Effects of Construction on Shaft Performance

Part I: Polymer Slurry Exposure

GRIP 2015

Presented by: Lucas Caliari de Lima, Ms.C.

UNIVERSITY OF SOUTH FLORIDA

Civil & Environmental Engineering
Design Considerations

- Ground Material
 - Clay
 - Sand
 - Rock

- Shaft Dimensions
 - Diameter
 - Length
 - Percent Steel

- Resistance Factor
 - Load testing type
 - Load testing frequency

- Rock Quality
 - UCS
 - Recovery, RQD
Construction Effects
(not addressed by design)

- Excavation Equipment
- Reinforcement Bar Size and Cage Spacing
- Concrete properties
- Cased or Slurry Supported
- Vibrated or Oscillated Casing
- Slurry Type
- Slurry Exposure
- Temporary or Permanent Casing
Structure of this Presentation

- **Part I:**
 - Effect of Polymer Slurry Stabilization on Drilled Shaft Side Shear over Time (BDV25-977-19)

- **Part II:**
 - Evaluating the Effect of Temporary Casing on Drilled Shaft Rock Socket Friction (BDV25 TWO 977-18)
Part I: Problem Statement

- Construction methods affect drilled shaft side shear resistance which is not fully addressed by design.

- The primary objective of this study is to quantify the time effects on side shear (if any) from prolonged open excavation where polymer slurry is present.
Problem Statement

- Bentonite and polymer slurries work differently (e.g. filter cake / no filter cake).

- Present specifications for bentonite largely do not apply to polymer.
Research Approach

- Task 1 Literature Review
- Task 2 Evaluation of Past Studies
- Task 3 Laboratory Side Shear Testing
- Task 4 Full Scale Field Testing
- Task 5 Draft Final and Final Report
Current Specification

FDOT 2014 455-15.11.5 specifications state:

Any unclassified excavation work lasting **more than 36 hours** (measured from the beginning of excavation for all methods except the Permanent Casing Method, which begins at the time excavation begins below the casing) before placement of the concrete requires **overreaming the sidewalls** to the depth of softening or **removing** excessive **slurry cake buildup**. Ensure that the minimum depth of overreaming the shaft sidewall is 1/2 inches and the maximum depth is 3 inches. . .
Polymer Slurries
Examples of general chemical composition

Cellulose based monomers

Acrylamide-sodium acrylate

(Majano, 1992)
Stress Relaxation – (Chang and Zhu, 2004)

Normalized Lateral Stress

Time (minute)

(1) Boring
(2) Leaving hole open
(3) Filling hole with water
(4) Soaking under water
(5) Casting
(6) Curing
Time Exposure to Bentonite Slurry Effects on Side Resistance

(Majano, 1992)
Time Exposure to Bentonite Slurry Effects on Side Resistance (Caliari de Lima, 2008)

\[Q_{su} = 30 \left(\frac{SPT(N)}{3} + 1 \right) A_s \]

For immediate casting

\[Q_{su} = 8.0 \left(\frac{SPT(N)}{3} + 1 \right) A_s \]

16h: 70% reduction

\[Q_{su} = 5.6 \left(\frac{SPT(N)}{3} + 1 \right) A_s \]

48h: 80% reduction
Time Exposure
Effects of drilling slurries on Side Resistance (Brown, 2002)
Time Exposure (interbedded sand clay layers)
Effects of bentonite and polymer slurries on Side Resistance (2.5ft)
(Lam and Jefferis, 2015)

![Graphs showing effects of bentonite and polymer slurries on pile head movement](image)

- **PHPA 37hr**
- **PHPA 12hr**
- **Bentonite 12hr**
Time Exposure (interbedded sand clay layers)
Effects of bentonite and polymer slurries on Side Resistance (2.5ft)
(Lam and Jefferis, 2015)
Time Exposure (dense sand)
Effects of bentonite and polymer slurries on Side Resistance (4ft shafts)
(Lam and Jefferis, 2015)
Next Steps for Part I

- Task 1 Literature Review
- Task 2 Evaluation of Past Studies
- Task 3 Laboratory Side Shear Testing
- Task 4 Full Scale Field Testing
- Task 5 Draft Final and Final Report
Questions for Part I?