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Topic Description

AASHTO LRFD and AASHTO Segmental Design Specifications require the superposition of a thermal gradient across the height

of bridge superstructures when analyzing the bridge for serviceability. The gradient can be both positive (deck warmer than web)

and negative (deck cooler than web). The negative gradient can cause high tensile stresses to develop in the top few inches of the
bridge deck, requiring large prestress forces to counteract this tension. There is, however, no data in which actual stresses have
been measured during these peak gradients to verify that the stresses are indeed as high as predicted by analysis. One reason for

this is the difficulty of direct stress measurement in concrete. Furthermore, it takes hours for thermal gradients to develop in
bridges. Consequently, creep may tend to reduce the very high local stresses that could otherwise develop if the process were more
rapid.
This study is aimed at quantifying the state of stress in concrete due to the AASHTO nonlinear design gradients using a combined
experimental and analytical approach.
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Thermally Induced Stresses
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Thermally Induced Stresses

= Nonlinear self-equilibrating temperature
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AASHTO - Negative gradient
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Motivation

» Thermally induced stresses —
AASHTO procedure.

= Service Il — Design and LR

= Traditional concrete stress
measurement: measure strain,
convert to stress

= Effect of creep
= Variation in CTE

Objective

Quantify thermal stresses due to AASHTO
nonlinear thermal gradients.




Experimental Program
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Experimental Program

= Main reasons for using representative
portion of box-girder section

= Cross-section shape independence.
= Full-scale gradients.
= Conduction + Convection vs. radiation.




Beam Cross-Section
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Experimental Program

» Reference stress states — typical
Service 111 stresses w/o thermal.

= Joint-opening creates known (zero) stress
condition.
» Eliminates effects of creep and shrinkage

» Joint-opening load — quantify thermal
stress via back-calculation.




Laboratory Set-up
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Thermal Control
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Thermocouples

Thermocouples
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AASHTO Positive Gradient
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LVDTs
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Tasks

» In-situ coefficient of thermal expansion of heated
segments.

» Joint-opening tip-loads (SRB bridge midspan,
support stress states).

= Duration of thermal load application.
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Summary

= Experiments

= Create zero stress condition

= Quantify thermal stresses

= Data for numerical model calibration
= Numerical Modeling

= Parametric studies (creep, CTE, elastic
modulus)

» Development of design provisions
» Thermal stress modification factor?
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