


08:48:40 AM

GEOSYNTHETIC REINFORCED FOUNDATIONS CONSTRUCTED ON SOFT SOILS

	STATE PROL NO SHEET
FINANCIAL PROJECT ID	STATE PROJ. NO. SHEET NO.
Soil Reinforcement	
 Maximum vertical spacing 	
between reinforcement layers	5
is 300	
 Minimum vertical spacing between reinforcement layers 	5
is 150.	-
\mathbf{X}	
$^{\prime} \mathbf{X}$	
\mathbf{X}	
\sim	
\sim	
	╡╷╷╞╾╾╡╷╷╞╾╾╡╢
┶┶╞╤╤╡┵┙╞╤╤╡┷┙╞╤╤╡┷┙╞╤	╡┵┵┾┯┯╡┷╜╞┯╤╡╢
THE SEALED I THIS STANDARD	IS ON
FILE IN THE ROA DESIGN OFFICE.	
Design Office.	
	_
STATE OF FLORIDA DEPARTMENT	
ROAD DESI	jN
CENSYNTHETIC DE	NEADCED COULC
GEOSYNTHETIC REI	VFURLED SUILS
INTERIM STANDARD	APPROVED BY
	STATE GEOTECHNICAL ENGINEER
WHEN INCLUDED IN THE PLANS THIS SHEET IS A SUPPLEMENT TO THE METRIC ROADWAY AND TRAFFIC DESIGN STANDARDS, BOOKLET	REVISION NO. SHEET NO.
DATED JANUARY 2000.	00 2 of 8 501

08:53:08 AM p:\stds\interim\diaitalfiles\m2000\mi0050ls02.da

					TABLE OF	F WOVEN GEOTEX	TILE VALUES			
F	PROPERTY	REQUIRED TEST METHOD	MIRAFI HP 370	MIRAFI HP 470	MIRAFI HP 570	MIRAFI HP 670	MIRAFI HP 770	MIRAFI HS 400	MIRAFI HS 600	MIRA
Permittivi	ty (0.05 sec ⁻¹ Min.)	ASTM D 4491	0.52	0.20	0 . 40	0,50	0.23	0.026	0.32	
	lity (Retained 50% Min .e 500 hr .)	ASTM D 4355	70%	70%	70%	70%	70%	70%	70%	
Burst St	trength (kPa)	GRI 🕽 GSI	5,516	8,274	8,274	8,274	8,274			
Grab Si	trength (kN)	ASTM D 4632	1 ,78 x 1,11	1.69 x 1.56	2JI x 1 .9 6	2.89 × 2.00	2.67 x 2.45			
A.O.	.S. (mm)	ASTM D 4751	0.6	0.85	6.0	0 .8 5	0.6	0.3	0.85	
ensile Str	rength (kN/m)									
e 5	Ultimate		47.3	52.5	70J	93.7	105 . 1	70J	105.1	
Machine Direction	2% Ultimate	1	7.88	1313	14.01	15,76	15.76			
DIL	5% Ultimate	ASTM D 4595	19 . 79	26.27	35 .0 3	39A 0	43,78	15.76	29.77	
	Ultimate		39 A0	52.54	70 , 05	70 .0 5	70,05	70.05	52.54	
Cross Direction	2% Ultimate	-	7 .8 8	17,51	19 . 26	17.51	19.26			
	5% Ultimate		19,79	26.27	35.03	35.03	35D3	35.03		
	n @ Ultîmate trength (kN∕m)		14%	10%	10%	14%	12%	15%	15%	
Secant Modulus ©	2% strain	ASTM D 4595	394	657	701	788	788			
	5% strain		396	525	701	788	876	315	595	
Nodu	10% strain		350	525	701	788	963	490	841	
	king Strength (kN/m) ASTM D 4884	21,02	26.27	43.78	52.54	17.51	35.03	35.03	
Punc	ture Resistance (kN)	ASTM D 4833	0.8	0.76	0.85	0.89	0.98			
Tear Strength (kN)	Machine Direction	ASTM D 4833	0.8	0.58	0.8	الدا	الوا	—		
str.	Cross Direction	ASTM D 4833	0.49	0.89	0.80	0.89	1,78		— —	
Soll- Geos	synthetic Friction	GRI : GG5, GT7	0.8	0.8	0.8	0.8	0.8	0.9	0.9	
Creep Resi	istance−T(kN/m) creep	ASTM D 5262						42,03	63.05	
-	eduction Factor	GRI & GG3 & GT5	50	5.0	5.0	5.0	5.0	1,67	1,67	
Installation Damage (RF _C)	Sand	GRI : GG4 & GT7	I .2 5	1.25	IJ5	IJ5	I J 5	1.3	1.25	
Installat Damag (RF _C	Limestone		15	1.5	1.35	1.35	1.35	5	3.5	
Durability (RF _d)	Chemical	ASTM D 5322	IJ	IJ	IJ	L,	IJ	IJ	I.J	
Dura (R.	Biological	ASTM D1987, D3083, G21 & G22	1.0	0.1	0_1	Q.I	QI	۵.	Q.I	
	Mechanical	ASTM D 4595,GRI: GG4 & GT7								
Joint Strength (RF _j)	Overlap	GRI: GG5 & GT6	Q.I	Q.I	LD	ı,D	0.1	Q.I	Q.I	
Annormad	Application Usage		3	3	3	3	3	3	3	

Approved Application Usages I = Steepened Slopes

2 = Reinforcement of Foundations over Soft Soils

3 = Both Steepened Slopes & Reinforcement of Foundations over Soft Soils

APPROVED GEOSYNTHETIC PRODUCTS (WOVEN GEOTEXTILES) APPLICATION AND PROPERTIES

08/23/00

FINANCIAL PROJECT ID	STATE PROJ. NO.	SHEET NO.

IRAFI HS 800	MIRAFI HS 1150	
0.20	0.32	
0.20	UDZ	
70%	70%	
0.85	0.0236	
140J	201J	
50.54		
52 . 54 52.54	70.05	
52.54	52.54	
10%	12%	
1051	1401	
1401	1751	
35.03	35.03	
—		
0 . 9	0.9	
84.06	120,84	
1,67	1,67	
1.2	145	
I .8 5	IJ	
IJ	IJ	
. 0	ı.D	
—		
0.I	QI	
3	3	

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION ROAD DESIGN					
GEOSYNTHETIC REINFORCED SOILS					
INTERIM STANDARD	APPROVED BY				
WHEN INCLUDED IN THE PLANS THIS SHEET	STATE GEOTECHNICAL ENGINEER				
IS A SUPPLEMENT TO THE METRIC ROADWAY AND TRAFFIC DESIGN STANDARDS, BOOKLET DATED JANUARY 2000.	and the second s				
08:58:27 AM p:\stds\interim\diaitalfiles\m200	7\mi0050ls03.dan				

					TABLE C	DF WOVEN GEOTEX	TILE VALUES			
P	ROPERTY	REQUIRED TEST METHOD	MIRIFI HS 1400	MIRIFI HS 1715	MIRIFI HS 2400	MIRIFI HS 3000	MIRIFI HS 3600	AMOCO 2006	AMOCO 2016	AMOCO 2
Permittivii	ly (0₀05 sec ^{−1} Min₀)	ASTM D 4491	0.20	0,32	0.02	0,02	0.02	0.05	0.70	0,/5
	ty (Retained 50% lin .e 500 hr .)	ASTM D 4355	70%	70%	70%	70%	70%	70%	70%	70%
Burst Stre	ngth (kPa)	GRI 🕯 GSI			—			6894	6894	10341
Grab Stren	ngth (kN)	ASTM D 4632						1,40	1,40	2.67/2.
A . 0 . S. (<i>mm</i>)		ASTM D 4751	0.85	0.85	0.30	0.30	0.30	0.42	0.42	0.60
Tensile Sti	rength (kN/m)									
Withmate UITImate UITImate 5% UITImate			245,2	300.3	420.3	525A	630.5	30.6	35.0	70J
achii	2%. Ultimate					—		2.3	40	6.7
Ní Dir	5% Ultimate	ASTM D 4595	87.6	122,6	210.2	262.7	315-2	82	10.9	21,2
5 ion	Ultimate		52.5	52.5	52.5	52.5	52.5	30.6	35 0	70 ,
Cross Direction	2% Ultimate							8A	9.6	201
) ia	5% Ultimate							<i>16</i> J	20.5	38.0
	e Ultimate e Strength		14%	14%	10%	10%	10%	8%	8%	8%
0	2% strain	ASTM D 4595			T —	i —		<i>"3.8</i>	201A	332.7
seconi lodulus (kN/m)	5% strain		1751.3	2451,8	4203.0	5253.8	6304.6	164.6	217.2	423.8
Modulus (KN/m)	10% strain		1751.3	2364.2	4203.0	525 3.8	6304.6	152.4	182J	455.3
		ASTM D 4884	35.0	35 . 0	52.5	52.5	52.5		——	— —
Puncture R	Resistance (kN)	ASTM D 4833						0.53	0.53	0.76
l ear Strength (kN)	Machine Direction	ASTM D 4833						0.53	0.53	الدا
Str S	Cross Direction	ASTM D 4833			I —		—	0.53	0.53	الدا
Soll- Geos	synthetic Friction	GRI : GG5, GT7	0.9	0.9	0.9	0.9	0.9	0.65	0.65	0.65
Creep Resi	stance-T _{cree} (kN/m)	ASTM D 5262	147 J	180_2	252.2	315.2	315,2	8.8	0.0	20.0
	duction Factor ^{/T} creep)	GRI: GG3 & GT5	1.67	1,67	1.67	1,67	1,67	3.5	3.5	3.5
	Sand	GRI : GG4 & GT7	I J 5	i " 15	IJ	IJ	IJ	OLI	1,05	1.05
Installation Damage (RF _C)	Limestone		1,5	1.35	1.25	I <i>-2</i> 5	1.25	1.20	1.20	061
bility F _d)	Chemical	ASTM D 5322	IJ	I.J	IJ	IJ	IJ		IJ	IJ
Durability (RF _d)	Biological	ASTM DI987, D3083, G2I & G22	QI	1.0	QI	Q.I	Q.I	IJ	12	
Joint Strength (RF _j)	Mechanical	ASTM D 4595,GRI: GG4 & GT7								
Stre CR	Overlap	GRI: GG5 & GT6	Q.I	Ωı	Q.	ı.D	Q.I	12	12	12
Approved	Application Usage		2	3	3	3	3	3	3	3

Approved Application Usage: I = Steepened Slopes

2 = Reinforcement of Foundations over Soft Soils

3 = Both Steepened Slopes & Reinforcement of Foundations over Soft Soils

APPROVED GEOSYNTHETIC PRODUCTS (WOVEN GEOTEXTILES) APPLICATION AND PROPERTIES

08/23/00

	FINANCIAL F	PROJECT ID	STATE PROJ. NO.	SHEET NO.
		-		
2044	COMTRAC 70/70			
5	0.20			
ć	70%			
11 2.23				
	0.85			
-	245.2			
?	87.6			
-	52.5			
,				
1				
	14%			
7				
३ इ	1751.3			
-	1751.3 2 ,4 00			
6	2,000			
,				
5	0.9			
)				
	1,67			
5	IJ5			
)	15			
	IJ			
	Q،			
-				
	QI			
	3			
	STATE OF FLO	RIDA DEPARTMENT O ROAD DESIGN	F TRANSPORTATION	

CED SOILS

INTERIM STANDARD	APPROVED B	' for	Dar
WHEN INCLUDED IN THE PLANS THIS SHEET		STATE GEOTE	CHNICAL ENGINEER
IS A SUPPLEMENT TO THE METRIC ROADWAY	REVISION NO.	SHEET NO.	INDEX NO.
AND TRAFFIC DESIGN STANDARDS, BOOKLET DATED JANUARY 2000.	00	4 of 8	501
09:03:34 MU o:\stds\interim\diaitalfiles\m2000)\mi0050/c04_c	lan	

					TABLE	OF WOVEN GEOGR	RID VALUES			
	PROPERTY	REQUIRED TEST METHOD	MIRIFI MG 2XT	MIRIFI MG 3XT	MIRIFI MG 5XT (Matrex 30)	MIRIFI MG 7XT	MIRIFI MG 8XT	MIRIFI MG IOXT (Matrex 60)	MIRIFI MG 18XT (Matrex 90)	MIRIFI MG 20X (Matrex 120)
	bility (Retained 50%) th Min.@ 500 hr.)	ASTM D 4355	70%	70%	70%	70%	70%	70%	70%	70%
Tensile :	Strength (kN/m)									
Machine Nachine Direction 2%. Ultimate 5%. Ultimate	Ultimate		29-2	40.9	52A	63.5	90.9	121J	136.6	181.3
	2%. Ultimate									
Dir	5% Ultimate	ASTM D 4 595	17.5	I5A	25A	31,5	36.8	45.5	64.2	77,9
ion	Ultimate		<i>29</i> -2						<u> </u>	
Cross Direction	2% Ultimate									
D	5% Ultimate									
	in @ Ultimate ile Strength		10%	10%	10%	10%	10%	10%	10%	10%
0	2% strain	ASTM D 4595								
Secan Modulus ((KN/m)	5% strain	-		308.2	507.9	630.5	735.5	910.7	1295.9	1558.6
N NOT	10% strain									
	n Strength (kN/m)	GRI : GG2								
Soil- Ge	osynthetic Friction	GRI & GG5, GT7	I.D	1.0	Q.I	Q.I	0.I	QLI	I.D	Q.I
Creep Re	sistance-T (kN/m) creep	ASTM D 5262	17.5	24.5	31A	38,1	54,6	72,7	82.0	105A
Creep H	Reduction Factor	GRI: GG3 & GT5	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67
		GRI : GG4 & GT7	1.25	1.20	IJ5	IJ5	IJ5	IJ	IJ	I,J
Installation Damage (RF)	Limestone	0// : 004 & 0//	Not Recommended	1,75	1.3	لآ/	1.3	1.25	1.25	1.25
Durability (RF _d)	Chemical	ASTM D 5322	Į,	IJ	IJ	LI I	IJ	IJ	IJ	IJ
Dural (RI	Biological	ASTM D1987, D3083, G21 & G22	. 0	0.I	QI	Q.I	ı.O	0.1	Q.I	1.0
Joint Strength (RF ₁)	Mechanical	ASTM D 4595,GRI: GG4 & GT7								
Stre	Overlap	GRI: GG5 & GT6	1.0	QI	ı,p	Q.I	ı,p	Q.I	Q.I	QI
Approved	Application Usage		3	3	3	3	3	3	3	3

Approved Application Usages I = Steepened Slopes

2 = Reinforcement of Foundations over Soft Soils

3 = Both Steepened Slopes & Reinforcement of Foundations over Soft Soils

APPROVED GEOSYNTHETIC PRODUCTS (WOVEN GEOGRIDS) APPLICATION AND PROPERTIES

	FINANCIAL PRO	OJECT ID	STATE	PROJ. N	о.	SHEET NO.
NG 20XT	MIRIFI MG 22XT	MIRIFI MG 2	AYT			
wg 20x i x <u>120</u>)	(Matrex 180)	(Motrex 240				
0%	70%.	70%.				
		-				
3	259-2	370A				
.9	104.2	146_2				
_						
7%	10%.	10%				
		<u> </u>				
8.6	2084.0	2924.6				
_						
I_D	۵ı	Q,	—			
5.4	150.7	215.3				
1,67	1.67	1,67				
I,	IJ	له ا				
1.25	1 <i>.2</i> 5	1.25				
IJ	IJ	ı,				
J.D	<u>م</u> ا	ما				

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION ROAD DESIGN					
GEOSYNTHETIC REINFORCED SOILS					
INTERIM STANDARD	APPROVED B	' for	Pro		
WHEN INCLUDED IN THE PLANS THIS SHEET		STATE GEOT	ECHNICAL ENGINEER		
IS A SUPPLEMENT TO THE METRIC ROADWAY AND TRAFFIC DESIGN STANDARDS.BOOKLET	REVISION NO.	SHEET NO.	INDEX NO.		
DATED JANUARY 2000.	00	5 of 8	501		
09:18:58 AM p:\stds\interim\digitalfiles\m2000	1\mi00501505 (tan			

I.O

3

1,0

3

		TABLE OF WOVEN GEOGRID VALUES								
PROPERTY		REQUIRED TEST METHOD	SYNTEEN SF 20	SYNTEEN SF 35	SYNTEEN SF 40	SYNTEEN SF 50	SYNTEEN SF 55	SYNTEEN SF 80	SYNTEEN SF 110	
	ilîty (Retained 50% h Min .e 500 hr .)	ASTM D 4355	70%	70%	70%	70%	70%	70%	70%	
Tensile St	rength (kN/m)									
e S	Ultimate		26A	38.3	44,5	54 <i>A</i>	55 . /	81.5	118,6	
Machine Direction	2% Ultimate		5A	6.7	7,j	II.5	10,7	14.8	17.3	
Dir	5% Ultimate	ASTM D 4595	9 . 8	10.6	14.2	13.5	16.9	18.6	24,6	
s	Ultimate		26A	37.3	44,5	57 A	36. 5	32,2	312	
Cross Direction	2% Ultimate		5A	5.8	71	II . 5	8.8	12.9	18.6	
, ia	5% Ultimate		9.8	8.5	14_2	13.5	ll . 6	22.8	23J	
Strain & Ultimate Tensile Strength			9,4%	14,1%	9.9%	14.2%	II.5X	14.2%	18.8%	
Q	2% strain	ASTM D 4595	269.9	337.3	356.2	577 _2	537.0	741,5	865A	
5 ecant Modulus @ (kN/m)	5% strain		195.5	211,6	283.2	269.0	338.2	371.5	481.5	
	10% strain		221.9	222 . J	322A	269.0	396.0	553.3	399.6	
Junction	n Strength (kN/m)	GRI : GG2								
Soll- Geo	synthetic Friction	GRI 2 GG5, GT7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Creep Res	sistance-T (kN/m. creep	ASTM D 5262	14,7	22_2	22.3	32J	331	46,4	58.8	
	eduction Factor t ^{/T} creep ⁾	GRI: GG3 & GT5	1.80	172	2.00	1.70	1.67	1,75	2.02	
allation mage RF _C)	Sand	GRI : GG4 & GT7	1.05	1,15	IJ5	1.08	1,08	1.08	1.08	
Installation Damage (RF _C)	Limestone		1.75	1.70	1.60	1.55	1.55	1.55	/ .3 5	
Durability (RF _d)	Chemical	ASTM D 5322	OLI	IJO	OLI	1.10	0LI	OLI	0LI	
Dura (R	Biological	ASTM D1987, D3083, G21 & G22	OLI	IJO	0LI	0.I	0LI	OL I	OLI	
Joint Strength (RF _J)	Mechanical	ASTM D 4595,GRI: GG4 & GT7								
Jr Stre (R	Overlap	GRI: GG5 & GT6	OLI	0LI	0, I	1.10	IJO	I JO	IJO	
Approved	Application Usage		3	3	3	3	3	3	3	

Approved Application Usage: I = Steepened Slopes

2 = Reinforcement of Foundations over Soft Soils
 3 = Both Steepened Slopes & Reinforcement of Foundations over Soft Soils

APPROVED GEOSYNTHETIC PRODUCTS (WOVEN GEOGRIDS) APPLICATION AND PROPERTIES

	FINANCIAL PROJECT ID	STATE PROJ. NO.	SHEET NO.		
		-			
	STATE OF FLORIDA DEPARTMENT (
	ROAD DESIGN				
GEOSY	NTHETIC REIN	FORCED SO	'LS		
	RIM STANDARD	APPROVED BY	×		
WHEN INCLUDEL IS A SUPPLEME AND TRAFFIC	D IN THE PLANS THIS SHEET INT TO THE METRIC ROADWAY DESIGN STANDARDS, BOOKLET	STATE GEOTECHNICAL REVISION NO. SHEET NO.	NDEX NO.		
WHEN INCLUDED IN THE PLANS THIS SHEET STATE GEOTECHNICAL ENGINEER IS A SUPPLEMENT TO THE METRIC ROADWAY AND TRAFFIC DESIGN STANDARDS, BOOKLET REVISION NO. DATED JANUARY 2000. 00 09:17:37 AM p:\stds\interim\diaitalfiles\m2000\m10050Is06.dan					

U UANOANI	2000.		-
9:17:37 AM	p:\stds\interim\diaitalfiles\m2000)\mi0050/s06.c	lan

														1
											FINANCIAL PF	ROJECT ID	STATE PROJ. NO.	SHEET NO.
[TABLE OF	EXTRUDED GEO	RID VALUES						_	
Pł	ROPERTY	REQUIRED TEST METHOD	TENSAR BX 4100	TENSAR BX 4120	TENSAR BX 4200	TENSAR BX 4220	TENSAR UX 900 HS	TENSAR UX 1100 HS	TENSAR UX 1400 HS	TENSAR UX 1500 HS	TENSAR UX 1600 HS	TENSAR UX 17	00 HS	
UV Stabili	ity (Retained 50%	ASTM D 4355		00*	00*	00*	90%	90%	90%	90%	90%	90%		
Strength	Min.@ 500 hr.)	-31M U -1333		90%	90%	90%		55%	5578	50%				
	rength (kN/m)													
ion	Ultimate		12.6	12.6	18.5	18.5	54.0 12 .3	54.0 12.3	64.2 14.6	100.7 26.3	131.3 34.0	157.6 40.0		
Machine Direction	2% Ultimate 5% Ultimate		3.5 7.0	3.5 7.0	5A 10.3	5A 10.3	21,0	21,0	29.2	54.0	64.9	78.8		
	Ultimate	ASTM D 4595	12.8	12.8	20.0	20.0								
oss ction	2%. Ultimate		-220 4A		7.3	7.3								
Cross Direction	5% Ultimate		9.3	9.3	HD HD	H.O								
Strain	© Ultimate Strength						10%	10%	10%	10%	10%	10%		
6	2% strain	ASTM D 4595	175J	175J	270J	270J	6132	613.2	729 . 7	1313.3	1700.5	1999.5		
t/m)	5% strain		140.0	140,0	205.7	217,5	420.3	420.3	583.8	1079 . 9	1298.9	1576 .2		
Nodu KN	10% strain													
Junction St	rength (kN/m)	GRI 🕯 GG2	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%		
		GRI : GG5, GT7		0.90	0.95	0.95	0,462	0,462	0,462	0,462	0,462	0 <i>4</i> 62		
Creep Resis	stance−T (kN∕m) creep	ASTM D 5262	3.6	3.6	6J	6J	13,1	19,7	27,0	40.9	54.0	67 . 9		
	duction Factor /T _{creep})	GRI: GG3 & GT5	3.5	3.5	3.27	<i>3.2</i> 7	4J2	3.65	2.381	2.46	2A3	2,JJ		
Installation Damage (RF _C)	Sand	•GRI : GG4 & GT7	OLI	110	OLI	1JO	OLI	OLI	OLI	OLI	0LI	OLI		
Insta. Dan. (F.	Limestone		IA3	1A3	1.35	1 .3 5	1.25	1.25	1.20	1.20	1.20	1_20		
Durability (RF _d)	Chemical	ASTM D 5322	IJ	IJ	IJ	IJ	IJ	IJ	IJ	IJ	IJ	IJ		
t) Dur	Biological	ASTM DI987, D3083, G2I & G22	ı.D	Q.I	ıD	Q,I	ıD	Q.I	0.I	l.O	Qدا	LD		
Joint Strength (RF _J)	Mechanical	ASTM D 4595,GRI: GG4 & GT7					Q.I	Q.I	۵ı	Q.I	ı.D	Q.I		
l st	Overlap	GRI & GG5 & GT6	Q.I	Q.I	QI	0.1	—	Q.I	Q.I	Q.I	Q.I	QI		
Approved A	Application Usage		3	3	3	3	3	3	3	J	3	3		

Approved Application Usages I = Steepened Slopes

2 = Reinforcement of Foundations over Soft Soils

3 = Both Steepened Slopes & Reinforcement of Foundations over Soft Soils

APPROVED GEOSYNTHETIC PRODUCTS (EXTRUDED GEOGRID) APPLICATION AND PROPERTIES

STATE OF FLORIDA DEPARTMENT ROAD DESIG		RTATION	
GEOSYNTHETIC REII	VFOR	CED S	50 <i>1LS</i>
INTERIM STANDARD	APPROVED B	" for	Done
WHEN INCLUDED IN THE PLANS THIS SHEET			CHNICAL ENGINEER
IS A SUPPLEMENT TO THE METRIC ROADWAY AND TRAFFIC DESIGN STANDARDS.BOOKLET		SHEET NO.	
DATED JANUARY 2000.	00	7 of 8	501
00:27:25 All o:\ctdc\iotorim\digitalfiloc\m2000	1) mi00E0/c07	dan	

					TABLE O	F EXTRUDED GEO	GRID VALUES		
	PROPERTY	REQUIRED TEST METHOD	TENAX MS 220	TENAX MS 330					
	nbility (Retained 50% gth Min.@ 500 hr.)	ASTM D 4355	85%	85%					
Tensile S	Strength (kN/m)								
2 2	Ultimate		13.5	20.0					
Machine Direction	2% Ultimate		4.4	61					
йц	5% Ultimate	ASTM D 4595	9.0	13.5					
sul	Ultimate		20A	30.6					
Cross Direction	2% Ultimate		6.5	9.0					
ā	5% Ultimate		13.0	19.6					
	ain @ Ultimate sile Strength	ASTM D 4595	12%	12%					
6	2% strain		218.9	305.0					
cant vlus V/m)	5% strain		179 . 9	270,0					
Secant Modulus @ (kN/m)	10% strain								
	on Strength (kN/m)	GRI : GG2	12.2	18.0					
	eosynthetic Friction	GRI 🕯 GG5, GT7							
Creep R	esistance−T (kN/m. creep	ASTM D 5262							
	Reduction Factor ult ^{/ T} creep)	GRI: GG3 & GT5	5.0	5.0					
lation oge	Sand	GRI : GG4 & GT7	3.0	3.0					
Installation Damage	Limestone		3.0	3.0					
Durability (RF _d)	Chemical	ASTM D 5322	- 2.0	2,0					
Duro (F	Biological	ASTM DI987, D3083, G2I & G22							
Joint Strength (RF,)	Mechanical	ASTM D 4595,GRI: GG4 & GT7							
Stre Stre	Overlap	GRI : GG5 & GT6							
Approve	d Application Usage		2	2					

Approved Application Usages: I = Steepened Slopes

2 = Reinforcement of Foundations over Soft Soils

3 = Both Steepened Slopes & Reinforcement of Foundations over Soft Soils

APPROVED GEOSYNTHETIC PRODUCTS (EXTRUDED GEOGRID) APPLICATION AND PROPERTIES

	FINANCIAL P	ROJECT ID	STATE	PROJ. N	O. SHEET NO.
	STATE OF FLOF	RIDA DEPARTMENT ROAD DESIGN		TATION	
GEOSY	NTHETI	C REIN	IFOR	CED S	SOILS
			APPROVED B	Par	Dare
WHEN INCLUDE IS A SUPPLEME AND TRAFFIC DATED JANUAR	D IN THE PLANS T ENT TO THE METR DESIGN STANDARD Y 2000.	HIS SHEET NC ROADWAY S, BOOKLET	REVISION NO.	STATE GEOT SHEET NO. 8 of 8	echnical engineer index no. 501

09:28:04 AM	p:\stds\interim\diaitalfiles\m2000\mi0050ls08.d