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Topic Description

This presentation provides an overview of a new mechanistic-empirical top down cracking design tool for Florida.
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Pavement Response and
Cracking

Bottom-up cracking \m/_

® Bending effects

Top-down cracking

@ Predominant in Florida
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Mechanisms of Top-Down Cracking

@ Stiffness Gradients (Temperature differential, Aging)
@ Thermal Stresses

@ Truck tire ribs induced tension, Residual viscoelastic stresses

Cracking Models for Mixtures and Pavement

@ Simpler Testing and Design Calculations




m Florida Cracking Model — Key

ey~ Features

* A damage threshold exists (DCSE limit)
+ Damage = Dissipated Creep Strain Energy (DCSE)

+ Damage > Threshold — Macro-crack
(DCSE) (DCSE limit)

* Macro-crack is not healable

+ Damage under the cracking threshold is fully
healable

Energy, E

Cycles, N Cycles, N Cycles, N

Potential loading conditions in the field

Damage | Healing | Damage | Healing

Energy, E

Day 1 Day 2 —




| Sms/ D Crack Growth Model
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Crack Propagation (Paris Law) — a :d—A
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Threshold Number of Load Applications, N

Mixture Properties

Superpave Indirect Tensile Test:

1. Resilient modulus (Cyclic loading)

2. Creep (Constant load with time)

Dissipated energy oc creep rate

3. Strength (Increase load until
fracture)

Energy limits




| smZee/ S HMA Fracture Model

Desiging For More Than Bridges nd Roads

» Calculate the crack growth for a given level of applied
stress.

Use — Material properties —m, D, (creep rate) & DCSE; (energy limit)
— Structural properties — 0, (modulus)

to calculate the amount of dissipated energy per load cycle:

DCSE / cycle = f(tensile stress, D, &m)

* For a given mixture with known DCSE; we can predict N;
for initiation or propagation of cracking.

Multiple pairs of
poor and good
performing sections
throughout Florida

1.SR 16 Bloomingyf
2. U819 A
3.8R375

4. TPK

5. W 39 Ave

— Over 18 pairs

(36 sections)
to date

Olympia Heights ®'
Everglades. ®Leisure City
National
Park

=" OkKey West




= Cycles to Failure

esiging For Mar ThanBricges nd Roods

+ Used the HMA Fracture Model to calculate N; for crack to propagate 2”

Nf to Propagate 2 in
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Cracked Section Uncracked

» Mixtures with N;<6000 performed poorly

Critical N;

+ Set N=6000 as the critical value that distinguishes mixture performance
» Calculate DCSE,, that produced N=6000 for various D, & m-values
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= Minimum Energy

" DesipingFor More Than Bridges nd Roads

+ DCSE,,, is the minimum energy required to produce
N;=6000

* Express the DCSE
function:

D, & m-value relation in a single

min?

m2.98D1

— DCSE,,, =

min

P)«/( Tensile Strength
A —(6'L+2.46><10—8

- 33.44x0}"

Tensile Stress

Energy Ratio Concept

* The DCSEyy has to be greater than the DCSE_;, for good
cracking performance:

DCSE

min

Stress, o
Log D(t)

Strain, ¢
DCSEj = AREA

DCSE e _ .
DCSE,;

ENERGY RATIO =




sl s Energy Ratio Results
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+ Examined all sections
» Performance criteria: ER>1 ; DCSE,,>0.75

o] DCSEHMA<0.75N DCSEjya>2.5

Energy Ratio
2
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Section
Cracked Uncracked

e/ N, . FlOrida Framework for Cracking
oz~ Evaluation of HMA Pavements

LABORATORY TEST OR VOLUMETRIC
SuperPave™ IDT RELATION

|

v 4
SUPERPAVE IDT
FRACTURE PARAMETERS

l

HMA FRACTURE PAVEMENT RESPONSE STRUCTURE
] & 7
MODEL INFORMATION
CRACKING MODELS

l

PAVEMENT DESIGN
THICKNESS




%ﬁ@@ Top-Down Cracking Design

esiging For Mar ThanBricges nd Roods

Level 3: Use Energy Ratio for M-E Top-Down
Cracking Design

» Accounts for structure and mixture for
“averaged” environmental conditions

» Design Premise: ensure a reasonable
predicted crack depth after x number of
years (Design Life)

— Determine thickness for ER=1 @ design life

| AC Thickness
Layered Elastic Modulus,
Analysis Poisson’s Ratio

| Aging model w/ Design life |

Mixture Properties Matrix
(DCSE|, FE, S,, Creep Rate)

Energy Ratio

Design Thickness |




. M-E Top Down Cracking Design-

mm@ww Level 1 & 2

» Uses a fast pavement fracture simulator to predict
depth of cracking after x years (Design life), and
account for the effects of:

Mixture & Structure
Temperature/aging gradients
Load Configuration

Traffic

* Level 1:
— Measured properties from IDT

* Level 2:
— Estimated properties

Updated Layer | | GRADIENTS: DCSE,, FE, S,
Thickness *Temperature (Matrix) Creep Rate,
*Aging (Matrix) Mr, v adjusted
for aging and
temperature

| LEVEL 1 Layer Thickness |

Load Configuration

% Fracture Simulator %7 * Load Spectra?
l \ * ESALs?
Crack Depth at

Design life (CD);,,.

e @ = ’Design Thickness‘
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Designing For Mare Than Bridges and Roads
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e New Pavement Design using Energy Ratio

e Overlay Design using Energy Ratio

Welcome to The Cracking Tool !

Please choose the following

* New Pavement Design Using Energy Ratio

" Overlay Design Using Energy Ratio
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| 2Z Slaws Input Menu
N

= Florida Pavement Cracking Design Tool
General | BTl Output Units Help

CEX)

AC Layer... Cirl+A e Structure
Other Layer ...Ctrl+0

Loads... Ctri+L

MAAT Input Ctri+V - AC Layer

— Other Layers
Cracking

Design

Loads

+ MAAT
.
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5P 9.5 {" Coarse
{1510 2)
SP125 Coarse
(210 3)
SP150 " Coarse
(3t0 3.5)
+ Input

e Dl

1. Mix Selection | 2, Binder | 3.

Structural Information (F1 for Help)

AL Properties ]

™ Fine
11015
" Fine
(15t025)
" Fine

(210 3)

1. Select mix type (Required lift thickness below)

100

P3/2

S

P200

E)oX)

2. Estimated design thickness (inch)

—

3. Input Volumetric Properties

Air Void in Compacted Field M (%)

—

Diesign asphatt cortent by volume (3

o

Cancel

AC Layer - Basic Design

Suggested
gradation or input
your own

Estimate an initial
design thickness
(will be optimized)

Input Design AV
and V,

1. Mix Selection 2| Binder |a

AC Properties 1

0.85
1. Binder viscosity at mixlaydown condition
(+ Default (u@dreted from A-VTS relation)
™ Inr (19583 |
C) °
= o]
2.PG L
2 PGoradp g2
Q o
rSnsrine © A
B (72 o®
2,085 vs | 1
" g2 8222 d
8 0.79F e Layer A (uncorrected) |
'S o Layer B (uncorrected)
0.78 _ . Layer A (corrected) ]
]Dg logn A+VTS lOg I:E Layer B (corrected)
0.77F 3
C | 0
ancei 476
n_ (-3 n_-/o n_o 022 n.QA 0.26

Measured log-log 1 (cp)

Estimate the binder
viscosity at
mix/laydown
condition

Predict the in-
service viscosity
based on the global
aging model

Correction

12
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MAAT Input

« Input MAAT to LRI 3

prediCt aging Mean Annual &ir Temperature (MAAT)
* Input Default - Choose the nearest locations
to the project
70 (" Tallzhasse/Jacksonville(58)

™ Gainesvile(70)

" Orando/Tampa(72)
" Miami{75)

Ky West(TE)

Cancel

Structural Information (F1 for, Help)

1. Mix Selection | 2. Binder 3. AL Propettes | * Layer modulus
Master-Curve for |[E*| at 10 °C (C1 mixture) estimate from |E*|
master curve

8

7.5F

7t

65 + Poisson’s ratio
_ef estimated from
% 550 EAC
u
= O
k<]

451

. * |IDT parameters

35 estimated from

s some basic
25 , ‘ ‘ ‘ ‘ , ‘ relations

20 -15 -10 -5 0 5 10 15 20
log-frequency (Hz)




- Pavement Structure

DESIGN CONFERENCE,

. — Other Layers

» Base, sub-base and subgrade layers (elastic)

Struture- other layers E‘
» User can determine

Number of Layers
C2 3 F4°C5 the number of

Layer 2 Layer 2 Layer 4 Layer 5
Material ‘Slablize Baseﬂ |G|aded A.ggregﬂ |50il Subgrade j | J layers
Min e —
Layer » Default properties
M 200000 t df
Poisson's Ratio Sugges e or
Min - Max 02 - 05 selected materials
Thickness Infinite:
;“f;Hﬂ”? M * User can also
U=Ful . .

define the material
roperties
- prop

Loads Input

Load Input [Z|
» Simplified load
. . Traffic Load Choice
information
Total Mumber of ESAL(™1000] Szoml 0000
Drezign Period 20
The maximum number Bt e || 2(00) 8
of ESALs/year: FDOT Traffic Level E -
_¢ L PUEp)”
" total 1+p) -1 Load Irformation
(" Standard ESAL ¢ User Defined
Load Magnitude (S000Ib) Load Magnitude {b)  [3000
Tire Pressure (100psi) Tire Pressure {psi) 100]
Cancel
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———weiual ER Calculation
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 ER formula

DCSE;  DCSE; 0.0299 - (6.36 — §;) .
B = D CSEy ~ Dy -2 4. where A=$”““‘“” )
¢ Minimum ER
adjusted for
traffic level
According to the

traffic load input,

select the minimum

Minimum Energy Ratio

(optimum) ER

corresponding to
0 200 400 600 800 1000 1200

Traffic (ESALSs/year x1000)

the traffic level

DESIGN

e ER Output
N\

Qutput (F1 far Help)

Please Enter the location of Sigma to calculate

Iy % z Plan View
. m l—-Y

Marmel S (i) 6.78 [tee7e 2553 Profile View

Optimization Curve
ER =

V4

rerdy Fato -
25 stresses at the standard ER value

? or selected location Celoulats
1.5

Optimize
Optimum s

0.5 Thickness

Optimum ER 0.3

1

2 & 1 5 b ’ 8 9 10 n 12 Minimum required ER for
Thickness [in Inch] selected taffic level

Leave Studio

15
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—wmiaal Thickness Optimization
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» Search for the thickness that gives the minimum required ER

ER
Optirmum
@ Thickness 3
2.5
Optirurn ER 135
2 tinimum required ER for
selected traffic level
1.5
1 @ Optirnum
@ Thickness 52
0.5 Optimum ER 1
1] | Mimimumm required ER for
5 B 7 8 q 10 selected traffic level

Thickness [in Inch)

ER-Thickness Curve

* Plot ER-thickness curves at different pavement ages

— ERincreases as the EFThickness Cune
pavement thickness
increase if the
pavement is not too
thin ‘
3
— The ER values for
new and aged 2
pavements differ
significantly, !
especially for thick 0
pavements 3 4 5 6 7 8 9 10
Thickness [in Inch)




| eZe/ M Pavement Life Curve

Designing For Mare Than Bridges and Roads

* Plot pavement life curves for different thicknesses

ER-Life Curve

¢« ERdrops down
significantly in the
first couple of years 4

h1 <h2 <h3:

h2 = optimum thickness
h1=h2-2
h3=h2+2

» Sensitivity of ER to
thickness is shown
in the graph 1

0 2 4 3 8 10 12 14 16 18 20
Life [in Year]

° A new M-E pavement design tool for top down
cracking based on Energy Ratio

« Validated on more than 30 field sections

* Thickness design optimized for
— traffic level

— mixture type

— binder type

* The optimization is an automated process

17
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sl s Summary (Cont’d)

esiging For Mar ThanBricges nd Roods

® | evel 1 and 2 pavement design tool being
developed

* Frame work complete

— fast fracture simulator

e NCHRP 1-42A:

» Models for top-down cracking

— Awarded to UF on May 1, 2006

Questions
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