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SI* (MODERN METRIC) CONVERSION FACTORS 

APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 

in inches 25.4 millimeters mm 

ft feet 0.305 meters m 

yd yards 0.914 meters m 

mi miles 1.61 kilometers km 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

AREA 

in2 square inches 645.2 square 
millimeters 

mm2 

ft2 square feet 0.093 square meters m2 

yd2 square yard 0.836 square meters m2 

ac acres 0.405 hectares ha 

mi2 square miles 2.59 square 
kilometers 

km2 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

VOLUME 

fl oz fluid ounces 29.57 milliliters mL 

gal gallons 3.785 liters L 

ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 

oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T short tons (2000 lb) 0.907 megagrams (or 
"metric ton") 

Mg (or "t") 
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SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 

or (F-32)/1.8 
Celsius oC 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 

fc foot-candles 10.76 lux lx 

fL foot-Lamberts 3.426 candela/m2 cd/m2 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

lbf poundforce 4.45 newtons N 

lbf/in2 poundforce per 
square inch 

6.89 kilopascals kPa 

kip kilopound 4.45 kilonewtons kN 

 
 

APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 

mm millimeters 0.039 inches in 

m meters 3.28 feet ft 

m meters 1.09 yards yd 

km kilometers 0.621 miles mi 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

AREA 

mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 

km2 square kilometers 0.386 square miles mi2 
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SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

VOLUME 

mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 

g grams 0.035 ounces oz 

kg kilograms 2.202 pounds lb 

Mg (or "t") megagrams (or 
"metric ton") 

1.103 short tons (2000 
lb) 

T 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 

lx  lux 0.0929 foot-candles fc 

cd/m2 candela/m2 0.2919 foot-Lamberts fl 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

N newtons 0.225 poundforce lbf 

kPa kilopascals 0.145 poundforce per 
square inch 

lbf/in2 

kN kilonewtons 0.225 kilopound kip 

*SI is the symbol for the International System of Units. Appropriate rounding should be made to 
comply with Section 4 of ASTM E380. 
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Executive Summary 
 

Splicing precast / prestressed concrete piles has historically been difficult as the attachment detail 
either requires preplanned considerations and cast-in connection details or requires on-site coring and 
doweling when unplanned pile extensions are needed. When the pile must be driven after splicing, the 
splice connection is prone to tensile failures due to the inability to transfer driving stresses through 
the connection and into the other pile segment. Focusing on preplanned splices, the Florida 
Department of Transportation (FDOT) limits tension stresses during driving to 250psi or 500psi for 
epoxy dowel splices or mechanical splices, respectively. This can limit the ability to efficiently drive 
the pile to the point that it may even be impossible. In response to the need for a more robust splicing 
methodology, FDOT sought an alternative concept which formed the basis of this study. To this end, 
an alternative approach that incorporated post tensioning was developed. The concept eliminates the 
limitations on tension stresses during driving. 
 
Four basic tasks were undertaken over the progression of this study: (1) modeling, design and 
development of a splice concept, (2) laboratory scale testing of components and prototype spliced 
piles,  (3) full scale bending tests of a finalized design, and (4) a pile driving demonstration using a 
spliced pile.  
 
The design concept used embedded anchorages cast into the ends of splice pile segments where the 
stress imposed by post tensioning was localized to only that portion of the concrete pile halves. The 
net effect was the superposition of post tensioning stresses with the existing stresses caused by normal 
prestress construction practice. Therein, the concrete near the end of the pile segments that normally 
would have little to no prestress would then gain the tensile capacity that accompanied the post 
tensioning process. 
 
Laboratory testing included testing individual components to be used in the splice and flexural testing 
of 14in square prestress piles spliced using the new method. In all four, 20ft long 14in square piles 
were cast, spliced and tested in four point bending. Two piles served as controls, while the other two 
were spliced from shorter 10ft segments. Information gained from the first splice was used to refine 
the second pile splice efforts. Test results showed that the cracking moment was virtually unaffected 
by the splice demonstrating tensile capacity has been transferred through the splice. The stiffness of 
the second splice pile was noted to be greater and the permanent deformation was substantially less 
when compared to the control piles. Lessons learned from the 14in pile tests were then applied to 
subsequent full scale tests. 
 
Full-scale tests involved casting three, 40ft long piles: two control piles and one splice pile comprised 
of two, 20ft segments. After splicing, all three piles were tested in four point bending which again 
showed the cracking moment to be the same and the ultimate moment was 96% of the unspliced 
control and safely over the minimum required 600k-ft capacity at 636k-ft. Stiffness of the spliced was 
again higher and permanent deformation signicantly less. The upper half of the spliced pile and one 
half of a control pile were salvaged from the tested piles and then retested in three point (at 
approximate half the span length). When compared to the control pile, the upper portion of the splice 
pile showed approximately 20% increase in bending capacity. This is useful as the extra, unstressed 
strand in the upper pile can bolster moment capacity at the top of the pile where most foundations 
suffer the highest applied bending stresses. 
 
The study culminated in a driving demonstration of a 100ft spliced pile specimen. Therein, both the 
maximum allowable tension and compression stresses were exceeded with no adverse effects to the 
splice. 
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The findings of this study suggest that the concept splice design can effectively restore full capacity 
for the purposes of withstanding pile driving installation and structural loading. Therein, full prestress 
levels were transferred through the splice zone which no other commercial method provides.  
Additionally, the splice design provides full corrosion protection as no components of the splice 
breach the concrete cover.  
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3 
 

Splicing concrete piles, the topic of this report and study, has plagued construction for decades 
and out of hundreds of concepts very few have been shown successful. A post tensioned option 
for splicing prestressed concrete piles is presented herein that has the potential of providing the 
same level of performance gain to pile splicing that was brought about by prestressing over 
reinforced concrete. 
 
1.3 Report Organization 
 
This report discusses the development of a post tensioned pile splice option that uses embedded 
anchorages that in turn transfer full prestress through the splice region. This concept therefore 
allows spliced piles to be driven to full permissible tensile stresses just as if the pile were not 
spliced at all. Additionally, as the anchorages are all within the reinforcing steel cage, no adverse 
effects are introduced with regards to long-term corrosion durability. 
  
The organization of the report is broken into the five ensuing chapters. Chapter 2 provides a 
background into various splicing options historically used throughout the world and in the state 
of Florida. Chapter 3 is discusses the steps taken to design and develop a new splicing technique 
along with component testing. Chapter 4 deals with casting 14in square prototype splice piles 
along with unspliced controls, and testing them in four-point bend. Chapter 5 discusses the 
efforts that parallel Chapter 4 but for full scale 24in square prestressed piles which are more in 
line with the normally used piles by FDOT. And finally, Chapter 6 provides a discussion and 
summary of the results as well as recommendations for the use of the newly developed splicing 
system.  
  



4 
 

Chapter 2: Literature Review 
 

 
This chapter provides a brief history of pile splices, and the importance of / need for a more 
robust, seamless splice alternative. 

 
2.1 Prestressed Piles 
 
In short, the concept of prestressing is simple: by holding the reinforcing steel in tension before 
the concrete is poured around it, waiting for the concrete to cure to a sufficient strength around 
the pre-tensioned steel, and then releasing the pre-tensioning force in the steel, the concrete is 
then pre-compressed. This shifts the origin of the concrete stress / strain diagram and gives the 
concrete an apparent tensile strength in its unloaded state. When applied to piles, this allows the 
concrete to stay in compression when tensile stresses that normally occur during driving are 
imposed. Without it, far more steel is required to control tensile cracking. 
 
The FDOT specifications for piles address strength and construction details that include: 
permissible driving stresses, axial and bending capacity and considers the location and type of 
splices that might be encountered.  
 
2.1.1 Pile Specifications for Driving Stresses 
 
The FDOT Specifications 455 Section 5.11.2 limits the stresses developed in prestressed 
concrete piles during driving based on the Wave Equation [4] wherein the following equations 
are used to determine the maximum allowed pile stresses measured during driving:  
 

sapc = 0.7 f′c− 0.75 f pe  (1) 
 
sapt = 6.5 (f′c)

0.5+1.05 f pe  (2a) for piles less than 50 feet long 
 
sapt = 3.25 (f′c)

0.5+1.05 f pe   (2b) for piles 50 feet long and greater 
 
sapt = 500    (2c) within 20 feet of a mechanical splice 

 
where:  

sapc= maximum allowed pile compressive stress, psi  
sapt= maximum allowed pile tensile stress, psi  
f′c= specified minimum compressive strength of concrete, psi  
fpe= effective prestress (after all losses) at the time of driving, psi, taken as 0.8 
times the initial prestress force (fpe= 0 for dowel spliced piles). 

Drivability must be considered for pile splices within the proposed study.  Piles without splices 
are permitted to develop between 1200 and 1500 psi of tensile stresses during driving (f’c = 6000 
psi) based on various FDOT approved 24in pile strand configurations. 
Once a splice is made, maximum allowable tensile stresses are significantly reduced to either 
250 or 500 psi for dowel or mechanical splices, respectively.  This causes a 58 to 83% reduction 
in the allowable tensile stresses during driving depending on which initial level is assumed (1200 
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or 1500psi).  As a result, the contractor must reduce the driving energy which increases the time 
required to install the piles.  The 500 psi limit applies to the only FDOT-approved mechanical 
splice (Sure-Lock) which in other states is driven successfully to 1000 psi tensile stress. As more 
mechanical splice options become available, this may warrant a manufacturer specified rating.  
If a spliced pile can maintain full prestress through the spliced region, the driving efficiency will 
not be affected and associated delays can be avoided. This was a primary goal of this study. 

2.1.2 Splice Specifications 
 
Pile splices are categorized into three types by FDOT Section 455-7.7 and Standard Index No. 
20601 as (1) Unforeseen, non-drivable, (2) Unforeseen drivable and (3) Preplanned drivable. The 
first case is used after capacity has been satisfied during driving but the top of pile is too low to 
meet the cutoff elevation. The upper half of this splice is a cast-in-place build-up and not 
intended to be driven. The second case addresses the situation where capacity has not been met 
unexpectedly and it may or may not be known how much farther it will need to be driven; or, in 
cases where a build-up exceeds the maximum permissible length of 21ft. Epoxy-doweled splices 
are essentially the only option available where the bottom pile must be cored through a template 
to assure proper dowel rod placement and alignment.  The upper pile is cast with embedded 
dowel bars (Figures 2.6 and 2.8). The third case is perhaps the most desirable of the three 
categories where splices are planned in advance and necessary provisions are met. This case can 
use either an epoxy-doweled splice with preformed holes in the lower segment or the only 
mechanical splice on the QPL which is the Sure-Lock / Kie-Lock system. Use of the Sure-Lock 
requires a waiver from the Buy America Provisions from FHWA. The latter two cases apply to 
this study wherein the third has the greatest potential for immediate improvement. However, 
developing means to address unforeseen pile splices will be thoroughly reviewed. 

Although driving stresses are limited to 250 or 500 psi in tension, the strength of a pile splice 
must meet the following criteria for compression, tension or bending (Table 2.1) once in place 

[4]: 
Compressive strength = (Pile Cross sectional area) x (28 day concrete strength) 

 
Tensile Strength = (Pile Cross sectional area) x 900 psi 
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Table 2.1. Bending strength of FDOT prestressed concrete piles. 
Pile Size (inches) Bending Strength (kip-feet) 

18 245 

20 325 

24 600 

30 950 

 
2.2 Pile Splices 
 
The ACI guide [2] states that splices may need to be designed to resist the same compression, 
tension, bending and shear as the pile cross-section; FDOT has similar limitations discussed 
above [4]. The potential for corrosion must also be addressed and torsional loading can arise if 
the pile helmet (that transfers the load to the pile) fits too tightly on the pile preventing it from 
rotating relative to the pile segment already embedded in the soil. Some of these requirements 
can be minimized by appropriately locating the splice when possible.  
A number of proprietary splicing systems are commercially available [5-14]. The connection 
between the two segments can be made in a variety of different ways each with particular 
advantages and disadvantages. Splices are generally considered to be a weak link that most 
drastically affects driving. Failure of a pile splice can occur either in the splicing component 
itself, or in the connection between the splicing component and the pile segments. Because of 
these two independent, but equally important, possible modes of failure, pile splices can be 
categorized in two ways: (1) by the mechanism in which the splicing component joins the pile 
segments together, and (2) by the way in which the splicing component is anchored to the pile 
segments (Figure 2.1). 
 

 
Figure 2.1. Pile splice components used to categorize splice types. 

 
 

Both joining and anchorage approaches are presented herein. 
 
 
 
 

Anchorage (2) Anchorage (2) 

Joint (1)
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prestress. The splicing component can be strands passed through the splice or coupling plates 
which are often the same components providing prestress to concrete pile. Once the strands 
are stressed and the pile is cast, the splicing component serves as an anchor for the stressed 
strands and, likewise, the stressed strands serve to anchor the splicing component. 
 

o Advantages - Excellent capacity. 
  

o Disadvantages - may require specialized casting equipment 
- some applications have complicated stressing configurations 
- post tensioning in the field may have special safety concerns  

 
 
 

2.2.3 Concrete Pile Splicing Systems 
 

The need for pile splicing systems which are strong, cost effective, constructable, and durable 
has produced a vast array of proprietary and non-proprietary systems which utilize different 
combinations of the joining and anchoring mechanisms mentioned above. Splicing systems are 
summarized below which are commonly used, in development and those under consideration, as 
well as those which are relevant to this study. 

 
 

 Epoxy Doweled Splice – Doweled splice with unstressed end anchorage. 
 
This is the predominant method currently used in the state of Florida. It is a doweled splice, 
as described previously, which is bonded by epoxy (Figure 2.8). Although this splice type 
has the disadvantage of waiting for the epoxy to cure to develop tensile capacity, this can be 
circumnavigated by simply providing a cushion between the pile segments and driving the 
spliced piles with wet epoxy. This dampens the impact force that may otherwise damage the 
spliced ends of the piles when allowed to separate during driving. The in-place flexural 
strength of the pile splice is still limited and the tensile stressed during driving are restricted 
to about 250 psi [4]. Figure 2.8 shows the basic steps for constructing an epoxy dowel splice. 
Note: at the completion of this process, the crane must hold the upper segment in correct 
alignment until the epoxy cures to sufficient strength. 
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All of the above systems have proven to be viable alternatives for splicing precast concrete piles. 
However, they all have shortcomings which complicate their use for every application. The 
following table (Table 2.2) describes the important aspects of the splicing systems and provides a 
summary of how each system rates in these aspects. 
 
 
Capacity Flexural and tensile strength required for both driving forces and design loads. 

It is the goal of most splicing systems to match the capacity of the un-spliced 
pile. 

 
Failure Type Ductile failure is always preferred, but is especially desired in areas where 

ship impact is considered. 
 
Durability This is of utmost concern in marine environments. Durability of a splice 

pertains to its own likelihood of corrosion as well as its tendency cause cracks 
in the pile which allow for corrosion of reinforcement and stressed strands. 
This is only of concern when the splice comes to rest above the mudline. 

 
Installation This is a combination of the time and labor involved in achieving the splice in 

the field. 
 
Production US made Yes / No. Only domestically produced products may be used on 

transportation projects in the U.S. without special exceptions. 
 

Table 2.2. Summary of splicing systems. 
 Capacity Failure Type Durability Installation Production

Epoxy Dowel Poor Ductile Good 
Moderate / 

Poor 
Yes 

Kie-Lock Good Ductile Moderate Good No 

ICP Piles Good Brittle Moderate Moderate No 

GCP Piles Good Ductile Good Poor Yes 

NU Chuck Good Brittle Moderate 
Un-tested / 
Moderate 

Yes 

UF Tube Good Ductile Good Poor Yes 

GYA 
Mechanical 

Good Ductile Moderate Good No 

Macalloy Good Ductile Good 
Moderate / 

Poor 
No 

  



17 
 

2.3 FHWA Buy America 
 

The FHWA statutory provisions for Buy America [18] directly apply to all steel or iron products 
used on roadway projects which include pile splicing materials. This provision can be found in 
Title 23 United States Code, Section 313; subparagraph (a) states:  

Notwithstanding any other provision of law, the Secretary of Transportation shall not 
obligate any funds authorized to be appropriated to carry out the Surface Transportation 
Assistance Act of 1982 (96 Stat. 2097) or this title and administered by the Department of 
Transportation, unless steel, iron, and manufactured products used in such project are 
produced in the United States 

Despite a wide range of pile splicing technologies, there is still need to provide an efficient, cost-
effective, and structurally robust concrete pile splice. Presently, only one such splice has been 
approved by FDOT and it is restricted due to foreign supplier rules.  
Further considerations should also address corrosion resistance for applications in harsh marine 
environments. 
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3.2 Numerical Modeling 
 
Moving from the concept designs to a prototype design requires an up-front analysis of the 
stresses that that will be expected. The effects of curved tendons, interior anchorages, additional 
confinement, and the overlapping of prestressed and post-tensioned sections must all be 
investigated. This requires rigorous numerical modeling which was undertaken using COMSOL, 
a finite element method program. For more typical prestressing applications however, analytical 
methods are readily available and are used herein to help ensure the validity of computer model 
results. 
 
Table 3.1 shows the specifications, as well as derived dimensions and material properties, for a 
FDOT standard 24” square prestressed concrete pile with a 24 strand configuration. Table 3.2 
provides calculated values based on AASHTO and ACI estimation methods for transfer stresses, 
prestress losses, and transfer length. Figures 3.7 - 3.11 show model results for the same pile 
immediately after transfer. The results are comparable to analytical methods. 
 
 

Table 3.1. 24" square prestressed concrete pile specifications and derived values 
 

B 24 in Square pile size 
Ns 24 Number of strands 

dps 0.5 in Diameter of strands 

Aps 0.153 in2 Area of single strand 

FpJ1 31 k Jacking force 

fpJ1 202.6 ksi Jacking stress 

fpu 270 ksi Ultimate strength, prestressing steel 

fpy 243 ksi Yield strength, prestressing steel 

f'ci 6000 psi 
Compressive strength, concrete at 
transfer 

Eps 27000 ksi Elastic modulus, prestressing steel 

Eci 4415 ksi Elastic modulus, concrete at transfer 

ttr 7 days Time between jacking and transfer 
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prototypes. Model 1 showed the effects when no specialized deviator reinforcement was used 
and Model 2 included deviator bars with a larger area anchorage. 
 
Table 3.3. Model parameters for 14in prototype splice piles 

 Model 1 Model 2 

Pile size 14 in. 14 in. 

Prestressing (8) ½“ strands @ 31 kips (8) ½“ strands @ 31 kips 

Post-tensioning (8) ½“ strands @ 31 kips (8) ½“ strands @ 31 kips 

Anchorage location 2 ft. 2 ft. 

Deviation angle, radius 20o, 5” 20o, 5” 

Anchor plate 1.8”x1.8”x0.5” 2.5”x3”x0.75” 

Confinement steel None (8) #3 ties 

 
 
Figures 3.12 – 3.14 show comparisons of results from these models. Both the longitudinal stress 
profiles (Figure 3.12) and the contact pressure on the surface of the anchors (Figure 3.14) show 
that the anchor plate dimensions used in Model 1 cause bearing stresses in the concrete in excess 
of 6000 psi. The anchor plate dimensions used in Model 2 however, bring these stresses to a 
more acceptable level. While the modeled anchor plate is 0.75”, a thinner plate with stiffeners, 
like that shown in Figure 3.6, could provide equivalent results. The effects of confinement steel 
are seen in the transverse stress profiles (Figure 3.13), where the tension in the concrete at the 
center of the pile due to the deviated strands is significantly reduced when reinforcement is 
present. However the model does not show a reduction in the compressive stresses on the 
concave side of the deviation. This is due to a simplification in the geometry of the model 
wherein a gap exists between the steel ties and the ducts. In practice, the transverse steel would 
be in contact with, or possibly fastened to, the ducts. 
 
Two primary findings were taken from these numerical models: (1) increased compression stress 
in front of the anchorages would need to be addressed in the form of increased confinement steel 
and, (2) deviator stresses would require tension struts to eliminate the possibility of internal 
concrete cracking. 
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3.4 Concept Redirection 
 
Physical modeling revealed a conceptual / design flaw that could not be eliminated and 
redirected the entire concept. Two conflicting needs could not be met: (1) the smallest radius of 
curvature that a single strand can easily negotiate and be pushed by hand through the ducts is 
approximately 4 to 5ft and (2) the largest radius of the duct so that it can pass through the 
stirrups without drastically affecting the stirrup spacing is closer to 4 to 5in.  Even if the strand 
could be pushed through the tight turn, the tight radius in the duct would make losses in the 
strand too high to achieve a usable level of prestress. 
 
This led to an adaptation incorporating dually embedded anchorages where the lower pile 
segment is exactly as shown in Concept 2 or 3 (Figure 3.1), but the upper pile segment is 
equipped with similarly embedded anchorages within close proximity to the spliced end. The 
strands, however, extend through the upper pile segment anchorages to the top of pile where the 
strands can be stressed, but the locked in stress after the jack is released resides only in the 
regions of the pile adjacent the splice. All anchorages would still be the same commonly 
available prestressing chucks with spring loaded end caps and wedges adapted with a bearing 
plate. Figure 3.25 shows the two phases of the splice during stressing: initial forces applied via 
jacking at the upper pile end, and the final force applied only in the splicing region between the 
embedded chucks. 

 

 
 

Figure 3.25. Dually embedded anchorage concept. 
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Using a 50in spacing between chucks, a series of wedge setting tests were conducted that 
measured the losses from varying wedge setting methodologies. This included normal chucks 
with spring-loaded back caps, a power wedge setting jack that directly pressed on the wedges, 
and two variations of shims placed between spring and wedges in standard spring-loaded back 
caps.  
 
When jacking the 50in long, 1/2in strands (270ksi) to 80% of ultimate (33 kips) and releasing 
where only the spring loaded caps pushed the wedges into the locked position, the load fell to 
20kips. This corresponded to 0.15in of wedge travel before seating (PL/AE). For a 14in square 
pile with 8 strands, that equates to 816 psi concrete prestress (target design level is 1000psi 
minimum). Using a power wedge setting jack the final load after release was 25.5 kips (or 1041 
psi concrete prestress). While this level of prestress is reasonable, it is not a practical solution for 
embedded intermediate anchorages with the wedges so far from the jacking surface. Therefore, 
shims were inserted between the spring and wedges to reduce the 0.15in of wedge travel to a 
more acceptable level of movement and loss. Figure 3.27 shows the effect of one and two shim 
washers relative to the other two methods. The net result from using two 0.060 inch shim 
washers was a final load after release of 26.5 kips (1080 ksi). This corresponds to a 0.11in wedge 
set movement. 
 

 
Figure 3.27. Effect of varied wedge setting techniques on final posttensioning force. 

 
While, the increased final load was directly proportional to the thickness of the shim washers, an 
upper limit also existed where too many shims restricted the ability of the wedges to open 
enough for the strand to pass through. Likewise, there is always some movement required to full 
seat the wedges which is accompanied by depressions of the wedge teeth cutting into / 
imprinting the strands. Therefore, for the prototype splice pile system, the lower pile was 
equipped with spring only chucks while the upper pile segment was equipped with two, 0.060in 
shim washers in each chuck. Recall, the lower pile chucks will seat immediately during jacking; 
only the upper pile will experience wedge setting losses.  
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Using this information, a 2 1/8in offset was used in the trial casting of the first prototype pile 
specimens.  
 
4.1.2 Casting Bed Fabrication and Assembly 
 
Aside from purchasing the 14in piles used for the casting bed, several steps were taken to ensure 
the bed could safely withstand the 500kip compression load. These included: cutting each pile to 
the same length (as near as possible), cutting the lifting hooks, drilling the 2.5in header plate to 
match the strand pattern, anchoring the ends of bed so out of plane distortion would not result, 
pouring a capping compound between pile ends and head plate to remove irregularities, and 
instrumenting the compression strut piles to monitor bed performance. 
 
After cutting off the hooks from the top of the piles, a cursory evaluation of the top of pile 
planeness was conducted and high spots were ground down level. The piles were then flipped 
over (bottom of original casing side up) to provide the correct side slope/tapper and set into their 
final position. This revealed further variations in the surface planeness that required further fine 
tuning in the form of grinding and shimming. 
 
Given the overall force in the casting bed was expected to be near 500 kips (16 strands at 30 
kips), an assumed alignment error of as much as 1 degree, a worst case scenario, was estimated 
where lateral out of bed plane forces may develop on the order of 8.7kips at one or both ends, 
[500 sine(1°) = 8.7kips]. As a result, ground anchors embedment lengths were determined based 
on a 10kip load and then installed at each of the four corners of the bed to counteract these forces 
and maintain bed stability.  The ground anchors were installed to a depth of 9ft using threaded 
bars and load tested to 20kips to verify capacity. 
 
Identical header plates were used on both ends. Precise location of the strand holes were 
determined to accommodate the side-by-side bed. Figure 4.10 shows the 2.5in plate being drilled 
with this pattern. Figures 4.11 through 4.16 show a progression of the casting bed setup. 
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Figure 4.30. Casting bed response to stressing (Live end bed force; dead end load cells). 

 
Figure 4.31. Dead end casting bed forces from strain gages. 

 
Figure 4.32 shows how the jacking pattern controlled the center compression strut eccentricity 
and kept the force in the casting bed balanced. Also, the outer two compression struts show the 
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eccentricity ended at about 4in off-center which corresponds well to the 2 inch void/spacer 
placed there to minimize the outer strut bending and mid-length lateral movement (2in void 
stopped 5in from centerline). While numerical modeling showed the 2 inch spacer would 
eliminate lateral movement, 0.013inches of outward movement was recorded in both outer bed 
piles (compression struts). This was determined to be due to the increased modulus in the bed 
piles originally assumed to be 6ksi concrete. The actual strength was calibrated to be closer to 
9ksi based on the recorded bed strains. 

 
Figure 4.32. Casting bed eccentricities during stressing. 

 
Detensioning was performed 3 days after casting at an average concrete break strength of 6350 
psi. A detensioning order was adopted from standard practices for the west pile, but the east pile 
order was rotated 180 degrees to maintain bed concentricity. Figure 4.33 shows the detensioning 
order with the east/right side rotated 180degrees. Figure 4.34 shows the strands being cut and 
Figures 4.35 – 4.37 show the force in the bed and load cells during strand cutting.  
 
Strain gages mounted to the concrete surface of the pile specimens were used to measure the 
strains locked in by the prestressing and subsequently to be used to show superimposed strains 
from splicing. A 5in interval between strain gages was selected to coincide with the midpoint 
between anchorages.  Figure 4.38 shows the strains recorded from the ends and splice zone all 
referenced to the dead end of the pile.  
 
Figures 4.39 – 4.43 show the pile removal and end preparations before splicing. 
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Figure 4.35. Load cell measurements during detensioning. 

 
Figure 4.36. Load in casting bed struts during detensioning (live / south end). 
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Figure 4.37. Load in casting bed struts during detensioning (dead / north end). 

 
Figure 4.38. Concrete surface strain in piles; transfer length longer on cutting end (also live 
end). 
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4.2.2 Splicing First Prototype Pile (14in) 
 
The procedure for splicing was tailored to be as time efficient as possible in the field. To this end 
and in preparation, all splicing strands were fed into the upper pile segment leaving 60 inches 
exposed on the bottom end and clamped to ensure no slippage (upward movement into upper pile 
segment) during assembly with the lower pile segment. Three feet of exposed strand was 
provided at the upper end of the upper pile segment for jacking. With these preparations 
completed, the strands could slide up or down in the upper pile segment ducts. Clamps at the 
base of the pile on the strand prevent strands from moving into the pile while the wedges in the 
anchorages prevented movement out of the pile.  Splicing proceeded using the following 
instruction: 
 

 inspect ducts for debris and check spring movement of embedded wedges. 

 apply an epoxy sealant to the splicing surface of lower pile. 
 
Note: if pile splice is performed horizontally, epoxy will require a medium body paste 
consistency. Vertically spliced piles can use more fluid material provided side forms are 
provided. However, care should be taken to keep epoxy from filling the ducts that are later 
grouted.  
 

 bring the piles together close enough to align each strand.  
 
Note: strands can be cut with ½ to 1in staggers to aid in alignment without necessitating 
simultaneous alignment of all strands at once. 
 

 lower the upper pile until in close proximity to lower pile and where all strands have 
penetrated the lower pile anchor wedges (approx. 2 - 3in). 

 
Note: for horizontal splicing, epoxy can be applied at this time but additional clearance will be 
required to facilitate access. This was the case for the splice performed for the first prototype 
pile. 
  

 remove strand clamps 

 mate pile segments 

 while epoxy is still wet, stress the strands in crossing pairs 

 cut off excess strand from top of pile with torch or grinder. 

 with pile in upright position, inject grout into lower pile grout ports until fluid grout is 
observed in upper segment ducts (top surface) 
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In theory, the more stages used the better where lower losses result as the concrete compression 
stabilizes with more uniform strand forces. Conversely, fewer stages are preferred when 
addressing field efficiency. As an upper limit there is a practical limit to the amount of force 
increase in the strand that can be attained with subsequent pulls due to the imprints made on the 
strand by the wedges. If a subsequent strand pull does not cause enough elongation to move a 
given strand imprint to the next wedge tooth then the wedge will reseat in the original imprint. 
Therefore, it is desirable to ensure that subsequent strand pulls produce enough elongation to at 
least exceed the tooth pitch in the wedge (25 teeth/inch). Balancing these considerations, two or 
three stages might be considered; three stages were chosen for the first splicing specimen. 
Selection of jacking forces was iterative such that each stage would just overcome an integer 
number of wedge teeth (e.g. 4.1 teeth preferred over 3.9 teeth). Table 4.1 and 4.2 shows the loss 
in the first strand from subsequent pulls for both the two and three stage options. Table 4.3 and 
4.4 likewise shows the number of wedge teeth overcome with each stage of stressing for both 
options. The 3 stage option resulted in lower losses but still develops enough elongation to 
engage a different set of imprints. 
 
Table 4.1. Losses in first stressed strand from subsequent strands (3 stage option). 

Force in 1st Strand Stressed (kips) 

Strand 
Loaded 

Stage 1 Stage 2 Stage 3 

1 7 18.5 26.5 

2 6.940056 18.44894 26.46448 

3 6.880112 18.39787 26.42896 

4 6.820167 18.34681 26.39343 

5 6.760223 18.29575 26.35791 

6 6.700279 18.24468 26.32239 

7 6.640335 18.19362 26.28687 

8 6.58039 18.14255 26.25134 

 
Table 4.2. Losses in first stressed strand from subsequent strands (2 stage option). 

Strand 
Loaded 

Stage 1 Stage 2 

1 8 26.5 
2 7.935615 26.38899 
3 7.871231 26.27798 
4 7.806846 26.16698 
5 7.742462 26.05597 
6 7.678077 25.94496 
7 7.613693 25.83395 
8 7.549308 25.72295 
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Table 4.3. Number of teeth overcome in subsequent stages (3 stage option). 
Stage Force (kips) Concrete 

compression 
(in) 

Strand 
Elongation 
(in) 

Relative 
Elongation 
(in) 

Number 
of Teeth Jacking After 

release 
1 13.5 7 0.000685504 0.15213 0.152805 N/A 
2 25 18.5 0.000900672 0.20284 0.20374 5.093511
3 33 26.5 0.000725541 0.163399 0.164124 4.103106

 
Table 4.4. Number of teeth overcome in subsequent stages (2 stage option). 

Stage Force (kips) Concrete 
compression 
(in) 

Strand 
Elongation 
(in) 

Relative 
Elongation 
(in) 

Number 
of Teeth Jacking After 

release 
1 14.5 8 0.000725541 0.163399 0.164124 N/A 
2 33 26.5 0.001250933 0.281722 0.282973 7.07432 

 
Strain gages mounted to the four sides of the pile segments (5 inches on either side of the splice 
joint) provided a means to track the eccentric load from the stressing sequence. The final state of 
stress in the pile is shown in Figure 4.60 where some eccentricity can be seen, but the average 
concrete stress was approximately 1040 psi. Figure 4.61 shows the stressing order of the splicing 
strands. 
 
Using strain data from the splicing along with that from the detensioning (Figure 4.38), the 
combined effects from both detensioning (transfer length effects) and splicing are shown in 
Figure 4.62. For this specimen, strain gages were only mounted on the top surface in an array 
that coincided with the midpoint between anchorages (e.g. 5, 15, 25, and 35 inches). A fifth gage 
was also mounted at 45 inches behind the last anchorage, farthest from the splice. As expected, 
no appreciable strain was observed behind the last anchorage (slight tension). The combined / 
superimposed strains from splicing and initial prestress amount to only a 20% increase above the 
norm noted at the time of detensioning.   
 
Note: as the strains are measured between anchorages, higher strains are likely to exist just at the 
face of the anchorage as shown in the assumed saw tooth strain distribution. These will vary 
depending on whether it is on the live or dead end of the splice due to anchor set losses. 
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Figure 4.62. Concrete strain from splicing and detensioning. 

 
 
Several modifications were noted which were incorporated into the second splice prototype 
specimen:  
 
Design / Fabrication changes: 

 Provide threaded duct ends to prevent contamination from getting in ducts during strand 
stub cutting, pile driving, shipping, or storage.  

 Isolation sleeves to prevent epoxy from filling grouting ducts (threaded into the same 
duct end cap threads) 

 Change clamping assemblies to individual strand clamps (strand clamps used during 
shipping and assembly need to be individual and not grouped to allow spinning during 
final strand insertion) 

 Use longer embedment in lower pile segment (longer strand length between piles 
provides more flexibility in the strand during splicing and can be more easily 
manipulated to align in lower pile embedded wedges). 

 Full weld on all ducts to caps 

 ½ in anchorage plates (discontinue ¾ in thick option)  

 Pre-weld anchorage plates to chucks before drilling and reaming; this eliminates the need 
of precisely aligning during welding 

 Washers need larger ID / OD must match chuck I.D.; this keeps washers from falling into 
the path of the strand during insertion 
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 7/8” I.D. ducts for all locations (discontinue use of larger 1.25in, upper segment ducts as 
they are no longer needed; smaller ducts will suffice).  

Procedural Changes 

 Seal spring caps before threading strands in bed (sealing after strands in place provided 
poor access)  

 De-burr and test fit ducts to grout manifold before installation in bed 

 Vacuum test all ducts before threading strand  

 Inspect all ducts with borehole scope 

 Continue push rod spring displacement test 
 
  



 

4.2.3 Cas
 
While th
set added
threaded 
4.64). Fig
coils. Fig
 

Fig

sting Secon

he basic proc
d the deform
duct inserts
gure 4.65 sh
gures 4.66 – 

Figure 4

gure 4.64. Du

d Prototype

cedure of ca
mation of th
 (specialized

hows the def
4.79 show th

.63. Duct de

uct inserts w

e Pile (14in)

asting was th
he ducts to 
d bolts) to ho
formed ducts
he casting pr

eformation in

were fabricat

86 

) 

he same as t
increase bo
old the ducts
s attached to
rocess. 

n purpose-bu
 

ed to preven

the first, pre
ond (Figure 
s to the splic
o anchorages

uilt hydrauli

nt debris from

eparations fo
4.63) and th

cing header 
s complete w

c stamping p

m getting int

or the second
he fabricatio
assembly (F
with confine

 
press. 

 
to the ducts.

d pile 
on of 

Figure 
ement 



 

Figure 4
regions o

4.65. Confine
of high antici

ement coils u
ipated stress

used to bolst
ses. 

87 

ter local con

 

ncrete strengtth welded to
 

o anchoragess in 



 

Figure 4
attaching
(BR). 
 

4.66. Splice h
g ducts (TR);

header assem
; fully assem

mbly fitted w
mbled (BR); 

88 

with inserts a
and jacking 

awaiting inst
end plate at 

tallation of d
t top of uppe

  

 
ducts (TL); 
er pile segmeent 



 

Figurre 4.67 Asseembly prior tto pulling str

89 

rand and spi
 

irals (lookingg toward low
 

wer segmentt). 



 

Figurre 4.68. Asseembly prior to pulling st

90 

trand and spiirals (lookinng toward uppper segmentt). 



 

Figure 4
locate du

Figure 4
port (left
enhancem

4.69. Aligme
ucts. 

4.70. Grout m
t); four duct
ment from du

ent plate inse

manifold in l
t grout duct
uct deformat

erted into the

lower pile se
 and manifo
tion (right). 

91 

e lower and u

 

egment with 
old in contro
 

upper segme

slight modi
ol pile for p

ent of the sp

ification, no 
pull-out test

 
plice pile to b

side access 
ts assessing 

better 

 
grout 
bond 



 

Figure 4.71. Thread

92 

 

ding strand i
 
 
 

into casting bbed. 
 



 

Figure 4
control p

4.72. Strands
pile left and s

 in place and
splice pile ri

Fig

d load cells o
ght. 

gure 4.73. Li

93 

on center tw

 

ive end prior

wo strands of 

r to jacking.

f each pile on
 

n dead end; 



 

Figure 4
losses). 
 

Figure 4
specimen

4.74. Prestres

4.75. Fully st
n right. 

ssing strands

tressed bed w

s in bed (hyd

with spiral re

94 

draulic wedg

einforcemen

ge setter used

nt in place; co

d to minimiz

ontrol pile le

ze short bed 

eft, splice 

 

 



 

Figuure 4.76. Conncrete placement with 5

95 

 

.5in slump; 
 

control pile 2 left, splice
 

e pile 2 rightt. 



 

Figure 4
dead end
     

4.77. Strand 
d (bot). 

cutting afteer concrete 

96 

achieved sttrength; mid

 

ddle splice h
 

header (top), and 



 

Figure 4
segment 

4.79. Splice 
(right). 

Figure 4.7

pile specim

78. Control p

men: lower s

97 

pile extracted
 

segment (lef

d from castin

ft), splice he

ng bed. 

eader still a
 

attached to uupper 



 

The stran
loads for
ending at

Fig
 

Figure

nd load cells
r the second 
t 28k) was c

gure 4.80. S

e 4.81. Stres

s and compr
set of pile s
orroborated 

tressing load

sing load in 

ression strut
specimens. T
from strain 

d in each com

each compr

98 

t strain gage
The total loa
gages (dead

mpression st

ression strut 

es were agai
ad in the bed
d end Figure 

trut of the pr

of bed (live 

in analyzed 
d (16 strands
19; live end

 
restress bed 

end) and str

to verify jac
s jacked to 3
d Figure 20).

(dead end).

 
rand load cel

cking 
31.8k; 

lls. 



 

 

 

 

Figure 4.82. De-ten

Figure 4.83

nsioning for

3. Load cell r

99 

rces recorded

responses du

d from the b

uring strand 

ed strain gag

cutting. 

ges. 
 

 



 

 
Subtle ad
confirme
the outer
location o

Figu
 
In short, 
 
 

djustments w
ed by the ecc
r compressi
of the plate c

ure 4.84. Ecc

all strain gag

were made 
centricity de
on struts w
contact. 

centricity sh

ge and load 

 

in the oute
etected in the

was approxim

hown as the b

cell values w

100 

er compress
e strain gage
mately 3.1 i

bed was stre

were consist

ion strut be
es. Figure 4
inches whic

ssed progres

ent and verif

earing locati
.84 shows th

ch correspon

ssively from

fied the bed 

ions which 
he eccentric
nded well to

 
m side to side

performanc

were 
ity in 
o the 

e. 

e. 



101 
 

4.2.4 Splicing Second Prototype Pile (14in) 
 
The second pile splice was again performed similarly to the first with the exception that the 
stressing stages were reduced to two stages instead of three. Also, instead of using the assumed 
value of ultimate strength for the strand (e.g. 270ksi), the exact strength was determined prior to 
stressing and post tensioning was taken to 75% of the tested value. In this case, the tested value 
was closer to 300 ksi using the embedded chuck anchorages, but the this value was recognized to 
be conservatively lower than that traditionally obtained when using carbide impregnated samples 
in specially designed grips (Table 4.5 and Figure 4.85). 
 
Table 4.5. Results of ultimate capacity testing of ½ inch strands. 
 

Ultimate Capacity 75% Ultimate 
(Design Jacking Force) Sample 1 Sample 2 Sample 3 Average 

45.4 k 45.5 k 45.6 k 45.5 k 34.1 k 

 

 
Figure 4.85. Load-Displacement curves for ½ inch strands, 3 samples tested. 
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Splicing Procedure: In preparation, all splicing strands were fed into the upper pile segment 
leaving 96 inches (this was increased from 60” in Prototype Splice Pile 1) exposed on the bottom 
end and clamped to ensure no slippage (upward movement into upper pile segment) during 
assembly with the lower pile segment. Three feet of exposed strand was provided at the upper 
end of the upper pile segment for jacking. With these preparations complete, the strands could 
not slide up or down in the upper pile segment ducts and the splicing proceeded similarly to the 
first pile splice where the following steps were taken: 
 

 inspect ducts for debris and check spring movement of embedded wedges. 
 apply an epoxy sealant to the splicing surface of lower pile. 

Note: if pile splice is performed horizontally, epoxy will require a medium body paste 
consistency. Vertically spliced piles can use more fluid material provided side forms are 
provided. However, care should be taken to keep epoxy from filling the ducts that are 
later grouted.  

 bring the piles together close enough to align each strand.  
Note: strands should be cut with ½ to 1in staggers to aid in alignment without 
necessitating simultaneous alignment of all strands at once. 

 lower the upper pile until in close proximity to lower pile and where all strands have 
penetrated the anchor wedges (approx. 2 - 3in). 
Note: for horizontal splicing, epoxy can be applied at this time but additional clearance 
will be required to facilitate access. This was the case for the splice performed in this 
progress report. 

 remove strand clamps 
 mate pile segments 
 while epoxy is still wet, stress the strands in crossing pairs 
 cut off excess strand from top of pile with torch or grinder. 
 with pile in upright position, inject grout into lower pile grout ports until fluid grout is 

observed in upper segment ducts (top surface) 
Note: grout can be installed at any time and is not necessary for pile driving. Pile driving 
can proceed immediately after grout has been placed or if grouting port is still 
accessible, grouting can be performed later. 

 
An overview of these steps as performed for this specimen is provided. 
 
Pre-Splice Checks: Prior to splicing, checks of each spring-loaded wedge assembly were 
performed (Figure 4.86). Lower segment anchorages (without washers) should compress 
approximately 3/8 inch, while the upper segment anchorages with the reduced wedge travel 
should only compress 1/4 of an inch (difference caused by inserts). 
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4.3 Four-Point Bending Tests 
 
While pile splicing was performed 14 and 10 days after casting for prototype pile specimens one 
and two, respectively, the bending tests were performed over a two day period that corresponded 
to 90 and 56 days after casting the piles, again respectively. Compressive strength of the concrete 
and grout strength were monitored throughout the casting, splicing and bending test timeline. 
These values are shown in Table 4.6 and Figure 4.106. 
 

Table 4.6. Compressive strengths of concrete and cable grout along with timeline of events. 
  

  
  

1st Specimen Set 2nd Specimen Set Cable Grout 
Concrete 

Age 
(days) 

Strength 
(psi) 

Concrete 
Age 

(days) 

Strength 
(psi) 

Age 
(days) 

Strength 
(psi) 

11-Mar 1st casting 0 0 

  

  

14-Mar 1st transfer 3 6396 
25-Mar 1st splice 14 7790 
15-Apr 2nd casting 

  

0 0 
18-Apr 2nd transfer 3 5836 
25-Apr 2nd splice 10 7699 

12-May 
Grouting (1 & 
2) 

  

0 0 

15-May   3 2934 
19-May   7 3377 
9-Jun 1st Bend test 

  10-Jun 2nd Bend test 91 9377 56 9104 
17-Jun   36 4820 

 

 
Figure 4.106. Compressive strengths of concrete and cable grout. 
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4.3.1 Bending Test Setup 
 
Bending tests were performed using a four-point loading configuration (Figure 4.107) where a 
spreader beam was used to split the load from a single hydraulic jack through a hemi-spherical 
bearing to two loads 2ft off the midspan location. Surface mounted strain gages were used to 
verify the two loading points produced the same force at all times. 
 
The flexural experiments were conducted at the Structures Lab of University of South Florida. 
These tests included two splice specimens and two control specimens. The dimensions of the 
experimental setup are shown in Figure 4.107. 

 
Figure 4.107. Dimensions of the Flexural Experiment 

 
Three LVDTs were positioned as shown in Figure 4.108: 

 
Figure 4.108. Layout of LVDTs 

 
One LVDT was located at the center of the specimen and the other two were located at the 
quarter positions. The finished experimental setup is shown in Figure 4.109. The specimen was 
supported on roller supports at each end. The positions of the supports were carefully adjusted to 
ensure correct alignment of the loading. The roller support is shown in Figure 4.110. 
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Figure 4.112. Strain Gage Layout Top View for Spliced Specimens 
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The side view of strain gage layout for spliced specimen is shown in Figure 4.113. 
 

 

 
Figure 4.113. Strain Gage Layout Side View for Spliced Specimens 

 
In the side view, top strain gages were not shown for clarity. 
 
Figures 4.114-4.117 show the four piles both before and after failure and in order of testing: 
Control 1, Splice 1, Control 2, and Splice 2. 
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Figure 4.119. Load vs Mid-Span Deflection for Test 1. 

 
After initial failure, the load was fully removed and the splice pile rebounded from 2.25in to 
0.25in while the control pile showed 2.25in of permanent deformation.  
 
The load versus deflection diagram for experiment series 2 is shown in Figure 4.120. 

 
Figure 4.120. Load vs Mid-Span Deflection for Test 2 
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After initial failure, the splice pile was loaded further to demonstrate ductility but with no 
additional capacity. In essence, a fulcrum point formed at the top of the reinforcing cage (cover 
was now missing) and the splice crack opened to that height; with the strands yielding; no 
additional moment could be developed. However, even after displacing it to the same level as the 
control pile, the rebound was over an inch more than the control pile. This can be attributed to 
the crack formation along the splice line which could close more easily than the irregular 
cracking of the control piles. 
 
In general, the spliced specimens followed the same behavior as that of the control specimens 
until the failure occurred. The average of the failure load of the control specimens was 39.3 kips 
and the average failure load of the spliced specimens was 34.4 kips. The second pile was thought 
to have performed better due to better bond (deformed ducts) and more development length 
behind the anchorages. Given the variation in strand pattern between the control and splice 
regions (i.e. 3 prestress strands in bottom layer versus 2 post tensioning strands in bottom layer), 
the results were as expected. Cracking loads were similar for all piles: average control pile 
cracking load was 10.9kips; splice piles 10.8kips.  
 
While the spliced piles could not achieve the same moment due to strand layout, the stiffness of 
the second prototype splice pile was notably stiffer than either control or the first prototype. The 
only difference was the duct deformations that more effectively transferred the load from the 
splice strands into the concrete immediately surrounding the splice region. This engaged the 
unstressed strands at the ends of each pile segment. In essence, the sections on either side of the 
splice contained twice as much strand steel as the controls and locally did not take on the same 
level of curvature. The undeformed ducts from the first prototype could not effectively engage 
the strands and had no advantage.  
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4.5 Lessons Learned 
 
Each splice pile tested to date provided usable feedback to further the advancement of the overall 
splice concept.  

 The 14in pile sets gave rationale for using deformed ducts wherein the smooth duct splice 
pile was less stiff than that with the deformed ducts. The deformed duct pile also showed 
a stiffer response than the unspliced control. 

 Duct deformations using a 2in spacing performed as well if not better than 1in spacing; 
use 2in spacing for deformations. 

 Grouting port can be optionally removed from the side of pile to the top of pile to 
enhance corrosion resistance. 

 Wedge set losses can be minimized by inserting a tolerance reducing shims behind the 
wedges. 

 Ducts can be grouped into more convenient panels for quicker field installation. 
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The spirals in the control piles had two layouts identified by specimen identifications C-1 or C-2. 
The C-1 control had a spiral layout identical to the spliced pile, i.e., 5 turns @ 1in followed by 16 
turns @ 3in at the ends. At the mid-span splice location there were 10 turns @ 1in followed by 
32 turns @ 3in symmetrically placed about the mid-span (16 turn on each side of center). The 
remaining portion of pile had a 6in pitch. This layout is shown in Figure 5.11.  

 

 

 

 

 

The C-2 specimen used a traditional layout consisting of 5 turns @ 1in CTC spacing followed by 
16 turns @ 3in at each end. The remaining portion of the pile had a 6in spiral pitch. This layout 
is shown in Figure 5.12. 

  

 

 
 
 

 
 
 
Figure 5.13 shows concrete placement of the 24in test specimens. All test piles were cast in the 
same bed, with the same concrete and prestress levels. Concrete test cylinders were made for 
compressive strength tests which were conducted at the Structures Lab at the University of South 
Florida. 

5 Turns @ 1” 

5 Turns @ 1” 6” Pitch (TYP.) 

16 Turns @ 3” 
16 Turns @ 3” 

5 Turns @ 1” 

5 Turns @ 1” 32 Turns @ 3” 

16 Turns @ 3” 16 Turns @ 3” 

6” Pitch 6” Pitch

10 Turns @ 1” 

Figure 5.11. C-1 control pile spiral layout (same as spliced pile). 

Figure 5.12. C-2 control pile spiral layout (same as FDOT standard specifications). 
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Figure 5.20. Timeline showing the stressing progression for three stressing passes. 

 
 

 

 
Figure 5.21. Stress distribution at the conclusion of splicing on both sides of the splice interface 

computed from average strains. 
 

The strands extending from the jacking end (top of spliced pile) were cut which was necessary to 
permit unobstructed access to the threaded duct ends for grouting (Figure 5.22).  
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5.4 Flexural Testing 
 
Two types of flexural testing were conducted to compare the performance of the splice system 
relative to unspliced control piles. The first set of tests used the full 40ft piles with a span of 38ft 
and two load points creating a constant bending moment within the center of the pile. This tested 
the effectiveness of the splice itself (compared to unspliced controls). Second, the upper portion 
of the splice pile (with double strand steel) was cut from the bottom half and tested in 3-point 
bending with a span of 18ft.  

5.4.1 Four-Point Bending Tests 
 
Four-point bending tests were conducted on November 19, 2014 at the FDOT Structures 
Research Center in Tallahassee to compare the performance of the splicing system relative to 
unspliced control specimens. The dimensions of the experimental setup were set in coordination 
with the FDOT / USF research team. Test setup scheme is shown in Figure 5.25. 
 
 
 
 

 

 

 

 

 

 

 

 

 

The spreader beam assembly used for all four-point bending tests is shown in Figure 5.26. 

19’-0” 19’-0”

3’-3” 3’-3”

Loading W14 x 109 

24” x 24” x 40’ Pile 18” x 7” x 1 5/8” 
Neoprene Pad 

Load Block Support 32” x 10” x 2” 
Neoprene Pad 

Figure 5.25. Four-point flexural test setup. 
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The inclined cracks are thought to have formed where the post-tensioning strands and ducts 
formed a transient support due to their larger flexural stiffness compared with other locations. 
The stress state of the inclined cracked element is shown in Figure 5.30. 

 

 

 

 

 

 

The aggregate interlocking stress τagg and contact stress of inclined crack can resist the dowel 
stress. 

 

5.4.2 Three-point bending 
 
The three-point bending tests (Figure 5.31 and 5.32) were conducted on the segments from the 
upper half of the spliced pile (with double steel) and one half of the control pile that had the extra 
spirals at the mid-length (Control-1). Control 1 was selected as it exhibited less distress and 
provided a viable specimen for retesting at half the original span length. Figure 5.33 shows three-
point specimens after testing.  

In essence, these unplanned tests gave insight into the true benefit of extra reinforcing steel at the 
top of spliced piles. This region of a pile in a bridge foundation is often exposed to the highest 
bending moments. 
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Figure 5.30. Stress state of inclined cracked element. 
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Figure 5.34. Load vs deflection for different pile specimens of four-point bending tests. 
 
Strain gages were attached to all the four point bending tests per the general schematic shown in 
Figure 5.35 where centerline denotes mid-span (side gages are only shown for west side). The 
numbers in the bracket refer to the strain gages on the east side. 

 

 

Figure 5.35. Overall strain gage layout. 
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For comparison, the load versus strain relationships of control pile (C-1 with tight spiral spacing) 
are shown in the Figures 5.40 – 5.44. 

 

Figure 5.40. Load vs strain for top gages 2, 4, 14, and 16 (tight control pile). 

 

Figure 5.41. Load vs strain for north bottom gages 1, 3, and 5 (tight control pile). 
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Figure 5.42. Load vs strain for South bottom gages 15, 17, and 18 (tight control pile). 

 

Figure 5.43. Load vs strain for east side gages 6, 8, 11, and 13 (tight control pile). 
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Figure 5.44. Load vs strain for west side gages 7, 9, 10, and 12 (tight control pile). 
 
The comparisons of load versus top strain relationships between spliced pile and control piles for 
four-point bending tests are shown in Figure 5.45. 

 

Figure 5.45. Load vs top strain for all three pile specimens in four-point bending. 
 

All strain data was plotted up to peak load unless the gage failed earlier.  
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The strain distribution along the side of the piles varied considerably between the splice and 
control piles where the control pile followed expected beam bending theory: gages 8, 9, 12, and 
13 in the bottom half of the pile were in tension and gages 6, 7, 10 and 11 in the top half were in 
compression. At approximately 55kips the neutral axis crossed over gages 7 and 11 (8in from 
top) where those gages transitioned from compression to tension.  

In contrast, the strain distribution along the side of the splice pile showed very little longitudinal 
strain in the bottom three gages; the neutral axis did appear to cross over gages 7 and 11 but at a 
lower load (45kips west side 32kips east side). The bottom two gages on each side show little to 
no strain which indicated the orientation of the gages was aligned in a zero stress direction (45 
degrees from any principal stress). This was confirmed by the crack that propagated from the 
bottom of the splice interface at a 45 degree angle (shown in Figure 5.29) essentially aligning 
with one of the principal stress directions (tension perpendicular the crack).  

 

5.5.2 Three-point bending 
 
The presence of double steel in the upper splice pile segment has the potential to be beneficial 
especially in cases where higher bending moments are experienced near the top of pile (beneath 
the pile cap). In such cases additional reinforcing steel is often added. However, the splice pile 
already has unused / abandoned steel strand in this region due to the process used for the splice. 
Therefore, the upper portion of the spliced four-point bending specimen was cut above the splice 
and retested with a shorter span in 3-point bending. Likewise, Control pile 1 with tighter spacing 
at mid span was also cut similarly and tested for comparison. Experimental results of load versus 
mid-span deflections for the two pile segments are shown in Figure 5.47. 

The spliced segment failed at 216.4 kips (919.7k-ft) while the control segment only failed at 
181.5 kips (771.4k-ft). Not surprisingly, this was lower than that of spliced segment. When the 
uniformly distributed dead load moment is added to the test load moments, validation of the 3 
point test can be shown where both tests of the control pile (3 or 4 point) resulted in the same 
failure moment (Table 5.1). The comparison also shows the spliced pile developed smaller 
permanent deformation but also exhibited higher flexural capacity in the upper segment than the 
regular (control) segment.  
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Figure 5.47. Loadings vs deflections for pile segments of three-point bending tests. 
 

Table 5.1. Comparison of bending moment at failure 

Tests 
Test Moment 

(k-ft) 
DL Moment* 

(k-ft) 
Ultimate 

Moment (k-ft) 
Specimens 

3 point 771.4 21.7 793.1 20ft Control 
4 point 670.2 108.3 778.5 40ft Control 
3 point 919.7 21.7 941.4 20ft Upper Splice Section 
4 point 635.9 108.3 744.2 40ft Spliced Pile 

*Dead load moments for both control and spliced piles were based on a unit weight of 150pcf. The true 
unit weight of the splice pile would be slightly higher than the control piles due to the additional weight of 
the splicing strands and components. 

The load versus top strain relationships for the pile segments in three-point bending tests are 
shown in Figure 5.48. Both segments failed at a compressive strain of 0.003 (3000ue shown in 
graph); the spliced segment again at a higher capacity than that of the control segment. 
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Figure 5.48. Load vs top Strains for pile segments in three-point bending. 
 
 
5.6 Lessons Learned 
 
Each splice pile tested provided usable feedback to further the advancement of the overall splice 
concept. For the 24in pile tests the following was concluded: 

 Casting yard installation highlighted the need to keep preassembled duct panel more 
flexible or use fewer ducts per assembly. 

 Concreting the splice pile could be made easier by reducing the number of splicing 
strands thereby using the next larger size strand (e.g. 16 – 0.6 splice strands instead of 20 
– 1/2in special, etc.). This also would reduce splicing time. However, this is only more 
cost effective and efficient if the reduced number of strands is divisible by 4. 

 The washer insert used to reduce wedge set losses may also restrict strand pass-through if 
the spring cap on the chuck is inadvertently left in the compressed state in the casting 
bed. Screw cap chucks with no spring back lash should be used to fully control final in-
bed tolerances. This complication manifested itself in difficult strand installation when 
preparing the upper pile segment prior to splicing. Recall the lower pile segment does not 
use the tolerance reducing washers. 

 Grouting was successful but slow due to restrictions in and around the wedges. Recall, 
grout was pumped through the ducts and passed through the three slits that form around 
the three wedges. Enhanced passageways should be considered to speed the grouting 
process or an even more fluid grout may be considered. 
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 High pressure used to force grout through the wedges also forced some grout to find 
alternate pathways out of the pile in the splice region. No adverse effects were noted as a 
result of the grout paths through the epoxy at the time of bending tests, but alternate 
couplers should be considered to provide the contractor the option to grout immediately 
while the epoxy is uncured. 
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Chapter 6: Field Pile Driving Demonstration (24in pile) 
 
As an extension to the full scale bending tests, another 24in splice pile specimen was cast and driven 
on a production bridge project where similarly sized piles had been already driven. This chapter 
outlines the steps taken in preparing the components, casting the pile segments, splicing the pile, 
driving the pile and an analysis of the collected data.  
 
The field demonstration specimen was cast from two 24in square pile segments where the lower 
segment was 70ft and the upper segment was 30ft. The location of the splice was set based on 
discussions with state engineers and practitioners that noted that tension stresses are often highest in 
the upper 1/3 of the pile length. 
 
6.1 Fabrication of Components 
 
Using recommended upgrades from the previous experiences (Chapters 4 and 5), the field 
demonstration spliced pile specimen incorporated the following modifications: 

(1) Screw back chucks were used to eliminate changes in wedge tolerances in the bed. 
(2) The number of splicing strands was reduced from 20-1/2in special strands to 16-0.6in 

strands. The motivation was to reduce splicing time and cage congestion during concreting. 
(3) The alignment dowels (previously conical in shape, Figure 5.15) were fabricated in a straight 

cylindrical fashion that could accommodate 1/8in thick neoprene compression gaskets to 
form a seal during grouting. 

(4) Recesses for neoprene seal/gaskets were produced on each face of the splice pile faces 
around each alignment dowel using 1/16in thick neoprene washers compressed between the 
splice header plate and the duct assemblies. 

(5) Ducts were fitted to the anchorages using thermal expansion/contraction to eliminate 
mismatched steel thicknesses that were previously welded. 

(6) Spatial conflicts between the anchor bearing plates and the adjacent duct were eliminated by 
tailoring the contact area and plate shape to fit around the adjacent strands and ducts. All 
bearing plates were laser cut by a computerized burn table. 

(7) Grout manifolds were maintained one per side of pile, but an offset was used to reduce the 
conflicts with the pile prestressing strands. 

(8) Finally, all ducts were deformed over the full length of duct and not just those portions 
immediately adjacent the splice interface (previous specimen was limited to 10ft on either 
side of the splice) 

 
As with the previous splice specimens, the preparations included fabrication of: chuck assemblies, 
confinement coils, deformed ducts, splice header, and grout manifolds. The laser cut bearing plates 
welded to the chucks are shown in Figure 6.1, ducts thermally press fitted to the anchorage and 
threaded chuck cap in Figure 6.2 and 6.3, confinement coils and finished assemblies Figure 6.4 and 
the resurfaced splice header plate Figure 6.5. In all, 32 chuck assemblies were needed for the 16 
splicing strand configuration. The pile however still used twenty 1/2in special strands. 
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Figure 6.26. Jack force history showing increasing load cycles. 
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Figure 6.27. Average strain history in the pile during stressing. 
 

 

Figure 6.28. Eccentricity induced during stressing minimized by stressing order. 
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Figure 6.29. Final strain distribution in the pile near the splice. 
 
After stressing, the strands extending from the jacking end (top of spliced pile) were cut which 
was necessary to permit unobstructed access to the threaded duct ends for grouting (Figure 6.30). 
Alternately, strands would be cut prior to driving and grouting would then be performed after 
driving from a lower elevation. 

The jacking plate/header plate was also removed at that time to further facilitate access. 
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6.4 Pile Driving Demonstration 
The performance of the concept splice was demonstrated via a side-by-side comparison with a 
one piece pile of similar length. The one piece control pile was driven as part of a routine test 
pile program at the I-4 / Deer Bridge wildlife crossing near Deland, Florida using an APE Model 
46-32 single acting diesel hammer. The Plans sheets showing the pier layout, soil borings, and 
pile driving logs can be found in Appendix E.  

6.4.1 Test Pile Installation 
 
The closest of the test piles to the demonstration splice specimen was Pile 1 in End Bent 3-3. 
This pile was 115ft in length and was driven on April 21, 2015 through 85ft of fine sand and silt 
terminating will refusal conditions in limestone. Test piles and production piles were driven with 
a 13.75in plywood pile cushion to control tension stresses in the early stages of driving. Figure 
6.34 shows the compression and tension stresses recorded by pile driving analyzer (PDA).  
Tension stresses are shown from two PDA outputs: TSX denotes the worst case tension stress 
that occurred anywhere in the pile and TLS indicates the stresses specifically extracted from a 
position in the pile 30ft from the top which corresponded to the splice location for comparison. 
Note tension stress never exceeded 1ksi nor the maximum allowable tensile stress (1.25ksi for 
6ksi concrete) and the maximum tension stress TLS was the same as TSX for most of the 
driving. This confirmed that a splice in the upper third of the pile would experience the worst 
cast tension stresses and provided the rationale for selecting that location for the splice in the 
demonstration splice pile specimen. 

 

Figure 6.34. Driving stresses in test pile used as comparative control (End Bent 3-3, Pile 1). 
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To introduce tensile stresses that would approach or even exceed the maximum allowable stress, 
a thinner plywood pile cushion (11.75in) was used at the onset. Recall, 13.75in was used on the 
test piles which balanced driving efficiency and controlled excessive tension stress. The hammer 
used to drive the splice pile specimen was the same as that used for the test pile and had four fuel 
settings to control stroke height and the associated energy.  A chronology of the driving 
progression is presented for the splice pile specimen: 

 Starting with fuel setting one, the splice pile was driven from 25 to 44ft of embedment 
(286 blows) with tensile stresses as high as 1.34ksi which occurred at the splice location 
(TLS). The average tensile stress for this portion of the drive was 1.25ksi. Average 
compressive stress was 1.96ksi. 

 To increase driving efficiency, an additional 7.5in of cushion was added (lengthens load 
pulse and lowers tension stress) which allowed the hammer to be run at higher energy 
levels. An additional 1195 blows were imparted starting with fuel setting 1 (from 44 to 
52ft), fuel setting 2 from 52 to 61ft, fuel setting 3 from 61 to 62ft, and fuel setting 4 from 
62 to 76ft. Average tensile stresses were 0.72, 0.80, 0.92, and 1.12ksi for fuel settings 1, 
2, 3, and 4, respectively. Compressive stresses, however, were only 1.86, 2.12, 2.21, and 
2.36ksi, again respectively, which were not likely to achieve pile capacity without 
another cushion change to thereby increase compression stress (and tension stress). Note 
as the pile became more embedded, tensile stresses were expected to decrease. 

 To further increase energy transfer into the pile, the pile cushion was removed and 
replaced with a thinner 9in cushion.  The 19in (11.75in + 7.5in) original cushion 
thickness was found to have reduced to 14.5in. An additional 2036 blows were applied to 
the pile immediately using fuel setting 4. The pile was driven from 76 to 95ft when 
driving was interrupted to remove the template allowing it to be driven an additional 4ft. 
Driving stresses for this portion of the drive started at 0.9ksi tension and 2.6ksi 
compression and concluded at 0.3 and 3.6ksi, respectively. Pile driving records for both 
the test and splice piles can be found in Appendix E. 

 At the end of drive, the PDA estimated pile capacity was 1660kips with 131blows/ft. In 
comparison, the test pile was driven to 1400kips with 150blows/ft. In all, the pile 
withstood 3231 blows with no detrimental effects. 

The PDA recorded tension and compression stresses are shown in Figure 6.38 for the splice pile 
specimen. Note the allowable tensile and compressive stresses were exceeded for the 
experimental pile; under normal pile driving conditions these limits would not have been 
intentionally ignored. 

During each pile cushion adjustment, the pile was visually inspected for obvious damage; none 
was noted. Figure 6.39 shows the pile at each cushion change (286 and 1766 blows). 
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6.5 Lessons Learned 
 
Each splice pile tested provided usable feedback to further the advancement of the overall splice 
concept. For the 24in pile driving demonstration specimen the following was concluded: 

 Fewer ducts did reduce the number of components, the casting yard installation time, 
splice preparation time, and the number of strands stressed during the splice process. 

 Self-consolidating concrete was used to cast pile so no direct comparison could be made 
with regards to the reduced congestion in the cage. However, the cage appeared to be 
more open and any traditionally used concrete vibrator would have been applicable.  

 The use of screw cap chucks removed all tolerance variations and the strands were easily 
inserted in both the upper pile segment (with shim washers) and the lower pile. Recall the 
lower pile segment does not use the tolerance reducing shims. 

 Grouting was still slow even though larger 0.6in chucks were used. No dedicated 
pathways around or through the wedges were provided which should be considered. 

 The use of neoprene gaskets around the alignment dowels (in the preformed recesses) 
proved to withstand the 500psi grout pressure that was applied by the pump. No grout 
leaks were apparent. 

 The new alignment dowels had much tighter tolerance than earlier versions which meant 
alignment needed to be closely watched to prevent the dowels from catching the face of 
the lower pile face. The lower pile face threaded duct connectors should be internally 
tapered (e.g. ¼in chamfer) to prevent this concern and automatically align the pile halves.  

 The additional stiffness of the 0.6in strands more easily overcame the wedge spring 
resistance making the splice process progress smoothly. 

 Simple vice-grip clamps were used on each strand in lieu of specialized clamps which 
sped the upper pile preparation process (however not recommended for shipping). 

 Inadvertent damage at the splice face is inevitable. The type of damage experienced was 
perhaps the worst type of stress concentrator for the epoxy. Even though, the pile drove 
without notable concern from the PDA operators. With this experience a small chamfer 
should be considered to lessen the likelihood of chips recognizing that the lower pile 
segment would first be driven. However, the standard chamfer is not recommended as it 
nearly replicates the chip in the tested pile. Suggested pile extraction techniques are 
outlined in the procedure below to minimize pile damage. 

 A two-piece, separable splicing header could be considered that can be disassembled 
prior to pile removal from the bed to minimize / prevent the damage experienced. 

 Driving the pile with wet epoxy would eliminate cracking and increase long term 
durability by forming the seal after drive. The driven demonstration pile was essentially 
cracked after the first 283 blows due to the higher than allowable tensile stresses. For 
production applications, however, staying within FDOT allowable tension limits would 
also prevent cured epoxy from cracking. 
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 While the research team was well versed in the steps to perform the splice, slip-ups made 
it apparent that a comprehensive checklist should be used especially as each progressive 
experimental splice employed more considerations and refinements. 

 
 
6.6 Splicing Checklist / Procedure 
 

 Detensioning (Pile removal) 
o When removing pile from bed, remove all duct fastening bolts from both sides of 

the splice header plate prior to detensioning. 
o After the strand have been cut roughly in the middle between pile halves, tap the 

strands with a hammer in all directions (up, down, left, right) to loosen concrete 
bond between the strands and header. 

o During pile removal lift one end of one pile half that is away from the splice 
header first and then set back down one or two times to systematically loosen the 
splice header from the pile halves. 

o Do not allow / discourage dragging the pile down the bed in an attempt to 
separate the pile halves; lifting and lowering will usually be sufficient (above).  
 
Note a separating header plate is being considered that may reduce damage 
associated with separation problems. 
 

 Prepare splicing faces and jacking end 
o Grind off all prestressing strand stubs from the ends of each side of the splice 

faces. 
o There are three faces to consider: the two splice faces and the upper jacking end 

face (top of upper pile). The bottom end of the lower pile segment should be 
prepared using standard pile preparation techniques and is not considered as 
part of this procedure. 

o Use a straight edge to ensure that no high points exist on either of the splice faces. 
Any high spot or bump will attract load and potential cause a local failure or spall. 
Strands should be ground to be slightly below the slice surface plane. 

o The edges of the splice faces will always have excess concrete that also will need 
to be removed making sure that the entire edge also causes no obstruction to the 
straight edge. Use of a small chamfer ¾ by ¾in (discussed earlier) will minimize 
this effort. 

o The top face of the upper pile has a jacking plate that serves two functions: (1) 
during casting it aligns the ducts relative to the strands and (2) during splicing it 
can provide a bearing plate. This plate can be removed prior to splicing while still 
on the ground to removed prestressing strand stubs completely and the plate can 
then be reinstalled for jacking. Or, the plate can be abandoned and a smaller 
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bearing plate can be incorporated into the stressing jack. In either case, cleaning 
the pile face on the ground prior to stressing is preferred. 

 Preparing upper pile half  
o The upper pile segment can be prepared prior to shipping to the project site or can 

be prepared on site. 
o Prepare splicing strands involves cutting them to length and softening / grinding 

the sharp edges caused by cutting. This can done either individually in advance, 
or by directly pulling strand from spool.  

o Before inserting strand in upper pile segment soften the leading edge of the strand 
with a grinder to minimize the potential of snagging in the wedges during 
insertion. 

o The length of strand should extend sufficiently out the top of pile and provide 
enough length to fully penetrate into the lower pile ducts. The length can be 
conservatively set to be the upper pile segment length plus 15ft. 

o Install alignment dowel with 1/8in neoprene gasket into the duct openings and 
make sure no threads are exposed. The strand can be inserted through the 
alignment dowel after it is installed or the alignment dowel can be slid onto the 
strand and installed after strand is inserted. 

o With the strand exposed the correct length out the bottom of the pile, clamp the 
strand with an external fixture to prevent upward/inward movement of the strand 
during shipping or splicing operations. For shipping, vice-grips are not 
recommended as they may be inadvertently dislodged or stolen. A bolt-on clamp 
should be used for shipping but the more quickly removable vice-grips (or 
similar) should be used during splicing for ease of removal. 

o Recall the strand can only go one direction in the upper pile segment. Therefore, 
predetermine the length of strand that will be exposed out the bottom end. 
Staggering the strand lengths by an inch is a reasonable approach as no two strand 
will touch at the same time. However, the 10ft exposed length provides enough 
flexibility to bend and insert by hand. If the strand is mistakenly pushed in too far, 
then fully remove the strand out the top of the pile and reinstall with the correct 
exposed length and affix the clamp. 

 Splicing 
o Epoxy can be applied to the splice faces prior to hoisting the upper pile half to 

prevent unnecessary workplace harm to the field technicians. For horizontally 
spliced piles epoxy can be applied later. 

o Lift the upper pile and suspend over lower pile segment oriented with the top of 
bed faces aligned. 

o Lower the upper pile while aligning each strand with the corresponding duct in 
the lower pile. Take care to prevent crossing the strands. 
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o As the pile comes within a couple inches of making contact, adjust alignment to 
ensure the dowels do not catch the lower pile face (a slight redesign of the lower 
pile threads will eliminate this concern as discussed earlier). Small movements ca 
be performed by hand. 

o Lower until contact is achieved but maintain tension in the crane connection.  

 Post tensioning 
o The order of strand stressing should be balanced such that eccentricity is minimized / 

controlled.  
 
The orders used for the specimens in this study also stressed all strands with the same 
anchor locations. For example, the last pile had four staggers (positions) and four 
strands with each location (one per side). Therefore, opposite sides of the pile were 
stressed for each position and then systematically went to the next set of four with the 
same location. 
 

o Stress strands in at least two stages (preferably three). The first stage should be 1/3 
the final jacking load and must exceed 10kips. 

o After all strands have been stressed, cut all post tension strands flush for pile driving. 
 Grouting 

o Depending on the specific grout duct configuration / circuit design, install 3/4in NPT 
pipe nipples in each of the ducts. 

o Pipe caps should be available to stop grout flow once return has been demonstrated. 
One fewer than the number in the grout circuit is required. 

o Connect the grout inflow hose to one of the circuit ducts and pump grout until flow 
return is confirmed from the rest of the ducts in that circuit. 

o Cap each duct as grout flow is observed. 
o When all ducts are grouted, disconnect grout hose and move to the next circuit. 
o Caps can be removed and re-used for the next circuit (vertical pile case). 
o When all circuits have been grouted, remove all grout fixtures (pipe nipples, caps, 

etc.). Splice is complete. 
 
While the design of the splice does not depend on the grout bond between the ducts and the strand, 
there is benefit received after the grout cures and strands become fully bonded. However, grouting 
can be performed after driving when the pile top is nearer the ground surface and easier to access. 
Similarly, it is envisioned that pile driving can commence directly after splicing while grout is still 
fluid (or ungrouted) and epoxy is uncured. These conditions were not tested within the timeframe of 
this study. 
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Chapter 7: Conclusions 
 
Structures such as bridges or tall buildings often require deep foundations in order to reach soil or 
rock strata capable of resisting the associated high loads. In Florida, concrete elements such as 
driven piles, drilled shafts or other cast-in-place alternatives provide a natural choice. This is 
somewhat in response to the economy of concrete in Florida, but for marine structures, concrete 
provides excellent durability via the concrete cover that protects the reinforcing steel.  In some cases, 
however, bearing layers are too deep for precast piles due to limitations on trucking lengths and 
lifting weights. In such applications, drilled shafts have an advantage, but drilled shafts are not well-
suited for all soil conditions. As a result, longer precast concrete piles must be spliced from shorter, 
more easily transported segments. Historically, these splices have presented problems. 
 
The most successful and robust concrete pile splice has been mechanical splices that cast into the 
ends of the piles some form of steel connection detail where a key, bolts, or pins fasten the two 
segments together in a fashion more aligned with structural steel connections. These connections, 
while effective, must transfer tension stresses during driving from one pile segment to the next via 
reinforced concrete concepts (i.e. development length of large rebar cast into the ends of each pile 
segment). As a result, prudent state specifications restrict tension stresses to less than half that 
allowed an unspliced prestress pile. This study investigated the use of an alternative approach that 
incorporated post tensioning the two splice pile segments together. The concept eliminates the 
limitations on tension stresses during driving. 
 
In the process of developing the concept splice design, numerical modeling, laboratory testing, and 
full scale tests were performed which culminated with a pile driving demonstration of a spliced pile 
specimen. 
 
7.1 Laboratory Scale Testing 
 
Laboratory tests both verified acceptability and helped refine the design for the concept splice. 
These included both individual component testing and evaluation of prototype splices of 14in 
square, 20ft long prestressed piles. In all, four 14in piles were cast and tested in four point 
bending; two were spliced piles comprised of two, 10ft sections and the other two were full 
length (20ft) unspliced piles used as controls. The results of these tests showed that concept 
works and could restore the full cracking moment capacity in the region around the splice. 
Hence, the tension capacity of the splice was shown to be comparable to the unspliced control 
piles. 
 
Lessons learned from the laboratory scale testing included: 

 Use of deformed ducts was shown to have a positive effect on bending capacity and 
stiffness where the spliced pile was stiffer than the unspliced control. 

 Duct deformations using a 2in spacing performed as well if not better than 1in spacing 
and far better than smooth duct conditions 

 Grouting can be performed from the top side of the pile which eliminates the need for 
anything in the cover portion of the pile thereby maintaining corrosion resistance. 

 Wedge set losses can be minimized by inserting a tolerance reducing shims behind the 
wedges. 
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 Ducts can be grouped into more convenient panels for quicker field installation. 
 
7.2 Full Scale Testing 
 
While the size of the piles used for laboratory trials is in fact a production pile size, larger 24in 
piles were used for the full scale testing portion of this study. Three 40ft long, 24in square 
prestressed piles were cast in a commercial casting yard and transported to the FDOT Structures 
Research Center in Tallahassee for bending test evaluation. Of the three piles, two were full 
length (40ft) control piles and one was a spliced pile comprised of two, 20ft segments.  
 
Three types of monitoring/testing were performed: (1) monitor jacking load and surface strains 
in the pile during splicing, (2) four point bending of the three 40 piles, and (3) three point 
bending of undamaged 20ft segments of one control pile half and the upper half of the spliced 
pile that contained twice as many strands.  
 
Test results from the four point bending showed that the cracking moment for the spliced and 
unspliced piles were the same and the ultimate bending moment of the splice pile was 96% of the 
unspliced controls (Table 5.1). Stiffness of the splice was, however, noticeably higher where an 
80kip applied was load achieved at 3.3in of midspan displacement in the spliced pile compared 
to 5.5in in the control piles (Figure 5.30). Additionally, permanent deformation of the spliced 
pile upon unloading was shown to be minimal compared to the control piles (0.4in vs 6in). 
 
Test results from the three point bending of the upper splice pile segment showed the presence of 
the additional unstressed strand left in the pile increased the ultimate bending capacity by 
approximately 20% and increased the post cracking stiffness (Figure 5.42). 
 
Lessons learned from the full scale testing included: 

 Spliced pile bending strength of 636k-ft met the 600k-ft required strength (Table 2.1) 
 Casting yard complications highlighted the need to keep preassembled duct panels more 

flexible or use fewer ducts per assembly. 
 Concreting the splice pile could be made easier by reducing the number of splicing 

strands thereby using the next larger size strand (e.g. 16 – 0.6 splice strands instead of 20 
– 1/2in special, etc.). This also would reduce splicing time. However, this is only more 
cost effective and efficient if the reduced number of strands is divisible by 4. 

 Tolerances from spring back chuck movement require the use of fixed / threaded back 
chucks. 

 Enhanced passageways should be considered to speed the grouting process or an even 
more fluid grout may be considered. 

 For both the 2nd 14in lab scale and the 24in full scale spliced piles, a tapered insert was 
threaded into the bottom pile segment which helped align the pile segments. This insert 
did not provide full isolation from the grout ducts. A revised duct coupler should be used 
when grouting is to be performed while the epoxy is uncured.  

 
 
  



215 
 

7.3 Pile Driving Demonstration 
 
The experimental components of this study culminated in a driving demonstration of a 100ft 
spliced pile specimen. Many of the suggested refinements from the full scale bending specimen 
were incorporated making the pile both easier to cast and splice. The location of the splice was 
selected to be in the upper 1/3 of the pile length as tension stresses are usually highest in this 
region. The segments were therefore 30ft (upper) and 70ft (lower). 
 
The demonstration pile was driven immediately adjacent a production test pile for the Deer 
Bridge wildlife crossing on I-4 near Deland, FL. Both the test pile and demonstration pile were 
instrumented with PDA to monitor tension and compression stresses incurred by a single acting 
diesel pile driving hammer. A thinner than production pile cushion was used to exacerbate 
tension stresses in the demonstration pile (11.75in vs 13.75in used in the production piles). This 
caused tension stresses to exceed the allowable 1.25ksi reaching a maximum tension of 1.34ksi 
at the splice location. Trying variations in pile cushion thickness, a maximum compression stress 
of 3.6ksi was ultimately attained (exceeding the maximum allowable compression stress of 
3.5ksi) after 3231 hammer blows. 
 
At the end of drive, the PDA estimated pile capacity was 1660kips with 131blows/ft. In 
comparison, the test pile was driven to 1400kips with 150blows/ft. No detrimental effects were 
noted from driving despite two rather large chips on one face of the splice interface caused at the 
time of pile removal from the casting bed. The post tension strand connection proved to be a 
viable and durable mechanism for splicing concrete piles and withstanding driving stresses. 
 
7.4 Splice Designs for FDOT Pile Sizes 
 
Prestressed elements exhibit a transition zone at the ends where prestress is gradually increased 
from zero at the ends to full precompression in the concrete at some transfer length into the 
element.  This effect is the byproduct of strand slippage near the ends during detensioning where 
eventually the slippage is full restrained and the concrete bond to the strand is unbroken. While 
the length of this transition/transfer length is known to exist, the magnitude is dependent on 
factors such as concrete strength, strand diameter, surface roughness, etc. The concept splice 
design incorporates a series of embedded post tensioning anchorages within the two pile segment 
ends; their positions are staggered to tailor the superposition of post tensioning stresses and the 
pre-existing prestress in the concrete such that the target level of prestress (e.g. 1000psi) is not 
exceeded.  
 
To accommodate standard FDOT pile specifications for common pile sizes, the concept design 
incorporates post tensioning ducts between existing strands. The number of ducts is at most the 
same as the number of strands in the pile, but can be reduced in multiples of 4 where larger post 
tensioning strands are used (i.e. the same force is provided but with fewer, larger strands). 
Figures 6.1-6.3 show possible duct configurations for standard pile sections. Strand patterns 
using 1/2in special or 0.6in strands are preferred as this reduces congestion in the pile. Standard 
1/2in strand configurations are shown only where there is no advantage to using larger splicing 
strands. 
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The spacing between anchorages can be selected on the basis of losses that are accompanied by a 
0.11in wedge setting movement while maintaining a required post tensioning level (e.g. 1045 psi 
minimum). Table 6.1 shows an example of minimum lengths between splice anchorages and 
recommended values for the number of staggered locations and positions. In general, the number 
of staggered locations was set to be a minimum of 4 but no more than 6. Additionally, the 
distribution of staggers was set to be multiples of 2 or 4. Therefore, when used in pairs, the 
stagger locations wrap around two sides of the pile like the 14in piles discussed in Chapter 4; 
when used in groups of 4 (no. of strands/4), all stagger locations exist on each side like the 24in 
piles discussed in Chapter 5. 
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Table 7.1. Example determination of splice strand and anchor layouts. 
Pile Size (in) 14 18 24 24 
Strand Pattern 8 - 1/2in 12 - 1/2in sp 20 - 1/2in sp 16 - 0.6in 
No. Strands 8 12 20 16 
Fu (ksi) 270 270 270 270 
A str (in2) 0.153 0.167 0.167 0.22 
Jacking Force (kips) 33.048 36.072 36.072 47.52 
Target Prestress (psi) 1045 1045 1045 1045 
Reqd Strand Force (kips) 25.6025 28.215 30.096 37.62 
Wedge Travel (in) 0.11 0.11 0.11 0.11 
Min length (in) 65.6 67.8 89.1 70.9 
Recommended length (in) 72 72 96 96 
No. Staggers 4 6 5 4 
Anchor 1 14 18 24 24 
Anchor 2 29 25 36 40 
Anchor 3 43 32 48 56 
Anchor 4 58 40 60 72 
Anchor 5  47 72  
Anchor 6  54   
 
 
7.4 Summary 
 
The findings of this study suggest that the concept splice design can effectively restore full 
capacity for the purposes of withstanding pile driving installation and structural loading. Therein, 
full prestress levels were transferred through the splice zone which no other commercial method 
provides. Although the originally proposed splicing scheme considered anchorages that breached 
the concrete cover, the finalized version preserves the integrity of the cover and maintains the 
same corrosion resistance/durability of unspliced, one-piece piles. 
 
Components used to provide the post tension anchorages for this study were fabricated at USF 
on a case-by-case basis depending on the casting bed, pile size, and strand layout/configurations. 
However, the recommended splicing schemes (Table 7.1 and Figures 7.1 – 7.3) were tailored to 
accommodate standard FDOT pile dimensions and strand configurations and therefore should be 
readily adaptable to most commercial casting yards.  It is envisioned that post tension component 
suppliers will be able to quickly develop a line of components for the express purpose of 
supporting the concept splice design presented herein. 
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Appendix A  
 

Properties of Materials (QPL Approved). 
  
 
 

 Precast Segmental Epoxy Adhesive 

 High Performance Cable Grout 

 Delivery Tickets for Class V Pile Concrete 

 ½” Diameter, Grade 270, LRS Prestressing Strand 

 Multiple Use Prestressing Strand Chucks 
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Figure A.12. Seating losses using PSI/PAUL strand chucks modified with spacers of 
variable thickness. 
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Appendix B  
 

FDOT Specifications for square concrete prestressed piles
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Appendix C  
 
 

Load versus Strain Relationships for Standard Control Pile 
(24in full scale 4-point bending test) 
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The load versus strain relationships for gages of standard control piles are shown in this 
appendix C from Figure C.1 to figure C.4. 

 

Figure C.1. Load vs strain for top gages 2, 4, 14, and 16. 
 

 

Figure C.2. Load vs strain for bottom gages 1, 3, 5, 15, 17, and 18. 
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Figure C.3. Load vs strain for east side gages 6, 8, 11, and 13. 
 

 

Figure C.4. Load vs strain for west side gages 7, 9, 10, and 12. 
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Appendix D  
 
 

Load versus Strain Relationships for Three-Point Bending Tests 
(24in full scale 3-point bending test) 
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Figure D.1. Load vs strain for top gages 2 and 3 for spliced segment 
 

 

Figure D.2. Load vs strain for top gages 1 and 4 for spliced segment 
 

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500

Lo
ad

 (
K
ip
s)

Strain (Microstrain)

Gage 2

Gage 3

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600

Lo
ad

 (
K
ip
s)

Strain (Microstrain)

Gage 1

Gage 4



245 
 

 

 

Figure D.3. Load vs strain for top gages 2 and 3 for control segment 
 

 

Figure D.4. Load vs strain for top gages 1 and 4 for control segment 
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Appendix E 
 

Demonstration Pile Driving Specimen 
 

 Revised Bearing Plate 

 Sixteen 0.6in strand configuration 

 Revised alignment dowel and seal 

 I-4 Deer Crossing Plan Sheets and Soil Borings 

 End Bent 3-3 Pile 1 PDA Driving Summary 

 End Bent 3-3 Pile 1 Field 

 End Bent 3-3 Pile 1-1 PDA Driving Summary 

 End Bent 3-3 Pile 1-1 Field 
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Table E.1. Concrete cylinder break strengths for 24 in. full scale tests. 

Concrete Age 
(days) 

Cylinder 1 
f'c (psi) 

Cylinder 2 
f'c (psi) 

Average 
f'c (psi) 

Note 

3  7710  8275  7993  Bed detensioned at 3 days

5  8375  8513  8444  Pile spliced at 4 days 

32  10804  10473  10639  Pile driven at 27 days 
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