EAR Workshop

General Relationships between Test Data and Performance

EAR Workshop

Relationships Between Test Results and Performance

June 2005

Test Results

- Air voids (laboratory compaction).
- Roadway density.
- **Asphalt binder content.**
- Gradation.
- Permeability.
- Shear testing.

Air Voids (lab compaction)

- Represents ultimate compaction in roadway.
 - Majority of densification occurs within 4 years (summers).
- Past research: less than 2.5 to 3.0% lab air voids is detrimental to rutting.
- Air voids too high:
 - Faster oxidation.
 - More difficult to achieve field compaction.
 - Potential permeability problem.
 - Often the result of low AC content.
 - Faster to crack.

Roadway Density

Too low:

- Consolidation rutting.
- Permeability for coarse mixes.
- Stripping potential increases.
- More oxidation/cracking.

Too high:

Aggregate breakdown...uncoated particles.

Asphalt Binder Content

Too low:

- Cracking and raveling (FC-5 and dense).
- Permeability issue if result is high air voids for dense mixtures.

Too high:

- Binder draindown for FC-5.....flushing, fat spots, bleeding.
- Low air voids and rutting for dense mixtures.
- Bleeding.

Gradation

Dense mixtures:

- Effect on VMA could reduce fatigue cracking resistance of mixtures....less film thickness.
- Effect on air voids could affect rutting potential.

FC-5:

- Coarser gradation may lower surface area and cause excessive binder film thickness....i.e., draindown.
- Finer gradation may result in less porosity and reduced film thickness.....more serious.

Permeability

Dense mixtures:

 High permeability....increased stripping potential.

FC-5:

 Low permeability....reduced effectiveness at water drainage and spray reduction.

Shear Testing

- Dense mixtures:
 - Low shear strength....strong potential for slippage.

Comments / Questions?