Microbial Induced Calcite Precipitation to Stabilize Florida High-Organic Soils

Presented by: Raphael Crowley, Ph.D., P.E.
Assistant Professor
University of North Florida
Department of Construction Management
Building 50, Room 2400
Jacksonville, FL 32224
r.crowley@unf.edu

Co-PIs: Andrew Zimmerman, Ph.D., University of Florida, Geology Department,
azimmer@ufl.edu
Nick Hudyma, Ph.D., P.E., University of North Florida, School of Engineering,
nhudyma@unf.edu

Florida Department of Transportation Geotechnical Research in Progress (GRIP) Meeting, August 20-21, 2015

David Horhota, Ph.D., P.E. Project Manager
Motivation for Research

• High-OM soil needs to be stabilized

• Previous studies/attempts
 – Ground tire rubber (GTR) – not successful
 – Soil-mixed vertical columns – expensive
 – Cut-and-replace – often not feasible
 – Lime Kiln Dust (LKD) – may be a carcinogen

• Need a sustainable, cost-effective solution!
Microbial Induced Calcite Precipitation

• Governing Reactions (Ureolytic Microbes):

 – \(CO(NH_2)_2 + H_2O \rightarrow NH_2COOH + NH_3 \)

 – \(NH_2COOH + H_2O \rightarrow NH_3 + H_2CO_3 \)

 – \(2NH_3 + 2H_2O \leftrightarrow 2NH_4^+ + 2OH^- \)

 – \(H_2CO_3 \leftrightarrow HCO_3^- + H^+ \)

 – \(HCO_3^- + H^+ + 2NH_4^+ + 2OH^- \leftrightarrow CO_3^{2-} + 2NH_4^+ + 2H_2O \)

 – \(Ca^{2+} + CO_3^{2-} \leftrightarrow CaCO_3 \)
Project Objectives

• Determine MICP’s feasibility as an environmentally-friendly and sustainable method for treating Florida’s high-OM soils for roadway construction

• Tasks will include literature review; MICP column experiment; create stabilized sand using ureolytic microbes; experimentation with native/non-ureolytic microbes; optimize MICP procedure; high-OM soil column treatment
Task 1 – Literature Review

S. Pasteurii Photograph (Bang 2014)

Result of precipitation and nucleation (Qabany et al. 2012)
Task 1 – Literature Review

MICP Photographs (DeJong 2012)

Fully-Cemented Specimen (Qabany et al. 2012)
Task 2 – MICP Column Experiment

Proposed MICP Setup
Task 3 – Produce and Characterize MICP-Stabilized Sand and OM-Rich Soils using Ureolytic Microbes

- *Sporosarcina Pasteurii* – aerated, “fed” with urea, and pumped through soil tube

- pH and inorganic C analysis used to monitor development

- XRD used to evaluate solid product mineralogy

- Triaxial, scanning electron microscopy (SEM), permeability tests
Task 3 – Equipment for Analysis

Dr. Zimmerman and Organic Geochemistry Lab at UF
Task 3 – Equipment for Analysis

UNF Geotech Lab Equipment
Task 4 – Optimization

• pH, urea-microbe ratios, food sources, etc. will be varied to produce **soils of greatest stability**
Task 5 – Native Microbes

• Microbe introduction good; Bio-stimulation better!

• Techniques
 – Fe reducer *Shewanella oneidensis*
 – Sulfate-reducing bacteria treated with Na$_2$ and sodium dithionite
 – Microbes isolated from Florida aquifer and measured for sulfate/acetate consumption

• Testing – same tests used for *S. Pasteurii* specimens

• http://www.cnn.com/2015/05/14/tech/bioconcrete-delft-jonkers/
Timeline

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Anticipated Timeframe (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Kickoff Meeting</td>
<td>1</td>
</tr>
<tr>
<td>Task 1 – Literature Review</td>
<td>3</td>
</tr>
<tr>
<td>Task 2 – Laboratory column experiment</td>
<td>1</td>
</tr>
<tr>
<td>Task 3 – Ureolytic microbe treatment/testing</td>
<td>7</td>
</tr>
<tr>
<td>Task 4 – Optimization</td>
<td>4</td>
</tr>
<tr>
<td>Task 5 – Native/non-ureolytic microbe treatment/testing</td>
<td>4</td>
</tr>
<tr>
<td>Task 6 – Draft Final Report</td>
<td>1</td>
</tr>
<tr>
<td>Task 7 – Final Report</td>
<td>3</td>
</tr>
<tr>
<td>Total Duration of Project</td>
<td>24</td>
</tr>
</tbody>
</table>
QUESTIONS?