FLORIDA DEPARTMENT OF TRANSPORTATION

FDOT MODIFICATIONS TO LRFD SPECIFICATIONS FOR STRUCTURAL SUPPORTS FOR HIGHWAY SIGNS, LUMINAIRES AND TRAFFIC SIGNALS (LRFDLTS-1)

STRUCTURES MANUAL
VOLUME 3
JANUARY 2018
Table of Contents

1 Introduction ... 1
 1.1 Scope ... 1

2 General Features of Design 1
 2.1 Scope ... 1
 2.4 Functional Requirements 2
 2.4.2 Structural Supports for Signs and Traffic Signals 2
 2.4.2.2 Size, Height and Location of Signs 2
 Figure 1 Example: Actual Signs 3
 Figure 2 Example: Signs Used in Design 3
 2.4.2.4 Changeable (Variable) Message Signs (Rev. 01/18) 3
 2.4.2.5 Horizontal Span and Cantilever Limits 4
 2.6 Integration of Structural Supports With Roadway And Bridge Design (Rev. 01/18). 4
 2.6.1 Signs .. 4

3 Loads .. 5
 3.8 Wind Load (Rev. 01/18) 5
 3.8.2 Basic Wind Speed 5
 3.8.7 Drag Coefficients Cd (Rev. 01/18) 6
 FDOT Figure 3.8.7-1 Drag Coefficients for Solar Panels 7
 3.9 Design Wind Loads On Structures 7
 3.9.1 Load Application 7
 3.10 References (Rev. 01/18) 7

4 Analysis and Design - General Considerations (Rev. 01/18) 7
 4.7 Analysis of Span Wire Structures 7

5 Steel Design ... 9
 5.4 Material (Rev. 01/18) 9
 5.6 General Dimensions and Details 9
 5.6.3 Transverse Plate Thickness 9
 5.13 Cables And Connections 10
 5.14 Welded Connections 10
 5.15 Bolted Connections 10
 5.16 Anchor Bolt Connections 10
 5.16.1 Anchor Bolt Types 11
 5.16.2 Anchor Bolt Materials 11
 5.16.3 Design Basis 11
 5.19 References ... 12

6 Aluminum Design .. 12
 6.1 Scope ... 12
 6.4 Material and Material Properties (Rev. 01/18) 12

7 Prestressed Concrete Design 12
 7.4 Materials .. 12
 7.4.2 Normal and Lightweight Concrete 12
 7.4.2.1 General (Rev. 01/18) 12
1 INTRODUCTION

1.1 Scope

Add the following:

Conform to the date specific AASHTO Publications listed in Structures Manual Introduction I.6 References.

For evaluation of existing support structures, including the addition of attachments, the Standard Specification for Structural Supports for Highway Signs, Luminaires and Traffic Signals, 6th Edition, including Appendix C may be used. See FDOT Design Manual (FDM) and Section 18 of this Manual for requirements.

2 GENERAL FEATURES OF DESIGN

2.1 Scope

Add the following:

See FDM regarding the use of FDOT Standard Plans and other design requirements.

C 1.1

Add the following:

Structures Manual Introduction I.6 is updated annually to reflect the specific specifications editions and interims adopted by the FDOT.

For existing supports, FDM 210 defines when structural evaluation is necessary and lists FDOT Design Exception and Variation requirements.

C 2.1

Add the following:

FDM contains additional FDOT requirements for sign, signal and lighting structures. The Standard Plans contains drawings for all typical sign, signal and lighting structures.
2.4 Functional Requirements

2.4.2 Structural Supports for Signs and Traffic Signals

2.4.2.2 Size, Height and Location of Signs

Add the following:

Span type overhead sign structures in urban locations shall be designed for the actual signs shown on the signing plans and a minimum sign area of 120 sq. ft. (12 ft. W x 10 ft. H) per lane. The minimum sign area applies to lanes without signs and lanes with sign sizes smaller than the minimum. A lane is considered to be without signs when 8 feet or more of the lane is not under a sign. Adjust the sign width when necessary while maintaining a minimum sign area of 120 sq. ft. (e.g. 8 ft. W x 15 ft. H). If the signing plans require signs for only one traffic direction, the minimum sign area per lane requirement applies to the traffic lanes in this direction only.

C 2.4.2.2

Add the following:
Minimum sign areas provide additional capacity for future sign panel installations.

See FDM 102 for a link to the Urban Boundary Maps. See FDM for cantilever and span overhead sign support location criteria.

Cantilever type overhead sign structures in urban locations shall be designed either for the actual signs shown on the signing plans or for a minimum sign area of 80 sq. ft. (8 ft. W x 10 ft. H) located at the end of the cantilever, whichever provides the larger load or stress at the location under consideration.

Figures 1 and 2 show how to apply the above minimum sign areas for span type overhead sign structures in urban locations.

Overhead signs in rural locations should be designed for the actual sign shown on the signing plans.

Overhead signs in rural locations should be designed for the actual sign shown on the signing plans.
2.4.2.4 Changeable (Variable) Message Signs (Rev. 01/18)

Add the following:

For all overhead Dynamic Message Sign (DMS) structures, the horizontal member shall consist of a truss with a minimum of two chords with a minimum center-to-center distance between the chords of 3'-0". See FDOT LTS Section 11.8 for DMS maximum span-to-depth ratios.

FDOT vertical clearance requirements for walk-in DMS structures are found in FDM 210.

For vertical clearance and structural design of walk-in DMS support structures, use a DMS size of 8ft. H x 25ft. W x 5ft. D with a weight of 5500 lbs.

C 2.4.2.4 (Rev. 01/18)

Add the following:

The minimum requirements given provide additional measures to limit the possibility of galloping.

Since cantilever walk-in overhead DMS structures are more susceptible to fatigue than span overhead DMS structures, span structures should be used whenever possible.

The DMS design size and weight are the maximum values of the system listed on the FDOT Approved Products List at the time of publication.
2.4.2.5 Horizontal Span and Cantilever Limits

New Section, add the following:

See FDM 261.1 for sign and signal support structure limits.

2.6 Integration of Structural Supports With Roadway And Bridge Design (Rev. 01/18)

C 2.6.1 Add the following:

See FDM 215 and FDOT SDG Section 1.9 for criteria for making attachments to traffic railings.

Signs directed towards the lower roadway that are attached to bridges are not permitted to extend above a traffic railing because they are not crashworthy designs. In addition, wind forces induced on the bridge could cause unforeseen stresses, hinder future bridge widenings and create aesthetic concerns for the bridge travelers.

See FDM 226 for vertical clearance requirements.

Modification for Non-Conventional Projects:

Delete the first paragraph of LRFDLTS-1 2.6.1 and insert the following:

Installation of all permanent signs and associated sign supports other than Standard Plans Indexes 700-012 and 700-013 on bridges is not permitted unless otherwise written in the RFP.
3 LOADS

3.8 Wind Load (Rev. 01/18)

Delete Table 3.8.1 and replace it with the following:

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Interval (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead sign structures</td>
<td>700</td>
</tr>
<tr>
<td>Luminaire support structures >50' in height</td>
<td></td>
</tr>
<tr>
<td>Mast Arm Signal Structures</td>
<td></td>
</tr>
<tr>
<td>Monotubes</td>
<td></td>
</tr>
<tr>
<td>ITS Camera Poles >50' in height</td>
<td></td>
</tr>
<tr>
<td>Luminaire supports and other structures ≤ 50' in height</td>
<td>300</td>
</tr>
<tr>
<td>Concrete and Steel Strain Poles</td>
<td></td>
</tr>
<tr>
<td>Roadside sign structures</td>
<td>10</td>
</tr>
</tbody>
</table>

3.8.2 Basic Wind Speed

Delete the entire paragraph including Figures 3.8.-1, 3.8-2, 3.8-3 and 3.8-4 and add the following:

For the 700 year Extreme Event Limit State, use the wind speeds (mph) shown in FDOT SDG Table 2.4.1-1

For the 300 year Extreme Event Limit State, use the wind speeds (mph) shown in FDOT SDG Table 2.4.1-1 minus 10 mph.

For the 10 year Extreme Event Limit State, use a design wind speed of 110 mph for the entire state.

For the Service Limit State, use a design wind speed of 90 mph for the entire state.

For temporary signs, luminaires and traffic signals, for both the Extreme Event and Service Limit States, use a design wind speed of 80 mph for the entire state.

C 3.8 (Rev. 01/18)

FDOT continues the past practice of determining wind speeds based on structure type. Luminaire support structures shall include all support elements including all poles, arms, connections and anchorages for all high-mast lighting, roadway lighting, sign lighting, underdeck lighting, landscape lighting, and bridge aesthetic lighting.

C 3.8.2

Add the following:

FDOT SDG Table 2.4.1-1 was derived from the ASCE 7-10 wind speed map.

To simplify the design process, FDOT has designated one wind speed per county for the 700 year and 300 year Extreme Event Limit States. To maintain consistency with past practice, a 110 mph design wind speed was chosen for the 10 year Extreme Event Limit State, and an 80 mph design wind speed was chosen for temporary sign supports.
3.8.7 Drag Coefficients C_d *(Rev. 01/18)*

Add the following to Table 3.8.7-1:

<table>
<thead>
<tr>
<th>Traffic Signals - no ability to swing</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Signals - installed on 2 wire, 2 point connections Without Backplates</td>
<td>0.8</td>
</tr>
<tr>
<td>Traffic Signals - installed on 2 wire, 2 point connections With Backplates</td>
<td>0.7</td>
</tr>
<tr>
<td>Solar Panels - installed with a tilt angle between 15 and 30 degrees (positive)</td>
<td>2.1</td>
</tr>
<tr>
<td>Solar Panels - installed with a tilt angle between 15 and 30 degrees (negative)</td>
<td>1.8</td>
</tr>
</tbody>
</table>

C 3.8.7

Add the following to note 2 at the bottom of Table 3.8.7-1:

On span wire systems where signals and signs are allowed to swing, varying C_d as a function of swing angle was included in the original ATLAS Program (Hoit and Cook 1997). Simplified drag coefficients for traffic signals installed with the ability to swing under controlled experimental conditions (i.e. no wind gust effects) has been suggested through research (Cook 2007). Current FDOT drag coefficients are based on parametric studies conducted in FDOT research report *Dual Cable Supports for Wide Intersections* (Contract C9G79, Sunna, 2015).

ATLAS is a span wire software program distributed by the University of Florida Bridge Software Institute (BSI). Do not consider uplift in the design of cable supported traffic signal systems designed using LRFD ATLAS and constructed using FDOT *Standard Plans*. To simplify design, the drag coefficients required by the FDOT have been adjusted to account for uplift. Accordingly, ATLAS v7 no longer permits user input for uplift of cable supported traffic signal systems.

The coefficients given for solar panels are approximately the same as those given in ASCE 7-10, Figure 27.4-4 for inclined mono-sloped roofs. See simplified illustration in FDOT Figure 3.8.7-1.
3.9 Design Wind Loads On Structures

3.9.1 Load Application

Add the following:

Use the following areas for traffic signals:

<table>
<thead>
<tr>
<th>Item</th>
<th>Projected Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>12” Signal Section</td>
<td>1.36 sf</td>
</tr>
<tr>
<td>3 Section 6” wide Backplate</td>
<td>5.67 sf</td>
</tr>
<tr>
<td>4 Section 6” wide Backplate</td>
<td>6.83 sf</td>
</tr>
<tr>
<td>5 Section 6” wide Backplate</td>
<td>8.00 sf</td>
</tr>
</tbody>
</table>

C 3.9.1

Add the following:

Areas given are for standard signals in Florida. For example, the total area for a 3 head signal with backplate is equal to:

\[
(3 \times 1.36\text{ sf}) + 5.67\text{ sf} = 9.75\text{ sf}
\]

3.10 References (Rev. 01/18)

Add the following:

4 ANALYSIS AND DESIGN - GENERAL CONSIDERATIONS (Rev. 01/18)

4.7 Analysis of Span Wire Structures

Add the following:

When designing box span wire configurations with FDOT two-point two-wire configurations, design each of the
four spans as an individual span using wind loads acting perpendicular to the span. For the pole design, multiply the maximum pole moment from the individual span analysis by 1.3 to account for wind from variable directions and pole biaxial bending. For the foundation design, multiply the maximum moment and shears by 1.3.

When suspended (hanging) box span systems with FDOT two-point two-wire configurations are required, the following attachments and support structure may be used without analysis if meeting the given geometry constraints.

A. Geometry:

1. Square or rectangular suspended box with corner angles 90 degrees ±15 degrees.
2. Angle of pole cables to hanging box cables 135 degrees ± 15 degrees.
3. Maximum Pole-to-Pole distance at 220 feet.
4. Pole to hanging box cable length may not exceed 25 feet.

B. Attachments:

1. Signals: Maximum number of three-lens signals with back-plate per span:
 a. For counties with LRFD Design Wind Speed = 160 mph: 4.
 b. For counties with LRFD Design Wind Speed = 140 mph: 6.
 c. For counties with LRFD Design Wind Speed = 120 mph: 6.
 d. For Allowable Stress Design, subtract 10 mph.
2. Signs per box span: for each 3' x 2' sign, subtract two signals from the maximum given in item 1) above.

C. Support Structure:

1. Pole Type: PS-X as shown in FDOT Standard Plans Index 649-010
2. Cables: All cables ½" diameter meeting the requirements of FDOT Specification 634.
3. Cable Configuration: as shown in FDOT Standard Plans Index 634-001.

For intersections with geometry outside the values given above, a finite element analysis is required to determine the number of attachments allowed.

5 STEEL DESIGN

5.4 Material (Rev. 01/18)

C 5.4
Add the following:
In some environmental conditions in Florida, A588 steel has deteriorated significantly.

Replace 5.4 with the following:
Use the materials specified in the following documents:

- FDOT Structures Manual
- FDOT Standard Specifications for Road and Bridge Construction
- FDOT Standard Plans

Do not specify ASTM A588 (rustic, Corten, “self-oxidizing”, or "self-weathering") steel in sign, signal, or lighting structures.

5.6 General Dimensions and Details

5.6.3 Transverse Plate Thickness

C 5.6.3
Add the following:
Research has proven full-penetration groove welds combined with thicker base plates increases the pole-to-base-plate connection fatigue strength.

Add the following:
The minimum base plate thickness shall be 2½ inches for mast arm signal structures, steel ITS poles, and steel strain poles, and 3 inches for high mast light poles.

For base plate connections without stiffeners on 700 year recurrence interval
structures, only use full-penetration groove welds.

5.13 Cables And Connections

Add the following:

Use the cable breaking strength values specified in FDOT Specifications Section 634.

Use $\phi_{rt} = 0.6$

5.14 Welded Connections

Add the following:

On steel sign, lighting, and signal support structures, no circumferential welds are permitted on the uprights, arms or chords with the following exceptions:

- The upright to base plate weld
- The flange plate connection weld on tubular truss chords
- Mitered arm-to-upright angle welds on monotubes
- Uprights with lengths greater than available mill lengths.

C 5.13

Add the following

Cables used in the construction of spanwire pole structures are listed in FDOT Specifications Section 634.

C 5.14

*Add the following:

The Department’s intent is to avoid any unnecessary welds on sign, signal or lighting structures.

Typical mill lengths for pipes and tubes are 35 feet and greater. When upright splices are proposed by the fabricator, approved shop drawings are required (Specifications 5-1.4.2) with documentation showing the required pipe is unavailable in the lengths required.

5.15 Bolted Connections

Add the following:

Design all pole to arm connections on Mast Arm structures as "through bolted" using a minimum of six bolts.

C 5.15

*Add the following:

Tapped connections are not permitted. Through bolted connections allow for fully tensioned F3125 bolts.

5.16 Anchor Bolt Connections

Add the following:

All sign, signal, and lighting structures designed for a 700 year mean recurrence interval wind speed shall use a minimum of eight ASTM F1554 Grade 55 anchor bolts at the pole to foundation connection, with the exception of Mast Arm signal structures, where the minimum is six anchor bolts.

C 5.16

*Add the following:

A minimum of eight anchor bolts provides redundancy and better distribution of forces through the base plate.
5.16.1 Anchor Bolt Types

Delete anchor bolts types listed in the second and third bullet and add the following:

Both Adhesive anchors and threaded post-tensioning bars are not permitted.

5.16.2 Anchor Bolt Materials

Add the following:

Only use ASTM F 1554 anchor bolts with 55 ksi yield strength.

5.16.3 Design Basis

Add the following:

Use double-nut moment joints in all mast arm signal structures, steel strain poles, high mast light poles and overhead sign structures.

If the clear distance between the bottom of the bottom leveling nut and the top of concrete is equal to or less than the nominal anchor bolt diameter, bending of the anchor bolt from shear and torsion may be ignored. If the clear distance exceeds one bolt diameter, bending in the anchor bolt shall be considered.

On mast arm signal structures and cantilever overhead sign structures, a structural grout pad is required under the base plates in double-nut moment joints.

Grout pads are not required under the base plates in double-nut moment joints of span overhead sign structures, high mast light poles, and steel strain poles.

Add the following: FDOT only allows straight headed anchor bolts.

Adhesive anchor and threaded post-tensioning bars have undesirable creep and non-ductile behavior respectively.

Add the following:

ASTM F 1554 Grade 55 anchor bolts provide sufficient ductility after yield to engage all the anchor bolts on the tension side of the base plate.

Add the following:

A structural grout pad significantly contributes to the design load carrying capacity of anchor bolts in cantilever structures.

When significant torsion is transmitted from the base plate to the anchor bolt group, a structural grout pad permits the anchors to develop their full shear strength, Cook et al. (2013).

Inspections have shown that a poorly functioning grout pad is worse than no grout pad at all. For poles without a grout pad beneath the base plate, the double-nut moment joint requires adequate tensioning of the anchor bolts. It is critical that the nuts beneath the base plate, typically referred to as leveling nuts, are firmly tightened and locked to prevent loosening. This locking mechanism is accomplished through the turn of the nut method specified in FDOT Specifications Section 649 or a properly placed grout pad.
5.19 References

Add the following:

6 ALUMINUM DESIGN

6.1 Scope

Add the following:
Do not specify aluminum overhead sign structure supports with the exception of the vertical sign panel hangers, which may be aluminum or steel.

6.4 Material and Material Properties

Add the following:
Use the materials specified in the following documents:

- FDOT Structures Manual
- FDOT Standard Specifications for Road and Bridge Construction
- FDOT Standard Plans

7 PRESTRESSED CONCRETE DESIGN

7.4 Materials

7.4.2 Normal and Lightweight Concrete

7.4.2.1 General

Replace 7.4.2.1 with the following:
Use the materials specified in the following documents:

- FDOT Structures Manual
- FDOT Standard Specifications for Road and Bridge Construction

C 7.4.2.1
Add the following:
FDOT uses Class V Special, 6 ksi or Class VI 8.5 ksi concrete in accordance with Specifications Section 346.
For Standard Prestressed Concrete Pole Design, the minimum compressive concrete strength shall be 6 ksi.

7.4.3 Reinforcing Steel

7.4.3.1 General (Rev. 01/18)

Replace 7.4.3.1 with the following:

Use the materials specified in the following documents:

- FDOT Structures Manual
- FDOT Standard Specifications for Road and Bridge Construction
- FDOT Standard Plans

7.4.4 Prestressing Steel

7.4.4.1 General (Rev. 01/18)

Replace 7.4.4.1 with the following:

Use the materials specified in the following documents:

- FDOT Structures Manual
- FDOT Standard Specifications for Road and Bridge Construction
- FDOT Standard Plans

7.6 Design

Add the following:

The minimum clear concrete cover for all prestressed and non-prestressed poles is 1 inch.

Add the following:

FDOT requires a minimum 1 inch cover on all concrete poles in all environments.
7.6.1 General (Rev. 01/18)

Add the following:

For Standard Prestressed Concrete Pole Design, see Standard Plans Instructions Index 641-010, for the Moment Capacities for the Extreme Event Limit State.

10 SERVICEABILITY REQUIREMENTS

10.5 Camber

Replace this section with the following:

Provide a design camber equal to 2.5 times the dead load deflection for overhead sign structures. For span overhead sign structures, arch the horizontal member upwards and for cantilever overhead sign structures rake the vertical support backwards. For mast arm signal structures, provide a two degree upward angle at the arm/upright connection.

11 FATIGUE DESIGN

11.6 Fatigue Importance Factors

Add the following:

When evaluating galloping, use Fatigue Category II for all flat panel sign, traffic signal, and lighting support structures meeting the limits in FDOT 2.4.2.5 and designed in accordance with the current LTS specifications. Use Fatigue Category I for all other sign, traffic signal, and lighting support structure designs including all VMS support structures.

C 7.6.1

Add the following:

FDOT uses Prestressed Concrete Poles in accordance with Index 641-010 and Specifications Section 641. After analysis of the proposed span-wire pole structure, the Designer selects the appropriate pole using the design moment values given in the Standard Plans Instructions for Index 641-010.

C 10.5

Add the following:

Design camber = Permanent camber + dead load deflection. Permanent camber equal to 1.5 times the dead load deflection provides for a better appearance than the relatively small L/1000 given in AASHTO. For mast arms, a two degree upward angle at the arm/upright connection is standard industry practice.

C 11.6

Add the following:

Sign, signal and lighting structures built using FDOT Standard Plans have performed well over time.
11.7 Fatigue Design Loads

11.7.1 Sign and Traffic Signal Structures

11.7.1.1 Galloping

Replace the 2nd, 3rd and 4th paragraphs with the following:

Vibration Mitigation devices are not allowed in lieu of designing for galloping.

Mast arms designed for flat panel signs only, require the installation of FDOT Developmental Standard Plans D17749 for Damping Device for Miscellaneous Structures.

Exclude galloping loads for the fatigue design of overhead cantilevered sign and DMS support structures with three or four chord horizontal trusses with bolted web to chord connections.

11.8 Deflection

Add the following:

In addition, DMS structures shall also meet the following maximum span-to-depth ratios:

<table>
<thead>
<tr>
<th>DMS Structure Type</th>
<th>Max. Span-to-Depth Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead Span Structure</td>
<td>25</td>
</tr>
<tr>
<td>Overhead Cantilever Structure</td>
<td>9</td>
</tr>
</tbody>
</table>

13 FOUNDATION DESIGN

13.6 Drilled Shafts

Add the following:

Drilled shafts are the standard foundation type on high mast light poles, overhead signs, mast arms and steel strain poles.

C 11.7.1.1

Add the following:

Vibration mitigation devices are seldom necessary and installed only after excessive vibration has been observed and the device is approved by the Department.

Cantilevered sign support structures with horizontal three or four chord trusses have never been reported to vibrate from vortex shedding or galloping. (ref. FHWA Guidelines for the Installation, Inspection, Maintenance and Repair of Structural Supports for Highway Signs, Luminaries, and Traffic Signals)

C 11.8

Add the following:

The minimum requirements given provide additional measures to limit the possibility of galloping.

C 13.6

Add the following:

For standard drilled shaft details, see Standard Plans Indexes 700-040, 700-041, 715-010, 649-010 and 649-031 for overhead sign structures, high mast light poles, steel strain poles, and mast arms.
13.6.1 Geotechnical Design

13.6.1.1 Embedment (Rev. 01/18)

Add the following:

For overturning resistance, use the following ϕ factors:

<table>
<thead>
<tr>
<th>MRI Winds (yrs)</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>0.6</td>
</tr>
<tr>
<td>300</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>0.8</td>
</tr>
</tbody>
</table>

For torsion resistance of cylindrical foundations in cohesionless soils supporting Mast Arm signal cantilever overhead sign structures and cantilever ground sign structures, use the following equations:

$$T_u \leq \phi_{tor} \cdot T_n$$

Where

$$T_n = \pi D F_s \left(\frac{D}{2}\right)$$

$$F_s = \sigma_v \Omega_{fdot}$$

$$\sigma_v = \gamma_{soil} \left(\frac{L}{2}\right)$$

T_u = Torsion force on the drilled shaft

T_n = Nominal torsion resistance of the drilled shaft

ϕ_{tor} = Resistance Factor for torsion

= 1.0 for Mast Arm signal structures

= 0.9 for overhead cantilever sign structures

= 0.7 for cantilever ground sign structures

D = diameter of the drilled shaft

L = length of the drilled shaft

F_s = unit skin friction

σ_v = effective vertical stress at mid-layer

Ω_{fdot} = load transfer ratio where the allowable shaft rotation may exceed 10 degrees

= 1.5 for granular soils where uncorrected SPT N-values are 15 or greater

C 13.6.1.1

Add the following:

Since sign, lighting and signal foundations have performed well in Florida, LRFD ϕ factors have been calibrated to allowable stress design.

The torsion resistance equation is based on the theory for the Beta Method (O'Neill and Reese, 1999). The torsional resistance from the bottom face of the shaft is omitted to increase the conservatism in this approximate calculation. A single Ω_{fdot} factor of 1.5 is used to adjust for the concurrent overturning and torsional forces and to compare with past FDOT practice. Since the consequence of a torsion soil-structure failure is usually small, some rotation may occur from the design wind.

Since cantilever overhead sign structures can have significantly more torsion than a Mast Arm, a lower resistance ϕ factor = 0.90 is appropriate. Cantilevered Ground Signs have a low resistance factor due to lower consequence of failure.

For soils with SPT N-values less than 5, consult the Geotechnical Engineer for additional recommendations.
\[
= 1.5 \left(\frac{N - \text{value}}{15} \right) \text{ for uncorrected } N\text{-values greater than or equal to 5 and less than 15.}
\]

\(\gamma_{\text{soil}} \) = unit weight of soil

13.6.2 Structural Design

Add the following:

Longitudinally reinforce drilled shaft foundations with a minimum of 1% steel. At a minimum, place #5 stirrups at 4 inch spacing in the top two feet of shaft. In cantilever structures, design for shear resulting from the torsion loading on the anchor bolt group.

13.6.2.1 Details

Replace the second sentence with the following:

A minimum concrete cover of six inches over steel reinforcement is required.

Add the following:

The minimum design diameter for drilled shafts is 3 feet and the maximum design diameter is 6 feet. A minimum reinforcement clear spacing of six inches is required for proper concrete consolidation. The top five feet of stirrups in drilled shafts for sign, signal and lighting structures are exempt from this spacing requirement.

Drilled shafts with design diameters greater than 6 feet should be avoided. Concrete consolidation below the anchor bolts becomes more difficult with reinforcement clear spacing less than six inches. Larger shaft diameters should be considered to increase reinforcement spacing.

Modification for Non-Conventional Projects:

Delete FDOT 13.6.2.1 and insert the following:

Replace the second sentence with the following:

A minimum concrete cover of six inches over steel reinforcement is required.

Add the following:

A minimum reinforcement clear spacing of six inches is required for proper concrete consolidation. The top five feet of stirrups in drilled shafts for sign, signal and lighting structures are exempt from this spacing requirement.
13.7 Spread Footings

13.7.1 Geotechnical Design *(Rev. 01/18)*

Replace 13.7.1 with the following:
The bearing capacity and settlement of spread footings in various types of soils may be estimated according to methods prescribed in *LRFD*. Eccentric load limitations shall be as given in *LRFD* 10.6.3.3.

C 13.7.1
Replace C13.7.1 with the following:
FDOT is using the *LRFD* Bridge Design Specifications for Geotechnical Design.

13.10 References *(Rev. 01/18)*

Add the following:

14 FABRICATION, MATERIALS, AND DETAILING *(Rev. 01/18)*

Replace this section with the following:
• See the FDOT Standard Specifications for Road and Bridge Construction and FDOT Materials Manual.

15 CONSTRUCTION *(Rev. 01/18)*

Replace this section with the following:
• See the FDOT Standard Specifications for Road and Bridge Construction and FDOT Materials Manual.

18 EVALUATION OF EXISTING STRUCTURAL SUPPORTS FOR HIGHWAY SIGNS, LUMINAIRES AND TRAFFIC SIGNALS

Add new Section 18 as titled above and include the following:

...
18.1 General

See *FDM* 210 for requirements for evaluating existing highway signs, luminaires and traffic signals.

A Design Variation/Exception is not required for any of the following existing details:

- mast arm to upright connections with 4 bolts (FDOT 5.15)
- tapped mast arm connections (FDOT 5.15)
- fillet welded tube-to-transverse plate connections (FDOT 5.14)
- mast arm upright anchorages with 4 bolts (FDOT 5.16)
- transverse plate thickness (FDOT 5.6.3)
 - mast arm horizontal and upright 1.5 inches and greater
 - high mast light pole and steel strain pole 2.0 inches and greater

All items listed above should be checked in situations where there is evidence of distress or instability, or where the Engineer has reason to believe the structural capacity is in doubt.

18.2 Analytical Evaluation Without Proposed Additional Loading

When using *FDM* Section 210, Analytical Evaluation Without Proposed Additional Loading, the evaluation is allowed using any of the following design specifications:

- LTS *LRFD* as modified in this Volume.
- LTS 6th edition without Appendix C and the wind speeds defined in *FDOT* Table 18.3-1.
- LTS 6th edition with Appendix C as modified in this section, and the wind speeds defined in *FDOT* Table 18.2-1

C 18.2

By allowing an overstress factor of 1.4, consistent with previous editions of LTS, properly designed existing structures will be allowed to remain in place in accordance with *FDM*.

To simplify the design process, FDOT has designated one wind speed per county.
When using LTS 6th edition with Appendix C, the following assumptions are allowed:

- an allowable overstress factor (LTS 3.4) of 1.4 for Group II loading is allowed.
- FDOT minimum sign areas (FDOT 2.4.2.2) are not required.
- fatigue evaluation (LTS Section 11) is not required.
- foundation evaluation (LTS Section 13), structural and geotechnical, is not required.
<table>
<thead>
<tr>
<th>County (Dist)</th>
<th>10 year</th>
<th>25 year</th>
<th>50 year</th>
<th>County (Dist)</th>
<th>10 year</th>
<th>25 year</th>
<th>50 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alachua (2)</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>Lee (1)</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Baker (2)</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>Leon (3)</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>Bay (3)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>Levy (2)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Bradford (2)</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>Liberty (3)</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Brevard (5)</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>Madison (2)</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>Broward (4)</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>Manatee (1)</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Calhoun (3)</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>Marion (5)</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Charlotte (1)</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>Martin (4)</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Citrus (7)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>Miami-Dade (6)</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Clay (2)</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>Monroe (6)</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Collier (1)</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>Nassau (2)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Columbia (2)</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>Okaloosa (3)</td>
<td>70</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>DeSoto (1)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>Okeechobee (1)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Dixie (2)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>Orange (5)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Duval (2)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>Osceola (5)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Escambia (3)</td>
<td>70</td>
<td>90</td>
<td>100</td>
<td>Palm Beach (4)</td>
<td>80</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Flagler (5)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>Pasco (7)</td>
<td>70</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Franklin (3)</td>
<td>70</td>
<td>90</td>
<td>100</td>
<td>Pinellas (7)</td>
<td>70</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Gadsden (3)</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>Polk (1)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Gilchrist (2)</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>Putnam (2)</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Glades (1)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>St. Johns (2)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Gulf (3)</td>
<td>70</td>
<td>90</td>
<td>100</td>
<td>St. Lucie (4)</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Hamilton (2)</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>Santa Rosa (3)</td>
<td>70</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Hardee (1)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>Sarasota (1)</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Hendry (1)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>Seminole (5)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Hernando (7)</td>
<td>70</td>
<td>90</td>
<td>100</td>
<td>Sumter (5)</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Highlands (1)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>Suwannee (2)</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>Hillsborough (7)</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>Taylor (2)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Holmes (3)</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>Union (2)</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Indian River (4)</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>Volusia (5)</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Jackson (3)</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>Wakulla (3)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Jefferson (3)</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>Walton (3)</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Lafayette (2)</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>Washington (3)</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Lake (5)</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
18.3 Analytical Evaluation With Proposed Additional Loading

When using FDM 210, Analytical Evaluation With Proposed Additional Loading, the evaluation is allowed using either of the following design specifications:

- LTS LRFD as modified in this Volume.
- LTS 6th edition without Appendix C and the wind speeds defined in FDOT Table 18.3-1.

FDOT Table 18.3-1 Basic Wind Speed, V

<table>
<thead>
<tr>
<th>County (Dist)</th>
<th>Basic Wind Speed (mph)</th>
<th>County (Dist)</th>
<th>Basic Wind Speed (mph)</th>
<th>County (Dist)</th>
<th>Basic Wind Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alachua (2)</td>
<td>110</td>
<td>Hardee (1)</td>
<td>110</td>
<td>Okeechobee (1)</td>
<td>130</td>
</tr>
<tr>
<td>Baker (2)</td>
<td>110</td>
<td>Hendry (1)</td>
<td>130</td>
<td>Orange (5)</td>
<td>130</td>
</tr>
<tr>
<td>Bay (3)</td>
<td>130</td>
<td>Hernando (7)</td>
<td>130</td>
<td>Osceola (5)</td>
<td>130</td>
</tr>
<tr>
<td>Bradford (2)</td>
<td>110</td>
<td>Highlands (1)</td>
<td>130</td>
<td>Palm Beach (4)</td>
<td>150</td>
</tr>
<tr>
<td>Brevard (5)</td>
<td>130</td>
<td>Hillsborough (7)</td>
<td>130</td>
<td>Pasco (7)</td>
<td>130</td>
</tr>
<tr>
<td>Broward (4)</td>
<td>150</td>
<td>Holmes (3)</td>
<td>130</td>
<td>Pinellas (7)</td>
<td>130</td>
</tr>
<tr>
<td>Calhoun (3)</td>
<td>130</td>
<td>Indian River (4)</td>
<td>150</td>
<td>Polk (1)</td>
<td>110</td>
</tr>
<tr>
<td>Charlotte (1)</td>
<td>130</td>
<td>Jackson (3)</td>
<td>110</td>
<td>Putnam (2)</td>
<td>110</td>
</tr>
<tr>
<td>Citrus (7)</td>
<td>130</td>
<td>Jefferson (3)</td>
<td>110</td>
<td>St. Johns (2)</td>
<td>130</td>
</tr>
<tr>
<td>Clay (2)</td>
<td>110</td>
<td>Lafayette (2)</td>
<td>110</td>
<td>St. Lucie (4)</td>
<td>150</td>
</tr>
<tr>
<td>Collier (1)</td>
<td>150</td>
<td>Lake (5)</td>
<td>110</td>
<td>Santa Rosa (3)</td>
<td>150</td>
</tr>
<tr>
<td>Columbia (2)</td>
<td>110</td>
<td>Lee (1)</td>
<td>130</td>
<td>Sarasota (1)</td>
<td>130</td>
</tr>
<tr>
<td>DeSoto (1)</td>
<td>130</td>
<td>Leon (3)</td>
<td>110</td>
<td>Seminole (5)</td>
<td>130</td>
</tr>
<tr>
<td>Dixie (2)</td>
<td>130</td>
<td>Levy (2)</td>
<td>130</td>
<td>Sumter (5)</td>
<td>110</td>
</tr>
<tr>
<td>Duval (2)</td>
<td>130</td>
<td>Liberty (3)</td>
<td>130</td>
<td>Suwannee (2)</td>
<td>110</td>
</tr>
<tr>
<td>Escambia (3)</td>
<td>150</td>
<td>Madison (2)</td>
<td>110</td>
<td>Taylor (2)</td>
<td>130</td>
</tr>
<tr>
<td>Flagler (5)</td>
<td>130</td>
<td>Manatee (1)</td>
<td>130</td>
<td>Union (2)</td>
<td>110</td>
</tr>
<tr>
<td>Franklin (3)</td>
<td>130</td>
<td>Marion (5)</td>
<td>110</td>
<td>Volusia (5)</td>
<td>130</td>
</tr>
<tr>
<td>Gadsden (3)</td>
<td>110</td>
<td>Martin (4)</td>
<td>150</td>
<td>Wakulla (3)</td>
<td>130</td>
</tr>
<tr>
<td>Gilchrist (2)</td>
<td>110</td>
<td>Miami-Dade (6)</td>
<td>150</td>
<td>Walton (3)</td>
<td>130</td>
</tr>
<tr>
<td>Glades (1)</td>
<td>130</td>
<td>Monroe (6)</td>
<td>150</td>
<td>Washington (3)</td>
<td>130</td>
</tr>
<tr>
<td>Gulf (3)</td>
<td>130</td>
<td>Nassau (2)</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamilton (2)</td>
<td>110</td>
<td>Okaloosa (3)</td>
<td>130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C 18.3
To simplify the design process, FDOT has designated one wind speed per county.
VOLUME 3 - REVISION HISTORY

Changed all references from Design Standards to Standard Plans, and modified the Standard numbers accordingly.

Changed all references from Plans Preparation Manual to Florida Design Manual and modified the chapter/Section number accordingly.

C 2.4.2.4Revised last Paragraph of Section

2.4.2.4Revised Section.

2.6Added Section and Commentary per SDB 17-02.

C 3.8Added second Paragraph to Commentary.

3.8In Table, deleted bullet 5 of Section 1 and Revised bullet 2 of Section 2.

3.8.7Revised Table and Commentary per SDB 17-06.

3.10Added Paragraph to end of Section per SDB 17-06.

4Added Section per 17-06.

5.4Revised Document list.

6.4Revised Document list.

7.4.2.1Revised Document list.

7.4.3.1Revised Document list.

7.4.4.1Revised Document list.

7.6.1Deleted reference to service limit state.

13.6.1.1.......Revised Section Formula Notes and associated Commentary.

C 13.6.2.1Delete Mass Concrete related Requirements.

13.7.1.........Revised Section and added new Commentary.

13.10..........Added New Section.

14Revised cross reference.

15Revised cross reference.