental and mineralogical composition (XRF and XRD)
 - Particle size distribution
 - Heat of Hydration
 - Compressive strength
 - Modulus of elasticity
 - Splitting tensile strength
 - Length change
 - Flexural strength
 - Coefficient of thermal expansion
 - Surface resistivity
Replacements for Fly Ash

Nothing can replace fly ash based on price.

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Price per Ton</th>
<th>Price per Pound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica Sand Fine Aggregate</td>
<td>$20</td>
<td>$0.010</td>
</tr>
<tr>
<td>Coarse Limerock Aggregate</td>
<td>$30</td>
<td>$0.015</td>
</tr>
<tr>
<td>Class F Fly Ash</td>
<td>$35</td>
<td>$0.018</td>
</tr>
<tr>
<td>Slag Cement</td>
<td>$115</td>
<td>$0.058</td>
</tr>
<tr>
<td>Type I/II Portland Cement</td>
<td>$130</td>
<td>$0.065</td>
</tr>
<tr>
<td>Kaolin</td>
<td>$150</td>
<td>$0.075</td>
</tr>
<tr>
<td>Micron 3 (bags)</td>
<td>$500</td>
<td>$0.250</td>
</tr>
<tr>
<td>Metakaolin (bags)</td>
<td>$800</td>
<td>$0.400</td>
</tr>
<tr>
<td>Silica Fume (bags)</td>
<td>$1,100</td>
<td>$0.550</td>
</tr>
</tbody>
</table>
Findings

Materials Chosen for Evaluation

- Class C fly ash
- Pulverized waste glass
- Recycled zeolite catalyst
- Rice husk ash
- Sugarcane bagasse ash
- Wood ash

Class C fly ash is commercially available and is in common use in other parts of the country. Quick implementation.

Waste glass is abundantly available - requires considerably more research and development. Implementation will require development of supply chain and grinding facilities.

Testing

Underway, but results are not complete.
Selected Binary Pozzolan Mixes

Graph Description:
- The graph illustrates the normalized compressive strength (% of Control) over the length of cure (days) for various binary Pozzolan mixes.
- Each line represents a different mix:
 - 5% MK
 - 50% Slag
 - 4% SF
 - 30% C-FA
 - 10% RHA
 - 10% C-FA
 - 20% SCBA
 - 20% GP-3

Axes:
- **Y-axis:** Normalized Compressive Strength (% of Control)
- **X-axis:** Length of Cure (days)
Selected Ternary 20% C-FA Mixes

![Graph showing the normalized compressive strength (% of Control) vs. length of cure (days) for various ternary mixes including 20% C-FA + 5% Slag, 20% C-FA + 5% UFFA, 20% C-FA + 10% SCBA, 20% C-FA + 4% SF, 20% C-FA + 10% GP-3, 20% C-FA + 10% F-FA, and 20% C-FA + 10% Slag.](image-url)
Selected Ternary 30% C-FA Mixes

![Graph showing normalized compressive strength over length of cure for different mixes.](image)
Summary

Fly Ash is Hard to Replace, But it is Necessary

• Increased demand for fly ash, especially during periods of increased construction activity, is expected to exceed the supply from current producers.

• Changes in the electric utility industry brought about by environmental regulations and the low cost of natural gas (retirement of coal plants, retrofitting with pollution control equipment, fuel switching, etc.) will continue to reduce the supply of quality ash.

• There are a limited number of alternative supplemental cementitious materials for concrete, and they are all considerably more expensive.
Summary

- The highly reactive pozzolans (SF, MK, and UFFA) show good potential in both binary and ternary mixes when added in relatively low amounts (< 5% replacement of cement by weight).
- Class C fly ash performs well as a total replacement for Class F fly ash at 20% cement replacement, and at both 20% and 30% replacements of cement in some ternary blends.
- Pozzolans that performed well in ternary blends with 20% Class C fly ash were 5% slag, 5% UFFA, 10% SCBA, 4% SF, and 10% GP-3.
Questions?