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EXECUTIVE SUMMARY

This report describes the development of real-time crash prediction models for the Interstate-4
corridor in Central Florida area. Crash data for 36.25-mile freeway stretch from the year 1999
through 2002 has been used to link the crash occurrences with real-time traffic patterns observed

through loop detector data.

This project has been supplemental to the completed project BC-355 #8 and the ongoing project

BD-550 #5. Therefore much of the work overlaps between this project and the other two. The

main contributions of this project could be summarized in the following four areas:

e Investigating the factors from loop detector data that are significantly associated with crash
risk

e Investigating the possibility of using real-time weather information as part of the real-time
crash prediction system on [-4

e Identifying the geometric elements of the freeway that could be used in this system

e Exploring and initial analysis of the ITS strategies that could be used to improve the safety

situation on I-4 in real-time, namely at this stage was variable speed limits (VSL)

The analysis showed that the coefficient of variation in speed, average occupancy and the

standard deviation of volume in the 5 — 10 minutes before crash occurrence are the most

significant variables that could lead to crashes on the freeway.

v



We have obtained detailed rain fall data from 5 weather stations in Central Florida and
developed a rain index based on the archived rain data to investigate whether real-time rain data

would be needed for implementation.

Investigating the geometric elements that are related to crash occurrence and could be used with
association with real-time traffic conditions from loop detector data, indicated that the locations

of the ramps are significant.

Finally, VSL were investigated using the micro simulation model (Paramics). This investigation
showed that VSL can be used to reduce the crash risk in real-time. However, the analysis showed
that this is most effective only in moderate-to-high-speed conditions. Also, we have noticed the
possibility that the crash risk would relocate (migrate) to other locations other than the location
that we intend to treat. The strategy to use VSL for real-time safety application is still in its

infancy and would require more investigation.
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CHAPTER 1
STUDY AREA AND DATA PREPARATION

11 General

The final goal of this research is to develop a predictive system (excluding driver and vehicle
characteristics) for crash occurrence on 36.25-mile Interstate-4 corridor equipped with
underground loop detectors. To achieve this objective we need to systematically correlate
between the crash characteristics and the loop data (representing ambient traffic flow
configuration). Moreover it has to be collated with the geometric design of the freeway at the
location of the crash and the environmental conditions at the time of the crash. The system needs
to recognize the patterns not leading to crash occurrence as well, hence traffic, environmental
and geometric conditions corresponding to selected “non-crash” cases or “normal” freeway

operating conditions must also be a part of the database.

The traffic parameters in this study would be measured in terms of time series of 30-seconds
observed from inductive loop detectors in the vicinity of the crash location for a certain period
leading up to the crash. It is not difficult to realize the importance of properly fusing the loop
detector data with crash data and geometric/environmental/driver related factors that might affect

the probability of crash occurrence.

This section provides a brief overview of the data that has been collected as part of this project.
For more details, the reader is referred to the final report of the previous project (Abdel-Aty et

al., 2004).



1.2 Introduction to Study Area

The study is being conducted on the Interstate-4 (I-4) corridor in Orlando. The corridor is
considered to be an integral part of Central Florida’s transportation system. It carries greater
number of people and vehicles than any other transportation facility in the region and serves
many of the area’s primary activity centers. Though originally designed to serve long distance
travelers, the I-4 corridor now has evolved to one serving many shorter trips. No wonder a
significant amount of growth in the region is occurring within close proximity to I-4. In recent
years, congestion on [-4 has extended well beyond normal peak hours and major crashes have
closed the freeway, subsequently resulting in traffic congestion throughout the Orlando
metropolitan area. Hence, congestion and delays blended with high crash rates are the major

transportation problems facing the freeway.

SR 400 (1-4)

Figure 1-1: |-4 corridor under consideration along with other major roads



Figure 1-1 shows the instrumented Interstate-4 corridor along with the some major roads on the
network. The freeway section under consideration is 36.25 miles long and has a total of 69 loop
detector stations, spaced out at nearly half a mile. Each of these stations consists of three dual
loops in each direction and measures average speed, occupancy and volume over 30 seconds
period on each of the through travel lane. The loop detector data are continuously transmitted to
the regional traffic management center (RTMC). The source of crash and geometric
characteristics data for the freeway is FDOT (Florida Department of Transportation) intranet

SCrver.

1.3 Crash Data Collection

The first step was to collect crash data for the instrumented freeway corridor over a period of
time. Since the loop detectors are known to suffer from intermittent failures it was likely that
some of the crashes may not have corresponding loop data available. To ensure that loop data for
sufficient number of crashes are available to establish reliable links between crash and traffic
characteristics it was decided to be on the conservative side and collect crash data for a period of

four years ranging from 1999 through 2002.

There were 3755 crashes reported in all during the four year period (from 1999 through 2002),
while we expected some of them to have corresponding loop detector data missing, it was
believed that we will be left with a sample large enough for analysis purposes. The information

extracted for each crash case to create a complete crash database for is shown in Table 1-1.



Table 1-1 The crash characteristics table

Crash Crash | Direction | Mile | Date First Lane | Visibility | Pavement | Number | Number
Number | report (EB or post of har mful of onthe | Condition of of
number WB) crash | event the | roadway (Wet, fatalities | injuries
crash dippery
or dry)
l XX XX XX XX XX XX XX XX XX XX
2 XX XX XX XX XX XX XX XX XX XX
| |
3755 XX XX XX XX XX XX XX XX XX XX

The table shown above provides sufficient information about each crash; the field “first harmful
event” represents type of the crash (e.g., rear-end collision, sideswipe collision or vehicle hitting
the guard rail). All other fields are self explanatory. The “milepost” field of the crash
characteristics table (Table 1-2) was used to determine the loop detector station nearest to
location of each crash and was referred to as the station of the crash. In this phase of the project
not all available crash characteristics have been analyzed. None the less, they were made part of

the database with future research in perspective.

1.4 Loop Data Collection

The most critical part of this study is of course the loop detector data corresponding to crashes.
As mentioned in the previous section for the four-year period 1705 crashes had no loop detector
data available at all. Hence, the loop data was to be collected for the remaining 2050 crashes.
The format of the data collected for analysis largely depends upon the methodology used. Past
experience of the research group (e.g., Pande, 2003, Abdel-Aty et al. 2003, Abdel-Aty and
Abdalla, 2003) with data from 7-month period of the year 1999 was very beneficial in this
regard. Three separate databases consisting of loop detector data have been assembled for this

study.




1.4.1 Datafor Matched-Case Control Analysis

The matched case-control methodology was identified as an effective tool for modeling the
binary outcome: crash or non-crash. To compare traffic characteristics (measured during time
prior to crash occurrence from locations surrounding the crash location) that lead to a crash with
corresponding normal traffic conditions that did not lead to a crash, traffic data were extracted in

a specific matched format.

Loop data were extracted for the day of crash and on all corresponding (non-crash) days to the
day of every crash. The correspondence here means that, for example, if a crash occurred on
April 12, 1999 (Monday) 6:00 PM, I-4 Eastbound and the nearest loop detector was at station 30,
data were extracted from station 30, four loops upstream and two loops downstream of station 30
for half an hour period prior to the estimated time of the crash for all the Mondays of the year at
the same time. This matched sample design controls for all the factors affecting crash occurrence
such as season, day of week, location on the freeway, etc (thus implicitly accounting for all these
factors). Hence, this case will have loop data table consisting of the speed, volume and
occupancy values for all three lanes from the loop stations 26-32 (on eastbound direction) from
5:30 PM to 6:00 PM for all the Mondays of the year 1999, with one of them being the day of
crash (crash case). More details of this sampling technique and application of this methodology
may be found in one of the papers by our research group (Abdel-Aty et al., 2004). The format of

data tables for this hypothetical crash is shown in Table 1-3.



Table 1-2 Format of the matched data extracted from the |-4 loop detector database for a
hypothetical crash case

Day Station Y Time ELS* |ECS* |ERS* |ELV'|ECV'|ERV'| ELO |ECO | ERO
04/05/99 27 0 117:30:00| xxx XXX XXX |XXX XXX XXX XXX XXX XXX
04/05/99 27 0 117:30:30 XXX XXX XXX |XXX XXX XXX XXX XXX XXX
04/05/99 | 0 | o o o
04/05/99 | 0 | o o o
04/05/99 33 0 |18:05:00 XXX XXX XXX XXX XXX XXX XXX XXX XXX
04/05/99 33 0 118:05:30| =xxx xxx Xxx XXX XXX XXX XXX XXX XXX
04/12/99 27 1 117:30:00 XXX XXX XXX XXX XXX XXX XXX XXX XXX
04/12/99 27 1 117:30:30 XXX XXX XXX XXX XXX XXX XXX XXX XXX
04/12/99 | ! | o o o
04/12/99 | ! | o o o
04/12/99 33 I 118:05:00 XXX XXX XXX XXX XXX XXX XXX XXX XXX
04/12/99 33 1 118:05:30 XXX XXX XXX XXX XXX XXX XXX XXX XXX
04/19/99 27 0 117:30:00 XXX XXX XXX XXX XXX XXX XXX XXX XXX
04/19/99 27 0 117:30:30 | =xxx xxx xxx XXX XXX XXX XXX XXX XXX
04/19/99 | 0 | o o o
04/19/99 | 0 | o o o
04/19/99 33 0 ]18:05:00| xxx xxx Xxx XXX XXX XXX XXX XXX XXX
04/19/99 33 0 |18:05:30 XXX XXX XXX XXX XXX XXX XXX XXX XXX

| I I I I

| | 0 | o o o
12/27/99 33 0 |18:05:00 XXX XXX XXX XXX XXX XXX XXX XXX XXX
12/27/99 33 0 |18:05:30 XXX XXX XXX XXX XXX XXX XXX XXX XXX

ELS’ Eastbound Left lane Speed ELV' Eastbound Left lane Volume  ELO" Eastbound Left lane Occupancy

ECS: Eastbound Center lane Speed ELV" Eastbound Center lane Volume ELO™ Eastbound Center lane Occupancy
ELS Eastbound Right lane Speed ELV" Eastbound Right lane Volume  ELO™ Eastbound Right lane Occupancy

The filed Y in the table above represents whether the data row corresponds to a crash case or to a
matched non-crash case. Such tables were extracted for all 2050 crashes with some loop data

available. Note that the number of observations in these tables for different crashes was different



due to random failures of the loops. Also, the cleaning mechanism explained above for raw 30-

second loop data was again adopted to clean the data.

1.5 Geometric Design Parameters

Although the main purpose of this study is to establish links between real-time traffic
characteristics (measured through loop detectors) and crash occurrences, it is extremely
important to consider geometric characteristics on the freeway with respect to the crash
characteristics. For example, the traffic characteristics leading to a crash on a curved section
might be distinct from those leading to crash on a straight section. To obtain the details of the
geometric design of I-4 corridor the Roadway Characteristics Inventory (RCI) database available
on FDOT Intranet server was used. Geometric design features were extracted for the location of
each loop detector station since it was the common link between crash and loop detector
database. The structure of this database is shown in Table 1-3. Geometric design of the freeway

might differ from one direction to the other, hence the dataset has 138 (69* 2=138) observations.

Table 1-3 Geometric design of the freeway at loop detector station locations

Distance | Distance | Distance | Distance
Median |to nearest|to nearest|to nearest|to nearest

N . . Number | typeand |upstream |upstream | down down
Loop | Direction | Mile post |Radius (ft) of Lanes | width (ft) | on ramp | off ramp |stream on|stream off
(miles) (miles) ramp ramp

(miles) (miles)

2 E XXX XXX XXX XXX[XX XX| XXX XXX XXX XXX
2 W XXX XXX [XXX XXX[XX XxX| XXX XXX XXX XXX
71 E XXX XXX [XXX XXX[XX Xx| XXX XXX XXX XXX
71 \"Y XXX XXX XXX XXX|XX XX| XXX XXX XXX XXX




1.6 Weather Information

The effect of wet weather on crash occurrence is well documented (e.g., Xiao et al. 2000). In
Central Florida where snow is not a concern, rain fall is the most important weather related
factor affecting visibility as well as the pavement condition. These two parameters are available
for historical crashes; however, for the non-crash cases there is no direct way to obtain the
weather information at locations from where loop data has been collected. We have developed a
methodology to infer the weather conditions for the non-crash cases using the rainfall
information provided by five different rain gauge stations located in the surroundings of the 36-

mile corridor.



CHAPTER 2
SIGNIFICANT TRAFFIC FACTORSFROM LOOP DETECTORS

For matched case-control logistic regression, traffic data were extracted for the day of crash and
on all corresponding (non-crash) days to the day of every crash. The correspondence here means
that, for example, if a crash occurred on April 12, 1999 (Monday) 6:00 PM, 1-4 Eastbound and
the nearest loop detector was at station 30, data were extracted from station 30, four loops
upstream and two loops downstream of station 30 for half an hour period prior to the estimated
time of the crash for all the Mondays of the same season in that year at the same time. This
matched sample design controls for all the factors affecting crash occurrence such the location on
the freeway (thus accounting for the geometric factors). Hence, this case will have loop data
table consisting of the speed, volume and occupancy values for all three lanes from the loop
stations 26-32 (on eastbound direction) from 5:30 PM to 6:00 PM for all the Mondays of the year
1999, with one of them being the day of crash (crash case). Details of this sampling technique
and application of this methodology may also be found in one of the papers by Abdel-Aty et al.

(2004).

Since the 30-second data have random noise and is difficult to work with in a modeling
framework, we combined the 30-second data into two separate levels of 3-minute and 5-minute
level in order to get averages and standard deviations. Thus for 5-minute aggregation half an
hour period was divided into 6 time slices. The stations were named as “B” to “H”, with “B”
being farthest station upstream and so on. It should be noted that “F” is the station closest to the
location of the crash with “G” and “H” being the stations downstream of the crash location.

Similarly the 5-minute intervals were also given “IDs” from 1 to 6. The interval between time of



the crash and 5 minutes prior to the crash was named as slice 1, interval between 5 to 10 minutes
prior to the crash as slice 2, interval between 10 to 15 minutes prior to the crash as slice 3 and so
on. For 5-minute level aggregation the arrangement of these time-slices and stations is shown in
Figure 2.1. Similarly for the 3-minute level, the interval between the time of the crash and 3
minutes prior to the crash was named as slice 1, interval between 3 to 6 minutes prior to the crash
as slice 2, and interval between 6 to 9 minutes prior to the crash as slice 3 and so on. Two effects,
namely average and standard deviation were initially calculated for speed, volume and
occupancy during each time slice and from each lane at every station. The original data series
being at 30-second level, the 3-minute and 5-minute averages (and standard deviations) were
based on six and ten observations, respectively. Using information about the specific lane where
the crash occurred from the FDOT database, average and standard deviation for only lane of the

crash were retained.

) Traffic
Distance Direction
Time and Location
of the crash
StatonH| ——— ——— ——7 ——— T ———— \—— —— =
Station G|— — — — «— — — T — T T T T T T T« T T T T -
Station F|\— — ~— —— — — — ¢— — — — T — — — T/ — — —1 - - -
Station E|— — — —— — — — T — — — T — T — T — — — T - —
Station D|— — — — T T v T T T T T T T Tr T T T T -
StatonC|— — — —f—m — — — +— — — — — — — — - — — — _——
Station B
-30 min. -25 min. -20 min. -15 min. -10 min. -5min. Time of the
crash=0
Slice 6 Slice 5 Slice 4 Slice 3 Slice 2 Slice 1

Figure 2-1: Time-space arrangement of all stations and time slices with respect to the crash
site and the time of the crash

10



Using data only from specific lane of the crash reduced the size of the dataset to about 30% of
the original crash sample due to the fact that data from specific lane of the crash were missing
quite often. Two more datasets were created, by aggregating the data on the three lanes; hence in
the aforementioned three-minute and five-minute datasets the lane of the crash averages and
standard deviations were replaced by values aggregated over three lanes. In these datasets, the
averages (and standard deviations) at 3-minute and 5-minute level were based on 18 (6*3 lanes)
and 30 (10*3 lanes) observations, respectively. Therefore, even if at a certain station loop
detector from one lane was not reporting data there were observations available to get a measure
of traffic from that location. This not only increases the sample size of crashes to more than 2000
crashes but also helps to develop a system for more realistic application scenario since all three
lanes at a loop detector stations are less likely to be simultaneously unavailable while the model

is used for real-time prediction.

21 Analyss

For each of the seven loop detectors (B to H) and six time slices (1-6) mentioned above, there are
values of means (AS AV, AO) and standard deviations (SS, SV, SO) of speed, volume and
occupancy, respectively, of all crash and the corresponding non-crash cases. Due to data
availability, there were different numbers of non-crash cases for each crash. To carry out
matched case-control analysis we created a symmetric data sets (i.e., each crash case in the
dataset has the same number of non-crash cases as controls) by randomly selecting five non-
crash cases for each crash in all four datasets. The choice of selecting five as the number of
corresponding non-crash cases was based on one of our earlier findings (Abdel-Aty et al., 2004)

which essentially indicated no differences among the results from five different 1: m datasets

11



(with 1 crash and m corresponding non-crash with m varying between one to five). In addition to
the aforementioned datasets we also created a “pseudo” case control dataset in which six random
non-crash cases in each stratum were selected and one of them was assigned as (pseudo) crash
while all the real crash cases were dropped. The results from this dataset were analyzed in order
to delineate the differences between real and “pseudo” case control datasets. Exploratory
analysis with the original effects (3-minute or 5-minute standard deviations and average of
speed) showed that the hazard ratio for standard deviation of speed were all greater than unity
while they were all less than one for the average speeds at stations B-H and time slices 1-6. Thus,
the coefficient of variation in speed was a natural choice as a precursor resulting in hazard ratio
values substantially greater than one. Therefore, we combined mean and standard deviation of
speed, occupancy and volume into the variables CVS CVO, CVV (coefficients of variation of
speed occupancy and volume, respectively, expressed in percentage as (SSYAS*100,
(SO/A0)* 100, and (SV/AV)*100). Logarithmic transformation was applied to these coefficients
of variation due to skewed nature of their distribution. The preliminary analysis concluded that

the variables LogCVS AO and SV had the most significant hazard ratios.

The results of stratified conditional simple (one variable at a time) logistic regression analysis
were then analyzed for these three variables (LogCVS, AO, SV) at each of the seven loop
detectors and six time slices to identify time duration(s) and location of loop detector(s) whose
traffic characteristics are significantly correlated with the binary outcome (crash vs. non-crash).
This was done by calculating the hazard ratio using proportional hazard regression analysis
(PHREG of SAS) of each of the 126 (7 stations *6 time slices *3 parametersi.e.,, LogCVS, AO,

SV) single variable models; one model for each of the three variables LogCVS, AO and SV over

12



every station B-H and the duration of time slice 1-6. The outcome of these models was the
hazard ratio value for these variables at various stations and time slices. The hazard ratio is an
estimate of the expected change in the risk of having a crash. Therefore, if the output hazard ratio
of a variable is significantly different from one (e.g., 2) then increasing the value of this variable
by one unit would double the risk of a crash at station F (station of the crash). The decision
regarding significance is made based on the p-value, which represents the probability of
drawing the sample being tested if the null hypothesis were actually true. The null
hypothesis is formulated as hazard ratio being equal to unity. Therefore, a p-value of
less than the threshold (selected as 0.05) would indicate the rejection of the null

hypothesis and hazard ratio significantly different than unity.

These 126 single variable models were estimated for corresponding hazard ratio values for all
five datasets including the four real (3-minute and 5-minute aggregation with individual lane of
the crash/combined lanes) and one “pseudo” matched case-control dataset (combined lane at 3-
minute aggregation having one non-crash in each strata randomly assigned as crash). The
arrangement used for stations and time slices used here is crucial in terms of generating the
patterns of crash risk and it’s “propagation” in a time-space framework. The results from these

datasets are discussed in the following section.

2.2 Resultsand Discussion
First dataset to be analyzed for hazard ratio was the one aggregated to 3-minute level with
parameters only from lane of the crash. The results show how the hazard ratio for LogCVS and

AO increases as we approach the Station of the crash (Station F) and time of the crash (Slice 1),
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Although the values of hazard ratio for AO is low (i.e., near to 1.0) but it is still significant (Note
the chi sq. statistic and p-value). The reason for the low value is that occupancy usually changes
by 1% quite frequently on freeways and it is more meaningful to represent the increased risk of
observing a crash resulting from 10% increase in occupancy. This modified risk ratio can be
obtained by raising hazard ratio to the power 10. For SV the hazard ratios were found to be less
than one and appeared to be decreasing as the time and station of crash approached in the
downstream direction. Since it is the value of hazard ratio that is significantly different from one
(and not necessarily a high value) that makes the variable a better crash precursor, ratio for SV
indicates that as this parameter becomes smaller at certain freeway locations the crash risk

apparently increases at locations upstream of these sites.

This analysis was based on a very small sample size due to missing data from individual lane on
which the crash occurred and also the determination of these risk ratio values would require the
data from each individual lane to be available, therefore we next conducted our analysis on 3-
minute level data combined over three lanes. In combined lane data, the same trends in hazard
ratio are essentially observed in a time-space framework, although we observed that the values

part a little more from unity.

To assess the fact that these results are really depicting an association between traffic flow
variables and crash occurrence we next analyzed hazard ratios from the “pseudo” crash matched
dataset. As expected the trends were either non-existent (as was the case with LogCVS and SV
with values significantly close to one) or they were exactly reversed (as was the case with AO

with hazard ratio significantly less than one).

14



With the five minute aggregated datasets again similar trends were observed for hazard ratios
corresponding to SV and AO while in the case of LogCVS the hazard ratio and corresponding
chi-square statistic were magnified depicting stronger association of 5-minute coefficients of
variation in speed with crash occurrence. In data aggregated to S-minute level hazard ratios for
parameters LogCVS and SV corresponding to combined lane data were higher and lower,
respectively, than their individual-lane counter parts. The essential difference between the two
datasets is that while the combined lane dataset accounts for the variation across the lanes
wherever possible, the individual lane of the crash dataset does not. The magnified difference
between unity and both hazard ratios (corresponding to LogCVS and SV) in the combined lane
data indicates that similar volumes with varying speeds across lanes might be a contributing
factor for freeway crashes. Also, note that the sample size in case of combined lanes is about
four times larger than in the case of individual lane. Hence it was decided to use the combined

lane data for hazard ratio calculation as well.

In short, it can be suggested that a higher LogCVS, AO value and lower SV value increases the
likelihood of crashes. While for LogCVS this trend is observed starting at about 1.5 miles (from
Station C) upstream of the crash location, it is considerably clear at about %2 mile upstream and
also downstream. It is also clear, based on the rise observed in hazard ratios that the
“ingredients” for a crash starts about 15 minutes before the crash. The LogCVS factor represents
high variation in speed relative to the average speed, and the SV factor represents low variation
in volume. Lower speed associated with high variance (leading to a high value of coefficient of
variation) depicts turbulence in traffic that could be explained by frequent formation of queues

followed by their quick dissipation. The other factor, low value of SV, indicates that low
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variability in volumes is positively correlated with crash occurrences on freeways. A possible
interpretation of this criterion might be that in case of high variability in volume, the density
changes and consequently the gaps between vehicles change which alert the drivers. On the other
hand, in case of low variability in volume, the density and the gap remain almost fixed in the
traffic stream which causes the drivers to relax thus slowing their reaction time. It could also be
that low variability of volume might sometimes be associated with queues (although low
variability can also occur in better level of service with no queues). Also, low standard deviation
of volume, with all three lanes combined, not only represents very stable volume in terms of time
but almost same number of vehicles on three lanes as well. This coupled with high variation in
speed at these locations, might cause drivers to make lane changing maneuvers near to the station
of the crash in order to maintain their speeds. This will result in increased likelihood of conflict
between vehicles. In general, however, queue formation and shockwaves are a common cause of

rear-end crashes on Freeways.

Beside these overall trends the results outline the differences between coefficients of
variation/average measured at varying length of time slices (three and five minutes) as well. The
five minute time slice would be more effective in the crash prediction as it not only has higher
and more significant hazard ratio for LogCVS but it also provides more allowance in terms of
time to analyze data, estimate and possibly reduce the likelihood of crashes. From here on we
will focus our attention on 5-minute aggregate data with all lanes combined together rather than

individual lane and/or data aggregated to the 3-minute level.
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2.3 Spatio-temporal Variation of Crash Risk

As described earlier, the analysis from here on is based on the 5-minute averages, standard
deviations and coefficient of variation. To depict the patterns in the hazard ratio we show the
contour plots of the ratio for all three variables found significant in a time-space framework. But
first the type of the crash information available with the FDOT crash database was utilized in
order to “clean” the 5-minute combined lane dataset by only retaining multi-vehicle crashes.
Since the traffic conditions are more likely to impact the crashes involving interaction among
vehicles rather than the single vehicle crashes mostly occurring due to error on the drivers’ part.
Once this cleaned database was used for analysis it was found that the hazard ratio values were
further boosted for LogCVS and AO while they further dropped in the case of SV as expected.
The crash risk for the multi-vehicle crashes corresponding to the observed values of 5-minute
combined lane LogCVS AO and SV is shown in Figure 2.1(a), 2.2(a) and 2.3(a), respectively.
Note that in Figure 2.1(a), and 2.2(a) the dark colored region represents high hazard ratios
thereby identifying more risk while in Figure 2.3(a) the dark regions of the plot represent low
hazard ratios (the values corresponding to SV are less than 1) but still signify more risk (of
having a crash around Station F) associated with corresponding time slice and location. The
contour plots for hazard ratios obtained from “pseudo” dataset give an idea about “normal”
conditions on freeways (See Figures 2.1(b), 2.2(b) and 2.3(b)). These figures are in perfect
contrast with their counterparts showing hazard ratio for a real matched case control dataset. It

provides visual evidence for the contribution of traffic factors toward crash occurrence.

As we can see in all three plots (2.1(a), 2.2(a) and 2.3(a)) region around Sation F remains fairly

dark (i.e., crash prone) for about 20 minute period while upstream and downstream sites (Sation
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E and G, respectively) also show high risk for about 15-20 minute period before recording a
crash. These results are significant since they allow leverage in terms of time to be able to predict
and avoid an impending crash. It is however important to note that the most clear trend is
depicted by the plot corresponding to LogCVS since a stark contrast may be seen between
location of crash and surrounding locations. Plot (Figure 2.3(a)) corresponding to SV appears
dark for locations downstream of the crash location which indicates that very stable flow coupled
with high variation in speed at freeway locations (say Station G) increases odds of having a crash
upstream (Station F) of that site. However, the trends aren’t as clear about location of the crash
as they were in the case of LogCVS It is also to be seen in the context that the hazard ratios for

LogCVSwere more significant than those of SV.

Station H

Station G

Station F

Station E
Slicel Slice2 Slice3 Slice4 Slice5 Slice6

Figure 2.1(a): Spatio-temporal pattern of the hazard ratio for LogCV S obtained from 5-
minute combined lane dataset for multi-vehicle crashes
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Figure 2.2(a): Spatio-temporal pattern of the modified hazard ratio (increasein crash risk
1 thereisten unit increase in occupancy rather than one) for AO obtained from 5-
minute combined lane dataset for multi-vehicle crashes
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Figure 2(b): Spatio-temporal pattern of the modified hazard ratio (increase in crash
" henthereisten unit increasein occupancy rather than one) for AO obtained from

“pseudo” crash dataset
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Figure 2.3(a) Spatio-temporal pattern of the hazard ratio for SV obtained from 5-minute
combined lane dataset for multi-vehicle crashes
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Figure 3(b): Spatio-temporal pattern of the hazard ratio for SV obtained from “ pseudo”
crash case dataset

24 Section Summary

The matched case-control logistic regression was used as a simple analysis technique to detect
traffic patterns that result in high potential of crashes on freeways. It was found that the
coefficients of variation in speed measured at 5-minute intervals show slightly better association
with crash occurrence than those measured at the 3-minute level. Also, combining observations
from three lanes was concluded to be better than using only data from the lane where the crash
occurred since it not only captures across lane variation (or lack of it) in speed (or volume), but
also allows us to use larger dataset for analysis. It also has an advantage in real-time application
in case of a loop failure on a certain lane. The results show that even if the first time slice (0-5
minutes prior to a crash) is excluded due to practical considerations of the time required to act on

the information and warn the drivers, it was shown that the crash prone conditions in terms of
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high coefficient of variation in speed, low variation in volume and high occupancy are not
ephemeral on freeway sections. The hazard ratio values for these variables were significantly
different from one around the crash location for three to four time slices (i.e., the precursors
existed for about 15 minutes), that should provide enough time for prediction (and prevention) of
crashes. Another significant feature of these findings is that they are based on accurately
estimated time of the crash thereby evading the “cause and effect” fallacy. The results from the
“Pseudo” matched case control dataset containing six non-crash cases with one of them
randomly assigned as crash also prove the association between crash occurrence and the traffic
variables identified here. Based on these findings we selected 5-minute combined lane dataset
with only multi-vehicle crashes to develop our final model. The dataset had 1528 strata with each

stratum consisting of one crash and five corresponding non-crash cases.
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CHAPTER 3
REAL-TIME WEATHER INFORMATION

Since among the objective of this study is to identify the traffic and weather related factors (e.g.,
pavement conditions, visibility etc.) that affect the probability of crash occurrence, we were also
interested in non crash situations (i.e., the traffic and rain conditions that do not lead to crashes).
The crash police report identifies the weather condition when a crash occurs, however

identifying the weather condition in the more than 47,000 non crash cases is also needed.

Along the 1-4 corridor there are no weather monitoring stations, which can provide the exact
rainfall information at a desired time and location. Alternatively, as mentioned above, the Florida
crash database provides the exact weather condition at the time of only crashes on I-4. There is a
need to identify rainfall information at a particular time and location on I-4 other than the time of

crash occurrences.

The information on rainfall at the time of crash occurrence obtained from Florida crash database
is provided in Table 3.1. Out of 1964 crash cases that happened during 1999 through 2001, 217
of them occurred during rain, which adds up to 11 percent of the total number of crashes. This is
a significant percentage of crash occurrences during rain situation which explain the need to
account for the rainfall condition for crash and non-crash cases which in turn helps to identify the

effect of rainfall on crash occurrence.
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Table 3.1: Number of crashesthat occurred duringrainin 1999 — 2001 on |-4

Rainfall occurrence during the crash cases
Cumulative
Rain Situation Frequency Percent
Frequency
No Rain 1747 88.95 1747
Rain 217 11.05 1964

Various agencies were contacted to obtain rainfall information. The main aim was to obtain
rainfall information for I-4 at a desired time and location. Among the agencies contacted, Florida
Automated Weather Network’s (FAWN) and National Oceanic and Atmospheric Administration
(NOAA) provided the rainfall data. FAWN website provided 15 minute data for two sites on the
western side of Orlando. The sites are in Apopka and Avalon. NOAA provided access to their
database that consisted of hourly rainfall totals. The hourly rainfall information for the weather
stations located at Orlando International Airport, Executive Airport and Sanford Airport were

obtained from NOAA.

In summary, rain data for five weather stations surrounding I-4 was successfully obtained. Two
of them are located on the western side of -4 and they provided 15 minute rainfall information
from 1999 through 2002. The other three stations located on the Eastern side of I-4 provided
hourly rainfall data from 1999 through 2002. A map showing the locations of the five weather

stations surrounding I-4 is provided in Figure 3.1.
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Figure 3.1: Map showing locations of the five weather stations surrounding Interstate 4 in
Central Florida

3.1 Weather Model

3.1.1 Methodology and Data Preparation

As a result of not having rainfall information on I-4, logistic regression technique was used to fit
a model to the data (crash cases) which uses the rainfall condition available for the crash cases as
the response variable and the rainfall data at the same time of crash from the five weather
stations situated on both sides of the I-4 corridor as the independent variables. The model
developed with the crash cases, was then applied to a new data set (non-crash cases) to obtain the

weather condition.
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The goal of logistic regression is to identify the best fitting model that describes the relationship
between a binary dependent variable (in general y=0 and y=1) and a set of independent variables.
The dependent variable in the case of logistic regression is the probability (P) that the resulting

outcome is equal to 1. So the model can be expressed as

Y =Logit (P)=Ln {P;/1-P;} =B+ BiX;, 1= 1,......... ,n for a set of n independent variables.

So P; can be written as

Pi = exp(Bo + BiXi) / 1 + exp(Bo + BiXi)

Where the logit is the log (to base ) of the odds that the dependent variable is 1, By is the model

constant and the B; are the parameter estimates for the explanatory variables.

In this study the weather information provided by the Florida Crash Database is taken as the
binary dependent variable and the rainfall information from the five weather stations surrounding

I-4 are the independent or explanatory variables.

3.1.2 Dependent Variable

In the study area, a total of 1964 crashs were taken from the Crash Database for the years 1999
through 2001. Out of the three years, data from 1999 and 2000 (1296 crash cases) was used to
calibrate the model and the year 2001 (668 crash cases) was used to evaluate the model. For each
of the crash cases, the time, date and location of the crash and the weather condition are

obtained. The study area has 69 dual loop detectors installed on a 36.25-mile stretch numbered
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from 2 to 71. For each crash case, the nearest loop station is identified as the crash location
(station F). A sample of the information prepared as explained in above paragraph is provided in
Table 3.2. The response variable with y = 1, when it rained and y = 0, otherwise. The time, date

and location of the crashes are used in preparing the independent variables.

Table 3.2: Sample weather infor mation extracted from the crash database

L oop Detector
Station Nearest
Serial . tothe Crash ..
Time of Crash . Dateof Crash | Weather condition
No L ocation
(Station of the
Crash)
1 9:02:00 47 4/1/1999 CLEAR
2 8:50:00 49 4/1/1999 CLEAR
3 0:10:00 43 4/1/1999 CLEAR
4 16:45:00 42 4/1/1999 CLOUDY
5 14:45:00 34 4/1/1999 CLOUDY
6 17:15:00 59 4/2/1999 CLEAR
7 16:48:00 69 4/2/1999 CLEAR
8 15:30:00 11 4/6/1999 CLEAR
9 15:47:00 30 4/28/1999 RAIN
10 19:07:00 36 4/28/1999 RAIN

3.1.3 Independent Variables
For each crash case, rainfall information from each of the five weather stations is entered as the
independent variables in the model at the same time as that of the crash occurrence. To relate the

response variable with the independent variables in space also, an order for the independent
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variables is obtained based on the distance between a particular I-4 crash station and a weather

station. Table 3.3 provides a sample of independent variables entered in the model.

Table 3.3: Sampleinformation with dependent and independent variablesused in the

model
Time | station | Date Weather | Rain_1* | Rain_2* | Rain_3* | Rain_4* | Rain_5*
6:15:00 | 43 10/15/2001 | 0 0 0 0 0 0
15:36:00 | 37 10/19/2001 | 1 0 0 0 0 0.01
12:39:00 | 49 10/19/2001 | 0 0.0001 0 0.0001 0.01 0
16:35:00 | 26 10/19/2001 | 0 0 0 0 0 0.02
14:10:00 | 60 10/19/2001 | 1 0 0.0001 0.17 0.0001 0
23:29:00 | 20 10/19/2001 | 0 0 0 0 0 0
17:15:00 | 9 10/19/2001 | 0 0 0 0 0 0
12:30:00 | 42 10/19/2001 | 0 0.0001 0.0001 0 0.01 0
16:03:00 | 26 10/19/2001 | 0 0 0 0 0 0.02
15:18:00 | 33 10/19/2001 | 0 0 0 0 0 0.01
18:20:00 | 4 10/21/2001 | 1 0.02 0.05 0.01 0 0.01
18:41:00 | 53 10/21/2001 | 1 0.01 0 0.01 0.05 0
3:58:00 | 10 10/22/2001 | 1 0 0.03 0 0 0
19:13:00 | 53 10/22/2001 | 0 0 0 0 0 0

* The units for rain_1 through rain_5 are inches/hour

e In Table 3.3, weather is the response variable with outcome of “1” when raining and “0”
when not raining, and rain_1 — rain_5 are the independent variables with hourly rainfall
information. Rain 1 contains the rain information at the nearest weather station from the

corresponding crash station at the time and date of the crash. Rain 2 contains rain
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information at the second nearest weather station and so on. For example, the first
independent variable for the crash that happened on 10/21/2001 at time 18:20:00 and at
station 4 has 0.02 inches of rainfall and is the nearest weather station from crash station 4.
Therefore, rain_1 to rain_5 are dynamic factors and change from one station to another
on [-4 depending on its proximity to the weather stations. Therefore, the geographical co-
ordinates for all the 69 I-4 stations and the five weather stations were obtained. Based on
these co-ordinates, the distance between any I-4 station and each of the weather stations
is obtained. A table is prepared which provides information on the order in which the
weather stations are situated from each crash station based on distance. The nearest
weather station is placed first, the second nearest second and so on. Tables were prepared
for each of the five weather stations separately for each year (1999 — 2001), consisting of
rainfall information. A sample of rain values at the Avalon station for the year 1999 is

provided in Table 4.
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Table 3.4: Sample Rainfall Information at the Avalon Weather Station

Time Rainfall (inches’hour)
1/1/1999 10:00 0
1/1/1999 10:15 0.1
1/1/1999 10:30 0
1/1/1999 10:45 0.02
1/1/1999 11:00 0
1/1/1999 11:15 0
1/1/1999 11:30 0
1/1/1999 11:45 0
1/1/1999 12:00 0
1/1/1999 12:15 1.05
1/1/1999 12:30 0.08
1/1/1999 12:45 0.02
1/1/1999 13:00 0
1/1/1999 13:15 0

Using the information in Tables 3.2 and 3.4, the rain values are entered in Table 3.3 using a
program developed in Visual Basic. For example, let us take a crash that happened on
10/21/2001 at time 18:20:00 and at station 4. We first retrieve the order of the weather stations
located from the crash station 4. So the nearest weather station from station 4 is Avalon. Then we
go the Avalon weather station table with rainfall values for 2001 and take the rain value for 20™

October at time 18:20:00 and put this value in Table 3.3 for the rain_1.
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3.1.4 Model Development

Once the response and independent variables are obtained, the next step would be to apply the
logistic regression model. As stated earlier, the data from 1999 and 2000 which had 1296 crash
cases was used to build the model. But it is probable that if it rains in one of the weather stations,
it might also rain in the other stations, thereby making variables rain_1 - rain_5 correlated and
violating the assumption of independence, which in turn reduces the efficiency of the model with
erroneous parameter estimates. A chi-square test was conducted to check the independence of
these variables. The results of this test shows that at a 95% confidence level, the test statistic and
the p-value are provided 84.326 and 0.000, respectively. Since, the null hypothesis was rejected,

the variables cannot be considered as independent.

To deal with the issue of non-independence, i.e., an approach to remove the redundancy in these
variables, “principal component analysis” technique was applied to the variables before the
regression analysis. Principal component analysis (PCA) involves a mathematical procedure that
transforms a number of (possibly) correlated variables into a (smaller) number of uncorrelated
variables called principal components. The first principal component accounts for as much of the
variability in the data as possible, and each succeeding component accounts for as much of the
remaining variability as possible. The mathematical technique used in PCA is called Eigen
analysis: we solve for the eigenvalues and eigenvectors of a square symmetric matrix with sums
of squares and cross products, which in general called as the covariance matrix. The eigenvector
associated with the largest eigenvalue has the same direction as the first principal component.
The eigenvector associated with the second largest eigenvalue determines the direction of the
second principal component. The sum of the eigenvalues equals the trace of the covariance

matrix and the total information provided by the original variables can be expressed as this trace.
31



So essentially by looking at each of eigen values, the percentage information provided by each of

the principal components can be obtained.

In order to decide upon the number of principal components that are to be used as input
(independent variables) to the logistic regression model, three rules are applied: 1) 80% rule: The
minimum number of principal components to be used in the model has to retain at least 80% of
the total information, 2) Average Eigen Value rule: All those principal components whose Eigen
values are lesser than the average are to be excluded, and 3) Scree plot: It is the plot of Eigen
values Vs the number the Eigen values. Exclude those principal components on the flat part of

the curve, i.e., scree plot and retain those on the steep part.

The results of the PCA procedure are provided in Table 3.5 and 3.6, and Figure 3.3. Table 3.5
presents the covariance matrix of the independent variables from which the eigen values and
eigen vectors are calculated. Table 3.6 provides the eigen values of the covariance matrix. Using
these results, the number of principal components to be retained is determined. For rule 1, in
Table 3.6, the shaded part under “cumulative” is around 90%. So 4 principal components are
able retain at least 80% of the information. For rule 2, in Table 3.6, the average of Eigen values
15 0.00830027 and only 2 Eigen values exceed this value. Thus two principal components have to
be retained. For rule 3, looking at Figure 3.2 and retaining the eigen values on the steep part of
the curve, four principal components can be retained. Since, two out of three rules say that four
principal components can be retained, therefore, the first four principal components are used as

the independent variables in the logistic regression model.
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Table 3.5: Principal Component Analysis

Covariance Matrix

rain_1 rain_2 rain_3 Rain_4 rain_5
rain_1 | Rain_1 0.00494 0.0011 0.00075 0.00065 0.00076
rain_2 | Rain_2 0.0011 0.01091 0.00062 0.0005 0.001
rain_3 | Rain_3 0.00075 0.00062 0.0141 0.00125 0.00158
rain_4 | Rain_4 0.00065 0.0005 0.00125 0.00715 0.0005
rain_5 | Rain_5 0.00076 0.001 0.00158 0.0005 0.00441
Total Variance 0.0415
Table 3.6: Eigenvalues from Principal Component Analysis
Eigenvalues of the Covariance Matrix
Total = 0.04150134 Aver age = 0.00830027
Eigenvalue Difference Proportion Cumulative
1 0.01492 0.00389 0.3595 0.3595
2 0.01102 0.00405 0.2656 0.6251
3 0.00698 0.00217 0.1681 0.7932
4 0.00481 0.00103 0.1158 0.909
5 0.00378 0.091 1
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Figure 3.2: Scree Plot from Principal Component Analysis

With the four retained principal components of the variables rain 1 through rain_5, a simple
logistic regression model was estimated. The 