Case Study: Concrete Pavement
Florida Department of Transportation, District Seven

District Seven’s Interstate Program

• Aggressive program to reconstruct and rehabilitate all Interstate systems in District Seven’s Tampa Bay area
• Interstates 4 and 275 originally built in the 1960’s
• Program began in the mid 90’s in rural areas
• Progressed to urban areas
Case Study: Concrete Pavements

Scope of work included:
• Complete Reconstruction
• Vertical and Horizontal Alignment Changes
• Rehabilitation
• Safety enhancements
• Operational Improvement’s
• ITS

Case Study: Concrete Pavements

• Existing Interstates were built using Concrete pavements
Case Study: Concrete Pavements

• Reconstructed Rural Interstates utilized Asphalt for pavement structure

• Reconstructed Urban Interstates utilized Concrete for pavement structure
Case Study: Concrete Pavements

- Non-reconstructed Interstate received rehabilitation of existing concrete pavements and safety enhancements

Case Study: Concrete Pavements

- District Seven decided that all Urban Interstate systems will be reconstructed utilizing Concrete Pavement
- Existing Interstates utilized Concrete Pavements and have been in service for 40+ years with little maintenance needs
- Traffic Volumes AADT’s 160,000+
- Longevity of pavement
- Reduced impacts over the time and reduced maintenance needs
Case Study: Concrete Pavements

Junction of I-275 & I-4 (operational improvements and safety enhancements)

I-4 from I-275 to 50th Street (US 41) (complete reconstruction)
Case Study: Concrete Pavements

I-275 from Roosevelt Boulevard to the Howard Frankland Bridge (complete reconstruction)

Case Study: Concrete Pavements

I-275 from Downtown Tampa to Busch Boulevard (rehabilitation/safety enhancements)
Case Study: Concrete Pavements

I-275 from Busch Boulevard to Bearss Avenue (rehabilitation and new lanes)

Case Study: Concrete Pavements

Rehabilitate
Case Study: Concrete Pavements

- Original projects evaluated slab distress utilizing Rigid Pavement Design Manual
- 60% of slabs met criteria for rehabilitation, mostly joints
- Rehabilitation exceeded original budget projections
- Plans were unclear and did not note specific slabs to rehab
- Rehabilitation scaled back and criteria revised to work only the worst slabs

Case Study: Concrete Pavements

- The District 7 developed the “Concrete Pavement Rehabilitation Strategies and Techniques Guidelines” for use by Designers and Construction personnel

Concrete Pavement Rehabilitation Strategies and Techniques
District Seven Guidelines
May 2001

1. The Consultant/In-house Pavement Designer will hold two field meetings with the following personnel: District Maintenance (District Roadway Services Engineer), Resident Field Office (Project Engineer) and District Pavement Design Engineer or designee. The first meeting is to occur upon the Phase IV Plan submittal to review slab inventory and design intent. The second will occur upon commencement of construction and will include the contractor to verify existing conditions and ascertain design intent.
Case Study: Concrete Pavements

• Required designers to evaluate in the field and identify slabs during the design process

TECHNIQUES

Typical operations
• Saw cut and remove slab, drill dowels holes, slab can be set back in place
Case Study: Concrete Pavements

TECHNIQUES

• Prep subgrade, drill (if not already done) and place load transfer dowel bars

Case Study: Concrete Pavements

TECHNIQUES

• Most Contractors use gang drills to increase production
Case Study: Concrete Pavements

TECHNIQUES

- Pour area with high early strength concrete

- Screed and finish (work quickly!)
Case Study: Concrete Pavements

Techniques

- Cure for 6 hours

Lessons Learned

- Use of Maturity Meters for compressive strength
- Past Rigid Pavement guidelines noted that a distressed joint would require a full width 6 foot replacement on each side of the joint
- Made a change to rehab the joint by centering the 6 foot slab on the joint
- Both sides of the joint rehabilitated
Case Study: Concrete Pavements

- Center 6 foot (min.) on the joint

Maintainence of Traffic

12/19/2004
Case Study: Concrete Pavements

• Shifting of existing lanes must be considered

Case Study: Concrete Pavements

• Traffic Pacing Technical Special Provision
Case Study: Concrete Pavements

- Used due to high volumes of traffic throughout the day periods and in to the night periods
- Necessary to move equipment and materials in and out of the work zone
- Also used to set-up initial lane closure taper and to set overhead sign structures

Case Study: Concrete Pavements

- TSP allows for up to twenty minutes
- Must be managed and should strive for less impact time
- TSP should be precise in detailing what items the pacing should be used for and how long
- Number 1 complaint received 😞
Case Study: Concrete Pavements

- Access to medians

Traffic Pacing in action
Case Study: Concrete Pavements

I-4 Project Data

- 5,921 Sy. Meters of 290 mm Of Ramp Paving
- 7,071 Sy. Meters of 260 mm Of Ramp Paving
- 113,065 Sy. Meters of 330 mm Mainline Paving
- 225 + Pours
- 40,000 + Cubic Meters of Concrete Used
- $81 / M2
Case Study: Concrete Pavements

Equipment
Gomaco GT 6300 Paver

Case Study: Concrete Pavements

Gomaco TC600
Cure/ Tine Machine
Case Study: Concrete Pavements

Mixing 6 Inch Top Section

Asphalt Treated Permeable Base (ATPB)
Case Study: Concrete Pavements

Cement Treated Permeable Base (CTPB)

Compacting CTPB
Case Study: Concrete Pavements

Control Wire Line

Completed Sub-Base
Case Study: Concrete Pavements

Dowel Baskets

Preparing to Pave
Case Study: Concrete Pavements

Preparing to Pave

Case Study: Concrete Pavements

Electronics
Case Study: Concrete Pavements

Wireless Electronics

Case Study: Concrete Pavements

Loading the Trucks (onsite batch plant)
Case Study: Concrete Pavements

Loading the Trucks (offsite batch plant)

Delivering the concrete to the paver
Case Study: Concrete Pavements

Delivering the concrete to the paver

Case Study: Concrete Pavements

Paving
Case Study: Concrete Pavements

Depth Check

Case Study: Concrete Pavements

Top Elevation
200mm offset
Case Study: Concrete Pavements

Checking Alignment
1.7 m offset

Case Study: Concrete Pavements

Bar Shooter
Case Study: Concrete Pavements

Keyway and Lane Tie Bar

Case Study: Concrete Pavements

Finishing
Case Study: Concrete Pavements

Curing Compound
200 Sq Ft per gallon

Case Study: Concrete Pavements

Saw Cutting Joints
Case Study: Concrete Pavements

Saw Cutting Joints

01/13/2007

Case Study: Concrete Pavements

Grinding
Case Study: Concrete Pavements

Profilograph and Grind

Case Study: Concrete Pavements

Profilograph
Case Study: Concrete Pavements

Challenges

• 95% Night Work
• Concrete Materials Shortage
• Concrete Delivery in Tight Areas
• Inexperienced Labor
• Lack of Supervision on Follow Up Work
Case Study: Concrete Pavements

Challenges

• Haul Roads

[Image of a truck on a construction site]

Case Study: Concrete Pavements

Challenges

• Crooked Joints

[Image of a crooked joint in a concrete pavement]
Case Study: Concrete Pavements

Challenges

• Ragged Edge

• Bad Saw Cuts
Case Study: Concrete Pavements

Challenges

• Lane to Lane Joint

Case Study: Concrete Pavements

Challenges

• Saw Cut in the Wrong Spot
Case Study: Concrete Pavements

Challenges

• Grinding to Deep

Case Study: Concrete Pavements

Challenges

• Inconsistent Cross Slope
Case Study: Concrete Pavements

Interchange of I-275 and I-4 Operational Improvements and Safety Enhancements

- Downtown Traffic will be Separated from Through Trips
- The I-275 to I-4 Flyover Ramp will be Relocated as a Right Entry to Reduce Weaving on I-4
- Ashley Street Entrance will be extended on I-275 to I-4
- Includes Landscaping and Aesthetic Treatments
Case Study: Concrete Pavements

Project Scope:

• Existing pavement was rehabilitated
• Extensive widening to create additional lanes
• Variable widening to soften curves
• Profile grade changes

Case Study: Concrete Pavements

• An extremely challenging project
• Mixture of new widened concrete pavements and rehabilitation of the existing pavements
• Extremely heavy volumes of traffic
• In the heart of Downtown Tampa’s business districts and residential neighborhoods
• Little “New” right of way
Case Study: Concrete Pavements

Challenges

- Difficult excess to work areas

Looking East at Early Reconstruction of DTI July 2003
Case Study: Concrete Pavements

Challenges

• Profile Changes
Case Study: Concrete Pavements

Challenges

• Tight Spaces

Case Study: Concrete Pavements

• Tight work areas and maintenance of traffic limited delivery of materials to “off-peak” periods
• Contract duration must be considered when planning and designing projects with these types of constraints
• Profile changes must be considered from a maintenance of traffic standpoint
• Survey the existing conditions, especially bridges
Case Study: Concrete Pavements

Challenges

• Mixture of new pavements and existing pavements

Case Study: Concrete Pavements

Challenges

• Maintenance of traffic complicating rehab operations
Case Study: Concrete Pavements

Challenges

• A piece at-a-time! Existing, new and temporary asphalt

Case Study: Concrete Pavements

Challenges

• Small areas
Case Study: Concrete Pavements

Challenges

• Variable widening
Case Study: Concrete Pavements

• Success!

Case Study: Concrete Pavements

• Success!
Case Study: Concrete Pavements

Other Unique features

Stepped Fountain Pond at I-4 and 21st & 22nd Streets (Ybor City area)
Case Study: Concrete Pavements

Architectural Treatments
Case Study: Concrete Pavements

Hardscape Features

Questions?

Visit us @ http://www.myTBI.com
TBI is Tampa Bay Interstates