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ABSTRACT 

Traffic signals have been considered a way to improve traffic safety and operations at 

intersections where the warrants for traffic signal installation, specified by the Manual on 

Uniform Traffic Control Devices (MUTCD), are met. However, the impacts of 

signalization on crashes at intersections are complicated and have not been investigated 

in depth. This research focused in the evaluation of the impacts of signalization on 

crashes at newly signalized intersections in Florida through the development of statistical 

crash prediction models that can estimate the expected number of crashes at an 

intersection before and after the installation of traffic signals, in terms of total number of 

crashes and number of crashes for different crash types, including angle, left-turn, rear-

end and other crashes. In the research, a before and after analysis was also performed for 

number of all crashes, different type of crashes, different crash severities, and crash rates, 

as well as an evaluation of the impacts of signalization on crashes through a case based 

crash prediction system. The original crash database used in this research was taken from 

the Florida crash database maintained by FDOT. It consists of all crashes occurred on 

state roads within a ten-year period from 1989 to 1998. This database is updated yearly 

and includes all long form reported crashes with a fatality, an injury, and high property 

damage occurred on state roads.  

The first part of the project focuses on a before-and-after analysis to compare the number 

of crashes and crash rates based on different crash types, crash severities and surrounding 

land uses. Distribution fitting for Poisson distribution or Negative Binomial distribution 

was performed based on crash data. From the distribution fitting, the 50th and 85th 

percentile values were estimated and compared between the before and after period. The 

annual average number of crashes and crash rates were also compared to explore the 

safety impact of signalization on intersection crashes. Paired t-test was employed to 

determine if there was a statistically significant difference between both periods.  

On the second part of the research, statistical crash predictive models were developed to 

estimate the average number of crashes as well as the corresponding variances in terms of 

all crashes and specific type of crashes at intersections before and after the installation of 



 xii 

traffic signals. During the modeling process, Poisson regression was first conducted as 

the initial step for each model, with negative binomial regression being applied where the 

crash data showed over-dispersion. The regression parameters were estimated by using 

maximum likelihood method with Statistical Analysis Software. The goodness-of-fit of 

developed models were evaluated based on Pearson's R-square and likelihood ratio index.  

In the third part, an operational research approach denominated case-based crash 

prediction system was used to predict crash frequencies at new intersections based on 

some known cases. In this method, the most similar intersections with respect to roadway 

environment for application to a new intersection were retrieved from a training database. 

Then, the information and knowledge from the previous cases were adapted or reused to 

solve the new case, and the predicted crash frequency for the new intersection was 

evaluated. Once this system was ready, a testing database was used to estimate the 

number of crashes for intersections with specific characteristics. Lognormal modeling 

was performed to obtained the final results for this new approach.  

With the models developed during the research, the average number of crashes at an 

intersection before and after the installation of a traffic signal can be estimated given the 

intersection characteristics. The change (increase or decrease) of the estimated crash 

frequencies before and after signalization can be calculated, using either the tables found 

in the appendices or the developed models, to represent the impacts of signalization. 

Based on the results of the crash data analysis (before-and-after comparison of mean 

values), it was concluded that signalization did have some impacts on traffic safety at 

intersections. All the following results were statistically significant at a 95% confidence 

level.  

� Non-injury number of crashes and non-injury crash rates would increase, fatal 

crash rates would decrease, and number of injury crashes would increase after 

signalization.  

� Total number of crashes and total crash rates, as well as number of rear-end 

crashes and rear-end crash rates, would increase after signals were installed, while 
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number of angle and left turn crashes, angle and left turn crash rates, and right 

turn crash rates would be reduced. 

� Number of all crashes and all crash rates would be increased in urban areas, and 

crash rates for rural areas would be reduced.  

For statistical models and operational research models, different variables of the 

intersections would be related to the occurrence of crashes depending on the crash types 

considered. The estimated impacts on crashes of different characteristics of intersections 

could be found on the result tables on the appendices. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Traffic crashes are an inevitable, however undesirable, transportation outcome. They 

cause the loss of wages, time, productivity, and especially loss of human lives, for which 

value cannot be estimated. Each year, hundreds of thousands of traffic crashes occurred 

in the United States. As an example, in 1999 there were 6,279,000 estimated traffic 

crashes according to the Traffic Safety Facts 1999. Out of this estimated number of 

crashes, 37,043 were fatal crashes with 41,611 fatalities. For the state of Florida, 

specifically, a total of 2,626 fatal crashes caused 2,918 fatalities in 1999. These figures 

clearly illustrate why traffic safety problems are a major concern to public, politicians 

and transportation professionals. These figures also indicate that there is a tremendous 

need for improving traffic safety, especially at intersections, where crashes happen more 

frequently as compared to roadway segments.  

Intersection-related crashes make up a very high percentage of the total number of 

crashes in the roadway system. For example, Figure 1.1 presents the national statistics for 

crashes by location and crash severity for 1999. For all fatal crashes, 22.98% occurred at 

intersections or intersection-related locations. In regard to all traffic crashes, 44.69% 

occurred at intersections or intersection-related locations. For injury crashes, the 

percentage is close to 50%, and for property damaged only (PDO) crashes over 42%. The 

main reason for these high percentages is that intersections are areas shared by two or 

more roads, where roadway users including vehicle drivers, cyclists, and pedestrians have 

to make a decision or are confronted with many choices to make, whether to stop or keep 

going, go left, right or straight, etc. The complexity of movements of vehicles at 

intersections results in the basic problem for intersections, too many conflict points. 

Usually, once a traffic conflict is not avoided, a traffic crash will occur. Therefore, safety 

analyses at intersections are necessary. 

A valid approach to address safety at intersection is through intersection crash studies. An 

appropriate intersection crash study is to explore the different crash patterns before and 

after signalization based on intersection data. This research was conducted by using this 
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approach to find out the crash patterns before and after the signalization, and then based 

on the different patterns, the impact of signalization on intersection crashes was found 

out. Furthermore, crash prediction models were developed to quantify the impacts of 

signalization on intersection crashes. 

 
Figure 1.1. National Statistics of Accidents by Location and Severity 

(Source: Traffic Safety Facts 1999) 

It is very important to develop crash prediction models to estimate intersection crash 

frequencies. However, crash frequency prediction is not an easy task due to the large 

number of factors that affect crash occurrences and possible complicated interactions 

among them. These factors can be grouped into five categories: drivers, traffic, 

intersection or roadway segment, vehicles, and environment (e.g. weather condition). 

Although four of the five factors play an important role in traffic safety, traffic engineers 

can only directly manage factors related to roadway through intersection design or 

improvement phases. 

Within roadway factors, traffic controls at intersections are very important. These traffic 

controls include yield sign, stop sign, flashing beacon and traffic signals. Traffic signals 
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general public that traffic signals could reduce the number and/or severity of crashes at an 

intersection. However, many traffic engineers and traffic operations professionals know 

this is not necessarily the case. Results from many studies showed that the number of 

crashes could increase and crash rates may not have a significant decrease after signal 

installation. Moreover, previous research also indicates that rear end crashes will increase 

after the installation of a traffic signal while angle crashes will decrease. Rear end crashes 

will increase after a signal is installed because more vehicles will have to stop on the 

major road than before. Angle crashes will decrease because the traffic signal will give 

the vehicles from the minor road the right of way when crossing the major road. 

However, the effects of signal installation on traffic safety at intersections have not been 

fully investigated, especially in Florida. Therefore, this research focused in the evaluation 

of the impacts of signalization on crashes at newly signalized intersections in Florida 

through the development of statistical crash prediction models that can estimate the 

expected number of crashes at an intersection before and after the installation of traffic 

signals, in terms of total number of crashes and number of crashes for different crash 

types, including angle, left-turn, rear-end and other crashes. A before and after analysis 

for number of all crashes, crash types, crash severities, and crashes by surrounding land 

use, as well as for crash rates, and an evaluation of the impacts of signalization on crashes 

through a case based crash prediction system were also performed. In the before-and-

after comparison, statistical tests were performed to evaluate the significance of the 

increase or decrease of crashes or crash rates.  

Furthermore, it had long been thought that a crash prediction model to predict the number 

of crashes at an intersection before and after signalization was sorely needed. The models 

of this research could be used by traffic operations and safety engineers to estimate the 

changes in total number of crashes and number of crashes by type when they are faced 

with the decision whether or not a traffic signal is in the best interest of the public. These 

models would also be extremely helpful to inform politicians and public what could 

happen once a traffic signal is installed. As an example, the possible impacts of a signal 

on crashes at an intersection could be used as additional information during the analysis 

of signal warrants at an intersection when considering signalization as an alternative 

solution for the intersection’s problems. These impacts, which could be estimated with 
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the models by predicting the number of crashes before and after signalization, may 

illustrated the increase or decrease of specific type of crashes depending on the 

conditions of the intersection. 

This research project not only developed crash prediction models but also covered other 

related aspects. The project was divided into three phases: before and after comparison 

study, development of statistical crash prediction models, and development of case-based 

crash prediction models. In the first phase, the following tasks were completed: 1) 

collecting the specific crash data from the original FDOT crash database, and creating a 

crash database for the intersections considered in the research; 2) conducting a before-

and-after comparison analysis to determine the change in the number of crashes and crash 

rates after traffic signals were installed at intersections; and 3) Poisson and Negative 

Binomial distributions were used to fit the observed crash distributions, and the 50th 

percentile and 85th percentile values were gathered from the fitted distributions matching 

with the observed data. Because the crash counts are discrete numbers, Poisson 

distribution was usually used to analyze the number of crashes and crash rates to 

investigate the impact of signalization on intersection crashes for this phase. Negative 

Binomial distribution was also used due to the fact that recent studies indicated that this 

distribution would be more accurate to fit the crash distribution when the data is over 

dispersed [Nicholson (1985), Poch et. al. (1996)]. 

In the second phase of the project, the preliminary database was further reduced and 

processed to generate the final database for statistical modeling purposes. The modeling 

procedure can be summarized into five steps: (1) finding an appropriate probability 

function to describe the random variation of crash frequencies; (2) determining an 

appropriate functional form and parameterization to describe the effects of independent 

variables on the expected crash frequencies; (3) selecting the right independent variables 

to include and collect associated data; (4) estimating the regression parameters using 

appropriate statistical algorithm based on the crash data and the probability assumptions; 

and (5) assessing the quality of the model to make sure that the developed model makes 

good engineering sense as well as fulfilling corresponding statistical goodness-of-fit 

criteria. For modeling, five types of crashes were selected: (1) number of all crashes per 



 5 

year; (2) number of rear-end crashes per year; (3) number of angle crashes per year; (4) 

number of left-turn crashes per year; and (5) number of other crashes per year (including 

all other crash types). The reason to combine other types of crashes together was the 

insufficient crash counts for each crash type to perform separate modeling analysis. For 

each of the cases considered, two models were developed, one based on data before 

signalization, and the other based on data after signalization. In the model developing 

process, the Poisson regression was used as an initial step, with the negative binomial 

model then being applied where over dispersion existed in the crash data. In regard to 

predictor variables for the model, a total of seven characteristics related to intersections 

were selected, including the average daily traffic (ADT) of the major road, urban/rural, 

land use of surrounding area, number of lanes on major road, posted speed on major road, 

type of median, and shoulder treatment. The maximum likelihood method was used to 

estimate the regression coefficients. The methods applied to test the goodness-of-fit of 

the models include Pearson's residual, Pearson's R-square, and likelihood ratio index. 

Once the models were developed, the expected number of crashes at an intersection 

before and after the signalization were estimated by using the "before" model and the 

"after” model. Then, the changes of the estimated number of crashes were estimated as 

impacts of signalization. These estimated results were finally tabulated in order to present 

a simple and clear overview of the impact of signalization on crashes for intersections 

with different characteristics. 

The third phase of the project consisted of a new approach (operational research) to 

predict crash frequencies at a new intersection based on some known cases. The basic 

idea of this new approach is to remember old solutions (crash frequencies) to similar 

problems (intersections) and to adapt them to fit a new problem (intersection) rather than 

having to solve it from scratch. This method, denominated case-based crash prediction 

system, involves the following basic steps: (1) retrieving from a training database the 

most similar known intersections with respect to roadway environment for application to 

the new intersection, (2) adapting or reusing the information and knowledge from the 

previous cases to solve the new case, (3) evaluating the proposed solution (crash 

frequency) to the new case. This case-based crash prediction system was evaluated to 

know what was going right and what was going wrong. Once this system was ready, a 
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testing database was used to estimate the number of crashes for intersections with 

specific characteristics. 

1.2. Crashes at Intersections 

In reference to crashes, there are many different types that can occur at an intersection. 

One of the most common types is the rear end crash, which usually occurs when one 

vehicle collides with another vehicle in the "rear end" of the vehicle. Angle crashes are 

also common at intersections where one vehicle tries to cross the path perpendicular to 

the other vehicle. Left turn and right turn are similar to angle crashes except that one 

vehicle is making a turn of some sort when they cross the path of the other vehicle. 

Sideswipe is another type of crash that can occur at an intersection, which usually happen 

when one vehicle attempts to change lanes and collides with another vehicle on the side. 

Finally, crashes related to pedestrians are also important to be considered at the 

intersection. There are some other types of crashes that can occur at an intersection but 

these crash types rarely happen.  Table 1.1 presents all the different types of crashes. 

In reference to these types of crashes at intersections, several previous studies concluded 

that rear end crashes would increase significantly after signal installation, and angle 

crashes would decrease significantly after signal installation [King et. al (1975), Short et. 

al. (1982), Shen (1984), Radwin et. al. (1987)]. As for left turn crashes, different 

researches have different results in regard to the change of number of crashes and crash 

rates after the traffic control is changed [King et. al (1975), Radwin et. al. (1987)]. This 

research investigated the impacts of signalization in total number of crashes and in 

several types of crashes based on data collected only in Florida. Therefore, it can give a 

very important insight on crashes at intersections. 

1.3. Modeling  

1.3.1. Statistical Properties of Intersection Crash Frequencies 

Traffic crashes are random and discrete events that are sporadic in nature, and obviously, 

crash frequencies and crash rates are necessarily non-negative. In fact, crash frequencies 

for particular intersections or relatively short roadway segments at a time interval are 

typically small integers. Furthermore, it is not uncommon for a substantial proportion of 
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locations in a crash study to have no crashes at all during the study period. Also, crash 

frequency data show great variation. These variations are clearly consistent with the 

complex traffic crash mechanics, which includes pure randomness and the interactions of 

five major factors: drivers, traffic, intersection or roadway segment, vehicles and 

environment. 

Table 1.1. Crash Types 

Crash Code Number Crash Type 
1 Rear End 
2 Head On 
3 Angle 
4 Left Turn 
5 Right Turn 
6 Sideswipe 
7 Backed Into 
8 Parked Car 
9 W/Other Motor Vehicle on Road 
10 Pedestrian 
11 Bike 
12 Bike in Bike Lane 
13 Moped 
14 Train 
15 Animal 
16 Sign/Sign Post 
17 Utility/Light Pole 
18 Guardrail 
19 Fence 
20 Concrete Barrier Wall 
21 Bridge Abutment/Pier 
22 Tree/Shrub 
23 Construction Barricade/Sign 
24 Traffic Gate 
25 Crash Attenuators 
26 Fixed Object Above Road 
27 Other Fixed Object 
28 Moveable Object on Road 
29 Ran Into Ditch/Culvert 
30 Ran Off Road Into Water 
31 Overturned 
32 Occupant Fell From Vehicle 
33 Tractor Trailer Jack-knifed 
34 Fire 
35 Explosion 
77 All Other 
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Figure 1.2 shows the concept of variation of crash frequencies [Miaou et al. (1985)]. The 

total variation of crash frequencies can be decomposed into two components: systematic 

variation and random variation. To better understand this, it is assumed that the crash 

process could be repeated over and over again while keeping the five major factors 

constant for each site and time interval. The crash frequency for each site and time 

interval could be observed over and over again. The replication would allow the 

computation of the long-term mean value of crash frequency for each site and time 

interval. The variation of these mean values among those sites (between-site variation) 

and time intervals (between-time variation) is the systematic variation. The variation of 

crash frequencies observed from various replications about the long-term mean at each 

site and time interval is the random variation (within-site-within-time variation). 

 
Figure 1.2. Variation Structure of Crash Frequencies [Miaou et al. (1985)] 
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The random variation can be thought of as the variation beyond explanation. Statistically, 

it is assumed that the random variation follows certain probability laws and can be 

characterized by the corresponding probability function, such as Poisson probability 

function and negative binomial probability function. The systematic variation is further 

decomposed into three types: (1) explained variation by variable X; (2) unexplained but 

statistically significant variation caused by omitted variable U; and (3) unexplained and 

statistically insignificant variation caused by variable Z. In reality, not all the information 

needed on the major crash related factors to explain the variation of crash frequencies is 

available. For example, in developing intersection crash prediction model, X may 

comprise traffic volume and some geometric parameters, which are used in the model, 

showing statistical significance in explaining the variation of crash. U may include 

vehicular parameters, driver information and on-site weather condition, etc. All of these 

factors are definitely crucial to the occurrence of crashes, but unfortunately are difficult 

to be included into the prediction model. Z consists of two types of factors: one, available 

but dropped due to statistical insignificance in explaining the variation, and another, 

unavailable and statistically insignificant. 

Developing crash prediction models is a means of summarizing the complicated 

interactive effects of these crash related factors on the basis of information contained in 

the data, as well as engineering judgment (e.g. the selection of independent variables), 

and analytical assumptions about the crash process (e.g. which probability law will be 

relatively appropriate to apply to the crash study). A crash prediction model with good 

quality should estimate the occurrence of crash accurately at a specific statistical 

confidence level; meanwhile, the model shall make good engineering sense. 

1.3.2. Poisson Regression Model 

Many types of regression models have been used to develop crash prediction models in 

the past 30 years. However, conventional regression models are proved to be 

inappropriate by many studies [Jovanis et al. (1985), Hauer et al. (1988), Saccomanno et 

al. (1988), Miauo et al. (1993)]. Meanwhile, recent researches show that the Poisson 

regression model possesses the most desirable statistical properties in describing vehicle 

crash events that are random, discrete, nonnegative and typically sporadic. 
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Consider a set of n intersections of a given class (e.g. intersections with medium traffic 

volume, 50 mph posted speed on the major road, in the vicinity of business area, located 

in the urban area). Associated with each intersection ith, is a set of parameters, Xi1, Xi2, 

…, Xiq, which describe the safety-related characteristics of this intersection, such as 

traffic volume, number of lanes on major road, posted speed on major road and/or minor 

road, etc.. Let the average number of crashes occurring at the ith intersection during a 

specific time interval (e.g. crashes/per year or crashes/three-year) be denoted by Yi, 

where, i= 1, 2, …, n. then denote the actual observation of Yi during the same time 

interval by yi, where yi = 0, 1, 2, …. and i = 1, 2, …, n. The objective of a statistical 

model is to provide a relationship between a function of the expected number of crashes, 

E(Yi) = µi, at the ith intersection, and the q parameters of this intersection, Xi1, Xi2, …, 

Xiq. This relationship can be formulated through a general linear form: 
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where, the regression coefficients, β0, β1, β2, … , βq, are to be estimated from the data and 

the estimation procedure to be adopted is dependent on the assumption made about the 

distribution of Yi. The assumption underlying Poisson regression is that the number of 

crashes, Yi, follows a Poisson distribution with mean µi. The probability that an 

intersection defined by a set of explanatory variables, Xi1, Xi2, …, Xiq, experiences yi 
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where, 

Yi – discrete and random variable representing the number of crashes occurring at 

ith intersection during a period of time; 

yi -  actual or observed number of crash at ith intersection during a period of time; 

µi - expected number of crashes, the dependent variable corresponding to a set of 

predictor variables. 

The natural logarithm link function is adopted in Poisson regression models. 



 11 

iq
X

q
β

i
Xβ

i
Xββ)

i
(µ +⋅⋅⋅+++=

22110
ln     (1-3) 

From mathematics perspective, it is not always clear in practice what link should be 

employed, and very often the data are analyzed by comparing several alternative choices. 

The reason to choose the natural logarithm link function here is taking into account the 

non-negative feature of crash count data. As stated by McCullagh and Nelder (1989), 

although canonical link may be found to be adequate over the range of the data, it is often 

dubious and logically unsatisfactory for extrapolation. By using natural logarithm link, 

ln(µi ) rather than µi obeys the linear model. This construction ensures that µi remains 

positive for all combination of independent variables and parameters. In addition, recent 

crash prediction studies also show that the natural logarithm link function is a reasonable 

choice. The Poisson probability function has only one parameter, mean, µi, and the 

variance, σ2, equals the mean of the distribution. This inherent limitation of Poisson 

model is uncovered to be the major shortcoming of applying Poisson regression to crash 

prediction study. 

Under the assumption of Poisson distribution, the regression coefficients, β0, β1, β2, … , 

βq, are estimated by the maximum likelihood method. The likelihood function is the 

product of the individual probability density functions. 
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This is a function of the parameter, µi, and through them, the parameters, β0, β1, β2, … , 

βq, are estimated by maximizing the likelihood, or more usually, by maximizing the 

logarithm of the likelihood. Because the logarithm is a strictly monotone transformation, 

the values that maximize L will also maximize log-L, which can be written as, 
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The actual maximization procedure always requires an iterative calculation.  
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1.3.3. Negative Binomial Model 

Regarding the types of models used for crash frequency studies, Poisson regression 

models have been shown to be more appropriate than conventional linear regression 

models. However, the inability of the Poisson model to handle over-dispersed data is a 

major concern with regard to studying crash frequencies. This inability results from the 

major limitation of the Poisson regression model, which requires the variance of the 

dependent variable to be equal to its mean. Literature shows that most crash count data 

are likely to be over-dispersed, which means that the variance will likely be significantly 

greater than the mean [Shankar et al. (1995)]. When the mean and the variance of the data 

are not approximately equal, the variances of the estimated Poisson model coefficients 

tend to be underestimated and the coefficients themselves are biased. 

This limitation can be readily overcome by using the negative binomial regression model, 

which assumes that the crash frequencies are distributed by negative binomial 

distribution. The negative binomial regression model is an extension of Poisson 

regression model and arises from Poisson regression model by adding an extra and 

independently distributed error term ε.  For mathematics convenience the error term, 

exp(ε), is usually assumed to follow a gamma distribution with mean 1 and variance α. 

The resulting joint probability function, which is called negative binomial probability 

function, can be expressed as: 
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where, 

Yi - discrete, random variable representing the number of crashes occurring at ith 

intersection during a period of time; 

yi -  actual or observed number of crash at ith intersection during a period of time; 

µi - expected number of crashes, the dependent variable corresponding to a set of 

predictor variables; 

α -  dispersion parameter. 
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Note that the mean and variance of the negative binomial distribution of crash data can be 

expressed as: 
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The second term on the right hand of equation (1-8), αµ2, arises from the combination of 

the Poisson distribution with the gamma distribution assumption, and relaxes the 

constraints of Poisson distribution. Actually, as α goes to zero, the negative binomial 

regression yields the Poisson regression. 

Like Poisson regression model, the relationship between the expected value of dependent 

variable and the corresponding q parameters, Xi1, Xi2, …, Xiq, is still taken to be: 
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The model coefficients, β0, β1, β2, … , βq, and the extra parameter, dispersion parameter 

α, are estimated by maximum likelihood method [Lawless (1987)]. The likelihood 

function is: 
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The log-likelihood function is: 
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All the estimation procedure of coefficients was done using the Statistical Analysis 

System (SAS). 
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1.3.4. Case-Based Crash Prediction  

As mentioned previously, statistical approaches such as linear regression, Poisson 

regression and Negative Binomial regression analysis have been the main tool used to 

uncover the relationship between roadway parameters and crash frequencies. This 

research used these statistical approaches and also incorporated a new approach. Unlike 

the regression methods, this new approach is model free. It attempts to predict the crash 

frequency at a new intersection based on the (past and known) crash frequencies at 

similar intersections.  

Since the new approach attempts to predict crash frequency at a new intersection based 

on some known cases, it is called case-based crash prediction (CBCP). Its foundations or 

origins rely on the early work by Schank and Abelson (1977) and Schank (1982). Its 

basic idea is to remember old solutions (crash frequencies) to similar problems 

(intersections) and to adapt them to fit a new problem (intersection) rather than having to 

solve it from scratch. In other words, CBCP requires access to past experience to improve 

system performance. 

A CBCP system involves the following basic steps. 

(1) Retrieve the most similar known cases (intersections) for application to the 

new case (intersection), with respect to roadway environment. 

(2) Adapt or reuse the information and knowledge from the previous cases to 

solve the new case. The selected most similar cases have to be adapted when 

they do not match the new case perfectly. 

(3) Evaluate the proposed solution (crash frequency) to the new case. A case-

based reasoned requires some feedback to know what is going right and what 

is going wrong. Usually, this is done by performing some sort of search. In 

this study, the genetic algorithms (GA) approach is used. 

Case-based reasoning approach has been successfully used in practice [Krovvidy et. al. 

(1993), Sanchez et al. (1997)]. Zhang and Yang’s work (1997) on the main highways of 

Utah is the only literature available for traffic safety application. Experimental results by 

Zhang and Yang show that this approach is applicable to highway crash prediction and 
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compared favorably with traditional methods in terms of prediction errors. Zhang and 

Yang did not, however, discuss the impact of traffic signal installation on crashes at 

intersections.  

1.4. Research Objective 

The main objective of this research was to develop statistical crash prediction models that 

can estimate the expected number of crashes at an intersection before and after the 

installation of traffic signals, in terms of total number of crashes and number of crashes 

for different crash types. The research mainly focused on the following objectives: (1) to 

estimate the change or impact of signalization on the expected number of crashes based 

on the expected total number of crashes and number of crashes for different crash types 

for the before and after period, (2) to use the Poisson regression and Negative binomial 

regression models in the determination of the prediction models, (3) to incorporate a new 

approach denominated case-based crash prediction, which is model free, in the evaluation 

of safety at intersections, (4) to explore the safety impacts of traffic signalization on 

intersection crashes on a statewide sampling of intersections in Florida through a before-

and-after comparison analysis of yearly average number of crashes, crash rates, and crash 

severity, and (5) to evaluate the differences in the distribution of crashes by crash type, 

severity and surrounding land use type.  
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CHAPTER 2. LITERATURE REVIEW 

2.1. Change of Crash Patterns at Intersections with Control Change 

Crash patterns will change at intersections after the installation of traffic signals; 

however, the patterns changes are not clear. As stated by Box et al. (1970), the effect of 

installing traffic signals cannot be described specifically because the signal may reduce 

crashes under certain circumstances but widespread examples of higher rates after signal 

installation indicate the possibility of worse crash experiences under other circumstances. 

Regarding the effect of signalization on crash types and severities, it is indicated that 

right angle crashes tend to decrease, turning crashes and rear-end crashes tend to 

increase, and. the percent of injury crashes does not appear to increase. 

King and Goldbatt (1975) carried out a comprehensive study to investigate the 

relationship of crash patterns to type of intersection control. They investigated 250 

intersections located in nine different states (Colorado, Illinois, Maryland, Massachusetts, 

New York, Oklahoma, Pennsylvania, Washington and West Virginia). An analysis of 

crash data for the cases of before and after signalization was performed by using analysis 

of variance and regression techniques to show the relationship between crash patterns and 

type of control. The type of controls included signalization, four-way stop sign control, 

and two-way stop sign control. The study found that safety at an intersection was 

improved by the installation of a traffic signal, and that signalization leads to a significant 

reduction in right-angle crashes and a significant increase in rear-end crashes. The 

authors indicated that intersections after signalization may have higher crash rates that are 

usually offset by less disutility per crash, which leads to a no significant change in total 

crash-related disutility.  

Short et al (1982) performed a before-and-after signalization crash study using 31 

recently signalized intersections within the City of Milwaukee. Upon signalization, little 

or no change was noted overall either in the number of crashes, or in crash severities as 

measured by property-damage-only-equivalent (PDOE) and severity index (SI). A 

significant decrease of 34% in the number of right angle crashes and a significant 

increase of 37% in rear-end crashes after signalization were reported in the study. The 
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authors also indicated a significance shift in crashes occurred between flash and normal 

operation time periods at thirty intersections that had flash operation at night. At these 

intersections, the PDOE crashes increased by 42% during flash operation, and decreased 

by 8% during normal operation. This shift was caused by a change in crash severity.  

Shen (1984) performed an analysis to determine the safety aspects of newly signalized 

intersections in the District of Columbia. Twelve newly signalized intersections installed 

between January 1978 and June 1980 were randomly selected for the study. The author 

used the Poison distribution test to determine whether the changes in the number of 

crashes as a result of signalization were statistically significant. The conclusion of the 

research was that the decrease of approximately 35% of right angle crashes, 40% of 

sideswipe crashes, and 67% of pedestrian crashes could all be attributed to the installation 

of traffic signals. It was also found that the increase of more than 40% of rear-end crashes 

was statistically significant. Based on four of the twelve intersections, it was also 

indicated that when a signal was installed in conjunction with the opening of a new 

METRO station, it always resulted in higher crash frequencies even after signalization 

due to the substantial increase in traffic volume. 

Radwan and Wing (1987) presented a report that contained a comprehensive review of 

signal installation and their impacts on crash patterns, crash frequency and crash severity. 

The report contained information on crash statistics by type and severity; crash rates for 

stop controlled and signalized intersections, crash patterns on arterials, and crash 

statistics for different signal types. Pedestrian safety due to signal installation was also 

addressed. This report indicated that due to signal installation, right-angle crashes 

decreased, rear-end and miscellaneous crashes increased, and overall crash rates did not 

change significantly. In regard to total number of crashes, no consensus in the results was 

presented. It was also concluded that in order to improve crash rates, intersections must 

have high traffic volumes, high existing crash rates, and complex geometric 

configurations before signalization becomes effective. The report also indicated that 

signalization is not a reliable measure for the reduction of crashes but it does not produce 

a significant increase in crashes either. Traffic signal removal was also addressed in terms 

of traffic safety. The analysis concluded that after signal removal the total number of 
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crashes and injury crashes decreased; right angle crashes increased and rear-end crashes 

decreased. Finally, recommendations such as "Crash Reduction Using Signal 

Coordination on Arterial Streets” for future research were given. 

Wattleworth et. al. (1988) developed several tables with estimated Florida crash 

reductions factors for different situations such as signalization, and channelization. For 

the signalization part, a total of ten improvements including new signal at channelized 

intersection, and new signal at non-channelized intersections were considered. For each 

improvement, the percentage of crash reduction for different crash types, crash severities, 

and weather conditions were listed. Their conclusions indicated that angle, left turn, and 

right turn crashes were reduced after adding traffic signals at channelized intersections. In 

reference to non-channelized intersections, only left-turn crashes decreased after a signal 

was installed. The specific changes of rear-end and other crash types were not analyzed 

in the study.    

2.2. Traffic Crash Prediction Modeling 

The most commonly used approach in the study of safety at intersections with new 

signals are the before and after signal installation studies. These studies can be applied to 

individual intersections where a new traffic signal has been installed. However, the 

conclusions for the particular intersection under study may not apply to other 

intersections of similar configuration and traffic demand. To overcome this problem, 

before and after studies may be performed collecting crash data at a large number of 

intersections in order to cover a wide range of traffic, roadway, and environmental 

characteristics. By using appropriate statistical techniques, such as analysis of variance 

and regression modeling, the safety impacts of traffic signal installation at intersections 

could be assessed.  

Although before and after studies could provide some insights regarding the safety 

consequences of the installation of signals at intersections, engineers may be more 

interested in what factors cause these change, and the relationship between intersection 

crashes and these factors. Furthermore, it will be very helpful to be able to estimate the 
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safety at intersections based on available crash related information. An appropriate 

approach to address these concerns is traffic crash modeling.  

Up to date, most of the traffic crash modeling studies had focused in developing the 

statistical relationship between crashes at intersections or roadway sections and geometric 

variables. Then, the safety of an intersection can be estimated using the developed crash 

models [Hauer (1988), Bonneson et. al. (1993), Bauer (1996)]. However, very few 

studies had combined the before-and-after comparison approach together with the 

prediction modeling approach. Given some safety related explanatory variables, the 

combination of these two approaches gives the possibility for engineers to quantitatively 

estimate the safety at intersections before and after the installation of signals, and to 

investigate the impacts of signalization. Therefore, the crash prediction results from the 

before-after models would be a very helpful reference for decision-making. 

David and Norman (1975) evaluated the relationship between motor-vehicle crash rates 

and geometric and traffic of a group of intersections with common design features. This 

analysis was based on a relatively detailed on-scene inventory of the geometry, design 

features, and traffic counts of 558 intersections coupled with police reports of 4372 

crashes that occurred in those areas during the three-year study period. Forty-one crashes 

were investigated in-depth by a multidisciplinary team to determine causal factors and to 

evaluate the effects of federal safety standards on intersection crashes and severities, 

Finally, six design features including left-turn storage lanes and multiphase signalization 

were found to be crash-related-sight-distance obstructions. 

Datta and Dutta (1990) worked on a research project to determine the changes in crash 

characteristics and crash severities at 102 newly signalized intersections in Michigan. It 

was also evaluated the effect of traffic signals at intersections with no geometric changes. 

This study used two to three years of crash data for both the before and after periods to 

evaluate the impact of signal installation based on crash rates. The conclusions based on 

statistically significant values of crash rates for the before and after periods at 67 

intersections with no geometric improvements of the 102 locations were summarized as 

follows: total crash rate decreased by 15.5 percent; right-angle crash rate decreased by 
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52.5 percent; rear-end crash rate increased by 64.5 percent; head-on and left-turn crash 

rates increased by 75 percent; and other type crash rate decreased by 31.8 percent. In the 

study, there is no indication of the left turn treatment of the intersections considered but it 

is mentioned that only 28 percent of the locations had left turn lanes. 

Huang and May (1991) employed a three level modeling approach for crash prediction 

models of unsignalized and signalized intersections. The objective of the study was the 

application of prediction models to understand the cause-and-effect relationship of 

crashes in unsignalized and signalized intersections. Their results indicated that for 

signalized intersections, actuated controllers were better from a safety point of view. For 

very wide intersections, multiphase actuated controllers were necessary in order to 

accommodate turning movements required in wide intersections. The study also indicated 

that the most important factors affecting crash occurrences in both unsignalized and 

signalized intersections were level of conflicts, where higher level of conflicts related to 

higher risk; and severity of conflicts, where higher speed related to more direct conflicts. 

Bauer and Harwood (1996) worked in a research to develop statistical models of the 

relationship between traffic crashes and highway geometric elements for at-grade 

intersections. These models also incorporated the effect of traffic control features and 

traffic volumes on intersection crashes. The database used to develop the models was 

obtained from the California Department of Transportation. Field data were also collected 

for a sample of Urban, four-leg, signalized intersections to provide information on 

additional geometric design variables and turning-movement counts that were not 

available from the database. The statistical modeling approaches used in the research 

included Poisson, Lognormal, Negative Binomial, and Logistic regression, as well as 

discriminate and cluster analysis. Regression models of the relationships between crashes 

and intersection geometric design, traffic control, and traffic volume variables were 

found to explain between 16 and 38 percent of the variability in the crash data. However, 

most of that variability was explained by traffic volume variables considered; geometric 

design variables accounted for only a very small additional portion of the variability. 
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Vogt and Bared (1998) presented a report for the implementation of the Crash Analysis 

Module in the Interactive Highway Safety Design Model (IHSDM). This report described 

the collection, analysis, and modeling of crashes on rural roads in Minnesota (1985-1989) 

and Washington State (1993-1995). Poisson, Negative Binomial, and extended Negative 

Binomial models were developed. The models indicated that exposure and traffic counts 

were the key highway variables contributing to crashes. Also, it was found that the other 

variables affecting crashes at intersections were: vertical and horizontal alignments, 

roadside conditions, number of driveways, posted speed, approach angles, and turning 

lanes. In this study, advanced statistical techniques were applied to assess the explanatory 

value of the models in the presence of Poisson randomness and over dispersion. A non-

parametric statistical modeling technique known as the Classification Regression Tree 

(CART) was used to group intersections by significance of prediction. This method 

seems to be very accurate, but it is also very complicated to apply.  

2.3. Simple Linear Regression vs. Generalized Linear Regression 

Researchers have attempted several statistical approaches when relating traffic safety 

measures (e.g. crash frequencies, severity-weighted crash frequencies, crash rates) to 

traffic related explanatory variables. Among them, simple linear regression and 

generalized linear regression are the two most commonly used statistical techniques to 

develop crash prediction models. Simple linear regression is the traditional approach to 

develop crash prediction models. In the classical linear model, the dependent variable 

(e.g. crash frequency) is expressed as a linear combination of explanatory parameters 

with or without interactions, under the assumption that the dependent variable is normally 

distributed. Unlike conventional simple linear regression, generalized linear models, such 

as Poisson regression, negative binomial regression and lognormal regression, are based 

on alternative distributions. Poisson regression is appropriate for dependent variables that 

have a Poisson distribution, as crash counts often do. Negative binomial regression 

assumes the negative binomial distribution, and lognormal regression assumes the 

lognormal distribution. For each of these models, the dependent variable can be crash 

frequencies, or similar safety measures mentioned above. 
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Even though simple linear regression has generated many useful findings, studies show 

that this approach suffers some undesirable statistical properties, for example, the poor 

explanatory ability of the variation in crash data. In the study performed by King (1975), 

the authors indicated that a linear regression model, even one with many independent 

variables, would not furnish an adequate model of crash experience associated with a 

given type of intersection control, and suggested to explore some more complex, 

probably non-linear regression model. 

Joshua and Garber (1990) studied the relationship between crash involvements of trucks 

and associated traffic and geometric variables using both linear and Poisson regression 

models. The authors concluded that the multiple linear regression models did not 

adequately describe that relationship, but that the Poisson models did.  

Miaou and Lum (1993) completed a study to evaluate the statistical properties of two 

conventional linear regression models and two Poisson regression models. The four types 

of models considered were: (1) an additive linear regression model; (2) a multiplicative 

linear regression model; (3) a multiplicative Poisson regression with exponential 

function; and (4) a multiplicative Poisson regression with non-exponential rate function. 

The authors concluded that of the four models tested, Poisson regression models 

outperformed linear regression models. Furthermore, the Poisson regression model with 

exponential rate function was the favored model. 

Bauer and Harwood (1996) summarized several reasons indicating why conventional 

linear regression models are inappropriate for modeling crash frequencies or crash rates. 

The first reason indicate that traffic crashes are random and discrete events that are 

sporadic in nature. Secondly, crash frequencies for particular intersections or relatively 

small roadway sections are typically very small integers even if several years of crash 

data are obtained for those intersections and roadway sections. In fact, it is not 

uncommon for a substantial proportion of the sites in a crash study to have experienced 

no crashes at all during the study period. Small integer counts, often zero or close to zero, 

do not typically follow a normal distribution. Finally, crash frequencies and crash rates 
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are necessarily non-negative, and traditional linear regression models could predict 

negative values for them. 

2.4. Poisson Regression vs. Negative Binomial Regression 

According to previous research, generalized linear regression definitely is a more 

adequate crash prediction approach than simple linear regression. Poisson regression 

models and negative binomial regression models are the generalized linear regression 

models that are being used widely. For the Poisson regression model, one important basic 

assumption is that the mean and the variance of the error distribution are equal. This 

feature simplifies the probability function, which only has one parameter. On the other 

hand, this advantage turns out to be the major disadvantage of Poisson regression models 

when applied to modeling crash data, which exhibits extra variation. If the variance of the 

crash frequencies exceeds the mean, then the data are over dispersed. When over 

dispersion exists in the data and Poisson regression models are used, the variances of the 

estimated model coefficients tend to be underestimated, which means the significance of 

the models will be overstated. 

In their study, Miaou and Lum (1993) suggested the use of a more general probability 

distribution such as the negative binomial distribution to overcome the over-dispersion 

problem. In the follow-up study, Miaou (1994) recommended that the Poisson regression 

model should be used as the initial step to establish the relationship between the 

dependent variable and independent variables. Then, if over dispersion exists and is 

found to be moderate or high, both the negative binomial regression models and zero-

inflated Poisson regression models can be explored.  

J. Nicholson (1985) analyzed the considerable variation in the variability of crash counts. 

His results revealed that the pattern of crash occurrence at many locations was either too 

regular or too irregular to be well described by the Poisson process. Thus, the procedure 

for analyzing temporal variations in crash occurrences at particular locations should take 

into account the variations in the variability of crash counts. Based on the variance/mean 

ratio, the Binomial (variance/mean < 1.0) and Negative Binomial distribution 

(variance/mean ratio > 1.0) were complements to the Poisson distribution. 
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Poch and Mannering (1996) used seven years of crash data from 63 intersections in 

Bellevue, Washington, to estimate negative binomial regressions of the frequency of total 

crashes, rear-end crashes, angle crashes, and approach turn crashes at intersection 

approaches. The estimation results uncover the interactions between geometric and 

traffic-related elements and crash frequencies. In the study, each intersection was divided 

into separate approaches, and crash data were taken for each approach in one-year 

intervals. For the models, each intersection approach was considered as an observation, 

and a total of 64 possible explanatory variables were collected. The developed regression 

models identified significant traffic and geometric elements that tend to increase or 

decrease crash frequencies. The understanding of these elements can be beneficial to 

crash reduction at intersections. 

Bernardo and Ivan (1997) utilized the Poisson regression to study the number of crashes 

versus crash rates at an unspecified number of intersections in Connecticut. The authors 

believed that the Poisson regression analysis was a better estimator of crashes than the 

linear regression analysis. In the study, three years of existing crash data were utilized for 

modeling. The intersections in the data were not separated into signalized or non-

signalized locations, which have different impact on traffic operations. Results indicated 

that modeling crashes appears to be more logical than crash rates for the Poisson 

distribution, in the sense that the relationship between exposure and crashes is more 

accurate.  
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CHAPTER 3. RESEARCH APPROACH 

3.1. Phase One – Crash Data Analysis 

3.1.1. Methods of Evaluation 

In order to conduct an objective before-and-after crash study, it is necessary to select an 

adequate crash database. FDOT has a very large crash database that is updated yearly. 

The database includes crashes gathered from the Department of Highway Safety and 

Motor Vehicles (DHSMV). Crash data maintained in the database are kept for five years. 

The crashes included in the database are those with a high amount of property damage, an 

injury, or a fatality. Crashes with high property damage are those with an estimated 

property damage of $500.00 or more. Crashes with minor property damage are not 

included in this database. The exclusion of crashes reported in short forms in the database 

may affect the estimated impacts of signalization on crashes in the sense that not all 

crashes occurred at intersections are considered, and specific type of crashes, such as 

rear-end crashes, may be under reported because many of these crashes have low 

property damage. For each crash, there are more than 300 variables used to describe the 

site and time of the crash, the geometric conditions, the traffic control, and drivers and 

pedestrian’s characteristics. Among these variables, crash type, crash severity and 

surrounding land use type were used for the before-and-after comparison analysis. Other 

variables were incorporated to the modeling part of the project. Details of the database 

handling process are presented later in the data collection chapter. 

3.1.1.1. Number of Crashes and Crash Rates 

A summary of number of crashes for all crashes and by crash type can be used to identify 

the change of pattern of crashes after a signal is installed. As mentioned before, previous 

intersection crash studies [King et. al (1975), Short et. al. (1982), Shen (1984), Radwin 

et. al. (1987)] strongly indicate that adding a new traffic signal results in a reduction of 

right-angle crashes but in an increase in rear-end crashes. For this study, the yearly 

average number of crashes was considered when performing the before and after analysis 

for each intersection. Similarly, the yearly average number of crashes by type at each 

intersection was also used in the analysis. Table 3.1 presents the years considered for the 

average crash data according to different years of signal installation. 
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Because traffic volume of many intersections most likely changes after a signal is 

installed, crash rates are considered to be more accurate than the number of crashes. 

Therefore, in this research, the crash rates for all crashes and different crash types and 

crash severities were also calculated. Crash rate is defined as the number of crashes per 

million entering vehicles. The following equation is used to calculate crash rates at 

intersections: 

CRS = 
ADTT

A

××
×

365

000,000,1
       (3-1) 

where:  

   CRS = crash rate for spot; 

A = number of crashes in this time frame; 

T = time frame of the analysis, years;  

ADT = average daily traffic volume. 

Table 3.1.Yearly Average Crash Data for the Before-and-After Period 

Year Before After 
90 Crash data in 89 3 year average, 91,92, and 93  
91 2 year average, 89, and 90 3 year average, 92,93, and 94  
92 3 year average, 89,90, and 91  3 year average, 93,94, and 95  
93 3 year average, 90,91, and 92  3 year average, 94,95, and 96  
94 3 year average, 91,92, and 93  3 year average, 95,96, and 97  
95 3 year average, 92,93, and 94  3 year average, 96,97, and 98  
96 3 year average, 93,94, and 95  2 year average, 97, and 98  
97 3 year average, 94,95, and 96  Crash data in 98 

 

The procedure to compute crash rates for different crash types and crash severities is: (1) 

for each intersection, calculate the sum of crashes for all crashes and each crash type and 

crash severity for each year considered; (2) select the yearly average ADT for each 

intersection directly from the database; (3) calculate the crash rate for each intersection 

for each year considered; (4) average crash rates for each intersection are calculated, for a 

two or three year period based on years of crash data available at the intersection.  
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3.1.1.2. Types of Crashes 

The installation of traffic signals has been found to influence crash patterns at 

intersections. The types of crashes commonly considered are: rear-end, right angle, left-

turn, right-turn, sideswipe, and pedestrian-related. Among them, right-angle crashes have 

been found to have a significant decrease due to signal installation. Rear-end crashes will 

increase due to signalization. Left turn, right turn, and sideswipe crashes have both 

increased and decreased as a result of adding traffic signals according to previous studies. 

Crashes related to pedestrians are found to decrease after signal installation [King et. al 

(1975), Short et. al. (1982), Shen (1984), Radwin et. al. (1987)]. 

Table 3.2 lists all the different crash types maintained in the FDOT mainframe database. 

The crash types selected for mean value comparison are rear-end, angle, left-turn, right 

turn, sideswipe, and crashes related with pedestrian. Table 3.3 shows the crash types 

selected. All other crash types are added together in a category called "all other" crash 

type. In regard to the statistical analysis in the distribution fitting part, rear-end, angle, 

and left turn are investigated separately while right turn, sideswipe and crashes related to 

pedestrians are placed into the "all other" crash category due to the fact that each one of 

these crash types did not have enough number of observations for the analysis in the 

distribution fitting part. 

3.1.1.3. Crash Severity 

Although signalized intersections have been found to have a higher number of crashes 

and no significant decrease in crash rates after signal installation, it is believed that there 

is a reduction in crash severity. The reason for this relies on the fact that right angle 

crashes are reduced. An angle collision will usually have at least one injury, and it is also 

more common to have fatalities. Left turn and right turn crashes are similar to angle 

crashes. Therefore, the severity of these crashes is also similar to angle crashes. The 

coding scheme for the extent of injuries in FDOT database includes the following 

categories: 

 

 



 28 

Table 3.2. Crash Types in FDOT Database 

Code Number Crash Type 
1 Rear End 
2 Head On 
3 Angle 
4 Left Turn 
5 Right Turn 
6 Sideswipe 
7 Backed Into 
8 Parked Car 
9 w/Other Motor Vehicle on Road 
10 Pedestrian 
11 Bike 
12 Bike in Bike Lane 
13 Moped 
14 Train 
15 Animal 
16 Sign/Sign Post 
17 Utility/Light Pole 
18 Guardrail 
19 Fence 
20 Concrete Barrier Wall 
21 Bridge Abutment/Pier 
22 Tree/Shrub 
23 Construction Barricade/Sign 
24 Traffic Gate 
25 Crash Attenuators 
26 Fixed Object Above Road 
27 Other Fixed Object 
28 Moveable Object on Road 
29 Ran Into Ditch/Culvert 
30 Ran Off Road Into Water 
31 Overturned 
32 Occupant Fell From Vehicle 
33 Tractor Trailer Jack-knifed 
34 Fire 
35 Explosion 
77 All Other 

 

1. No Injury  

2. Possible Injury: The person complained of pain or momentary loss of 

consciousness due to an injury during the crash, but no visible sign of injury is 

evident to the investigators. 

3. Non-Incapacitating Injury: The person experienced a visible but not serious or 

incapacitating injury during the crash. 



 29 

4. Incapacitating Injury: The person experienced serious, incapacitating, nonfatal 

injuries during the crash. Broken bones, massive losses of blood, or more 

serious injuries are rated in this category. 

5. Fatality: The person died within 90 days of the crash as a direct result of 

injuries received during the crash. 

6. Non-Traffic Fatality. 

Table 3.3. Crash Type Categories for Mean Value Before-and-After Analysis 

Crash type Crash Code Number 

Rear end 01 
Angle 03 
Left turn 04 
Right turn 05 
Sideswipe 06 
Pedestrian 10 
All others 02,07~09,11~35 &77 

 

In the study, crash severity is categorized into three severity classes for the before and 

after analysis of mean values: fatal (F), personal injury (PI), and property damage (PD). 

The type of possible injury, non-incapacitating injury, and incapacitating injury 

categories are combined into a unique injury category. For the statistical analysis in the 

distribution fitting part, fatal crashes are combined with injury data, and only the 

categories property damage and injury are taken into account. The reason for this was the 

insufficient data available to perform a separate accurate distribution analysis for the fatal 

crash data. 

3.1.1.4. Surrounding Land Use 

The last method for the before-and-after analysis and distribution fitting is based on 

surrounding land use type classification. This primary classification is essential since 

urban and rural areas have fundamentally different characteristics, which significantly 

influence travel patterns, particularly those related to land use and population density. In 

this study, the impacts of surrounding land use type on number of crashes and crash rates 

were investigated. Also, different crash types in rural and urban areas were explored. For 
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the distribution fitting part, only crashes under urban condition were analyzed because 

the number of crashes occurred in rural area was not enough to be divided by different 

crash types. The classification for urban and rural was taken directly from FDOT 

database. The code scheme for state roads in this database contained five categories as 

shown in Table 3.4. From coding description of urban and rural, the code number 1 and 2 

are combined as Rural, and 3 and 4 are combined as Urban for the before and after 

analysis of mean values and distribution fitting. Originally, Outside-City (1 and 3) and 

Inside-City (2 and 4) were also investigated, but the results were not statistically 

significant and they are not shown in this report. 

Table 3.4. Rural and Urban Categories 

Code number Description 

1 Outside City, Outside Urban 
2 Inside City, Outside Urban 
3 Outside City, Inside Urban 
4 Inside City, Inside Urban 
5 Unknown 

 

3.1.2. Statistical Analysis  

3.1.2.1. Paired t-Test 

Before and after analysis of mean number of crashes and crash rates on a statewide 

sampling of cash records were conducted to get the reduction or increase of crashes at 

intersections where traffic signals were being investigated to replace STOP/YIELD signs. 

Paired t-tests were conducted to determine if the difference between the before and after 

period was statistically significant. 

Paired t-test is a special case of the two-sample t-test. It occurs when the observation on 

the two populations of interest are collected in pairs.  Each pair of observations is taken 

under homogeneous conditions, which is at the same intersection in this study. Number 

of crashes and crash rates, both before and after signal installation for all locations, were 

compared by paired t-test to determine if there was a statistically significant difference 

between the two periods. There are two types of paired t-test that can be conducted: one-

tail or two-tail. The one-tail test is used to test whether one mean is significantly greater 
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than another. The two-tail test is used to test whether the means are significantly 

different. In this study, only two-tail tests are conducted to determine the change of all 

crashes and different crash types, severities, and surrounding land use after signalization.   

The formula used for calculating the t statistic is shown here:  

t = 
NS
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d
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−
         (3-2) 

where:  

  bX = the sample mean for ‘before’ case, 

aX = the sample mean for ‘after case, 
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bS  = the sample standard deviation for ‘before’ case, 

aS = the sample standard deviation for ‘after’ case, 

N = sample size 

If t >t critical  (t critical is obtained from standard statistical tables), the difference in mean 

number of crashes and crash rates is statistically significant for an assumed level of 

significance α, where the degree of freedom is equal to the number of locations minus 

one. Therefore, the null hypothesis is rejected. The null hypothesis is that there is no 

significant difference between the mean number of crashes and crash rates for the 

“before” and “after” cases. A significance level α of 0.05 was used in the analysis. 

3.1.2.2. Distribution Fitting 

The average number of crashes and crash rates per year were calculated for each 

intersection with the use of SAS. Details of this procedure to process data will be 

explained in the next chapter. The estimated values are then plotted into histograms, 

where the independent variable (x-axis) is the average number of crashes per intersection 

and the dependent variable (y-axis) is the number of intersections. Poisson and Negative 

Binomial distributions are used to fit the frequency of crash data for the before and after 

period using the observed mean and variance. Subsequently, the Chi-Square goodness-of-



 32 

fit test was used to test the hypothesis whether the number of crashes (or crash rates) 

follows a particular probability distribution. The following paragraphs present a brief 

introduction to Poisson and Negative Binomial distribution. 

The definition of Poisson distribution is: if the mean number of counts (λ) in the interval 

is greater than zero (λ>0), the random variable X that equals the number of counts in the 

interval has a Poisson distribution with parameter λ, and the probability mass function of 

X is  

)(xf =
!x

e xλλ−

,       x=0,1,2,…..      (3-4) 

where,   

λ -- observed mean value of the crash frequency 

In regard to the negative binomial distribution, the probability function of X is: 
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where   

r, p – two parameters calculated from observed mean and variance. 

The mean and variance of this distribution of crash counts can be expressed in terms of 

parameters p and r as follows: 

Mean = E(Y) = r/p        (3-6) 

Variance = Var(Y) = r(1-p)/p2      (3-7) 

3.1.2.3. The Chi-Square Test 

The Chi-Square goodness-of-fit test is used to test the hypothesis whether the number of 

crashes (or crash rates) follows a particular probability distribution. The test procedure 

requires a set of randomly chosen samples of size n from X, whose probability density 

function is unknown. These n observations are then plotted into a frequency histogram of 

k class interviews.  
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Oi represents the observed frequency in the ith class interval. The expected frequency in 

the ith class interval denoted Ei could be calculated from the hypothesized probability 

distribution. The test statistic is, 

2
0χ =

( )∑
=
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1i i

2
ii

E

EO
        (3-8) 

where    

O – observed frequency in the class interval i, 

E – expected frequency in the class interval i. 

It can be shown that, if the population follows the hypothesized distribution, 2
0χ  has, 

approximately a Chi-square distribution with k-p-1 degrees of freedom, where p 

represents the number of parameters of the hypothesized distribution estimated by sample 

statistics. This approximation improves as n increases. If the calculated value of the test 

statistic 2
0χ > 2

1pk, −−αχ , the hypothesis that the distribution of the population is the 

hypothesized distribution would be rejected. α = 0.05. 

3.2. Phase Two – Statistical Modeling 

The second phase concentrated on developing statistical models that can estimate the 

average number of intersection-related crashes as well as the corresponding variances at 

an intersection, in terms of all and different crash types, before and after the installation 

of traffic signals. There are five cases considered: (1) total crash frequency (all crash 

types); (2) rear-end crash frequency; (3) angle crash frequency; (4) left-turn crash 

frequency; and (5) other crash frequency (including all of other crash types). For each 

case, two models were developed, one based on the data before signalization, the other 

based on the data after signalization. The reason to use two models for before and after 

situations respectively rather than one model (using a dummy variable to describe the 

before-after situations) is to reduce the time series effect of crash data. 

The regression models adopted in this study are based on observed crash frequency 

distributions and previous researches. Two general types of statistical regression models 

have been considered to apply to the crash data: (1) conventional linear regression 
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models; and (2) generalized linear models, including log-normal regression models, 

Poisson regression models and negative binomial regression models. 

As mentioned before, many previous researches in this field show that conventional 

linear regression models are incapable to model the traffic crash data, which are non-

negative, random, discrete and sporadic in nature. As alternatives, generalized linear 

models were explored and adopted in recent crash studies due to their advantages over 

conventional linear regression models.  

3.2.1. Statistical Prediction Modeling Procedure 

The crash modeling consists of seven major tasks: (1) to collect and reduce the crash 

data; (2) to analyze the crash data to determine the safety measures that were adopted as 

dependent variables in the modeling, and find appropriate probability functions to 

describe the random variation of crash frequencies; (3) to select and analyze the predictor 

variables; (4) to determine an appropriate functional form and parameterization, ƒ(.;β), to 

describe the effects of predictor variables on expected crash frequencies; (5) to estimate 

the regression parameters β in ƒ(.;β) using appropriate statistical algorithm based on 

crash data and probability assumptions; (6) to assess the quality of developed models, and 

make sure that the models make good engineering sense in addition to fulfilling statistical 

goodness-of-fit criteria; and (7) to apply the developed models, and convert the modeling 

results to tables for use. These tasks are briefly presented in the following paragraphs.  

The modeling database was built by selecting the 518 newly signalized intersections 

collected from across the state from the crash database generated in phase one. This crash 

database generated in phase one was created from the Florida crash database maintained 

by FDOT, which consists of all crashes occurred on state roadways from 1989 to 1998.  

The 518 intersections included in the modeling database contained safety related 

characteristics and crash counts occurred within the influence area of those intersections. 

The process of generating the modeling database will be presented in detail later. 

Based on data analyses, five types of intersection safety measures were adopted: (1) 

average number of all crashes per year; (2) average number of angle crashes per year; (3) 

average number of left-turn crashes per year; (4) average number of rear-end crashes per 
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year; and (5) average number of all other crashes per year (including all the other crash 

types). For each safety measure, two models were developed as mention previously, the 

“before” and “after” models. 

Another important issue was to determine which intersection characteristics should be 

used as predictor variables in the model. The principle to select the predictor variables 

was to include as many useful variables available in the FDOT database as possible. At 

the same time, the variables should be easy to obtain by FDOT traffic engineers when 

applying the models. According to these criteria, totally seven intersection characteristics 

including ADT of major road, urban/rural, land use of surrounding area, number of lanes 

on the major road, posted speed on the major road, type of median, and shoulder 

treatment were included in the model as predictor variables. 

Based on crash frequency distributions and previous studies Poisson regression and 

negative binomial regression were chosen to estimate the model parameters. Generally, 

Poisson regressions can be used to build the relationships between crash frequencies and 

a set of predictor variables under assumptions that crash frequencies are Poisson 

distributed. However, Poisson regression has a limitation requiring the variance of the 

data to be equal to the mean. This restraint can be overcome by negative binomial 

regressions assuming crash frequencies are negative binomial distributed. Thus, for each 

model, Poisson regression was used as an initial step in the modeling process, with a 

negative binomial regression being applied where over-dispersion was founded existed in 

the crash data. Both in Poisson and negative binomial regressions, the regression 

parameters were estimated by maximum likelihood method with GENMOD procedure in 

SAS. Once the models were developed, two methods were applied to test the goodness-

of-fit of the models: Pearson's R-square, and likelihood ratio index. 

With the developed models, the expected number of all crashes and crashes by type at an 

intersection before and after signalization were estimated. Then, the changes of the 

estimated crash counts were calculated as the impacts of signalization. The calculated 

results were tabulated in order to furnish a simple and clear overview of the impacts of 

signalization on intersections with different characteristics.  
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3.2.2. Critical Issues with Crash Prediction Modeling 

3.2.2.1. Dependent Variables 

The dependent variables adopted in the crash modeling process include: (1) average 

number of all crashes per year before and after signalization, (2) average number of angle 

crashes per year before and after signalization, (3) average number of left-turn crashes 

per year before and after signalization, (4) average number of rear-end crashes per year 

before and after signalization, and (5) average number of all other crashes per year before 

and after signalization. The "all other" crashes includes all of the crashes except angle, 

left-turn, and rear-end crashes. The reason to use the average number of crashes per year 

is that the time frame used in this study is not uniform because of the limitation of the 

database. For example, for some intersections, three-year "before" or "after" crash data 

were available, for some intersections only one-year or two-year "before" or "after" crash 

data were available. Considering this fact, using the average number of crashes per year 

was the best choice. 

Regarding the crash types, the selection was based on the results of data analyses. In 

addition to the average number of all crashes per year, the average number of angle, left-

turn, and rear-end crashes per year were chosen as safety measures. All of the other types 

of crashes were aggregated in one category called the "all other" crash type and were also 

used as one of the safety measures due to insufficient crash counts for each one of these 

crash types at intersections. 

After the dependent variables were determined, statistical distributions of the dependent 

variables were analyzed. It was found that the shapes of crash frequency distributions 

follow the Poisson distribution, which means that Poisson regression might be an 

appropriate choice in crash modeling. This confirms the results for distribution fitting 

from phase one. 

3.2.2.2. Predictor Variables 

Statistically, the more predictor variables in the model, the more predictive ability the 

model will have. Thus, the principle for selecting the predictor variables is to try to 

include as many predictor variables as possible, based on the data available and 
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engineering judgment. The selection of predictor variables was incorporated in the 

database building process in the modeling process. For this selection of predictor 

variables, all possible factors that may affect the occurrence of crashes at intersections 

should be considered. These factors can be grouped into five categories: drivers, traffic, 

intersection or roadway segment, vehicles, and environment (e.g. weather condition) but, 

even though, four of the five factors play an important role in traffic safety, traffic 

engineers can only directly manage factors related to roadway through intersection design 

or improvement phases. Moreover, many of those factors cannot be adequately measure 

or control, such as driver’s characteristics and reactions. Therefore, the variables 

considered for the models were basically in the intersection or roadway segment group. 

Furthermore, within this group only variables that were available in the database were 

considered due to the fact that the models should be easy to apply when evaluating an 

intersection. Finally eight predictor variables, such as ADT on the major road, number of 

lanes on the major road, posted speed, land use of surrounding area, and so on, were 

included in the final modeling database and were available for the crash predictive 

modeling. Among the predictor variables, ADT was transformed from continuous 

variable to categorical variable because the results of crash modeling were going to be 

tabulated. Other predictor variables were also categorized into different levels during the 

modeling process to generate the best modeling results.  

The selected predictor variables were initially considered for all the models, including the 

models for all crashes and for each type of crash studied, even though, all crashes and 

each one of the different types of crashes have specific and particular factors affecting 

them. One of the reasons that supported this approach is the limited number of variables 

available in the database. It also has to be mention that the main purpose of the models is 

to evaluate the change of the number of crashes due to signalization and not to another 

specific factor. 

3.2.3. Test of Over-Dispersion 

Firstly, Poisson regression was performed during the modeling process for each case. 

After that, the crash data were tested for over-dispersion related to Poisson regression. If 

extra-Poisson variation is proved to be significant, the Poisson distribution assumption is 
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violated; then the negative binomial regression model would be a more appropriate 

choice. 

To test the over-dispersion of data, the mean deviance and Pearson's χ2 ratio were used 

due to two reasons. First, these methods are widely used [Bauer et al. (1996), McCullagh 

and Nelder (1983)]; secondly, these methods are adopted by SAS software. Let Ls denote 

the maximum likelihood estimated from the saturated model that has as many parameters 

as observations, making each fitted value equal to the observed value, and let Lβ denote 

the likelihood estimated by the current model. For Poisson regression model, log-

likelihood can be expressed as, 
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where, 

yi -  actual or observed number of crash at ith intersection during a period of time; 

µi - expected number of crashes, the dependent variable corresponding to a set of 

predictor variables. 

The deviance, or G2, is defined as minus twice the logarithm of the ratio of likelihood of 

the current model to the saturated model [Nelder et. al. (1972), Agresti (1990), Greene 

(1997)], and for Poisson regression, can be expressed as, 
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The deviance has an asymptotic distribution that is Chi-squared with degree of freedom 

equal to n-p, where n is the sample size and p is the number of parameters estimated. By 

forming the ratio of the deviance to its residual degree of freedom, n-p, an estimate of the 

scale constant G2/(n-p), called the mean deviance, can be found. For the Poisson 

regression, this scale constant should theoretically be equal to one. Values substantially in 

excess of one reflect over-dispersion of the data. The acceptable range for the mean 

deviance, G2/(n-p), is from 0.8 to 1.2. 
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Similar to the mean deviance statistic, the Pearson's χ2 ratio statistic is also used to test 

the over-dispersion of crash data. The over-dispersion index can be calculated as, 

pn

χPearson's σ d −
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where, n is the number of observations and p is the number of parameters used in the 

model. Pearson's χ2 can be calculated by, 
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where, for Poisson regression, Var(Yi)=µi. The value of σd tends to be one. If σd>1.0, 

then the data have greater dispersion than is explained by the Poisson distribution and a 

further analysis with a negative binomial error structure is required. 

3.2.4. Evaluation of Goodness-of-fit of Models 

So far there is no commonly acceptable measure that can give an absolute assessment of 

goodness-of-fit for generalized linear models. Therefore, several measures are selected 

and calculated, and jointly will give a relatively accurate evaluation of the models. First, 

deviance, as stated previously, is defined as minus twice the logarithm of the ratio of the 

maximum likelihood under current model and the maximum likelihood under saturated 

model. Thus, deviance describes lack of fit, greater deviance indicates poorer fit [Agresti 

(1990)]. Secondly, according to McCullagh and Nelder (1983), the Pearson's χ2 is 

asymptotic to the χ2 distribution with n-p-1 degrees of freedom for large sample sizes and 

exact for normally distributed error structures. Therefore, for a model, similar to 

deviance, the greater the Pearson's χ2 , the poorer the fit. However, this statistic is not 

well defined in terms of minimum sample size when applied to non-normal distributions. 

Therefore, it should not be used as an absolute measure of model significance. 

In traditional least square regression, the coefficient of determination, R2, is frequently 

used to assess the goodness-of-fit of a model. It represents the proportion of variation in 

the data that is explained by the model. However, it was shown that R2 is not an 

appropriate measure to assess the goodness-of-fit of crash prediction models due to their 

non-normal and nonlinear nature [Miaou et al. (1985)]. As a variation, a measure based 
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on the standardized residuals, Pearson's R2, can be calculated for each model to give 

some indication of the goodness-of-fit, 
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where, 

2
pR   -- Pearson's R-square statistic;  

iy    -- observed number of crash at ith intersection during a time period; 

iµ   -- estimated number of crashes during a time period; 

y   -- average crash counts at all intersections of interest. 

In addition, as the counterpart of R2 in nonlinear regression, a measure of overall 

statistical fit, the likelihood ratio index can be computed as, 
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where, 

( )βL  --Log-likelihood at convergence; 

( )0L  --restricted log-likelihood (all parameters are set to zero except for the 

intercept). 

The value of 0.200 is quite satisfactory considering the variance in the data, and values 

tend to be generally lower than typical R2 values [Ben-Akiva and Lerman (1985), Poch 

and Mannering (1996)]. 

3.2.5. Application of Crash Prediction Models 

Once the parameters of crash predictive models were estimated, the average number of 

crashes in terms of all crashes and specific types of crashes before or after signalization 

can be estimated by replacing the regression parameters, β0, β1, β2, … , βq, with the 

estimated values, and the variables Xi1, Xi2, …, Xiq, with the corresponding values of the 
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intersection characteristics. If a predictor variable is insignificant and was excluded from 

the final model, the variable would be omitted in the linear equation. However, the 

estimated average number of crashes will only provide a statistic of the safety measure 

either for an infinite number of intersections with the same characteristics or an 

intersection in an infinite time period with every characteristic unchanged.  

3.3. Phase Three – Operational Research Modeling 

3.3.1. Retrieve the Most Similar Intersections 

In order to predict crashes and the impact of traffic signal installation at an intersection, it 

is necessary to see if there are similar intersections for which the impact due to traffic 

signal installation is known. Therefore, the term similarity should be defined. As 

mentioned earlier, each intersection will be characterized by seven variables. That is, 

each intersection can be represented by x = (x1, x2, x3, x4, x5, x6, x7). Then, the similarity 

or closeness between two intersections x and y is defined as 
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where wi is the weight of the i-th variable to be determined, and maxi and mini are the 

maximum and minimum values of the i-th variable. Function (3-16) is a normalized 

Euclidean measure between intersections x and y, and is called the distance function. 

Once intersection similarity is defined, the database is searched to identify a small 

number of intersections that is most similar to the new intersection (i.e., having the 

smallest distance function values). 

In order to use the distance function (3-16), the weights wi must be determined first. 

Many weight-learning methods are available [Wettschereck et. al. (1997)]. In this 

research, the genetic algorithms (GA) approach to learn the best weights is applied. 

Details are given later. 

3.3.2. Adaptation or Reuse of Previous Known Cases 

Let x be the new intersection whose crash frequency is to be determined by prediction. In 

addition, let y1, y2, …, yk represent the k intersections identified from the database as 
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described in last section. If fj denotes the known actual crash frequency at the j-th 

identified intersection. Then, crash frequency xf̂  at the new intersection is predicted by 
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.  In this research, ρj is called the similarity 

function.  

The number of intersections k selected from the database is yet to be determined. Several 

methods exist for finding the best k value [Duda et. al. (1973), Zhang et. al. (1997)]. In 

this study, k value would be determined by experiments, using a simple line search 

approach. 

3.3.3. Evaluation of Crash Frequency Prediction  

It is obvious that different intersections may be selected from the database if different 

weights wi are used in the distance function (3-16). To evaluate what weights are the best, 

performance measures should be set. In this study, the squared error between actual crash 

frequency and predicted crash frequency was used as the measure of performance of 

CBCP. Particularly, the search of the best weights is conducted by GA. 

The basic idea of GA can be simply described as: given a collection (population) of 

solutions (here, each solution represents a specific set of weights), GA seeks to “breed” 

good solutions by simulating the natural evolutionary process (survival of the fittest). To 

evaluate the goodness of a solution, a fitness function should be defined as follows. 

 2)ˆ( yyy ffF −= ,        (3-18) 

where fy and yf̂ are the actual and predicted crash frequencies at intersection y in testing 

database to be defined later. Let N be the total number of intersections in the testing 
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database. Then, the average fitness over all the testing intersections is used as the final 

fitness of a solution (i.e., weights wj). That is, 

 F(w) = ∑
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The best (fittest) solutions are allowed, by combining their best features, to breed new 

solutions in such a way that the population steadily improves (on the average) in terms of 

fitness function (3-19). In order to keep the population stable, the best solutions 

(including the newly produced solutions) survive into the nest generation while the worst 

solutions die off. 

In this research, each solution is represented by a string of 28 binary variables with each 

weight defined by 4 binary variables. Therefore, each weight will have an integer value 

ranging from 0 to 15. Each binary variable is called a gene in GA terminology. A single 

point crossover is used to produce new solutions (weights). To prevent premature 

convergence at a local optimum, a mutation rate of 3% is applied to all new solutions. If a 

new solution is to be mutated, a gene is randomly selected to mutate. 

The GA is executed for a fixed number of iterations or until the fitness function does not 

improve for a number of consecutive iterations, and the overall best solution (i.e., 

weights) is output as the final solution. The GA is summarized in the following 

paragraphs. 

3.3.4. Genetic Algorithms 

Step 1. Randomly generate the initial population of P solutions, and compute the 

fitness of each solution. 

Step 2. Repeat for K iterations or until the best fitness of some weight meet the 

error tolerance (e.g., fitness < 0.05):  

Select the best two unused solutions, and apply the crossover and mutation operators to 

breed P new solutions. Compute the fitness function value for each new solution. Let the 

P best of both the old and new solutions survive into the next generation. 
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3.3.5. Implementation 

This section discusses the implementation of the CBCP described earlier. The collected 

intersections are partitioned into two sub-databases: training database and testing 

database. The training database consists of the majority intersections, and is used to train 

the system and predict intersection crash frequencies. The testing database consists of 

approximately 10% of the intersections and is used to evaluate the fitness of the weight 

solutions as described previously. 

The computational experiments indicates that using a population size of P = 50 and K = 

50 in the Genetic Algorithm is appropriate. A simple line search method is used to find 

the best k value (the number of intersections selected from the training database). In 

particular, the values 5, 8, 10, 12, 15, and 20 for k were tried, and found that k = 10 yields 

the best prediction. Therefore, k was set equal to 10 in the computational experiments. 

CBCP can be used to predict total number of all crashes, angle crashes, rear-end crashes, 

left-turn crashes, and “all other” crashes, which includes the remainder of crashes, at 

intersections before and after traffic signal installation. CBCP can also be used to directly 

predict the impact of traffic signal installation on intersection crashes. But in this study, 

the impact is computed using the predicted crash frequencies before and after 

signalization. 

Since CBCP is based on known data, its prediction accuracy is closely dependent on the 

availability of data. With all the seven characteristic variables that define an individual 

intersection, there will be a total of 192 different intersection types. This leads to, on the 

average, fewer than 3 data points for each unique intersection type. This can make the 

prediction results difficult to use. To overcome this, statistical regression analysis using 

the predicted crashes was applied  

3.4 Summary 

The research approach used in each one of the three phases of the project was presented 

in this chapter. For the crash analysis, the methodology used in identifying the critical 

group of intersections needed for the analysis and the evaluation method used for the 

analysis and distribution fitting were described. In the statistical analysis, a paired T-test, 
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the Poisson and Negative Binomial distributions were implemented. In reference to the 

statistical crash predictive modeling, once the statistical properties of crash frequencies 

were explored to determine the best regression model to use, the modeling procedure was 

presented with a detail description of each one of its steps. The steps included: analysis of 

dependent variables, analysis of predictor variables, Poisson regression and negative 

binomial regression, test of over-dispersion, evaluation of the goodness-of-fit of 

developed models, and applications of modeling results. Finally, the methodology used 

for the crash-based prediction model was presented. The steps followed for this 

methodology included the retrieve of most similar intersections, reused of previous 

known cases, evaluation of crash frequency prediction and implementation of the 

procedure. 
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CHAPTER 4. DATA COLLECTION AND REDUCTION 

4.1. FDOT Crash Database 

FDOT maintains a very large crash database generated by merging crash data from the 

Department of Highway Safety and Motor Vehicles (DHSMV) with roadway information 

from FDOT. This database is updated yearly. All reported crashes with a fatality, an 

injury, and high property damage occurred on state roads are included in this database. 

Therefore, the FDOT database not only contains crashes occurred at intersections, but 

also crashes occurred on roadway sections.  

4.1.1. Crash Data Format 

The crash data used in this study cover a 10-year period from 1989 to 1998. 

Corresponding to each year, there is one data file consisting of all crashes occurred on 

state roads during that year. For each crash, several record types containing specific 

information related to the crash are included. Table 4.1 shows the different record types 

for each crash. All ten files, stored in ASCII format, have the same database structure. As 

an example in ASCII format, the first two numbers “00” indicate the record type, the next 

8 numbers represents the crash number; the twelfth number is the district number, and so 

on. A SAS program was written and used in order to change the ASCII format to SAS 

format. 

4.1.2. Format Change Using a SAS Program 

Several factors were considered in order to read the original database and to create the 

variables in SAS. One of them refers to the number of lines for record types "02" and 

"04", which may be different, and the varied length of each record type from "00" to 

"11". Additionally, 168 variables were selected for the original database for the research. 

The variables were selected based on their possible contribution to crash occurrences. 

These variables were selected from five of the twelve record types. The variable selection 

process is explained in detail later in the chapter. The record types selected were record 

"00"(Time and Location), record "01"(Characteristics), record "09" (RCI-Features-I), 

record "10"(RCI-Features-II), and record "11"(RCI-Point). In order to put the 168 



 47 

variables in one file, these files with record type "00", "01", "09", "10" and "11" were 

merged into one merged file for each year. 

Table 4.1. Description of Record Type 

Record Type  Description 
00 Time and location  
01 Characteristics  
02 Vehicle 
03 Towed  
04 Driver  
05 Passenger 
06 Pedestrian 
07 Property Damage Amount 
08 Reserved for future use 
09 RCI–Features-I 
10 RCI-Features-II 
11 RCI-Point 
12 RCI-Total 

 

4.1.3. Code Check 

The code for different crash types was changed in the FDOT crash database in 1993. 

Therefore, a code check was required for crash data files from 1989 to 1992. FDOT 

personnel were certain that the code for crash types for 1991 and 1992 were updated 

when the code was changed in 1993, but they were not certain about 1989 and 1990. The 

code change means that the numbering scheme for the different types of crashes changed 

in 1993. In the scheme, the codes used to define a crash type are numeric. As an example 

for the code change, an "angle” crash is coded as "03" since 1993 but it was coded as 

"02" before 1993. Table 4.2 shows the difference between the new code and the old code 

for the first ten numbers in the scheme of crash type. In order to check if the data for 

1989 and 1990 had the new or old code in the FDOT database, a random number of 

crashes were selected for each one of the years. For each one of the crashes, the 

information was checked and compared with the information for the same crashes pulled 

out from the Fatality Analysis Reporting Systems database.  This database has the old 

code for the crash data up to 1992. The comparison was done or match base on the crash 

number, which is unique for any crash and it is listed in both databases. Once the code 
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was checked based on the comparison, it was found that the code from 1989 to 1992 had 

been already updated to the new code in the FDOT crash database. Therefore, no code 

adjustment was necessary for the yearly database utilized in this project. 

Table 4.2. Examples of Codes for Different Crash Types 

1989-1992 1993 Code Explanation 
00  Not Applicable 
01 01 Collision with MV in Transport (Rear-end) 
02 03 Collision with MV in Transport (Angle) 
03 04 Collision with MV in Transport (Left-turn) 
04 08 Collision with Parked Car 
05 06 Collision with MV in Transport (Sideswipe) 
06 07 Collision with MV in Transport (Backed Into) 
07 05 Collision with MV in Transport (Right Turn) 
08 27 MV Hit Other Fixed Object 
09 17 MV Hit Utility Pole/Light Pole 
10 02 Collision with MV in Transport (Head-on) 

 

4.2. Intersection Sample 

The principle for collecting the intersection sample was to obtain as many intersections as 

possible to better evaluate the impacts of signalization on intersection crash experience. 

For this reason, seven FDOT district offices were contacted and with their cooperation 

518 intersections were identified. These intersections had traffic signals installed during 

the period from 1990 to 1997. Furthermore, almost all the intersections collected were 

considered in the research due to the limited number of intersections available, and only 

intersections with major improvements besides signalization were eliminated. No random 

selection of intersections was performed, which raises a concern in regard to the 

possibility of a bias on the intersection sample. But, since this research is evaluating the 

impacts of signalization on intersection crashes and the sample size was limited, the 

sample selected consisted of almost all the newly signalized intersections. The signalized 

intersections are located on state roads with two to seven lanes on the major road in rural 

and urban areas. Table 4.3 shows the intersection sample collected from FDOT district 

offices by district and activation year. The source of the intersection sample shows that 

this sample is a representative at state level. Table 4.4 shows the different districts of 

FDOT.  
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4.3. Signal Activation Date 

There are two very important dates regarding the installation of a traffic signal. The first 

is the maintenance agreement date and the second is the actual date when the traffic 

signal is activated. In this study, the activation date was used. The data from the signal 

activation year was not considered for the analysis. Details are presented in the following 

subsection. 

Table 4.3. Intersections by Location and Activation Year 

Activation Year District 
1990 1991 1992 1993 1994 1995 1996 1997 

Total 

1 6 9 2 7 6 0 5 5 40 
2 12 9 8 12 11 6 4 4 66 
3 6 12 6 10 11 10 14 13 82 
4 1 6 11 11 0 5 0 0 34 
5 36 29 21 31 21 16 14 11 179 
6 30 0 0 0 30 4 5 26 95 
7 0 0 1 1 6 5 5 4 22 

Total 91 65 49 72 85 46 47 63 518 
 

Table 4.4. Districts in FDOT 

District 
Number 

Location of District 
Office 

County of District 
Office 

One Bartow Polk 
Two Lake City Columbia 
Three Chipley Washington 
Four Fort Lauderdale Broward 
Five Deland Volusia 
Six Miami Dade 

Seven Tampa Hillsborough 
Eight Turnpike District Orange 

 

4.4. Time Frames 

The crash data utilized for this study from the original FDOT crash database must be 

isolated from the remainder of the data file. One of the first steps in this data reduction 

process was to choose analysis time frames and discard data from outside the time 

frames.  
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Regarding time frames for crash analysis, the Manual of Transportation Engineering 

Studies indicates that a three-year window is the most common choice [Hummer (1994)]. 

Choosing a three-year time frame has several advantages. A three-year time frame 

enables analysts to collect sufficient crash counts. Whether or not enough crash counts 

are available is always the major concern for the analysts when conducting traffic crash 

studies, because traffic crash events are sporadic in nature, a large proportion of 

intersections could experience no crash at all if the time window selected is too narrow. 

In addition to aiding to increase the crash sample size, to some extent a three-year time 

frame could reduce the regression-to-the-mean effect compared to a shorter time frame. 

Regression-to-the-mean is a common phenomenon encountered in crash analysis studies. 

Simply stated, it means that the occurrences of crashes at an intersection vary statistically 

from year to year even if the conditions of the intersection have not changed, and have 

the tendency to regress to the long-term mean value. For example, the average number of 

crashes at an intersection during a long-term period is assumed to be M. If the number of 

crashes in the first year is M1, which is larger than M, statistically the probability of 

having less crashes than M1 in the second year (M2 < M1) will be higher than having more 

crashes than M1 (M2 > M1) under the same conditions. So, statistically the average 

number of crashes during a three-year period will be closer to M than the average number 

of crashes during a one-year period. Considering this, a three-year time frame will enable 

the crash data to represent the real pattern of intersection safety more accurately than a 

shorter time frame. Also, compared to a four-year or five-year time frame, a three-year 

time window is not so wide that some changes in background conditions can be tolerated 

within the scope of the study. Thus, a three-year time frame represents a good 

compromise between the desire for larger crash sample size and the desire for time 

frames within which conditions were unlikely to have changed a great deal. Therefore, a 

three-year time frame was used in this study. For example, for an intersection where 

signals were installed in 1994, crash data for 1991, 1992, and 1993 were kept in the 

database for the "before" period, and crash data for 1995, 1996, and 1997 were kept in the 

database for the "after" period.  

Due to the fact that the original database covers a ten-year period from 1989 to 1998, 

some intersections have only one or two-year crash data available for the "before" or 
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"after" period. In this case, time frames had to change according to the data available. For 

example, for those intersections where signals were installed in 1990, the time frame for 

the "before" study is one-year because only the crash data for 1989 are available in the 

original database. But the time frame for the "after" study is still a three-year period 

because the crash data for 1991, 1992 and 1993 are available in the database. Similarly, 

for those intersections where signals were installed in 1996, the time frame for the 

"before" study is a three-year period, which means crash data for 1993, 1994 and 1995 

were included in the database for the "before" study. But the time frame for the "after" 

study is two-years, because only crash data for 1997 and 1998 are available in the 

original database.  

Table 4.5 shows the time frames for intersections where traffic signals were installed in 

different years. The white cells filled with "before" represent the years in which crash 

data were kept for the "before" study. The white cells filled with "after" represent the 

years in which crash data were kept for the "after" study. The blank shaded cells 

represent the years in which crash data will not be used in the study. Table 4.6 presents 

the time frame information in numbers. This table also includes the number of newly 

signalized intersections gather per year.  

Table 4.5. Time Frame for Intersections with Signals Activated in Different Years 

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 

before 1990 after after after      

before before 1991 after after After     

before before before 1992 after After after    

 before before before 1993 after after after   

  before before before 1994 after after after  

   before before before 1995 after after after 

    before before before 1996 after after 

     before before before 1997 after 
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Table 4.6. Number of Newly Signalized Intersections per Year 

Year 
Before 
(years) 

After 
(years) 

Number of 
Intersections 

90 1 3 91 
91 2 3 65 
92 3 3 50 
93 3 3 72 
94 3 3 85 
95 3 3 46 
96 3 2 47 
97 3 1 46 

 

In Table 4.5 the cells filled with the figures "1990" - "1997" are also shaded. That means 

that crash data within the year when the signals were installed were not used neither in 

the "before" study nor in the "after" study. One of the reasons for this decision considers 

that it takes time for drivers to get used to the new signals. In other words, during the 

time period right after signalization, the driver behavior may be affected to some extent 

and the occurrence of crashes may appear to be abnormal. In addition, in the modeling 

process the average number of crashes per year based on one-year, two-year or three-year 

periods was used as dependent variable. If the crash data for several-months before or 

after the installation of traffic signals were used, data would have to be converted into 

annual average number of crashes. This type of data conversion is not commonly used in 

statistical analysis. Therefore, discarding the crash data for the activation year makes the 

dependent variable more consistent and easier to handle. 

4.5. Identification of Intersection-related Crashes 

The roadway numbering and milepost systems were used to identify from the FDOT 

crash database a crash occurred within the influence area of an intersection. Within 

FDOT, every state road has been given an eight-digit code called "Section" number that 

uniquely defines that roadway. The first two digits are the county number, the next three 

digits are the actual section number of the roadway, and the last three digits are known as 

the subsection number. In addition to this numbering system, a milepost system is being 

used to label a point located on a roadway. Most state roads in the State of Florida are 

labeled either from south to north or west to east. Milepost zero begins at the southern or 
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western most terminus of the road within that county. Mileposts are kept with three digits 

after the decimal point. Thus, any point within the right-of-way of a roadway will be 

accurately identified using the numbering and milepost systems. For example, an 

intersection will be uniquely pinpointed once its eight-digit "Section" number and the 

milepost of its center point are available. 

The roadway numbering and milepost systems are also applied in the FDOT crash 

database to identify the exact site location of a crash. There are totally five variables used 

to convey the information in the database: DISTID, COUNTYID, SECID, SUBSECID, 

and MILEPOST. The first four variables are used to identify on which road a crash 

occurred. MILEPOST is used to locate the exact position where the crash occurred. If the 

crash vehicle ran off the road, MILEPOST records the milepost of the point on the 

roadway that is nearest to the crash site. The subsection number is only used when a 

roadway is reconfigured (a one way pair is constructed which used to be a four-lane 

roadway). Consequently, a subsection is usually "000", but occasionally it could be 

another number such as "001" if reconfigured. Table 4.7 shows the format for the section 

number of the state road system.   

Table 4.7. Format of Intersections from FDOT Districts 

Section No. Mile Post 
Signal 

Activation Date 
16006000 2.484 03/22/91 
16006000 3.239 03/22/91 
16006000 3.74 03/22/91 
16011000 2.762 03/12/96 
16011000 5.379 02/12/90 
16060000 11.871 08/02/94 
16110000 5.836 02/23/93 
16110000 21.354 02/17/93 
16140000 0.373 02/12/90 

 

Based on the numbering and milepost systems, all crashes occurred within the influence 

area of an intersection can be identified by searching the FDOT database by the crash ID 

number and milepost range according to the ID number and milepost of the intersection. 

The influence area of an intersection considered in the research to investigate the impacts 
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of signalization on intersection crashes is defined as a distance (250 ft) from the center 

point of the intersection in either direction of travel along the major road. This distance 

could be shorter in some special cases such as intersections closely spaced. The 

geometric information of the minor road for each intersection is not available. Thus, all 

crashes occurred within this 500 ft on the major road would be identified as intersection-

related crashes. In other words, the influence area covers a 500 ft long area within the 

right-of-way of the roadway, and the base point to identify crashes within the intersection 

is its center point. This method is also used by other intersection crash studies [Bauer, et. 

al. (1996), Ogden et. al. (1996), Sayed et. al. (1999)]. Figure 4.1 shows the concept to 

identify intersection-related crashes.  

4.6. Data Reduction Using SAS Programming 

4.6.1. Software and Basic Concepts 

For the project, the crash database containing only crashes for the newly signalized 

intersections was needed. For this purpose, a SAS program with Structured Query 

Language (SQL) was written to automatically gather all of crash data needed from the 

merged files. The SQL procedure implements Structured Query Language (SQL) for the 

SAS System. SQL is a standardized, widely used language that retrieves and updates data 

in tables and views based on those tables. The SQL procedure in SAS allows to: 

Center of Intersection 
Major Road 

250 ft 

Figure 4.1. Concept to Identify Intersection-Related Crashes 

250 ft 
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• Retrieve and manipulate data stored in tables or views. 

• Create tables, views, and indexes on columns in tables. 

• Create SAS macro variables that contain values from rows in a query's result 

• Add or modify the data values in a table's columns or insert and delete rows.  

In this study, each intersection in the list needed to be matched with several different 

files. As mentioned before, if the signal was installed in 1991 at an intersection, crashes 

occurred in the before period need to be gathered from the files that contain crash data for 

1989 and 1990, and in the after period from crash data files for 1992, 1993 and 1994. If 

the intersection had been signalized in 1996, crash data from 1993, 1994, and 1995 were 

needed for the "before" period, and crash data from 1997 and 1998 were needed for the 

"after" period. Figure 4.2 illustrates the relationship between the ten FDOT crash data 

files, the intersection list and the final "before" and "after" files. After the matching, the 

result file for “before" contains all the crashes occurred at the newly signalized 

intersections for the time period between 1 to 3 years before the signal was installed, and 

the "after" file contains the crash information for the period of 1 to 3 years after the signal 

was activated. 

      
        Crash Data Files                        Intersection List File                  Result Files 

 

Figure 4.2. Relationship Among Files  

89 
90 

91 
92 

93 
94 

95 
96 

97 
98 

Before     After 

  Before 

1  16    6  0  2484  91 
1  16    6  0  3239  91 
1  16    6  0  3740  91 
1  16   11  0  2762  96 
1  16   11  0  5379  90 
1  16   60  0 11871  94 
1  16  110  0  5836  93 
1  16  110  0 21354  93 
1  16  140  0   373  94 
1  16  140  0   517  90 
... 
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4.6.2. SAS Programs and Flow Chart 

In order to get the crashes from the yearly-merged-files, each intersection in the list of 

newly signalized intersections needed to be matched with each yearly-merged-file. For 

example, for intersections with signal installed in 1991, 1992 and 1993, the yearly 

merged crash data file "94" contains the crashes to be taken into the final "after" file. On 

the other hand, for those intersections where a signal was installed in 1995, 1996, and 

1997, the crashes contain in the yearly merged crash data file “94” were taken into the 

final "before" file. This is the basic structure in the SAS program. 

Figure 4.3 shows the procedure used to get the crashes for the "before" period. In the 

program, the ‘before’ file was established by matching the crash file in 1996 with the 

intersections with signal activated in 1997. Then, crash data from 1995 matching the 

intersections with signal activated in 1996 or 1997 were added to the “before” file. The 

“before” file was completed applying the loop method to the same procedure for the data 

from yearly-merged-files from 1989 to 1994. Each yearly-merged-file had three years of 

intersections with signal activation from (i+1) to (i+3), where "i" is the year of the crash 

data. 

Crash database              Matching Intersections                         Insert crash data 

 
Figure 4.3. Data Matching Procedure for "Before" 

Similarly, Figure 4.4 shows the procedure to get the "after" file. This file can be 

established by matching the year 1991 crash file with the intersections where the stop 

sign was changed to signal in 1990. Then, crashes from 1992 matching intersections 

where the signal was installed in 1990 and 1991 were added to the “after” file. Finally, 

  File 96 

  File 95 

  File i 
(89~94) 

Intersections 
Signalized in 97 

Intersections 
Signalized in 

97, 96 

Intersections 
Signalized in 
(i+1) to (i+3) 

Final 
Before 
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the “after” file was completed by adding crashes from each crash data file from 1993 to 

1998 matching three years of intersections from the year (i-3) to (i-1), where "i" is the 

year of the crash data. Two SAS data sets with 4565 and 6122 crashes occurred at the 

newly signalized intersections for the before and after period respectively were obtained 

4.7. Preliminary Screening of Variables 

As mentioned earlier, there are 12 record types for each crash to describe the crash-

related information in the FDOT crash database. Each data record consists of a fixed 

number of variables. For example, there are totally 49 variables in record type 00, and 

only 9 variables in record type 03. At most, there will be up to 295 variables to describe a 

crash. Appendix A lists all the variables in the database. 

 

Crash database              Matching Intersections                                 Insert crash data 

 
Figure 4.4. Data Matching Procedure for "After" 

One step necessary in the database processing was to drop some variables that are not 

useful for this study in order to make the database smaller and easier to manipulate. First, 

several types of variables, including driver-specific variables, passenger-specific 

variables, pedestrian-specific variables, vehicle-specific variables, and time-specific 

variables were dropped. For an individual crash, these variables definitely are crucial to 

explain how the crash occurred. However, these variables are not useful in developing the 

aggregate relationship between the average number of crashes occurred at an intersection 

and the safety-related characteristics of this intersection. Based on this criterion, record 

types 03, 04, 05, 06, 07 and 12 were discarded. In record types 00, 01, 02, 09, 10, and 11, 

  File 91 

  File 92 

  File i 
(93~98) 

Intersections 
Signalized in 90 

Intersections 
Signalized in 

90, 91 

Intersections 
Signalized in 
(i-3) to (i-1) 

Final 
After 
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many variables that provide useful information for the study were kept. Appendix B lists 

the 62 variables that were included in the database after the preliminary screening.  

4.8. Further Screening of Variables 

During the data analyses, it was found that some variables were not necessary for the 

study due to different reasons. The variables eliminated from the database are classified 

into the following categories and are presented one by one in the following subsections.  

4.8.1. Variables Describing Severity of Individual Crashes 

Eight variables describing the severity of individual crashes were discarded because crash 

severity wee not modeled in this study. These variables are presented in Table 4.8. 

Table 4.8. Crash Severity Variables 

No. Variable Description 

1 ACCSEVER Crash Severity 
2 INJURSEV Injury Severity 
3 DAMAGSEV Damage Severity 
4 DAMAGAMT Total Damage Amount 
5 VEHDAMAG Total Vehicle Damage Amount 
6 PROPDAM Total Property Damage Amount  
7 TOTFATAL Total Fatalities 
8 TOTINJUR Total Injuries 

 

4.8.2. Variables with High Proportion of Missing Values 

Among 4565 crashes in the “before” data, there are 3411 crashes (74.72%) with missing 

values for the variables shown in Table 4.9. Among 6122 crashes in the “after” data file, 

there are 4640 crashes (75.79%) with missing values for those variables. The missing 

value is denoted by a symbol " . ", which means that the variables were not given any 

value while inputting data from hardcopy crash reports to compute-based database. These 

variables were eliminated from the database. 
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Table 4.9. Variables with High Percentage of Missing Values 

No. Variable Description 

1 ACCESCTR Access Control Type 
2 PREVLAND Prevailing Land Use 
3 HWYSHTP1 Highway Shoulder Type 
4 HWYSHW1 Highway Shoulder Width 
5 MEDIANW Median Width 
6 MEDIANTP Median Type 
7 HORPTINT Horizontal PT of Intersection 
8 SUPERELV Super elevation 
9 VERTPTIN Vertical PT of Intersection 

 

4.8.3. Variables with High Percentage of Unknown Values 

In addition to variables with missing values, a group of variables were found to have very 

high percentage (even 100%) of unknown values according to each variable's coding 

system. The unknown values are denoted by "0", "9", "99", "unknown", or other symbols. 

Table 4.10 lists these variables and their percentage of unknown values. 

Table 4.10. Variables with High Percentage of Unknown Values 

Crashes with Unknown Values 
No. Variable Description 

“Before” “After” 

1 CROSSTRF Cross Traffic 100.00% 100.00% 
2 PASSDIST Passing Distance 81.01% 100.00% 
3 RDSONSIS Roadway Consistency 81.01% 100.00% 
4 RDALIGN Roadway Alignment 81.01% 100.00% 
5 STOPDIST Stopping Distance 81.01% 100.00% 
6 POINTADT Point ADT 100.00% 100.00% 
7 TPINTER Type of Intersection 100.00% 100.00% 

 

4.8.4. Variables Providing Similar Information 

Some variables describe similar characteristics of the intersection. In most cases, the 

information the variables provide is consistent between them although the values of these 

variables are different due to different codes. In each case, one of the similar variables 

was kept in the database while the other(s) was dropped after careful examination and 

comparison. This method applied to the following variables: 
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(1) NUMBLANE (DOT number of lanes) and NUMLANES (DHSMV number of 

lanes). Both of them describe the number of lanes on the major road but from 

different sources. Either one of them can be used in the database. NUMLANES 

was chosen.  

(2) RURURB (DOT rural/urban) and URBRUR (DHSMV rural/urban). Both 

variables describe the type of land surrounging the intersection. URBRUR was 

chosen.   

(3) Totally 4 variables were used to describe the crash-related speed. ESTSPEED 

describes the estimated speed of the first vehicle involved in each individual 

crash; POSTSPED describes the posted speed on the major road; MAXPSTSP 

describes the maximum posted speed; MINPSTSP describes the minimum posted 

speed. The first speed variable was eliminated because it only describes individual 

crashes. MINPSTSP was dropped due to the fact that its vlaue was zero for more 

than 98% of total crashes. Either POSTSPED or MAXPSTSP could be used in the 

modeling. In the project, POSTSPED was chosen. 

(4) ROADTYPE and DIVIDNOT are used to describe whether the major road is 

divided or not. DIVIDNOT was chosen. 

(5) CLASSCAT determines the class/category of the roadway, providing the 

comprehensive information provided by DIVIDNOT, NUMLANES, and 

URBRUR. This variable was discarded for the convenience of data process. 

4.8.5. Other Discarded Variables  

Several other variables were eliminated from the database. The following variables were 

eliminated because their limited effects on intersection safety. ROADSYS describes the 

type of function of a roadway where a crash occurred, such as interstate highway, state 

road, local road, or turnpike. ROADSURF, PAVINDEX and PVSURFTP are used to 

describe the type of pavement. SITELOC and SITLOCAT are used to describe the site 

location of individual crash, for example, at intersection, on bridge, on ramp, etc.  

The rest of the variables eliminated included the following. TRAFSGTP are used to 

describe traffic signal type at the site of a crash, such as intersection control, mid-block 

pedestrian control, emergency control or flashing beacon. In this study, all traffic signals 
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are used for intersection control. TRAFCTR1 describes the first traffic control type at the 

site of a crash. In this study, this information is already known for each intersection. 

TRAFCHAR describes the geometric characteristics of roadway, such as straight or 

curve. Data analysis shows that there is very little variation for this variable. Straight 

situation covers 93.8% and 95.04% of crashes in the "before" and "after" data files 

respectively. NINSLEG records the number of intersection legs. The intersections of 

interest in the modeling process were analyzed as a whole, and not based on intersection 

types separately, such as three-leg intersections and four-leg intersections.  

4.8.6. Variables Left in the Database 

After the final screening, 19 variables were left in the database, including intersection 

identification variables, roadway characteristics variables, and crash counts variables. 

Table 4.11 lists these 19 variables. The final modeling database was built based on these 

variables. 

Table 4.11. Variables List after Final Screening 

No. Variable Description 

1 ACCNUMB Crash ID Number 
2 DISTID District Number 
3 COUNTYID County Number 
4 SECID Section Number 
5 SUBSECID Subsection Number 
6 MILEPOST Milepost of Crash Spot 
7 ACCYEAR Crash Year 
8 ADT ADT of Major Road 
9 FEDHWY Roadway Functional Level 
10 URBRUR Rural/urban 
11 HARMEV1 First Harmful Event 
12 SHOULDER Shoulder Treatment Type 
13 NUMLANES Number of Lane on Major Road 
14 DIVIDNOT Presence of Median 
15 LOCATYPE Surrounding Land Use 
16 POSTSPED Posted Speed on Major Road 
17 POINTIMP Point of Impact 
18 TURNONYR Signal Activation Year 
19 MILEPO Milepost of Intersection Center 
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4.9. Converting Crash-based Database to Intersection-based Database 

Once the final variable screening was completed, the next step was to convert the crash-

based database to intersection-based database. In the intersection-based modeling 

database, a record corresponds to an intersection. Three types of variables were included 

in the modeling database: (1) intersection ID variables, (2) intersection characteristics 

variables, and (3) crash counts variables. The definitions of variables are shown in Table 

4.12. 

Table 4.12. Variables in the Final Modeling Database 

Type Variable Description 
DISTID District Number 
COUNTYID County Number 
SECID Section Number 
SUBSECID Subsection Number 
MILEPO Milepost of Intersection 
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TURNONYR Signal Activation Year 
AVGADT Average ADT of Major Road 
CLASS Roadway Functional Level 
URBRUR Rural/urban 
LOCATYPE Surrounding Land Use 
LANE Number of Lane on Major Road 
SPEED Posted Speed on Major Road 
MEDIAN Presence of Median 
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SHOULDER Shoulder Treatment Type 
CRASH Total Number of All Crashes  
AVGCRASH Average Number of All Crashes Per Year 
ANGLE Total Number of Angle Crashes 
AVGANG Average Number of Angle Crashes per Year 
REAREND Total Number of Rear-end Crashes 
AVGREAR Average Number of Rear-end Crashes per Year 
LEFTTURN Total Number of Left-turn Crashes 
AVGLEFT Average Number of Left-turn Crashes per Year 
HEADON Total Number of Head-on Crashes 
AVGHEAD Average Number of Head-on Crashes per Year 
RIGHT Total Number of Right-turn Crashes 
AVGRIGHT Average Number of Right-turn Crashes per Year 
SIDESWIPE Total Number of Sideswipe Crashes 
AVGSIDE Average Number of Sideswipe Crashes per Year 
OTHER Total Number of All Other Crashes 
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AVGOTHER Average Number of All Other Crashes per Year 
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The procedure to obtain the intersection-based database involved the selection of the 

three types of variables mentioned above for a three-year period for each intersection. 

Crash data for an intersection in any of the years considered could be zero, one or more 

crashes. This possibility of having different number of crashes also means that it could be 

zero, one or more crash records related to this intersection in the crash-based database. If 

there was zero crash or no crash at the intersection, the values of all the characteristic 

variables were set to missing. If there was one crash, the total number of crashes was 

equal to one. Crash type was identified based on the code of HARMEV1, which will be 

presented in the following paragraph. The values of the characteristic variables would be 

equal to the values of the corresponding variables in the crash record, e.g. NUMLANES 

corresponding to LANE. Finally, if there were more than one crash at the intersection, the 

total number of crashes and the total number of different types of crashes were 

determined base on HARMEV1. For the characteristic variables, inconsistency of the 

data among the crash records could be possible. This means that for each variable it could 

be one value for all the crash records, or as many values as the number of crash records. 

If all records had the same value, that value would be taken for the variable at this 

intersection. If the values are different, the value that appeared most frequently for a 

variable was chosen to represent that variable at the intersection.  

The same method was applied to process the "before" data each one of the years 

considered. Once this task was completed, three "before" values were available for each 

variable. The next step was to calculate or select a value for each variable based on the 

three values. The values of the variables representing the average numbers of crashes per 

year (different types as well as all types), such as AVGCRASH, AVGANG, AVGLEFT, 

AVGREAR, AVGHEAD, AVGRIGHT, AVGSIDE and AVGOTHER, were calculated 

based on crash counts in each year. For example, there were two crashes in the first year, 

four in the second year, and five in the last year at this intersection; then the value of 

AVGCRASH was equal to 3.7. The value of AVGADT, representing average ADT on 

the major road, was calculated by averaging the three ADT values. If the value of ADT 

was missing in a year, then a reasonable value according to the ADT in a near year was 

assigned. For characteristic variables, one of the three values for each variable was 
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selected because the three values were the same in most cases. If any inconsistency 

among the three values was found, the value with the highest frequency was chosen.  

In regard to crash types, they were determined based on the variable HARMEV1. Coding 

system for this variable in the FDOT database was listed on the previous chapter on 

Table 3.2. The most important types of crashes that could occur at intersections include 

angle, left-turn, rear-end, head-on, right-turn, and sideswipe crashes. All of the other 

crash types were lumped together in category called "Other" crash type. In the modeling 

process, head-on, sideswipe and right-turn crashes were also added to “Other” crash type 

due to insufficient crash counts to be modeled separately. Summarily, the crash types 

selected for modeling include: all crashes, angle crashes, left-turn crashes, rear-end 

crashes, and other crashes. 

Once the two steps were completed, the "before" value of the variables for this 

intersection were available. The "after" value of the variables for this intersection were 

determined in the same way except that all the values were based on a two-year period 

because only two-year "after" data were available in the second step. If the time frame 

was a one-year period, the values of the variables would be based on one-year data. This 

same procedure presented above was applied to other intersections in the intersection 

sample. Once this task was completed, the intersection-based modeling database was 

constructed. 

4.10. Intersections with No Crash 

For intersections without crash in the intersection influence area within the chosen time 

frame, FDOT database was analyzed again to find out the intersection characteristics. 

Two measures were used: either expanding the time frame or expanding the coverage of 

the intersection influence area. 

To illustrate the procedure, an intersection with signals activated in 1996 is taken as an 

example. Assume there was no crash at this intersection from 1993 to 1995. In order to 

determine the intersection characteristics, the influence area was adjusted from 250 ft to a 

relatively longer distance, say, 300 ft or 400 ft, and the FDOT database was searched 

again. Usually, one or two crash would be found, and the intersection characteristics were 
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identified based on these data. If this method failed, but there are some crash records after 

signalization, the intersection characteristics can be identified based on the crash data 

after signalization. The methods may have some drawbacks, but its effects are 

neglectable for modeling. 

4.11. Closely Spaced Intersections 

There are several pairs of intersections that are closely spaced. It is possible that the 

influence areas of the two intersections overlap. Additional work was done to make sure 

crashes were not counted twice. If so, the influence areas for those particular intersections 

were adjusted to avoid it happening. Among the closely spaced intersections in the 

intersection sample, some intersections were combined together as one intersection. For 

example, there are two intersections with the same district number, county number, 

section number and subsection number, the milepost of one intersection is 3.817, and the 

milepost of the other is 3.825. Thus, the center points of the two intersections are 42ft 

away. In data processing, they were combined as one intersection with the milepost being 

3.821. Three pairs of intersections were found with this situation in the intersection 

sample. 

4.12. Discarding Some Intersections 

4.12.1. Intersections with Significant Geometric Improvements 

The capability of the crash predictive models to explain the impacts of the signalization 

could be reduced if too many intersections with significant geometric improvement are 

kept in the intersection sample because the variation of crash frequency at intersections 

before and after the signalization could result from randomness, geometric changes, 

signalization and other factors. To avoid this, 14 intersections with significant geometric 

improvements in a three-year period before and/or after signalization were eliminated 

from the database. 

Intersections with minor improvements from a safety point of view, such as installation 

of new signs, striping, resurfacing, extension of left-turn or right-turn lanes, etc., were not 

eliminated from the intersection sample. The extension of either left turn or right turn 

lanes were not taken into account because there was not information in regard to the 
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length of the original turn lanes and the length of their extension, which does not allow to 

determine if the influence area considered for the research was exceeded. In regard to 

resurfacing, only two intersections had this improvement and a decision to keep them in 

the sample was made. On the other hand, intersections with significant geometric 

improvements such as reconstruction, change from 3-leg to 4-leg, adding left-turn lane, 

roadway widening, etc. were eliminated. Table 4.13 lists those intersections and their 

corresponding improvement. 

4.12.2. Intersections on US-1 Bus-way Corridor 

Seventeen intersections on US-1 bus-way corridor were eliminated from the intersection 

sample because there is no crash record in FDOT database for those intersections. Table 

4.14 shows the ID variables of those intersections. 
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Table 4.14. Intersections on US-1 Busway Corridor 

NO. DISTID COUNTYID SECID SUBSECID MILEPO TURNONYR 
1 6 87 207 0 369 97 
2 6 87 207 0 1228 97 
3 6 87 207 0 1734 97 
4 6 87 207 0 1918 97 
5 6 87 207 0 2385 97 
6 6 87 207 0 2697 97 
7 6 87 207 0 3066 97 
8 6 87 207 0 3467 97 
9 6 87 207 0 4189 97 
10 6 87 207 0 4740 97 
11 6 87 207 0 5311 97 
12 6 87 207 0 5864 97 
13 6 87 207 0 6148 97 
14 6 87 207 0 6990 97 
15 6 87 207 0 7548 97 
16 6 87 207 0 7967 97 
17 6 87 207 0 8360 97 

 

4.12.3. Intersections without "Before" Data 

There were eight intersections listed in Table 4.15 without "before" crash data. These 

intersections are located along the same roadway according to the ID variables. However, 

these intersections had relatively high crash experiences after signalization. Based on the 

findings, they were excluded from the intersection sample to avoid possible biased effects 

on the modeling. 

Table 4.15. Intersections without "Before" Data 

No. DISTID COUNTYID SECID SUBSECID MILEPO TURNONYR 
1 1 16 6 0 215 91 
2 1 16 6 0 596 91 
3 1 16 6 0 1097 91 
4 1 16 6 0 1223 91 
5 1 16 6 0 1360 91 
6 1 16 6 0 2484 91 
7 1 16 6 0 3239 91 
8 1 16 6 0 3740 91 
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4.13. Summary 

Once the steps choosing time frames for crash analysis, identifying intersection related 

crashes, and selecting variables for the database were completed, the program SAS was 

chosen to conduct the database-building task. Data processing programs were written to 

retrieve data from the FDOT database, and generate two data files: the “before” and 

“after” crash data files. The "before" data file consists of 4565 crashes that occurred in 

the influence area of the 518 intersections within the "before" time frame, while the 

"after" data file consists of 6122 crashes within the “after” time frame. 

After data reduction and analyses were completed, the final modeling database was built. 

The database consists of two intersection-based data files, one for the "before" period, 

and the other for the "after" period. In each data file, totally 447 intersections were 

included. For each intersection, 30 variables were used to record the safety-related 

information. The 30 variables are categorized  into the following  three groups:  (1)  

intersection  ID variables, including DISTID, COUNTYID, SECID, SUBSECID, 

MILEPO, and TURNONYR, (2) Intersection characteristic variables, including 

AVGADT, CLASS, URBRUR, LANE, LOCATYPE, SPEED, MEDIAN, and 

SHOULDER, and (3) Crash counts variables, including CRASH, AVGCRASH, ANGLE, 

AVGANG, REAREND, AVGREAR, LEFTTURN, AVGLEFT, HEADON, AVGHEAD, 

RIGHT, AVGRIGHT, SIDESWIPE, AVGSIDE, OTHER and AVGOTHER. 

 



 70 

CHAPTER 5. CRASH DATA ANALYSIS 

5.1. Analysis by Crash Type 

Six crash types were selected for the before and after comparison. The six types are rear-

end, right angle, left turn, right turn, sideswipe, and pedestrian. The mean values of 

annual number of crashes were calculated for the crash data of newly signalized 

intersections. Table 5.1 shows the results.  

Table 5.1. Comparison of Average Number of Crashes for Different Crash Types 

Period Rear-end Angle Left turn Right turn Sideswipe Pedestrian Other 

Before 0.95 1.05 0.96 0.12 0.18 0.07 0.25 

After 1.93 0.91 0.80 0.10 0.25 0.067 0.65 

 

Figure 5.1 presents the changes for each crash type for the intersections after 

signalization. Paired t-test was performed to verify whether the change was significant or 

not. Table 5.2 shows the results of the paired t-test. This table also presents the percent of 

change of the mean values, which is the absolute value between the “before” mean and 

“after” mean divided by the before mean value:  

Percent of Change = | (after mean – before mean) | / (before mean)  (5-1) 

Figure 5.1. Before/After Average Number of Crashes for Different Crash Types 
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Table 5.2. Statistics for Average Number of Crashes by Crash Type 

Before After Crash 
Type Mean Variance Mean Variance 

T stat T Critical 
two-tail 

Significance of 
Difference 

Increase or 
Decrease 

Percent of 
Change 

Rear-end 0.95 2.82 1.93 6.52 -7.18 1.96 Significant. Increase 102% 
Angle 1.05 2.19 0.91 1.32 1.99 1.96 Significant. Decrease 14.30% 
Left-turn 0.96 2.17 0.80 1.46 2.08 1.96 Significant. Decrease 17% 
Right turn 0.12 0.09 0.10 0.07 1.37 1.96 No Significant. Decrease 18.6% 
Sideswipe 018 0.13 0.25 0.23 -2.83 1.96 Significant. Increase 41.9% 
Pedestrian 0.07 0.078 0.07 0.04 0.208 1.96 No Significant. Decrease 4.6% 
All-other 0.25 0.45 0.65 0.63 -8.76 1.96  Significant. Increase 163.3% 

 

Results indicate that rear-end crashes would significantly increase after the signal is 

installed. The average number of rear-end crashes in the “after” period is twice as much 

as that in the “before” period. This increase in rear-end crashes due to signalization may 

be caused by the fact that vehicles on the major have to stop in the after period while in 

the before period no stopping was necessary. This increase already is of common 

knowledge to traffic engineers, but the 102% increase maybe higher than expected. 

Results also show that angle crashes, left turn crashes, right turn crashes, and crashes 

related with pedestrian decrease after signals are installed. The severity of some of these 

types of crashes may compensate the increase of the total number of crashes after signal 

installation. The increase of total number of crashes is caused basically by the increase of 

rear-end crashes.  

Angle crashes are caused when one vehicle tries to cross the road, and a vehicle strikes it 

perpendicularly. After a signal is installed, angle crashes should decease because vehicles 

from the side street will be assigned the right of way so they could leave the side street 

and cross the main street without problems. From this study, it was found that the number 

of angle crashes decreased significantly with a 14% reduction. Left turn crashes were 

similar to angle crashes. It is known that after the signal is installed at the intersection, the 

opportunity of collision of left turn vehicles with vehicles at right-angle direction will 

decrease. But the possibility of collision of left turn vehicles with the vehicles coming in 

opposite direction depends on the signal operations (left turn treatment). If left turn 

movements are protected, left turn crashes will most likely decrease. In this study, left-

turn crashes decreased significantly with a 17% reduction. In reference to the decrease in 

the number of right turn crashes, it could be a consequence of the right of way given by 
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the signal to through movement and right turn from the same approach. This decrease of 

crashes is not statistically significant based on the paired t test. Sideswipe crashes 

occurred due to the lane changing near intersections. At signalized intersections, lane 

changing will be more difficult due to the stopping of other vehicles. The decrease of 

average number of crashes related with pedestrian may indicated that the traffic signal 

protects pedestrians. It was found that 4.6 percent of crashes related with pedestrian 

decreased after the signal was installed, but this decrease was not statistically significant.  

In addition to the comparison of number of crashes, the average crash rates for the new 

signalized intersections were estimated based on the methodology explained earlier, and a 

before and after analysis was performed. Crash rates of rear-end crashes increased by 

47.6%, which is lower than the 102% obtained for number of rear-end crashes. However, 

angle, left-turn, and right turn crash rates decreased in 29.02%, 37.6% and 50.2% 

respectively, which were more significant than their percentage decrease in number of 

crashes. Based on crash data, it is found that the change of sideswipe crash rates and 

crash rates related with pedestrian is not significant. The increase of crash rate of all other 

types of crashes is still very high with a 131.7% change.  Figure 5.2 presents the changes 

of crash rates for different crash types from the before and after analysis. Table 5.3 

presents the results of paired t-test for these changes. 

5.2. Analysis by Crash Severity 

For crash severity, the number of crashes and crash rates for the before and after periods 

were investigated to reveal the impacts of signalization in three categories: no injury, 

injury, and fatal. Here, injury crashes are the combination of possible injury, non-

incapacitating injury, and incapacitating injury in the before-and-after analysis. Table 5.4 

gives the changes of number of crashes and crash rates by different severities. The 

number of fatal crashes decreased by 13.2% and fatal crash rates decreased by 38% after 

the signal was installed. After signal installation, the number of no injury crashes 

increased by 30% and no injury crash rates by 14.8%. The number of injury crashes 

increased 17.2%, however, injury crash rates decreased by 5%. In conclusion, fatal 

crashes decreased, and no injury and injury crashes increased after signalization. Figures 

5.3 and 5.4 show the results for number of crashes and crash rates by crash severity.   
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Figure 5.2. Before/After Average Crash Rates for Different Crash Types 

 
Table 5.3. Statistics for Change of Average Crash Rates by Crash Type 

Before After Crash 
Type Mean Variance Mean Variance 

T stat 
T Critical 
two-tail 

Significance of 
Difference 

Increase or 
Decrease 

Percent of 
Change 

Rear-end 0.11 0.12 0.20 0.04 -3.49 1.96 Significant. Increase 47.6% 
Angle 0.16 0.44 0.11 0.03 2.54 1.96 Significant. Decrease 29.02% 
Left-turn 0.13 0.15 0.10 0.02 3.25 1.96 Significant. Decrease 37.6% 
Right turn 0.02 0.00 0.01 0.00 3.45 1.96 Significant. Decrease 50.2% 
Sideswipe 0.02 0.01 0.03 0.00 -0.31 1.96 No Significant. Increase 6.04% 
Pedestrian 0.09 0.00 0.01 0.00 0.81 1.96 No Significant. Decrease 17.4% 
All-other 0.03 0.01 0.08 0.01 -6.82 1.96 Significant. Increase 131.7% 

 

Table 5.4. Statistics for Crashes and Crash Rates by Crash Severity 

Crash 
Severity 

Measure Period  
Observed 

Mean 
Observed 
Variance 

t-stat. 
t Critical 
 two-tail 

Significance 
of Difference 

Percent of 
Change 

Before 1.38 4.23 Number of 
crashes After 1.79 5.97 

-2.94 1.965 Significant 
Increase 

30.0% 

Before 0.18 0.067 
No Injury 

Crash Rate 
After 0.19 0.061 

-2.031 1.965 
Significant 

Increase 
14.8% 

Before 2.39 7.08 Number of 
crashes After 2.80 8.27 

-2.51 1.965 
Significant 

Increase 
17.2% 

Before 0.33 0.16 
Injury 

Crash Rate 
After 0.32 0.08 

0.89 1.965 
No Significant 

Decrease 
5% 

Before 0.06 0.03 Number of 
crashes After 0.05 0.03 

0.67 1.965 
No Significant 

Decrease 
13.2% 

Before 0.01 0.002 
Fatal 

Crash Rate 
After 0.06 0.0004 

1.98 1.965 
Significant 
Decrease 

38% 
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Figure 5.3. Before/After Average Number of Crashes Comparison 

 

Figure 5.4. Before/After Average Crash Rates Comparison 

5.3. Analysis for Surrounding Land Use 

In general, urban areas tend to exhibit greater crash frequency than rural areas. Compared 

with rural areas, there are more driveways, and higher traffic volumes in urban areas with 

lower speeds. Based on the analysis of the crash data for surrounding land use, the impact 

of signalization on intersection crashes was found to be quite distinct between rural and 
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urban areas. In rural areas, the number of crashes did not decrease significantly while the 

crash rates decreased significantly after signalization. In urban areas, the number of 

crashes and crash rates increased significantly. The results showed a decrease in the 

number of rural crashes, which was statistically insignificant, and a decrease in crash 

rates in rural areas, which was statistically significant. In regard to urban areas, the results 

analysis showed a statistically significant increase for number of crashes and crash rates. 

The reason for the increase of the number of crashes in urban areas could be related to the 

increase of specific types of crashes such as rear-end after signalization, which will have 

a greater increase in urban areas due to the high volume of vehicles. Table 5.5 presents 

the percent of change and results of paired t-test by number of crashes and crash rates for 

rural and urban areas. Figures 5.3 and 5.4 also present the results for number of crashes 

and crash rates by surrounding land use. 

Table 5.5. Statistics for Crashes and Crash Rates for Surrounding Land Use 

Crash 
location 

Measure Period  
Observed 

Mean 
Observed 
Variance 

t-stat. 
t Critical 
 two-tail 

Significance of 
Difference 

Percent of 
Change 

Before 0.71 3.6 Number 
of crashes After 0.55 2.48 

1.51 1.96 No Significant 
Decrease 

30.00% 

Before 0.16 0.235 
Rural 

Crash 
Rate After 0.10 0.085 

2.302 1.965 
Significant 
Decrease 

14.80% 

Before 3.11 18.83 Number 
of crashes After 4.09 25.08 

-3.43 1.96 
Significant 

Increase 
31.50% 

Before 0.36 0.216 
Urban 

Crash 
Rate After 0.41 0.207 

-2.227 1.965 
Significant 

Increase 
16.60% 

 

5.4. Analysis for Total Number of Crashes and Crash Rates 

Based on the mean value comparison for the before and after periods, total number of 

crashes significantly increased, while crash rates did not change. Table 5.6 lists the 

percent of change and the results of paired t-test by the total number of crashes and crash 

rates. These results are also show above on Figures 5.3 and 5.4. 

Table 5.6. Statistics for Change of Total Number of Crashes and Crash Rates 

Measure Period  
Observed 

Mean 
Observed 
Variance 

t-stat. 
t Critical 
 two-tail 

Significance of 
Difference 

Percent of 
Change 

Before 3.82 18.18 Total Number 
of crashes After 4.64 23.48 

-3.71 1.96 Significant  
Increase 

21% 

Before 0.517 0.348 Total Crash 
Rate After 0.520 0.219 

-0.092 1.96 
Significant 
 Increase 

0.58% 
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5.5. Crash Distributions for Before and After Conditions  

Crash distribution modeling was performed for total number of crashes, crash types, 

crash severity and crash by surrounding land use. These distributions show how crashes 

varied and the type of distribution they followed. As examples, Figures 5.5 and 5.6 

present the crash distributions for total number of crashes for before and after conditions. 

Both distributions show high number of intersections with low number of crashes. 

Similar results were founded for the rest of the crash distributions. 

 
Figure 5.5. Total Number of Crashes Distribution Before Signalization 

5.6. Distribution Fittings for Number of Crashes  

Based on the frequency distributions and cumulative probability for total number of 

crashes, the mean and variance were calculated for the distribution fitting. The mean or 

expected value of the discrete random variable X, denoted as E(x), and the variance of x, 

denoted as V(x),  are calculated as 

E(x)= ∑ ×
x

xfx )(         (5-2)

 V(x)= ∑ ×−
x

xfxEx )())(( 2        (5-3) 

where, 

 f(x) = the probability of each random variable x. 
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Figure 5.6. Total Number of Crashes Distribution After Signalization 

Table 5.7 shows the procedure to get the mean and variance for total number of crashes 

for the before period.  

Table 5.7. Mean and Variance of Total Number of Crashes for Before Period 

X Frequency Cumulative % F(x) Xf(x) (x-E(x))2 f(x) (x-mean)2 

0 62 12.35% 12.35% 0.00 16.24 2.01 
1 88 29.88% 17.53% 0.18 9.18 1.61 
2 65 42.83% 12.95% 0.26 4.12 0.53 
3 55 53.78% 10.96% 0.33 1.06 0.12 
4 52 64.14% 10.36% 0.41 0.00 0.00 
5 50 74.10% 9.96% 0.50 0.94 0.09 
6 31 80.28% 6.18% 0.37 3.88 0.24 
7 19 84.06% 3.78% 0.26 8.82 0.33 
8 17 87.45% 3.39% 0.27 15.76 0.53 
9 12 89.84% 2.39% 0.22 24.70 0.59 

10 16 93.03% 3.19% 0.32 35.64 1.14 
11 2 93.43% 0.40% 0.04 48.58 0.19 
12 9 95.22% 1.79% 0.22 63.52 1.14 
13 5 96.22% 1.00% 0.13 80.46 0.80 
14 2 96.61% 0.40% 0.06 99.40 0.40 
15 1 96.81% 0.20% 0.03 120.34 0.24 
16 6 98.01% 1.20% 0.19 143.28 1.71 
17 5 99.00% 1.00% 0.17 168.22 1.68 
18 0 99.00% 0.00% 0.00 195.16 0.00 
19 2 99.40% 0.40% 0.08 224.10 0.89 

More 3 100.00% 0.60%    
 Total = 502  E (x) = 4.03 V(x)= 14.24 
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Using the observed mean and variance, the Poisson and Negative Binomial distributions 

were fitted to the crash data distribution for different crash types and severities. Table 5.8 

demonstrates that the Chi-Square test for Poisson distribution fitted for total number of 

crashes for the before period. Thus,  

)(xf -Poisson = 
!x

e xλλ−

=
!

03.403.4

x

e x−

,            x=0, 1, 2, ……,   (5-4) 

where, λ is the mean value of observed data from Table 5.7, and λ = 4.03. 

Table 5.8. Chi-Square Test for Poisson Distribution Fitted for Total 
Number of Crashes in Before Period 

xr F(i) f(x)-Poisson F(i)-f(x) (f(i)-f(x))2 (f(i)-f(x))2/f(x) 

0 12.35% 0.01777 0.10573 0.01118 0.62895 
1 17.53% 0.07163 0.10367 0.01075 0.15004 
2 12.95% 0.14434 -0.01485 0.00022 0.00153 
3 10.96% 0.19389 -0.08433 0.00711 0.03668 
4 10.36% 0.19534 -0.09176 0.00842 0.04310 
5 9.96% 0.15745 -0.05785 0.00335 0.02125 
6 6.18% 0.10575 -0.04400 0.00194 0.01831 
7 3.78% 0.06088 -0.02303 0.00053 0.00871 
8 3.39% 0.03067 0.00319 0.00001 0.00033 
9 2.39% 0.01373 0.01017 0.00010 0.00753 
10 3.19% 0.00553 0.02634 0.00069 0.12534 
11 0.40% 0.00203 0.00196 0.00000 0.00189 
12 1.79% 0.00068 0.01725 0.00030 0.43684 
13 1.00% 0.00021 0.00975 0.00010 0.45024 
14 0.40% 0.00006 0.00392 0.00002 0.25331 
15 0.20% 0.00002 0.00198 0.00000 0.23910 
16 1.20% 0.00000 0.01195 0.00014 34.71697 
17 1.00% 0.00000 0.00996 0.00010 101.75062 
18 0.00% 0.00000 0.00000 0.00000 0.00000 
19 0.40% 0.00000 0.00398 0.00002 342.88459 

 

The Chi-Square calculation value obtained from the Poisson distribution fitted for the 

observed total number of crashes was calculated with: 

2
0χ = ∑

=

k

i 1

( f(i)-f(x))2/f(x) .       (5-5) 

The value estimated of 2
0χ  is 481.77. This value is much bigger than the Chi-Square test 

value obtained from the Negative Binomial distribution fitting (0.131), as well as the Chi-
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Square table value 2
1pk, −−αχ  =28.87 (α = 0.05, k = 20, p = 1). These Chi square results 

indicate that the hypothesis which state that the distribution of the total number of crashes 

in the before period is the hypothesized Poisson distribution is rejected. 

Table 5.9 explains how the Chi-Square test is processed for the Negative Binomial 

distribution fitted for the total number of crashes for the intersections for the before 

period. As mentioned before, the Negative Binomial distribution has two parameters, 

mean E(x) and variance V(x). The probability function of X is: 

 )(xf = rxr pp
r

x −−





−
−

)1(
1

1
,         x = r, r+1, ……    (5-6) 

Changing the scale in the previous equation by replacing x by x + r, 

 )(xf = xr pp
x

rx
)1(

1
−




 −+
,         x = 0, 1, 2, ……    (5-7) 

In this case, from the observed mean E(x) and variance V(x), parameter p can be obtained 

from E(x)/V(x) and parameter r acquired from E(x)/(1/p-1) [21] [1]  .  

Table 5.9. Chi-Square Test for Negative Binomial Distribution 
Fitted for Total Number of Crashes in Before Period 

x f(i) f(x)-Negative Binomial. f(i)-f(x) (f(i)-f(x))2 (f(i)-f(x))2/f(x) 
0 12.35% 0.07840 1 0.07840 0.04511 
1 17.53% 0.05645 2 0.11290 0.06240 
2 12.95% 0.04064 3 0.12193 0.00755 
3 10.96% 0.02926 4 0.11705 -0.00749 
4 10.36% 0.02107 5 0.10535 -0.00176 
5 9.96% 0.01517 6 0.09102 0.00858 
6 6.18% 0.01092 7 0.07646 -0.01470 
7 3.78% 0.00786 8 0.06291 -0.02506 
8 3.39% 0.00566 9 0.05096 -0.01709 
9 2.39% 0.00408 10 0.04077 -0.01686 
10 3.19% 0.00294 11 0.03229 -0.00041 
11 .40% 0.00211 12 0.02536 -0.02138 
12 1.79% 0.00152 13 0.01978 -0.00185 
13 1.00% 0.00110 14 0.01534 -0.00538 
14 .40% 0.00079 15 0.01183 -0.00785 
15 .20% 0.00057 16 0.00909 -0.00710 
16 1.20% 0.00041 17 0.00695 0.00500 
17 1.00% 0.00029 18 0.00530 0.00466 
18 .00% 0.00021 19 0.00403 -0.00403 
19 .40% 0.00015 20 0.00305 0.00093 
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In Table 5.9, p = 4.03/14.24 = 0.28, r = E(x)/(1/p-1)= 2.  

)(xf -Negative Binomial = x

x

x
)28.01()28.0(

!)!12(

)!12( 2 −
−

−+
 

Chi-Square calculation value estimated from the Negative Binomial distribution fitted 

with observed total number of crashes is 2
0χ = 0.131. This value is smaller than the Chi-

Square table value 2
1pk, −−αχ  = 27.59 (α = 0.05, k = 20, p=2), which indicates that the 

hypothesis that the distribution of the total number of crashes for the before period is the 

hypothesized Negative Binomial distribution will not be rejected. Finally, it could be 

concluded that the Negative Binomial distribution is better to fit the distribution of total 

number of crashes at the intersections from the Chi-Square test comparison. The same 

result was obtained for the total number of crashes in the after period, with Chi-Square 

calculation value 45842.89 for Poisson and 0.063 for Negative Binomial, respectively. 

Figures 5.7 and 5.8 present the graphs of frequency distributions, which illustrate the 

same outcome for distribution fitting of the total number of crashes. Table 5.10 exhibits 

the Chi-Square test for fitting Poisson and Negative Binomial distributions by different 

crash types, crash severities, and crash by surrounding land use. If both Poisson and 

Negative Binomial distribution were not rejected by the Chi-square test ( 2
0χ < 2

1pk, −−αχ ), 

the distribution with smaller Chi-square calculation value was selected as the fitted 

distribution. Table 5.10 shows that the Negative Binomial distributions are selected as the 

fitted distribution to fit the number of crash distributions. 

5.7. Fitting for Crash Rate Distributions 

The method used for the number of crashes distribution fitting was also applied for crash 

rate distribution fittings. As examples for frequency distributions, crash rate distributions 

for total crashes are presented for the before and after periods in Figures 5.9 and 5.10, 

respectively. 
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Figure 5.7. Comparison of Poisson Distribution and 

Observed Total Number of Crashes Distribution 

 
Figure 5.8. Comparison of Negative Binomial Distribution and 

Observed Total Number of Crashes Distribution 
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Table 5.10. Chi-Square Test Comparison for Poisson and Negative  
Binomial Distribution Fitting for Number of Crashes Distributions 

Poisson Negative Binomial 

Category Period 
Chi-Square 
Calculation. 

2
0χ  

Chi-Square 
Table 
Value 
2

1pk, −−αχ  

Chi-Square 
Calculation. 

2
0χ  

Chi-Square 
Table 
Value 
2

1pk, −−αχ  

Distribution 
Selected 

Before 481.77 28.87 0.131 27.59 Negative Binomial Total Number of 
crashes After 45842.89 35.17 0.063 33.92 Negative Binomial. 

Before 146.29 18.31 0.208 16.92 Negative Binomial 
Rear End 

After 6.32 18.31 0.075 16.92 Negative Binomial 

Before 0.3 12.59 0.033 11.07 Negative Binomial 
Angle 

After 0.09 12.59 0.055 11.07 Negative Binomial 

Before 0.294 12.59 0.012 11.07 Negative Binomial 
Left Turn 

After 0.116 12.59 0.058 11.07 Negative Binomial 
Before 0.186 12.59 0.053 11.07 Negative Binomial 

Other 
After 0.176 12.59 0.148 11.07 Negative Binomial 

Before 398.5 21.03 0.077 19.68 Negative Binomial 
No Injury 

After 26.24 21.03 0.26 19.68 Negative Binomial 
Before 1.39 18.31 0.087 16.92 Negative Binomial 

Injury 
After 169.3 26.3 0.074 25 Negative Binomial 

Before 0.03 9.488 0.004 7.815 Negative Binomial 
Rural 

After 0.229 9.488 0.012 7.815 Negative Binomial 

Before 0.3 14.07 0.01 12.59 Negative Binomial 
Urban 

After 0.254 14.07 0.026 12.59 Negative Binomial 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.9. Total Crash Rate Distribution Before Signalization 
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Figure 5.10. Total Crash Rate Distribution After Signalization 

Similar to the results for total number of crashes, the Negative Binomial distribution was 

found to be the best fitting distribution for most of the cases for crash rate distribution 

fitting, except for urban crash rate distribution. In previous research studies, the ratio of 

variance and mean were used to choose the fitted Negative Binomial and Poisson 

distribution.  The selection criteria are: 

1. Poisson distribution, if variance/mean ratio =1.0, and 

2. Negative Binomial distribution, if variance/mean ratio >1.0 

In this study, Negative Binomial was found to be better than Poisson distribution even 

with the variance/mean ratio closed to 1.0, due to the tail part. But when variance/mean 

ratio is less than 1, the Negative Binomial distribution cannot be employed because the 

parameter r is less than 0. Thus, Poisson distribution was used to fit these cases. Poisson 

distribution was used for the crash rate distribution in urban area because the 

variance/mean ratio was less than 1. Figures 5.11 and 5.12 illustrate the same results.  
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Figure 5.11. Comparison of Poisson Probability Distribution and  
Observed Urban Crash Rate Probability Distribution 

 

 

Figure 5.12. Comparison of Poisson Cumulative Distribution and  
Observed Urban Crash Rate Cumulative Distribution 
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Table 5.11. Chi-Square Test Comparison for Poisson and Negative 
Binomial Distribution Fitting for Crash Rate Distributions 

Poisson Negative Binomial 

Category Period Chi-Square 

Calculation. 2
0χ  

Chi-Square 
 Table Value 

2
1pk, −−αχ  

Chi-Square 

Calculation. 2
0χ  

Chi-Square 
Table Value 

2
1pk, −−αχ  

Distribution Selected 

Before 0.21 16.92 0.069 15.51 Negative Binomial 
Total Crashes 

After 0.156 16.92 0.093 15.51 Negative Binomial 
Before 0.058 11.07 0.0085 9.488 Negative Binomial 

Rear End 
After 0.021 11.07 0.012 9.488 Negative Binomial 

Before 12.36 16.92 0.095 15.51 Negative Binomial 
Angle 

After 11.5 16.92 0.164 15.51 Negative Binomial 
Before 1.87 15.51 0.064 14.07 Negative Binomial 

Left Turn 
After 2.03 15.51 0.256 14.07 Negative Binomial 

Before 1.372 15.51 0.019 14.07 Negative Binomial 
Other 

After 0.05 15.51 0.022 14.07 Negative Binomial 
Before 2.01 16.92 0.087 15.51 Negative Binomial 

No Injury 
After 0.834 16.92 0.098 15.51 Negative Binomial 

Before 1.40 16.92 0.263 15.51 Negative Binomial 
Injury 

After 0.084 16.92 0.072 15.51 Negative Binomial 

Before 0.676 14.07 0.0025 12.59 Negative Binomial 
Rural 

After 0.373 11.07 0.101 9.488 Negative Binomial 

Before 0.109 11.07 \ 9.488 Poisson 
Urban 

After 0.009 11.07 \ 9.488 Poisson 

 

5.8. The 50th and 85th Percentile Values of Crashes 

The 50th and 85th percentile values of each crash distribution were obtained for the before 

and after periods. The 85th percentile is the point where 85 percent of the crashes at an 

intersection will occur either at or below this measurement. This value is often used in 

engineering analysis because the data in the top 15 percent, considered the top portion of 

the population, is not targeted in design. Table 5.12 and 5.13 present the parameters used 

in the distribution equations, and the 50th and 85th percentile values for number of crashes 

and crash rate, respectively 

Table 5.14 shows the percentage change for each 50th and 85th percentile value. These 

percentile values for the number of crashes and crash rates for before and after periods 

are shown from Figure 5.13 to 5.16. In the fitted Negative Binomial distributions, the 

increase of the total number of crashes after the installation of signals is not considerable. 

Based on the Negative Binomial distributions, the number of crashes and crash rates for 
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rear-end crash type increased significantly, and left turn crashes deceased in a big extent 

However, the 50th percentile of the number of angle crashes is found to increase in the 

observed crash distribution and the fitted Negative Binomial distribution.  Parameters r 

and p are calculated from observed the mean and variance of the distribution. 

Table 5.12. Equation and 50th and 85th Percentile Values for 
Number of Crashes Distribution 

Before After 
Equation  Equation  Category 
r p 

50% 85% 
r p 

50% 85% 

Total Number 
of crashes 

2 0.28 4.3 8.6 2 0.27 4.5 8.9 

Rear End 1 0.55 0.6 1.6 2 0.49 1.2 3.7 
Angle 2 0.62 0.4 2.2 6 0.84 0.5 1.8 

Left Turn 2 0.64 0.5 2.0 6 0.86 0.4 1.6 
Other 5 0.82 0.7 1.9 15 0.92 1.0 2.0 

No Injury 5 0.66 0.4 2.7 2 0.45 1.7 4.8 
Injury 1 0.40 1.6 2.8 2 0.42 1.3 4.8 
Rural 9 0.88 1.2 4.0 2 0.64 0.7 3.9 
Urban 3 0.64 2.8 8.4 4 0.69 3.0 8.6 

 

Table 5.13. Equation and 50th and 85th Percentile Values for Crash Rate Distribution 

Before After 
Equation  Equation  Category 
r p 

50th  85th  
r p 

50th  85th  

Total Crash 
Rate 

5 0.71 0.39 1.01 15 0.87 0.46 0.10 

Rear End 4 0.78 0.06 0.28 20 0.92 0.15 0.40 
Angle 2 0.52 0.15 0.48 4 0.76 0.07 0.30 

Left Turn 1 0.44 0.03 0.20 1 0.54 0.00 0.15 
Other 2 0.59 0.05 0.02 10 0.87 0.07 0.02 

No Injury 2 0.58 0.05 0.25 2 0.53 0.09 0.30 
Injury 8 0.79 0.27 0.675 24 0.92 0.27 0.66 
Rural 2 0.51 0.20 0.77 2 0.56 0.14 0.60 
Urban λ=1.26 0.25 0.25 λ=0.75 0.30 0.90 

 

Table 5.14. Before and After Difference for 50th and 85th Percentile Values 

Type Percentile Total Rear End Angle Left Turn Other No Injury Injury Rural Urban 

50th  5% 100% 13% -20% 43% 325% -19% -42% 7% 
Number of crashes 

85th  3% 131% -18% -20% 5% 78% 71% -3% 2% 
50th  18% 150% -53% -100% 40% 70% 0% -30% 20% 

Crash Rate 
85th  2% 45% -38% -25% 0% 20% -2% -22% 20% 
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Similar to the mean value comparison results, the number of no injury crashes and crash 

rates increased significantly while injury crash rates did not increase for the 50th 

percentile value and decreased for the 85th percentile value. Thus, signalization would 

improve safety at the intersections in rural areas. However, the number of crashes and 

crash rates would increase at intersections in urban areas after signal installation.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13. 50th Percentile Before/After Comparison for Number of Crashes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.14. 85th Percentile Before/After Comparison for Number of Crashes 
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Figure 5.15. 50th Percentile Before/After Comparison for Crash Rate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.16. 85th Percentile Before/After Comparison for Crash Rate 
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CHAPTER 6. RESULTS FOR STATISTICAL MODELS 

6.1. Dependent Variables 

The dependent variables adopted in the modeling process included: (1) average number 

of all crashes per year before and after signalization, (2) average number of angle crashes 

per year before and after signalization, (3) average number of left-turn crashes per year 

before and after signalization, (4) average number of rear-end crashes per year before and 

after signalization, and (5) average number of all other crashes per year before and after 

signalization. It is important to note that "all other" crashes include all crashes except for 

angle, left-turn and rear-end crashes. The determination of the dependent variables was 

based on data analyses, which is presented in the following paragraphs. 

Originally, the most common crash types such as angle, left-turn, rear-end, head-on, 

right-turn, and sideswipe were analyzed to develop predictive models, separately. 

However, based on data analysis, it was found that head-on, right-turn and sideswipe 

crash counts were not statistically sufficient. Out of the 447 intersections, about 90% of 

the intersections had no head-on crash, the remaining 10% of the intersections had more 

than zero but no more than one average head-on crash per year. About 80% of the 

intersections had no right-turn crash, the remaining 20% of the intersections had more 

than zero but no more than one average crash per year. More than 60% of the 

intersections had no sideswipe crashes, and about 30% of the intersections had more than 

zero but no more than one average sideswipe crash per year. Therefore, lack of variation 

as well as insufficient crash counts for the three types of crashes made it impossible to do 

modeling, separately. Only angle, left-turn, and rear-end crashes were chosen to develop 

predictive models, separately. Based on data analyses, the remaining types of crashes 

were aggregated in one category called the "all other" crash type. Thus, totally five types 

of crashes were chosen to be dependent variables to develop the predictive models. 

The summary descriptive statistics for the dependent variables are shown in Table 6.1. It 

can be found that the mean value of the average number of angle and left-turn crashes per 

year after signalization was lower than the mean value before signalization. However, the 

mean value of the average number of rear-end crashes per year after signalization was 
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significantly larger than the mean value before signalization. Overall, the mean value of 

the average number of all crashes per year after signalization was larger than the mean 

value before signalization. These results are in line with the results shown in the previous 

chapter and the common knowledge of traffic engineers. 

It was found that the maximum value of the average number of crashes was much higher 

than the median value, which implies that there are some "black spots" in the intersection 

sample. The abnormal higher values may be a result of particular reasons different to 

normal traffic conditions at intersections. In the modeling process, the "black spots" were 

taken out from the intersection sample. 

6.2. Predictor Variables 

The selection of predictor variables was based on the available data and engineering 

judgment. The task was carried out through the database building process for the 

modeling. After the modeling database was built, totally eight variables were available. 

The following subsections provide detailed description and analyses for the eight 

variables selected. 

6.2.1. ADT on the Major Road 

Traffic volume is the most significant factor contributing to crash occurrence. The change 

of traffic volume entering an intersection imposes multiple effects on the traffic 

operations and safety at the intersection. In this project ADT data on the major road were 

available at each intersection, and it was represented by the variable AVGADT. The 

descriptive statistics of AVGADT are provided in Table 6.2. 

ADT value was transformed from continuous to discrete value because the results of 

developed models will be tabulated for application by traffic engineers so that traffic 

engineers could easily apply the level of traffic volume (low, medium or high) to the 

models rather than search for the accurate ADT volume. Therefore, the variable 

AVGADT was converted to discrete variable based on its distribution. The 25% quantile 

was about 14,000 vpd, and the 75% quantile, 32,000 vpd. Thus, the thresholds to divide 

the ADT into low, medium, and high categories were set to 15,000 vpd and 30,000 vpd. 

Table 6.3 shows the range of each level and the value used in the models. 
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Table 6.2. Descriptive Statistics for the Variable AVGADT 

Descriptive Statistics "Before" Data "After" Data 
Number of Intersections 447 447 

Mean (vpd) 24,304 26,878 
Standard Deviation 14,924 15,713 

    

100% (Maximum) 116,266 125,519 
99% 70,056 74,423 
95% 54,042 55,146 
90% 44,517 48,606 
75% 31,467 34,167 

50% (Median) 21,833 23,833 
25% 13,613 14,501 
10% 8,599 9,703 
5% 6,961 7,500 
1% 2,160 5,300 

Q
ua

nt
ile

s 
(v

pd
) 

0% (Minimum) 927 2,167 
 

Table 6.3 Levels of the Variable ADT in Models 

Level Traffic Volume Range Value Used in Models 

Low < 15,000 vpd 0 
Medium 15,000 vpd ~ 30,000 vpd 1 
High ≥ 30,000 vph 2 

 

6.2.2. Surrounding Land Use 

Surrounding land use refers to urban or rural area. Generally, more crashes were 

observed in urban areas. Furthermore, in urban areas traffic volumes are higher, there are 

more lanes on the roadway, driveways are spaced more closely within the influence area 

of an intersection, turning traffic volumes are higher due to the complex travel 

destinations, and so on. On the other hand, vehicle speeds in urban areas usually are 

lower, congestion situations are more common, and proportion of heavy vehicles is 

lower. Thus, the effect of surrounding land use on intersection crash frequency is very 

complicated. The best way to explore the possible answer is to perform data analyses. 

The variable URBRUR in the database describes whether an intersection is located in 

urban area or in rural area. Table 6.4 provides the descriptive statistics for this variable. 
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Roughly, the intersections were evenly split both before and after signalization. In the 

Table, frequency before and after refers to the number of intersections within each 

specific area, urban and rural for the before and after signalization period. 

Table 6.4. Descriptive Statistics for the Variable URBRUR 

Frequency Percentage 
Type Value 

Before After Before After 

Rural 0 244 243 54.59% 54.36% 
Urban 1 203 204 45.41% 45.64% 

 

6.2.3. Location Type  

The variable LOCATYPE describes the land use of the area near the intersection 

including business, residential, shopping and recreational. As an environmental factor, 

land use can capture the effects of the area and its impacts on driver driving behavior. In 

residential areas, a relatively higher percentage of drivers are familiar with the operations 

of an intersection. Also, the access to the roadway tends to be regulated effectively within 

the influence area of an intersection. In business areas, to some extent turning movements 

could be performed more often, and there are more access points within the influence 

area of an intersection, that usually leads to more conflicts on the roadway.  

Table 6.5 presents the descriptive statistics of the variable LOCATYPE, and Table 6.6 

shows the levels and values used in modeling. The conversion from three levels to two 

levels was based on preliminary modeling efforts showing that the best results were 

obtained by this treatment. In the Table, frequency before and after refers to the number 

of intersections within each specific type, business or other for the before and after 

signalization period. 

Table 6.5. Descriptive Statistics for the Variable LOCATYPE 

Frequency Percentage 
Type Value 

Before After Before After 

Business 1 347 356 77.63% 79.64% 
Residential 2 49 46 10.96% 10.29% 
Other 3 51 45 11.41% 10.07% 
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Table 6.6. Levels of the Variable LOCATYPE in Models 

Frequency Percentage 
Level Value 

Before After Before After 

Business 1 347 356 77.63% 79.64% 
Other 2 100 91 22.37% 20.36% 

 

6.2.4. Number of Lanes on the Major Road 

The number of lanes on the major road is one of the most important geometric factors in 

explaining crash occurrence. Although there is correlation, which was found not to be 

high, between the number of lanes and traffic volume, it is not always true that higher 

volume imply more lanes. Together with traffic volume, it determines the level of service 

at an intersection, which directly influences and relates to the intersection safety. Level of 

service may have been an interesting variable to include in the models but this 

information was not available in the database. 

Table 6.7 presents the descriptive statistics for the variable LANE that describes the 

number of lanes on the major road in both directions. Two-lane, four-lane, and six-lane 

are the most common cases. Table 6.8 shows the levels of this variable used in the 

modeling process. Based on preliminary modeling efforts, in order to get the best 

modeling results four lanes were used as threshold to divide the data into two categories. 

In the Table, frequency before and after refers to the number of intersections within each 

specific number of lanes, > 4 or ≤ 4 lanes for the before and after signalization period. 

Table 6.7. Descriptive Statistics for the Variable LANE 

Frequency Percentage Number of Lanes on Major Road 
Before After Before After 

2 112 83 25.06% 18.57% 
3 12 16 2.68% 3.58% 
4 257 257 57.49% 57.49% 
5 1 8 0.22% 1.79% 
6 58 75 12.98% 16.78% 
7 0 0 0.00% 0.00% 
8 7 8 1.57% 1.79% 
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Table 6.8. Levels of the Variable LANE in Models 

Frequency Percentage 
Level Value 

Before After Before After 

> 4 lanes 1 66 91 14.77% 20.36% 
<= 4 lanes 0 381 356 85.23% 79.64% 

 

6.2.5. Posted Speed on the Major Road 

Posted speed is an important traffic speed control factor for traffic safety analysis. 

Usually, it is believed that crashes are more likely to occur at higher speed, which 

actually is not well documented. However, common engineering knowledge is that high 

speed more likely results in severe crashes. Also, the effect of posted speed on crash 

occurrences is more significant at unsignalized intersections than at signalized 

intersections. From another point of view, drivers tend to travel at speeds in which they 

feel comfortable given the prevailing conditions. Therefore, lower posted speed more 

likely promotes speed differential that is generally more closely associated with crashes. 

Table 6.9 presents the descriptive statistics for the variable SPEED, which describes the 

posted speed on the major road. Table 6.10 shows the levels of SPEED used in modeling. 

In the Table, frequency before and after refers to the number of intersections within each 

specific category, > 45mph or ≤ 45mph for the before and after signalization period. 

Table 6.9. Descriptive Statistics for the Variable SPEED 

Frequency Percentage Posted Speed on the Major Road 
Before After Before After 

15 1 0 0.22% 0.00% 
25 8 5 1.79% 1.12% 
30 37 18 8.28% 4.03% 
35 60 59 13.42% 13.20% 
40 57 59 12.75% 13.20% 
45 182 200 40.72% 44.74% 
50 20 25 4.47% 5.59% 

 

6.2.6. Presence of Median on Major Road 

Another important roadway geometric factor to be considered is whether the roadway is 

divided or not. Generally, roadways having more lanes to carry higher traffic volume are 
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divided and probably located in urban areas. On the contrary, roadways having fewer 

lanes and serving low traffic volume are undivided and probably located in rural areas. 

For the effect of median on intersection safety, there is no clear answer to whether the 

presence of median on the major road would increase or decrease the crash frequency. It 

also depends on many other factors such as traffic control, crash type, and so on. Table 

6.11 gives the descriptive statistics of the variable MEDIAN and corresponding values 

for modeling. In the Table, frequency before and after refers to the number of 

intersections within each specific level, divided or undivided for the before and after 

signalization period. 

Table 6.10. Levels of the Variable SPEED in Models 

Frequency Percentage 
Level Value 

Before After Before After 

> 45 mph 1 102 106 22.82% 23.71% 
≤ 45 mph 0 345 341 77.18% 76.29% 

 

Table 6.11. Descriptive Statistics for the Variable MEDIAN 

Frequency Percentage 
Level Value 

Before After Before After 

Divided 1 282 283 63.09% 63.31% 
Undivided 0 165 164 36.91% 36.69% 

 

6.2.7. Shoulder Treatment 

Shoulder treatment is another interesting factor to include during modeling. Paved 

shoulder makes the drivers traveling on the right lane to feel safer. In some cases, paved 

shoulder can provide space to accommodate right-turn vehicles at intersections or 

vehicles traveling out of the proper lane. Unpaved shoulder could worsen the 

consequence once a vehicle runs off the pavement, especially for inexperienced drivers. 

Table 6.12 presents the descriptive statistics of the variable SHOULDER, indicating the 

type of shoulder treatment at an intersection. Curbed shoulders were combined with 

unpaved shoulders considering the fact that curbed shoulder also provides restraint on the 

lateral movement of vehicles traveling on the right lane, which could have similar effects 
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on safety. Table 6.13 shows the levels of the variable SHOULDER used in modeling. 

These levels already included the combination of the unpaved and curb shoulder into the 

other category. In the Table, frequency before and after refers to the number of 

intersections within each specific type, paved and unpaved for the before and after 

signalization period. 

Table 6.12. Descriptive Statistics for the Variable SHOULDER 

Frequency Percentage 
Type Value 

Before After Before After 

Paved 1 134 148 29.98% 33.11% 
Unpaved 2 292 210 65.32% 46.98% 
Curb 3 21 89 4.70% 19.91% 

 

Table 6.13. Levels of the Variable SHOULDER in Models 

Frequency Percentage 
Level Value 

Before After Before After 

Paved 1 134 148 29.98% 33.11% 
Other 2 313 299 70.02% 66.89% 

 

6.2.8. Functional Class of Major Road 

The variable describing the functional class of the major road is also included in the 

modeling database. According to this variable, the major road of an intersection can be 

identified as either arterial or collector. Originally, this variable was treated as one of the 

predictor variables. However, preliminary modeling results showed that in any case its 

effect was insignificant. Also, the classification of the functional class of a roadway 

usually is determined based on its functional position within the roadway network rather 

than roadway geometric characteristics. With these limitations, this variable was 

excluded from the predictor variables. 

6.3. Crash Frequency Distributions  

Prior to the statistical modeling, the general shapes of crash frequency distributions were 

assessed in order to provide the basis for crash distribution assumptions for modeling. 
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Figures 6.1 through 6.5 show the statistical results for all crashes, angle crashes, left-turn 

crashes, rear-end crashes, and all other crashes. 

 
 

Figure 6.1. Frequency Distribution for All Crashes 
 

 
Figure 6.2. Frequency Distribution for Angle Crashes 
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Figure 6.3. Frequency Distribution for Left-turn Crashes 

 

 

Figure 6.4. Frequency Distribution for Rear-end Crashes 
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Figure 6.5. Frequency Distribution for Other Crashes 
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6.4. Crash Predictive Modeling 

The following section presents the detailed modeling process for all crashes: For angle 

crashes, left-turn crashes, rear-end crashes, and all other crashes, the rest of the sections 

present a summary of the modeling. The parameter estimations were performed with the 

GENMOD procedure of the SAS statistical software package. Mean deviance and 

Pearson's Chi-square ratio were adopted as the criteria to test over-dispersion of crash 

data. Backward elimination method was used through the regression process to remove 

statistically insignificant predictor variables. Deviance, Pearson's Chi-square, Pearson's 

R-square and likelihood ratio index were adopted to evaluate the goodness-of-fit of 

developed models.  

6.4.1. Models for All Crashes 

6.4.1.1. The Model for Before Signalization 

First, all seven predictor variables were included in the regression equation. The Poisson 

regression was performed as the initial step. Initial Poisson regression results provided 

the basis to test whether the crash data were over-dispersed. Two statistics were adopted 

as the criteria to assess the over-dispersion: mean deviance and Pearson's Chi-square 

ratio. Generally, the mean deviance and the Pearson's Chi-square ratio should be close to 

one or within the range between 0.8 and 1.2 in order to consider the Poisson model 

appropriate to fit the data. If the mean deviance ant the Pearson’s Chi-square ratio values 

exceed one, the data are considered to display extra variation or over-dispersion relative 

to the Poisson model. If the values are less than one, the data are said to display under-

dispersion relative to the Poisson model. In Table 6.14, the mean deviance for the initial 

Poisson model is 3.209, and the Pearson's Chi-square ratio is 3.524, which indicate that 

the extra variation exists in the "before" data. An initial negative binomial regression was 

performed as an alternative to Poisson model; and the mean deviance and Pearson's Chi-

square ratio were calculated again. As shown in Table 6.14, the mean deviance and 

Pearson's Chi-square ratio for the negative binomial model are very close to one, which 

indicate that the negative binomial model was an appropriate choice. 

Based on the results of the negative binomial regression, Pearson residual for each 

observation was calculated and plotted in Figure 6.6. Pearson residual was used to check 
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the model fit, where the best-fitted data points should be around the zero line in the plot. 

A 20 percent significance level was assumed to keep the parameters estimated in the 

model. The choice of a 20 percent significance level or 80 percent confidence level 

would allow to include several predictor variables in the predictive model that may 

improve the overall predictive ability of the model than if a more restrictive significance 

level was considered. The results of the negative binomial regression are presented in 

Table 6.15. The explanations of the contents of Table 6.15 are listed on Table 6.16. 

Table 6.14. Criteria For Assessing Over-Dispersion (All, Before) 

Poisson Model (Initial) 
NEGATIVE BINOMIAL Model 

(Initial) Criterion DOF 
Value Value/DOF Value Value/DOF 

Deviance 439 1408.571 3.209 481.505 1.097 
Pearson's Chi-
square 

439 1546.937 3.524 466.218 1.062 

 

 

Figure 6.6. Pearson Residual for Initial Negative Binomial Model (All, Before) 
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Table 6.16 Explanation of Contents of the Results 

Column Explanation 
Predictor Variable Describe the variables associated with estimated parameters. The 

INTERCEPT represents the intercept in the regression equation. 
The over-dispersion parameter is an additional parameter estimated 
in the negative binomial model relative to Poisson model. 

Name Variable name in the modeling database. 
Level Represents the levels of the variable. Please note that ADT was 

treated as discrete variable with three values: 0, 1 and 2. Other 
variables were treated as categorical variables with two levels. 

Value Value of variable to be input in the developed model. 
DOF Degrees of freedom associated with each parameter estimate. Each 

categorical variable has k-1 degrees of freedom; k represents the 
levels of the variable. The intercept has one degree of freedom. 

Parameter Estimate Estimated parameters. 
Standard Error Estimated standard deviation associated with each parameter. 
Relative Effect Exponent of the estimated parameter of the variable. Represents 

the effects of different levels. 
Chi-square Chi-square test statistic for testing that the parameter is 0. This was 

computed as the square of the ratio of the parameter estimate 
divided by its standard error. 

Pr > Chi-Sq The probability of obtaining a Chi-square statistic greater than that 
observed given that the true parameter is 0. A small p-value is 
evidence for concluding that the parameter is not 0. 

 

The following step is to assess the goodness-of-fit of the model. Four statistics, including 

deviance, Pearson's Chi-square, Pearson's R-square, and likelihood ratio index, were 

adopted. Table 6.17 presents the four statistics for the "before" negative binomial model 

of all crashes. Both the mean deviance and Pearson's Chi-square ratio are close to one, 

and the Pearson's R- square and the likelihood ratio index are around 20%. The statistics 

indicate that the developed model has satisfactory capability in fitting the "before" data 

and explaining the variation of the data. 

In addition to statistical justification, the model should also satisfy engineering judgment. 

This can be assessed by examining the relative effect of each variable. For example, the 

relative effect of ADT is 1.32, which means that the average number of crashes would 

increase by 32% if the ADT increase from low to medium level, given all other variables 

constant. Similarly, if ADT increases from medium to high level, the average number of 
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crashes would increase by 32%. An intersection in urban area would have 13% more 

crashes than the similar intersection in rural area. Intersections located in business area 

are more likely to have crashes by 19% than intersections located in other area, e.g. 

residential area. The same trend applies to other factors such as number of lanes. 

However, intersections with posted speed more than 45 mph would have 16% fewer 

crashes than similar intersections with posted speed less than or equal to 45 mph. Even 

though this result may not be as expected, the analysis of the data indicated this trend, 

where intersections with high-posted speed experienced lower number of crashes than 

intersections with low-posted speed. This could be explained by the fact that in areas with 

higher volume, the posted speed is lower than in areas with lower traffic volume. Higher 

volume usually means high number of crashes. It is also interesting to find that 

intersections with median on the major road would have 32% more crashes than without 

median. The presence of median is generally an indicator that intersections are located in 

areas with high traffic volume, probably with several lanes, which will produce more 

conflicts and thus more crashes. Finally, intersections with paved shoulder would have 

15% fewer crashes than the intersections with other types of shoulder. 

Table 6.17. Criteria for Assessing the Goodness-of-Fit  
(All, Before, Negative Binomial Model) 

Item Value 
Number of Observations (n) 439 
Number of Predictor Variables in Model 7 
Number of Parameters in Model (p) 7 
Degree of Freedom (n-p-1) 431 
Log-likelihood at Convergence  -914.001 
Restricted Log-likelihood -1149.14 
    
Deviance 458.399 
Deviance/(n-p-1) 1.064 
Pearson Chi-square  413.318 
Pearson Chi-square/(n-p-1)  0.959 
Pearson R-square 20.33% 
Likelihood Ratio Index 20.46% 
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6.4.1.2. The Model for After Signalization 

The model for “after” signalization for all crashes was developed using a similar 

procedure as the model “before” signalization. Firstly, all predictor variables were 

included and Poisson regression was performed. Based on the results of the initial 

Poisson model, the mean deviance and Pearson's Chi-square ratio were calculated. Table 

6.18 shows the results. Both statistics were larger than 3.0 showing that the "after" data 

were over-dispersed. As an alternative, negative binomial (NB) regression was 

performed, and the mean deviance and Pearson's Chi-square ratio were calculated again 

based on the negative binomial model. Both statistics are also presented in Table 6.18, 

these values were close to one indicating that the negative binomial regression is an 

appropriate choice. Then, Pearson residuals were calculated for each observation based 

on the results of negative binomial regression and plotted in Figure 6.7. Most of the 

points clustered between the -1 and 1 lines, indicating that the model fits the data 

satisfactorily 

Table 6.18. Criteria For Assessing Over-Dispersion (All, After) 

Poisson Model (Initial) 
Negative Binomial  

Model (Initial) Criterion DOF 
Value Value/DOF Value Value/DOF 

Deviance 439 1378.279 3.140 470.613 1.072 
Pearson's Chi-square 439 1509.108 3.438 477.831 1.088 

 

Of the seven-predictor variables in the model, the estimated parameter for posted speed is 

0.004, with Chi-square statistic equal to 0.0000 and p-value equal to 0.9665, which 

means that the effect of posted speed is extremely insignificant. The negative binomial 

regression was run again after the predictor variable posted speed was removed from the 

regression equation. The results are shown in Table 6.19. After the comparison of the two 

sets of results, it was found that removing posted speed from the model had very few 

effects on other variables. Among the estimated parameters presented in Table 6.19, the 

parameter of the variable urban/rural is significant at 22 percent confidence level. 

Considering that it is only slightly lower than the adopted 20 percent confidence level, 

the variable has been kept in the model. The parameters for ADT, number of lanes on 
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major road, and presence of median are significant at 5% significance level. The 

parameter of LOCATYPE is significant at 10% significance level. The parameter of 

shoulder treatment is significant at 20% significance level. The dispersion parameter is 

0.3450 showing that the “after” data is over-dispersed relative to Poisson distribution. 

 

 
Figure 6.7. Pearson Residual for Initial Negative Binomial Model (All, After) 

Also, the goodness-of-fit statistics were calculated for the final negative binomial model 

and are presented in Table 6.20. The mean deviance and Pearson's Chi-square ratio are 

close to one, which indicates that the negative binomial model fits the "after" data very 

well. The Pearson R-square value is equal to 34.84% and the likelihood ratio index is 

equal to 27.75 %, representing that the model has a satisfactory ability in explaining the 

variation of the "after" data. Each variable in the final " after" model shows the similar 

relative effect on crash occurrence at intersections as the final "before" model. 
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Table 6.20. Criteria for Assessing the Goodness-of-fit  
(All, After, Negative Binomial Model) 

Item Value 
Number of Observations (n) 438 
Number of Predictor Variables in Model 6 
Number of Parameters in Model (p) 6 
Degree of Freedom (n-p-1) 431 
Log-likelihood at Convergence  -911.514 
Restricted Log-likelihood -1261.53 
    
Deviance 439.624 
Deviance/(n-p-1) 1.020 
Pearson Chi-square  420.532 
Pearson Chi-square/(n-p-1)  0.976 
Pearson R-square 34.84% 
Likelihood Ratio Index 27.75% 

 

6.4.1.3. Comparison of All Crashes "Before" and "After" Models 

The final "before" and "after" models are negative binomial models since the "before" 

and "after" data display extra variations relative to Poisson distributions. All seven 

predictor variables are statistically significant in the "before" negative binomial model at 

a 20% significance level, while posted speed are not included in the "after" negative 

binomial model due to its insignificance. Regarding the goodness-of-fit, the "after" model 

performs better in explaining the variation of data than the "before" model based on 

either Pearson's R-square or likelihood ratio index. 

The relative effects of each predictor variable in the final "before" and "after" models are 

in the same direction. The relative effect of ADT is 63% after signalization, higher than 

32% before signalization, which means that intersection crashes are more sensitive to 

ADT changes after signalization. Intersections in urban areas would have about 10% 

more crashes than in rural areas, and intersections in business areas would have 20% 

more crashes than in other areas, regardless of before or after signalization. These results 

can be explained by the fact that the percentage of turning movements is relatively higher 

in urban areas and/or business areas. The average number of crashes would increase by 

30% with the number of lanes increasing from less than or equal to four to more than 

four, regardless of before or after signalization. Generally more lanes on the roadway 
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mean higher volume, which will cause more conflicts. For the variable posted speed in 

the case of before signalization, intersections with higher than 45 mph posted speed 

would have 16% less crashes as compared to intersections with lower or equal to 45 mph 

posted speed. This result may be explained by the speed differential that could be caused 

by the lower posted speed. From another perspective, drivers on the minor road may be 

more conservative and more careful to enter or cross the major road if the vehicles’ 

speeds on this road are high. Nevertheless, traffic on the minor road will be assigned 

right-of-away after the installation of the traffic signal, and the effect of posted speed 

becomes insignificant. For the case of before signalization, intersections with median 

would have 30% more crashes than intersections without median, while this figure 

decreases to 20% for after signalization. This could be caused by the fact that roadways 

with median usually are serving high volume of traffic, at the same time, are more likely 

located in urban areas and business areas. Intersections with paved shoulder would have 

15% less crashes as compared to unpaved shoulder for the case of before signalization 

and 10% less crashes as compared to unpaved shoulder for the case of after signalization. 

It is reasonable because paved shoulders generally can make drivers feel safer, provide 

space for right-turn vehicles, and could function as a travel lane in case vehicles run off 

road. 

6.4.2. Models for Angle Crashes 

6.4.2.1. The Model for Before Signalization 

The "before" angle crash data had extra variation based on the results of initial Poisson 

model, with mean deviance equal to 1.634 and Pearson Chi-square ratio equal to 1.839. 

Then, Negative binomial regression was run with all seven predictor variables in the 

model. Of the seven-predictor variables, coefficients of location type, number of lanes 

and posted speed were insignificant at 20 percent significant level. Backward elimination 

method was used to remove the insignificant variables from the model. The estimated 

parameters of the negative binomial model for angle crashes for “before” are presented in 

Table 6.21. Goodness-of-fit statistics were also calculated for the negative binomial 

model and are shown in Table 6.22. The Pearson R-square and likelihood ratio index are 

11.85% and 7.00% respectively indicating that the "before" model for angle crashes 

explain a relatively low percent of systematic variation of the data. 
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Table 6.22. Criteria for Assessing the Goodness-of-fit (Angle) 

Item Before (Poisson) After (Negative Binomial) 
Number of Observations (n) 436 437 
Number of Predictor Variables in Model 4 4 
Number of Parameters in Model (p) 4 4 
Degree of Freedom (n-p-1) 431 432 
Log-likelihood at Convergence  -558.35 -490.37 
Restricted Log-likelihood -600.36 -515.78 
      
Deviance 422.55 404.67 
Deviance/(n-p-1) 0.980 0.937 
Pearson Chi-square  432.79 397.78 
Pearson Chi-square/(n-p-1)  1.004 0.921 
Pearson R-square 11.85% 16.63% 
Likelihood Ratio Index 7.00% 4.93% 

 

6.4.2.2. The Model for After Signalization 

The calculated mean deviance and Pearson Chi-square ratio for the after model were 1.13 

and 1.23 respectively, indicating that the Poisson regression is appropriate. Backward 

elimination method was used to take out those variables that were not significant at 20% 

significance level, including variables describing urban/rural, posted speed and shoulder. 

The other four variables were kept in the Poisson model. The estimated parameters of the 

Poisson model for "after" angle crashes are presented in Table 6.23. Goodness-of-fit 

statistics for the Poisson model were calculated and shown in Table 6.22. 

6.4.2.3. Comparison of Angle Crashes "Before" and "After" Models 

The “before” model is a negative binomial model because “before" angle crash data 

showed extra variation relative to Poisson distribution while the “after” model is a 

Poisson model because "after" angle crash data followed the Poisson distribution very 

well. In both models, the variable posted speed on major road is insignificant, which 

indicates that the change of posted speed from less than or equal to 45mph to higher has 

very limited effect on angle crash occurrence at intersections. Surrounding land use and 

shoulder treatment are significant in the "before" model but insignificant in the "after" 

model. Location type and number of lanes are insignificant in the "before" model but 

significant in the "after model. Presence of median is significant in both models. 
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The Pearson R-square statistics and the likelihood ratio for both angle crash models are 

lower than for the models for all crashes. This happens very often to disaggregate data in 

modeling compared to aggregate data. It was also found that Pearson R-square statistic 

and likelihood ratio index are inconsistent in assessing the goodness-of-fit of developed 

models. The Pearson R-square increases from 11.85 % for the "before" model to 16.63% 

for the "after" model, while the likelihood ratio index decreases from 7.00% for the 

“before” model to 4.93% for the “after” model. Considering this finding, it is better to 

count on more than one statistic when evaluating the goodness-of-fit of generalized linear 

models. 

6.4.3. Models for Left-turn Crashes 

6.4.3.1. The Model for Before Signalization 

Initial Poisson regression had mean deviance of 1.612 and Pearson Chi-square ratio of 

1.939, indicating over-dispersion in the data. Therefore, negative binomial regression was 

performed. Of seven predictor variables, urban/rural and posted speed are insignificant at 

50% significance level. Backward elimination method was used to remove these two 

variables and it was found that the model was insensitive to these two variables. The 

estimated parameters for the negative binomial model are presented in Table 6.24. The 

relative effects of each predictor variable in the negative binomial model for the “before” 

left-turn crashes are in the same direction as for all crashes. For example, with the 

increase of ADT from low to medium, there would be 26% more left-turn crashes. The 

estimated dispersion parameter is equal to 0.2717 indicating that crash data were only 

slightly over-dispersed. Table 6.25 shows the goodness-of-fit statistics calculated for the 

final negative binomial model. Pearson R-square is 13.84% and likelihood ratio index is 

5.01% indicating that the model explains the variation very limitedly. 
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Table 6.25. Criteria for Assessing the Goodness-of-fit (Left-turn) 

Item Before (Poisson) After (Negative Binomial) 
Number of Observations (n) 434 436 
Number of Predictor Variables in Model 5 5 
Number of Parameters in Model (p) 5 5 
Degree of Freedom (n-p-1) 428 430 
Log-likelihood at Convergence  -516.833 -458.237 
Restricted Log-likelihood -544.098 -480.849 
      
Deviance 423.225 392.697 
Deviance/(n-p-1) 0.989 0.913 
Pearson Chi-square  421.926 402.987 
Pearson Chi-square/(n-p-1)  0.986 0.937 
Pearson R-square 13.84% 15.90% 
Likelihood Ratio Index 5.01% 4.70% 

 

6.4.3.2. The Model for After Signalization 

The Poisson model was run, and the "after" data showed only slightly over-dispersion 

with mean deviance equal to 1.205 and Pearson Chi-square ratio equal to 1.466. The 

variables urban/rural and posted speed were insignificant at 50% significance level. Then, 

backward elimination method was used to remove ported speed and urban/rural. The 

significance level of shoulder treatment increases form 22% to 17.35% once urban/rural 

and posted speed were removed from the model. The estimated parameters for the 

Poisson model are presented in Table 6.26. The relative effect of each predictor variable 

is in the same direction as in the “before” model. Goodness-of-fit statistics for the final 

model were calculated and presented in Table 6.25. 

6.4.3.3. Comparison of Left-turn Crashes "Before" and "After" models 

The "before" model is a negative binomial model because the "before" left-turn crash 

data were found to have extra variation relative to Poisson distribution. The "after" model 

is a Poisson model because the "after" left-turn crash data were found to match the 

Poisson distribution. For both models, posted speed and surrounding land use 

(urban/rural) were insignificant at 20 percent significance level.  Other variables included 

in the after model affect the left-turn crashes in the same direction as in the “before” 

model. For example, keeping other characteristics constant, an intersection in business 

area would have more crashes than in other area whether before or after signalization. An 
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intersection with more than 4 lanes on the major road would have more crashes than one 

with less than or equal to 4 lanes whether before or after signalization. Regarding the 

goodness-of-fit of the two models, the Pearson R-square for the "after" model has a 

minor increase while the likelihood ratio index has a minor decrease. Overall, a similar 

conclusion can be made like for angle models that the regression models performed better 

for aggregate data that for disaggregate data. 

6.4.4. Models for Rear-end Crashes 

6.4.4.1. The Model for Before Signalization 

The calculated mean deviance for the “before” Poisson regression with all predictor 

variables was 1.08 and Pearson Chi-square ratio was 1.13. In the model, variables 

describing surrounding land use and shoulder treatment were insignificant at 20 percent 

significance level. Backward elimination method was used to remove insignificant 

variables. Table 6.27 shows the estimated parameters for the “before” Poisson model. 

Finally, five variables were significant at 20 percent significance level. The relative 

effects of all variables except for presence of median have the same sign as in other 

developed models. Goodness-of-fit statistics for the "before" model were calculated and 

shown in Table 6.28. Pearson R-square of 30.54%, and likelihood ratio index of 10.16% 

show that the final Poisson model fit the data satisfactorily. 

6.4.4.2. The Model for After Signalization 

The after data show extra-variation relative to the Poisson model, with mean deviance 

equal to 1.875 and Pearson Chi-square ratio equal to 2.218. Therefore, negative binomial 

regression was used to overcome the over-dispersion. The variables describing 

surrounding land use, land use and posted speed were insignificant at 20 percent 

significance level.  Backward elimination method was used to try different combinations 

of predictor variables and to remove the insignificant variables. Finally, only surrounding 

land use and location type were removed from the model, and the other five variables 

were included in the negative binomial model for rear-end crashes after signalization. 

Table 6.29 shows the estimated parameters. Goodness-of-fit statistics were also 

calculated and shown in Table 6.28. 
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Table 6.28. Criteria for Assessing the Goodness-of-fit (Rear-end) 

Item Before (Poisson) After (Negative Binomial) 
Number of Observations (n) 441 440 
Number of Predictor Variables in Model 6 5 
Number of Parameters in Model (p) 6 5 
Degree of Freedom (n-p-1) 434 434 
Log-likelihood at Convergence  -504.805 -676.271 
Restricted Log-likelihood -561.864 -826.682 
      
Deviance 468.978 429.635 
Deviance/(n-p-1) 1.081 0.990 
Pearson Chi-square  489.616 416.549 
Pearson Chi-square/(n-p-1)  1.128 0.960 
Pearson R-square 30.54% 35.74% 
Likelihood Ratio Index 10.16% 18.19% 

 

6.4.4.3. Comparison of Rear-end Crashes "Before" and "After" Models 

Unlike the angle and left-turn crash data, the "before" rear-end crash data do not show 

extra-variation relative to Poisson model while the "after" data show extra-variation. The 

variable describing surrounding land use is insignificant at 20 percent significance level 

in both models. Shoulder treatment is insignificant in the "before" model but significant 

in the "after" model. Location type is significant in the "before" model but insignificant in 

the "after" model. The other variables are significant in both models.  The relative effects 

of each predictor variable included in the models are in the same direction as in 

developed models for all crashes, except for the variable presence of median. The effect 

of median on rear-end crashes indicate that intersections would have less rear-end crashes 

if the major road is divided before signalization. This could be explained in the sense that 

the median could provide space for left-turn vehicles to clear the left through lane, 

otherwise, rear-end crashes are very likely to happen on the left through lane blocked by 

suddenly stopped left-turn vehicles. But, for signalized intersections, the presence of 

median would increase rear-end crashes which is a similar effect as in other models. 

Regarding the goodness-of-fit, both models have very high values of Pearson R-square 

and likelihood ratio index indicating that the developed models perform very well in 

explaining the systematic variations in the crash data. Relatively, the negative binomial 

model for the "after" data performs better than the Poisson model for the "before" data. 
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6.4.5.  Models for Other Crashes 

6.4.5.1. The Model for Before Signalization 

The "before" other crash data fitted the Poisson model with mean deviance and Pearson 

Chi-square ratio equal to 0.91. Backward elimination method was used to remove 

insignificant variables which included location type, number of lanes on major road, and 

shoulder treatment. Finally, four variables that were significant at 20 percent significance 

level were included in the Poisson model. The results of the "before" model are shown in 

Table 6.30. The relative effects of predictor variables have the same sign as most of other 

developed models. For example, intersections with 50 mph posted speed on major road 

would have 35% less other type of crashes than intersections with 40 mph posted speed 

on major road. Intersections in urban areas would have 40% more other type of crashes 

than in rural areas. Also, goodness-of-fit statistics for the "before" model were calculated 

and shown in Table 6.31. Pearson R-square and likelihood ratio index indicate that the 

developed model has limited ability in explaining the data variation. 

6.4.5.2. The Model for After Signalization 

The data show no extra-variation relative to Poisson model. Backward elimination 

method was used to remove the insignificant predictor variables that include land use, 

posted speed, median, and shoulder. The results of the Poisson model are shown in Table 

6.32. Only ADT, urban/rural and number of lanes were included in the “after” model. 

Goodness-of-fit statistics of the model were also calculated and are shown in Table 6.31. 

6.4.5.3. Comparison of Other Crashes "Before" and "After" Models 

It was found that both the "before" and "after" data for other crashes follow the Poisson 

distribution without showing extra variation. Thus, Poisson regression is an appropriate 

choice in both cases. Variables describing location type and shoulder treatment are 

insignificant in both Poisson models. Number of lanes is insignificant in the "before" 

model, while posted speed and median are insignificant in the "after" model. The 

variables included in the models have relative effects in the same direction of other 

models. Goodness-of-fit statistics show that the "after" model fits the "after" data better 

than the "before" model fits the "before" data. 
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Table 6.31. Criteria for Assessing the Goodness-of-fit (All Other) 

Item Before (Poisson) After (Negative Binomial) 
Number of Observations (n) 440 437 
Number of Predictor Variables in Model 4 3 
Number of Parameters in Model (p) 4 3 
Degree of Freedom (n-p-1) 435 433 
Log-likelihood at Convergence  -491.213 -495.212 
Restricted Log-likelihood -521.98 -540.979 
      
Deviance 397.06 336.046 
Deviance/(n-p-1) 0.913 0.776 
Pearson Chi-square  399.097 317.303 
Pearson Chi-square/(n-p-1)  0.917 0.733 
Pearson R-square 17.61% 31.43% 
Likelihood Ratio Index 5.89% 8.46% 

 

6.5. Impacts of Signalization on Crashes 

Once the models for each crash type considered were developed, the average numbers of 

crashes before and after signalization were estimated for all crashes and for each crash 

type for intersections with different characteristics. These characteristics varied 

accordingly with the variables used: ADT, surrounding land use, location type, number of 

lanes, posted speed, median, and shoulder type. The impacts of signalization on 

intersection crashes were estimated by subtracting the average number of crashes after 

signalization from the number of crashes before signalization. A positive sign indicates 

an increase in crashes and a negative sign a decrease. These impacts were estimated with 

the average number of crashes obtained from the developed models and not from crash 

history in order to make a comparison between estimated values for both the before and 

after period, and not from a combination of values from real data for the before period 

and predicted results for the after period. Tables were calculated for the impacts of 

signalization on crashes for all crashes and each crash type. Appendix C presents the 

results for all crashes, angle crashes, left-turn crashes, rear-end crashes and all other 

crashes for different characteristics of intersections. 
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These estimated impacts of signalization on crashes for intersections with different 

characteristics would provide information in regard to the increase or decrease in the 

number of all crashes and different type of crashes, and might help traffic engineers when 

considering the installation of a traffic signal as a solution for the intersection problems. 

The estimated impacts are not to be used as an instrument to decide but rather as a tool to 

evaluate how a signal may affect crashes at an intersection under analysis. In order to 

estimate the impacts of signalization on intersection crashes, the engineer could either use 

the tables included in the appendices or the software provided with this report. For the 

tables, each table has specific characteristics of the intersections for which those results 

were estimated, and for the software, the specific characteristics could be used as input in 

order to estimate the impacts of signalization. 

6.6. Model Validation 

A group of 30 newly signalized intersections were not considered in the intersection 

modeling database in order to compare the results obtained from the developed models to 

the real data values. Based on the characteristics of the intersections and the models for all 

crashes, the number of crashes was determined for the before and after period for each one 

of the intersections. Then, an average of the estimated number of all crashes was done and 

compare to the average of the number of all crashes for the actual data for both periods. 

The difference between the averages for either the before or after signalization periods was 

very small. The following table shows these results. 

 

Table 6.33. Average Number of All Crashes  

for Actual Data and Predicted Values 

 
Average Number of All Crashes 

Period 
Actual Predicted 

Before 3.55 3.80 
After 4.53 4.50 

 



CHAPTER 7: RESULTS FOR OPERATIONAL RESEARCH MODELING 

7.1. Crash Prediction 

CBCP was used to predict total number of all crashes, angle crashes, rear-end crashes, 

left-turn crashes, and “all other” crashes, which includes the remainder of crashes, at 

intersections before and after traffic signal installation. For this study, the impact of 

traffic signal installation on intersection crashes was computed using the predicted crash 

frequencies before and after signalization. Even though, the CBCP procedure could 

directly predict this impact, it was not used because the method is based on known data, 

and its prediction accuracy is closely dependent on the availability of data. In the 

research, with all the seven characteristic variables that define an individual intersection, 

few data points for each unique intersection type would be available. Therefore, the 

statistical regression analysis, specifically, the lognormal modeling using the predicted 

crashes was applied to estimate the impacts of signal installation on crashes at 

intersections. 

7.2. Lognormal Modeling 

Lognormal modeling was applied using the predictive number of crashes for all crashes 

and each crash type estimated with CBCP. The following paragraphs present the results 

of this modeling. 

7.2.1. Models for All Crashes 

7.2.1.1.  The Model for Before Signalization 

In particular, residual analysis was used to check the model fit. In general, the best-fitted 

data points should have residuals whose absolute values are close to zero. The lognormal 

regression results are shown Tables 7.1 and 7.2, and in Figure 7.1. As it is expected, all 

residuals are between 1 and –1 and most are close to 0. This implies that the model fits 

the data satisfactorily. The p-value in Table 7.1 means that the regression model is 

significant at more than 99% confidence level. 

 



Table 7.1. Estimated Parameters of Lognormal Model (All, Before) 
 

Predictor Variable Name Level Value DOF 
Coefficient 
Estimate 

Standard 
Error 

Relative 
Effect 

t-Stat P-value 

Intercept    1 0.875 0.045  19.320 <=0.001 

< 15,000 vpd 0 

15,000~30,000 1 Average ADT AVGADT 

>= 30,000 vpd 2 

2 0.120 0.029 1.127 4.097 <=0.001 

Urban 1 
Urban/Rural URBRUR 

Rural 0 

 
1 0.190 0.032 1.210 6.018 <=0.001 

Business 1 Land Use of 
Surrounding Area 

LOCATYPE 
Other 0 

 
1 0.038 0.038 1.038 0.998 0.319 

> 4 1 Number of Lanes on 
Major Road 

LANE 
<= 4 0 

 
1 0.310 0.050 1.363 6.211 <=0.001 

> 45 1 Posted Speed on 
Major Road 

SPEED 
<= 45 0 

 
1 -0.184 0.039 0.832 -4.757 <=0.001 

Divided 1 Presence of Median 
on 

Major Road 
MEDIAN 

Undivided 0 

 
1 0.400 0.034 1.491 11.751 <=0.001 

Paved 1 
Shoulder Treatment SHOULD 

Other 0 

 
1 -0.099 0.035 0.905 -2.828 0.005 

 



 

Table 7.2.  Analysis of Variance (Total, Before) 

Square of Variation Sum of Squares DOF Mean Square F-Stat P-Value 

Regression 44.101 7 6.30 63.14 < 0.001 
Error 44.001 441 0.10   

Total 88.103 448       
 

 

Figure 7.1. Residual for Lognormal Model (Total, Before) 

From Table 7.1, it can be seen clearly that all the estimated parameters (except 

LOCALTYPE) were significant at more than 99 % confidence level, while the estimated 

parameter for LOCALTYPE is significant at only 68 % confident level. The variable 

LOCALTYPE is included in the “before” model to be consistent with the statistical 

model presented in Chapter 6. The contents in Table 7.1 are the same as those in Table 

6.21, except the last two columns, which are explained in Table 7.3. 

The relative effect of ADT is 1.127. This means that the average number of crashes 

would increase by 12.7% if the ADT increases from the low level to the medium level 

given that all the other variables are unchanged. Similarly, if ADT increases from the 

medium level to the high level, the average number of crashes would increase by 12.7%. 
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Intersections in urban areas would have 21 % more crashes than similar intersections in 

rural areas. Intersections in business area would have about 4% more crashes than similar 

ones in other areas. Intersections with median on the major road would have 49% more 

crashes than similar ones without median on the major road. Similarly, more lanes means 

more crashes. However, high-speed intersections (mph > 45) have about 17% fewer 

crashes than low speed intersections (mph ≤ 45). Likewise, intersections with paved 

shoulder are safer than those with other types of shoulder. All these results are consistent 

with the results of the statistical models. 

Table 7.3. Explanation of Contents 

Column Explanation          

t-Stat t-test statistic for testing whether the parameter is 0. t is computed as the 
ratio of the point estimate of a parameter to the standard error of the 
parameter. Note that this is usually a partial or marginal test, because the 
point estimate of a parameter depends on all the other regressor variables 
that are in the regression model. 

 
P-value The probability of obtaining a t-test statistic greater than the obtained, 

given that the true parameter is 0. A small P-value indicates that the true 
  parameter is not 0.         
 

7.2.1.2. The Model for After Signalization 

The “after” model for all crashes was developed through a similar procedure as the 

“before” model. In particular, all the seven variables were initially included and a 

lognormal regression was performed. It turned out that variable SPEED is insignificant. 

With variable SPEED removed, the lognormal regression was run again. As the “before” 

model, the statistics indicate that the lognormal regression is an appropriate choice. The 

obtained parameter estimates along with statistics and variances are presented in Tables 

7.4 and 7.5, respectively. Residuals were also computed and plotted in Figure 7.2. Again, 

all residuals are between 1 and –1, and most are close to 0. This indicates the model fits 

the data satisfactorily.  

The P-values in Table 7.4 indicates that all the estimated parameters included in the 

model were significant at more than 99 % confidence level. 



  

Table 7.4. Estimated Parameters of Final Lognormal Model (All, After) 
 

Predictor Variable Name Level Value DOF 
Coefficient 
Estimate 

Standard 
Error 

Relative 
Effect 

t-Stat P-value 

Intercept    1 0.679 0.042  16.135 <=0.001 

< 15,000 vpd 0 

15,000~30,000 1 Average ADT AVGADT 

>= 30,000 vpd 2 

2 0.260 0.026 1.297 10.090 <=0.001 

Urban 1 
Urban/Rural URBRUR 

Rural 0 

 
1 0.148 0.030 1.160 4.878 <=0.001 

Business 1 Land Use of 
Surrounding Area 

LOCATYPE 
Other 0 

 
1 0.184 0.036 1.202 5.149 <=0.001 

> 4 1 Number of Lanes on 
Major Road 

LANE 
<= 4 0 

 
1 0.204 0.042 1.227 4.921 <=0.001 

> 45 1 Posted Speed on 
Major Road 

SPEED 
<= 45 0 

 
1 ~ ~ ~ ~ ~ 

Divided 1 Presence of Median 
on 

Major Road 
MEDIAN 

Undivided 0 

 
1 0.428 0.033 1.534 12.970 <=0.001 

Paved 1 
Shoulder Treatment SHOULD 

Other 0 

 
1 -0.109 0.032 0.897 -3.374 0.001 

 
 



  

Table 7.5.  Analysis of Variance (Total, After) 

Square of Variation Sum of Squares DOF Mean Square F-Stat P-Value 

Regression 66.250 6 11.042 117.303 < 0.001 
Error 41.699 442 0.094   

Total 107.979 448       
 

 

 
  Figure 7.2.  Residual for Lognormal Model (Total, After) 

The relative effect of ADT is 1.297. This means that the average number of crashes 

would increase by 29.7% if the ADT increases by one level (i.e., from the low level to the 

medium level, or from the medium level to the high level), given that all the other 

variables are unchanged. Urban area intersections would have 16% more crashes than 

similar rural area intersections. Intersections in business area would have about 20% 

more crashes than similar ones in other areas. Intersections with median on the major 

road would have about 53% more crashes than similar ones without median on the major 

road. Similarly, more lanes means more crashes. As mentioned earlier, speed is 

insignificant and is excluded from the model. Intersections with paved shoulder are about 

9% safer than those with other types of shoulder, in terms of number of all crashes.  
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7.2.1.3.  Comparison of All Crashes “Before” and “After” Models 

The relative effects of each model variable, in the “before” and “after” models, are in the 

same direction. The relative effect of ADT is 1.127 and 1.297 for the “before” and “after” 

models, respectively. This implies that intersection crashes are more sensitive to ADT 

changes after signalization. Similar conclusion can be observed for LOCALTYPE. In 

other words, variable LOCALTYPE is more significant after signalization. The variables 

LANE and SPEED are just the opposite. That is, intersection crashes are more sensitive 

to LANE or SPEED changes before signalization. In fact, intersection crashes are 

insensitive to SPEED after signalization. The relative effects of URBRUR on “before” 

and “after” crashes are pretty the same, indicating that intersection crashes are not very 

sensitive to whether intersections are in an urban area or in a rural area. Similar 

conclusions can be derived for MEDIAN and SHOULDER.  

7.2. 2.  Models for Angle Crashes 

7.2.2.1. The Model for Before Signalization 

Initial run of the lognormal regression included all the seven variables. Run results 

indicated that parameters for four variables AVGADT, SPEED, LANE and 

LOCALTYPE are insignificant. However, only three variables SPEED, LANE and 

LOCALTYP have been removed from the model. Variable AVGADT is included in the 

model in order to be consistent with the statistical model. The model with the remaining 

four variables had most residuals closed to zero, as in the case of total crashes, indicating 

that the model fits the data satisfactorily. The regression results are presented in Tables 

7.6 and 7.7. 

 



  

Table 7.6. Estimated Parameters of Lognormal Model (Angle, Before) 
 

Predictor Variable Name Level Value DOF 
Coefficient 
Estimate 

Standard 
Error 

Relative 
Effect 

t-Stat P-value 

Intercept    1 -0.304 0.050  -6.117 <=0.001 

< 15,000 vpd 0 

15,000~30,000 1 Average ADT AVGADT 

>= 30,000 vpd 2 

2 0.023 0.040 1.023 0.574 0.566 

Urban 1 
Urban/Rural URBRUR 

Rural 0 

 
1 0.218 0.046 1.243 4.713 <=0.001 

Business 1 Land Use of 
Surrounding Area 

LOCATYPE 
Other 0 

 
1 ~ ~ ~ ~ ~ 

> 4 1 Number of Lanes on 
Major Road 

LANE 
<= 4 0 

 
1 ~ ~ ~ ~ ~ 

> 45 1 Posted Speed on 
Major Road 

SPEED 
<= 45 0 

 
1 ~ ~ ~ ~ ~ 

Divided 1 Presence of Median 
on 

Major Road 
MEDIAN 

Undivided 0 

 
1 0.523 0.050 1.686 10.350 <=0.001 

Paved 1 
Shoulder Treatment SHOULD 

Other 0 

 
1 -0.379 0.051 0.684 -7.453 <=0.001 

 
 



  

Table 7.7.  Analysis of Variance (Angle, Before) 

Square of Variation Sum of Squares DOF    Mean Square F-Stat P-Value 

Regression 41.595 4 10.399 37.279  < 0.001 
Error 96.775 440 0.22   

Total 138.37 444       
 

7.2.2.2. The Model for After Signalization 

Initial run of the lognormal regression included all the seven variables. Run results 

indicated that parameters for three variables SPEED, SHOULD and URBRUR are very 

insignificant, and these three variables should be removed from the model. As in the 

previous cases, most residuals are closed to zero for the lognormal model with four 

variables, indicating that the model fits the data satisfactorily. The regression results are 

presented in Tables 7.8 and 7.9 

7.2.2.3. Comparison of Angle Crashes “Before” and “After” Models  

In both the “before” and “after” models, medium is the only variable that is extreme 

significant, and SPEED is the only variable that is insignificant, Variables URBRUR and 

SHOULD are both significant in the “before” model but insignificant in the “after” 

model. To the contrary, variables LOCALTYPE and LANE are both insignificant in the 

“before” model but significant in the “after” model. Variable ADT is significant at more 

than 99% confidence level in the “after” model, but at pretty low (43%) confidence level 

in the “before” model. 

 
 
 
 
 



  

Table 7.8. Estimated Parameters of Lognormal Model (Angle, After) 
 

Predictor Variable Name Level Value DOF 
Coefficient 
Estimate 

Standard 
Error 

Relative 
Effect 

t-Stat P-value 

Intercept    1 -0.757 0.051  -14.85 <=0.001 

< 15,000 vpd 0 

15,000~30,000 1 Average ADT AVGADT 

>= 30,000 vpd 2 

2 0.220 0.035 1.247 6.370 <=0.001 

Urban 1 
Urban/Rural URBRUR 

Rural 0 

 
1 ~ ~ ~ ~ ~ 

Business 1 Land Use of 
Surrounding Area 

LOCATYPE 
Other 0 

 
1 0.234 0.044 1.264 5.264 <=0.001 

> 4 1 Number of Lanes on 
Major Road 

LANE 
<= 4 0 

 
1 0.238 0.051 1.269 4.649 <=0.001 

> 45 1 Posted Speed on 
Major Road 

SPEED 
<= 45 0 

 
1 ~ ~ ~ ~ ~ 

Divided 1 Presence of Median 
on 

Major Road 
MEDIAN 

Undivided 0 

 
1 0.201 0.041 1.222 4.956 <=0.001 

Paved 1 
Shoulder Treatment SHOULD 

Other 0 

 
1 ~ ~ ~ ~ ~ 

 
 



  

Table 7.9. Analysis of Variance (Angle, After) 

Square of Variation Sum of Squares DOF    Mean Square F-Stat P-Value 

Regression 42.833 4 10.71 35.365 < 0.001 
Error 132.622 438 0.30   

Total 175.455 442       
 

7.2.3.  Models for Left-turn Crashes 

7.2.3.1. The Model for Before Signalization 

Initial run of the lognormal regression included all the seven variables. Run results 

indicated that two variables SPEED and URBRUR are very insignificant, and are 

removed from the model. The model with the remaining five variables was rerun, and 

again, most residuals are closed to zero, indicating the model fits the data satisfactorily. 

The regression results are presented in Tables 7.10 and 7.11. All the remaining variables 

are significant at more than 98% confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table 7.10. Estimated Parameters of Lognormal Model (Left-turn, Before) 
 

Predictor Variable Name Level Value DOF 
Coefficient 
Estimate 

Standard 
Error 

Relative 
Effect 

t-Stat P-value 

Intercept    1 -0.664 0.063  -10.50 <=0.001 

< 15,000 vpd 0 

15,000~30,000 1 Average ADT AVGADT 

>= 30,000 vpd 2 

2 0.178 0.047 1.195 3.825 <=0.001 

Urban 1 
Urban/Rural URBRUR 

Rural 0 
1 ~ ~ ~ ~ ~ 

Business 1 Land Use of 
Surrounding Area 

LOCATYPE 
Other 0 

 
1 0.192 0.055 1.212 3.482 0.001 

> 4 1 Number of Lanes on 
Major Road 

LANE 
<= 4 0 

 
1 0.351 0.076 1.421 4.638 <=0.001 

> 45 1 Posted Speed on 
Major Road 

SPEED 
<= 45 0 

 
1 ~ ~ ~ ~ ~ 

Divided 1 Presence of Median 
on 

Major Road 
MEDIAN 

Undivided 0 

 
1 0.405 0.051 1.500 7.915 <=0.001 

Paved 1 
Shoulder Treatment SHOULD 

Other 0 

 
1 -0.128 0.052 0.880 -2.474 0.014 

 
 



  

Table 7.11.  Analysis of Variance (Left-turn, Before) 

Square of Variation Sum of Squares DOF    Mean Square F-Stat P-Value 

Regression 48.244 5 9.65 41.857 < 0.001 
Error 100.967 438 0.231   

Total 149.211 443       
 

7.2.3.2. The Model for After Signalization 

Initial run of the lognormal regression included all the seven variables. Run results 

indicated that the same two variables SPEED and URBRUR are very insignificant, and 

are removed from the model. The lognormal regression was run again. As in the previous 

models, most residuals are closed to zero, indicating the model fits the data satisfactorily. 

The regression results are presented in Tables 7.12 and 7.13. It can be seen from Table 

7.13 that LOCAL TYPE is significant at about 80% confidence level, while the other 4 

remaining parameters are significant at more than 99% confidence level. 

7.2.3.3. Comparison of Left-turn Crashes “Before” and “After” Models  

Variables URBRUR and SPEED are very insensitive both before and after signalization, 

and were excluded from the models. All the remaining model parameters are pretty 

significant. In terms of relative effect, median has the largest impact on intersection 

crashes both before and after signalization. In particular, intersections with median on the 

major road would have 50% and 92.4% more crashes than those without median before 

and after signalization, respectively. Left-turn intersection crashes are less sensitive to 

ADT, MEDIUM and SHOULD but more sensitive to LOCATYPE and LANE before 

signalization than after signalization. It is worth pointing out that intersections with paved 

shoulder would have 12% and 24% fewer left-turn crashes than similar ones with other 

type of shoulder, before and after signalization, respectively. 



  

Table 7.12. Estimated Parameters of Lognormal Model (Left-turn, After) 
 

Predictor Variable Name Level Value DOF 
Coefficient 
Estimate 

Standard 
Error 

Relative 
Effect 

t-Stat P-value 

Intercept    1 -1.101 0.080  -13.73 <=0.001 

< 15,000 vpd 0 

15,000~30,000 1 Average ADT AVGADT 

>= 30,000 vpd 2 

2 0.271 0.056 1.311 4.815 <=0.001 

Urban 1 
Urban/Rural URBRUR 

Rural 0 

 
1 ~ ~ ~ ~ ~ 

Business 1 Land Use of 
Surrounding Area 

LOCATYPE 
Other 0 

 
1 0.088 0.070 1.092 1.263 0.207 

> 4 1 Number of Lanes on 
Major Road 

LANE 
<= 4 0 

 
1 0.313 0.081 1.367 3.861 <=0.001 

> 45 1 Posted Speed on 
Major Road 

SPEED 
<= 45 0 

 
1 ~ ~ ~ ~ ~ 

Divided 1 Presence of Median 
on 

Major Road 
MEDIAN 

Undivided 0 

 
1 0.654 0.063 1.924 10.439 <=0.001 

Paved 1 
Shoulder Treatment SHOULD 

Other 0 

 
1 -0.274 0.061 0.760 -4.529 <=0.001 

 
 



  

Table 7.13.  Analysis of Variance (Left-turn, After) 

Square of Variation Sum of Squares DOF    Mean Square F-Stat P-Value 

Regression 103.328 5 20.67 61.212 < 0.001 
Error 145.17 430 0.34   

Total 248.498 435       
 

7.2.4.  Models for Rear-end Crashes 

7.2.4.1. The Model for Before Signalization 

Initial run of the lognormal regression included all the seven variables. Run results 

indicated that two variables SHOULD and URBRUR are very insignificant, and are 

removed from the model. The regression was run again and results are presented in 

Tables 7.14 and 7.15. All the remaining variables are significant at more than 99% 

confidence level, except that the confidence level for MEDIAN is only 70%. This 

variable was kept in the model in order to be consistent with the statistical model for 

before signalization for rear-end crashes. 

7.2.4.2. The Model for After Signalization 

Initial run of the lognormal regression included all the seven variables. Run results 

indicated that two variables URBRUR and LOCATYPE are insignificant, and were 

removed from the model. The lognormal regression was run again with the remaining 

five variables. The regression results are presented in Tables 7.16 and 7.17. All the 

remaining variables are significant with a confidence level of at least 80 %. In fact, all the 

remaining model parameters are at a confidence level of at least 97%, except for SPEED 

with an 84% confidence level. 

 

 

 



  

Table 7.14. Estimated Parameters of Lognormal Model (Rear-end, Before) 
 

Predictor Variable Name Level Value DOF 
Coefficient 
Estimate 

Standard 
Error 

Relative 
Effect 

t-Stat P-value 

Intercept    1 -0.910 0.060  -15.07 <=0.001 

< 15,000 vpd 0 

15,000~30,000 1 Average ADT AVGADT 

>= 30,000 vpd 2 

2 0.507 0.040 1.660 12.716 <=0.001 

Urban 1 
Urban/Rural URBRUR 

Rural 0 

 
1 ~ ~ ~ ~ ~ 

Business 1 Land Use of 
Surrounding Area 

LOCATYPE 
Other 0 

 
1 0.345 0.052 1.413 6.674 <=0.001 

> 4 1 Number of Lanes on 
Major Road 

LANE 
<= 4 0 

 
1 0.201 0.068 1.223 2.960 0.003 

> 45 1 Posted Speed on 
Major Road 

SPEED 
<= 45 0 

 
1 -0.338 0.052 0.713 -6.453 <=0.001 

Divided 1 Presence of Median 
on 

Major Road 
MEDIAN 

Undivided 0 

 
1 -0.049 0.047 0.952 -1.041 0.298 

Paved 1 
Shoulder Treatment SHOULD 

Other 0 

 
1 ~ ~ ~ ~ ~ 

 
 



  

Table 7.15.  Analysis of Variance (Rear-end, Before) 

Square of Variation Sum of Squares DOF    Mean Square F-Stat P-Value 

Regression 84.252 5 16.85 87.20 < 0.001 
Error 85.605 443 0.19   

Total 169.857 448       
 

7.2.4.3. Comparison of Rear-end Crashes “Before” and “After” Models  

Variable URBRUR is very insignificant in both the “before’ and “after” models and is 

deleted from consideration. All the remaining variables are pretty significant. ADT has 

significant relative effects both before and after signalization. Specifically, number of 

rear-end intersection crashes would increase by almost 60% both before and after 

signalization as ADT increases from low to medium level or from medium to high level. 

One observation that is worth noting is that before signalization, intersections with 

median on the major road have about 5% fewer rear-end crashes than similar 

intersections without median on the major road, but after signalization, intersections with 

median on the major road have 65.7% more rear-end crashes than similar intersections 

without median on the major road. Rear-end intersection crashes are very sensitive to 

LOCATYPE before signalization, but insensitive to LOCATYPE after signalization. 

 
 
 
 
 
 
 
 

 



  

Table 7.16. Estimated Parameters of Lognormal Model (Rear-end, After) 
 

Predictor Variable Name Level Value DOF 
Coefficient 
Estimate 

Standard 
Error 

Relative 
Effect 

t-Stat P-value 

Intercept    1 -0.305 0.043  -7.092 <=0.001 

< 15,000 vpd 0 

15,000~30,000 1 Average ADT AVGADT 

>= 30,000 vpd 2 

2 0.461 0.034 1.586 13.504 <=0.001 

Urban 1 
Urban/Rural URBRUR 

Rural 0 

 
1 ~ ~ ~ ~ ~ 

Business 1 Land Use of 
Surrounding Area 

LOCATYPE 
Other 0 

 
1 ~ ~ ~ ~ ~ 

> 4 1 Number of Lanes on 
Major Road 

LANE 
<= 4 0 

 
1 0.122 0.055 1.130 2.211 0.028 

> 45 1 Posted Speed on 
Major Road 

SPEED 
<= 45 0 

 
1 0.066 0.046 1.068 1.425 0.155 

Divided 1 Presence of Median 
on 

Major Road 
MEDIAN 

Undivided 0 

 
1 0.505 0.045 1.657 11.343 <=0.001 

Paved 1 
Shoulder Treatment SHOULD 

Other 0 

 
1 -0.294 0.042 0.745 -7.082 <=0.001 

 
 



  

Table 7.17.  Analysis of Variance (Rear-end, After) 

Square of Variation Sum of Squares DOF    Mean Square F-Stat P-Value 

Regression 115.241 5 23.048 138.965 < 0.001 
Error 73.640 443 0.166   

Total 188.881 448       
 

7.2.5.  Models for Other Crashes 

7.2.5.1. The Model for Before Signalization 

As usual, the initial run of the lognormal regression included all the seven variables. Run 

results indicated that three variables LOCALTYPE, LANE and SHOULD are very 

insignificant, and have been removed from the model. The lognormal regression was run 

again and results are presented in Tables 7.18 and 7.19. All the remaining parameters are 

significant at more than 93% confidence level.  

7.2.5.2. The Model for After Signalization 

Again, the initial run of the lognormal regression included all the model parameters. Run 

results indicated that four variables LOCALTYPE, SPEED, MEDIUM and SHOULD are 

insignificant, and are deleted from the model. The lognormal regression was run again 

with the remaining four variables. The regression results are presented in Tables 7.20 and 

7.21. All the remaining model parameters are significant with a confidence level of at 

least 99 %. 



  

Table 7.18. Estimated Parameters of Lognormal Model (Other, Before) 
 

Predictor Variable Name Level Value DOF 
Coefficient 
Estimate 

Standard 
Error 

Relative 
Effect 

t-Stat P-value 

Intercept    1 -0.760 0.045  -16.99 <=0.001 

< 15,000 vpd 0 

15,000~30,000 1 Average ADT AVGADT 

>= 30,000 vpd 2 

2 0.377 0.034 1.457 11.098 <=0.001 

Urban 1 
Urban/Rural URBRUR 

Rural 0 

 
1 0.326 0.040 1.386 8.258 <=0.001 

Business 1 Land Use of 
Surrounding Area 

LOCATYPE 
Other 0 

 
1 ~ ~ ~ ~ ~ 

> 4 1 Number of Lanes on 
Major Road 

LANE 
<= 4 0 

 
1 ~ ~ ~ ~ ~ 

> 45 1 Posted Speed on 
Major Road 

SPEED 
<= 45 0 

 
1 -0.146 0.047 0.865 -3.071 0.002 

Divided 1 Presence of Median 
on 

Major Road 
MEDIAN 

Undivided 0 

 
1 0.080 0.043 1.083 1.838 0.067 

Paved 1 
Shoulder Treatment SHOULD 

Other 0 

 
1 ~ ~ ~ ~ ~ 

 



  

Table 7.19. Analysis of Variance (Other, Before) 

Square of Variation Sum of Squares DOF    Mean Square F-Stat P-Value 

Regression 45.858 4 11.464 70.121 < 0.001 
Error 71.774 439 0.163   

Total 117.632 443       
 

7.2.5.3. Comparison of Other Crashes “Before” and “After” Models  

Two variables LOCALTYPE and SHOULD are very insignificant in both the “before’ 

and “after” models and are both deleted from consideration. Two variables ADT and 

URBRUR are significant in both the “before” and “after” models. Variables SPEED and 

MEDIUM are significant before signalization but insignificant after signalization. To the 

contrary, variable LANE is insignificant before signalization but significant after 

signalization. ADT and URBRUR have the largest relative effects on intersection crashes 

both before and after signalization. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 



  

Table 7.20. Estimated Parameters of Lognormal Model (Other, After) 
 

Predictor Variable Name Level Value DOF 
Coefficient 
Estimate 

Standard 
Error 

Relative 
Effect 

t-Stat P-value 

Intercept    1 -0.697 0.042  -16.47 <=0.001 

< 15,000 vpd 0 

15,000~30,000 1 Average ADT AVGADT 

>= 30,000 vpd 2 

2 0.361 0.033 1.435 10.860 <=0.001 

Urban 1 
Urban/Rural URBRUR 

Rural 0 

 
1 0.346 0.038 1.414 9.196 <=0.001 

Business 1 Land Use of 
Surrounding Area 

LOCATYPE 
Other 0 

 
1 ~ ~ ~ ~ ~ 

> 4 1 Number of Lanes on 
Major Road 

LANE 
<= 4 0 

 
1 0.179 0.054 1.196 3.305 0.001 

> 45 1 Posted Speed on 
Major Road 

SPEED 
<= 45 0 

 
1 ~ ~ ~ ~ ~ 

Divided 1 Presence of Median 
on 

Major Road 
MEDIAN 

Undivided 0 

 
1 ~ ~ ~ ~ ~ 

Paved 1 
Shoulder Treatment SHOULD 

Other 0 

 
1 ~ ~ ~ ~ ~ 

 
 



  

Table 7.21.  Analysis of Variance (Other, After) 

Square of Variation Sum of Squares DOF    Mean Square F-Stat P-Value 

Regression 50.982 3 16.994 110.326 < 0.001 
Error 67.622 439 0.154   

Total 118.604 442       
 

7.3. Impacts of Signalization on Crashes 

Similar to the impacts of signalization on crashes for statistical models, the average 

numbers of crashes before and after signalization were estimated for all crashes and for 

each crash type for intersections with different characteristics based on lognormal 

models. Tables were calculated for the impacts of signalization on crashes for all crashes 

and each crash type. Appendix D presents the results for all crashes, angle crashes, left-

turn crashes, rear-end crashes, and all other crashes for different characteristics of 

intersections. 

Furthermore, tables with the average impacts of signalization on intersection crashes 

were calculated and are presented in Appendix E. These average impacts were estimated 

by averaging the statistical modeling and operational research modeling impacts of 

signalization on intersection crashes presented on Appendices C and D. 
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CHAPTER 8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

8.1. Summary 

This research was performed to evaluate the impacts of signalization on traffic crashes at 

intersections. A ten-year crash history database including traffic crashes from 

intersections all over Florida was used for the research. In the first phase of the research, 

a before-and-after analysis was performed to compare number of crashes and crash rates 

based on different types, severities and surrounding land uses. Distribution fitting for the 

Poisson distribution or the Negative Binomial distribution was performed based on crash 

data. The 50th and 85th percentile values were estimated from the distribution fitting. 

Then, these values were compared between the before and after period. The average 

yearly number of crashes and crash rates were also compared to explore the safety 

impacts of signalization on intersection crashes. Paired t-test was employed to determine 

if there was a statistically significant difference between the before and after period. In 

the second phase, statistical crash predictive models were developed to estimate the 

average number of crashes for all crashes, angle crashes, left-turn crashes, rear-end 

crashes, and other crashes at intersections before and after the installation of traffic 

signals. During the modeling process, Poisson regression was performed as the initial 

step, and negative binomial regression was applied where over-dispersion was tested 

existing in the crash data. The regression parameters were estimated by using the 

maximum likelihood method with SAS. The goodness-of-fit for the developed models 

were evaluated based on Pearson's R-square and likelihood ratio index. In the third phase, 

case-based crash prediction system was used to predict crash frequencies at a new 

intersection based on some known cases. In this method, the most similar intersections 

with respect to roadway environment for application to a new intersection were retrieved 

from a training database. Then, the information and knowledge from the previous cases 

were adapted or reused to solve the new case. Subsequently, the predicted crash 

frequency for the new intersection was evaluated. Once this system was ready, a testing 

database was used to estimate the number of crashes for intersections with specific 

characteristics. Lognormal modeling was performed to obtained the final results for this 

new approach. Finally, the average numbers of crashes at intersections before and after 

signalization were estimated given the intersection characteristics. The change of the 
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estimated crash frequencies before and after signalization was calculated to represent the 

impacts of signalization. The estimation of number of crashes and impacts of 

signalization at intersections were performed based on the statistical modeling approach, 

operational research modeling approach, and combining both approaches. The results for 

each one of these approaches are presented in appendices C, D, and E, respectively.  

8.2. Conclusions 

The following conclusions were made based on crash data analysis, statistical crash 

prediction modeling and operational research modeling: 

• Based on the before and after comparison of mean values, total number of crashes 

and crash rates increased after signalization. Based on the paired t-test, the 

following results were statistically significant at a 95% confidence level: total 

number of crashes increased by 21%, In reference to crash severity, the number of 

fatal crashes decreased by 13.2% and fatal crash rates decreased by 38% after 

signal installation. Non-injury crashes increased by 30% for the number of 

crashes and by 14.8% for crash rates, rear-end crashes had a 102% increase in the 

number of crashes, and a 47.6% increase in crash rates after signalization. Angle 

crashes decreased by 14% for number of crashes and by 29% for crash rates. Left 

turn crashes decreased both in number of crashes and crash rates. Sideswipe 

crashes increased by 42% in number of crashes. Right turn crash rates decrease by 

50.2%. Finally, the following results were not statistically significant at the 95% 

confidence level: the increase of total crash rates, the decrease after signalization 

of the number of right turn crashes and crashes related with pedestrian, the 

increase of crash rates for sideswipe crashes, and the decrease of crash rates for 

crashes related with pedestrian 

• In reference to crash severity, the following results were statistically significant 

based on the paired t-test at a 95% confidence level: fatal crash rates decreased by 

38% after signal installation, injury crashes had an increase of 17.2%, and non-

injury number of crashes and non-injury crash rates increased by 30% and by 

14.8%, respectively.. Finally, the following results were not statistically 
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significant at the 95% level of confidence: number of fatal crashes decreased by 

13.2%, and injury crash rates decreased by 5% after signalization. 

• In regard to surrounding land use, the impact of signalization on intersection 

crashes was found differently between rural and urban areas. In rural area, the 

number of crashes decrease was not significant while crash rates decreased 

significantly. In urban area, the number of crashes and crash rates increased 

significantly. 

• For the statistical modeling, both the “before” and “after” data for all crashes 

showed extra-variations relative to Poisson distributions. Negative binomial 

regressions were proved to be appropriate to model the data. For angle and left-

turn crashes, the before data showed extra-variation relative to Poisson 

distribution while the after data did not. For rear-end crashes, Poisson regression 

was appropriate to model the before data while negative binomial regression was 

appropriate for the after data. For all other crashes, Poisson regressions were 

appropriate for both the before and after data. 

• Regarding the relative effects of predictor variables in the statistical models and 

operational models, intersections with higher ADT on the major road would have 

more crashes than with lower ADT; intersections in urban area would have more 

crashes than in rural area; intersections located in business area would have more 

crashes than in other area; intersections with more than four lanes on the major 

road would have more crashes than those with four or less lanes; intersections 

with posted speed higher than 45 mph would have less crashes than with posted 

speed lower or equal to 45 mph; intersections with median on the major road 

would have more crashes than without median except for rear-end crashes before 

signalization statistical model; and intersections with paved shoulder would have 

less crashes than with other types of shoulder.  

• Regarding the goodness-of-fit, statistical models developed based on aggregate 

data (all crashes) performed better than models developed based on disaggregate 

data (angle, left-turn, rear-end, and other). According to likelihood ratio index, 
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models for all crashes explained more than 20% systematic variation in the crash 

data while models for angle, left-turn, and other crashes explained less than 10% 

of the systematic variation in the data. Models for rear-end crashes explained 

more than 10% systematic variation in the data. In regard to the operational 

research, lognormal models show very good fit for the data according to the p 

value  

• ADT on the major road was the only predictor variable with estimated parameters 

significant at the 5% significance level for all developed models. 

• In the before and after statistical models for all crashes, the estimated parameters 

of all seven predictor variables were significant at 20% significance level except 

for posted speed in the after model. For angle crashes, the estimated parameters of 

ADT, urban/rural, presence of median, and shoulder treatment were significant 

for the before model while ADT, land use, number of lanes and presence of 

median were significant in the after model. For left-turn crashes, the estimated 

parameters of ADT, land use, number of lanes, presence of median, and shoulder 

treatment were significant in the before and after models. For rear-end crashes, 

ADT, land use, number of lanes, posted speed and presence of median are 

significant in the before model while ADT, number of lanes, posted speed, 

presence of median and shoulder treatment were significant in the after model. 

For other crashes, the estimated parameters of ADT, urban/rural, posted speed and 

median were significant in the before model while ADT, urban/rural, and number 

of lanes are significant in the after model. 

8.3. Recommendations 

In future studies, more safety related intersection characteristics are necessary to be 

considered when doing a before-and after analysis, and/or intersection crash prediction 

modeling in order to improve the quality of the analysis and the developed models. It is 

also desirable to have a larger intersection sample. Also, it will be very interesting to 

develop models for different groups of intersections, such as three-leg or four-leg 

intersections. 
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Record Type 00 (Time Log Record) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
year = Accident Year 
month = Accident Month 
day = Accident Day 
counnumb = County Number 
citynumb = City Number 
node = Node Number 
distfrom = Distance from Node 
measure = Measurement Type 
fromnode = From Node Number 
nextnode = Next Node Number 
codeable = Codeable Non 
typefac = DOT Type Facility 
roadtype = DOT Road Type 
numblane = DOT Number of Lanes 
siteloc = DOT Site Location 
skidres = Skid Resistance 
friction = Friction Coarse 
ADT = ADT 
dotnode = DOT Node Number 
dotdist = DOT Distance to Node 
dotdirec = DOT Direction from Node (Character) 
roadnumb = DOT St Road Number 
USroad = DOT US Road Number (Character) 
rururb = DOT Rural Urban 
fedhwy = DOT Fed Hwy Sys 
travelw = DOT Travelway 
fhptroop =FHP Troop (Character) 
fhpdistr = FHP District 
accerror = Acc Error Indicator 
nodetype = Node Type 
fixttype = Fixture Type 
sideroad = Side of Road 
accsever = Accident Severity 
crosstrf = Cross Traffic 
classcat = Class Category 
milepoin = Node Milepoint A 
xtrafveh = Xtraf Veh Miles 
accsidrd = Accident Side of Road (character) 
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acclane = Accident Lane Number 
skiddate = Skid Date A 
skidnumb = Skid Number 
microID = Micro Fish ID 

Record Type 01 (Characteristics) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
weekday = Day of the Week 
houracc = Hour of Accident 
minacc = Minute of Accident 
populat =Population 
urbrur = DHSMV Urban Rural 
sitlocat = DHSMV Site Location 
harmev1 = First Harmful Event 
harmev2 = Second Harmful Event 
offon = Off On Roadway 
light = Lighting Conditions 
weather  = Weather 
roadsurf = Road Surface 
shoulder = Shoulder Type 
surfcond = Road Surface Condition 
causerd1 = First Contributing Cause Road 
causerd2  = Second Contributing Cause Road 
causenv1 = First Contributing Cause Environment 
causenv2 = Second Contributing Cause Environment 
trafctr1 = First Traffic Control 
trafctr2 = Second Traffic Control 
trafchar = Trafficway Character 
numlanes = DHSMV Number of Lanes 
dividnot = DHSMV Divided Not 
roadsys = DHSMV Road Sys Indicator 
invagent = Investigating Agency 
injursev = Injury Severity 
damagsev = Damage Severity 
insurcod = Insurance Code (Character) 
faultcod = Fault Code 
alcohol = Alcohol Involved 
damagamt = Total Damage Amount 
vehdamag = Total Vehicle Damage Amount 
propdam  = Total Property Damage Amount 
totpers = Total Persons 
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totdriv = Total Drivers 
totveh = Total Vehicles 
totfatal = Total Fatalities 
totnonfa = Total Non Traff Fatals 
totinjur = Total Injuries 
totpedes = Total Pedestrian 
totcycli = Total Pedalcyclist 
invagnum = Investigating Agy Number 
invcomp = Investigation Complete 
hitrun = Hit and Run 
locatype = Location Type 

Record Type 02 (Vehicle Record) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
formsecn = Form Section Number 
vehowndr = Vehicle Owner Driver Same 
vehdract = Vehicle Driver Action 
vehtype = Vehicle Type 
directrv = Direction of Travel (character) 
estspeed = Estimated Speed 
postsped  = Posted Speed 
estvehdm = Estimated Vehicle Damage 
damtype = Damage Type 
pointimp = Point of Impact 
vehmov =Vehicle Movement 
vehfunc = Vehcile Function 
vehcaus1 = First Contributing Cause Vehicle 
vehcaus2 = Second Contributing Cause Vehicle 
vehrdloc = Vehicle Roadway Location 
hazarmat = Hazardous Material 
totoccup = Total Occupants 
totoccsf = Total Occupants Using Safe 
movviol = Moving Violation 
vehfault = Vehicle Fault code 
vehuse = Vehicle Use 
placar = Placarded 
oldhazar = Old Hazardous Material 

Record Type 03 (Towed Record) 
rectype  = Record Type 
accnumb  = Accident Number 
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distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
towtype = Towed Type 
towdamag = Towed Damage Amount 

Record Type 04 (Driver Record) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
drvage = Driver’s Age 
drvlictp = Driver License Type 
drvbacts = Driver Bac Test 
drvbacrs = Driver Bac Results 
drvalcol = Driver Alcohol Drug 
drvphdef = Driver Physical Defects 
drvresid = Driver Residence 
drvrace = Driver Race 
drvsex = Driver Sex 
drvinjsv = Driver Injury Severity 
safeeq1 = First Driver Safe Equipment Used 
safeeq2 = Second Driver safe Equipment Used 
drveject = Driver Eject Code 
drvabqst = Driver Ability Question 
drvcaus1 = First Contributing Cause Driver 
drvcaus2 = Second Contributing Cause Driver 
drvcaus3 = Third Contributing Cause Driver 
drvofcg1 = First Driver Offense Charged 
drvofcg2 = Second Driver Offense Charged 
drvofcg3 = Third Driver Offense Charged 
reqendor = Required Endorsement 

Record Type 05 (Passenger Record) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
pasgage = Passengers Age 
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pasgloc = Passengers Location 
pasgijsv = Passengers Injury Severity 
pasgeq1 = First Passengers Safe Equipment 
pasgeq2 = Second Passengers Safe Equipment 
pasgejct = Passengers Eject Code 

Record Type 06 (Pedestrian Record) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
pedage = Pedestrian Age 
pedbacts =Pedestrian Bac Test Type 
pedbacrs = Pedestrian Bac Test Result 
pedalcol = Pedestrian Alcohol Drug 
pedphdef = Pedestrian Physical Defect 
pedresid = Pedestrian residence 
pedrace = Pedestrian Race 
pedsex = Pedestrian Sex 
pedijsv = Pedestrian Injury Severity 
pedcaus1 = First Contributing Cause Pedestrian 
pedcaus2 = Second Contributing Cause Pedestrian 
pedcaus3 = Third contributing Cause Pedestrian 
pedact = Pedestrian Action 
pedofcg1 = First Offense Pedestrian Charges 
pedofcg2 = Second Offense Pedestrian Charges 
pedofcg3 = Third Offense Pedestrian Charges 

Record Type 07 (Property Damage Record) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
propdam = Property Damage Amount 

Record Type 09  (RCI Features I) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
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subsecID = DOT Subsection Number 
milepost = Milepost 
accesctr =Access Control Type 
censuscd = Census Place Code 
urbnumb = Urban Area Number 
prevland = Prevailing Land use 
costcntn = Cost Center Number 
statexc = Stationing Exceptions (Character) 
assocexc =Associated Station (Character) 
widshsh = Width Shoulder to Shoulder 
thrsurfw  = Thru Surface Width 
auxlantp = Auxiliary Lane Type 
numauxln = Number Auxiliary Lanes 
auxlnw = Auxiliary Lane Width 
hwyshtp1 = Hwy Shoulder Type 
hwyshtp2 = Hwy Shoulder Type Two 
hwyshtp3 = Hwy Shoulder Type Three 
hwyshw1 = Hwy Shoulder Width 
hwyshw2 = Hwy Shoulder Width Two 
hwyshw3 = Hwy Shoulder Width Three 
medianw  = Median Width 
mediantp = Median Type 
utstrpw = Utility Strip Width 
insshtp1 = Inside Shoulder Type 
insshtp2 = Inside Shoulder Type Two 
insshtp3 = Inside Shoulder Type Three 
insshw1 = Inside Shoulder Width 
insshw2 = Inside Shoulder Width Two 
insshw3 = Inside Shoulder Width Three 
hordeg = Horizontal Degree Curve 
horptint = Horizontal PT Intersection 
superelv = Super Elevation 
percgrad = Percent of Grade 
vertcudf = Vertical Curve Deflect 
vertptin = Vertical PT Intersection 

Record Type 10 (RCI Features II) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
passdist = Passing Sight Distance 
rdconsis = Roadway Consistency  
rdalign = Roadway Alignment 
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stopdist = Stopping Sight Distance  
pavcond = Pavement Condition 
pavindex = Pavement Index 
pvsurftp = Pavement Surface Type 
pavsurf1 = Pavement Surface 1 (Character) 
pavsurf2 = Pavement Surface 2 (Character) 
pvlayer1 = Pavement Layer 1  
pvlayer2 = Pavement Layer 2 
structn = Structure Number 
undrpasn = Underpass Number 
datspap = Date Speed Approved 
datspimp = Date Speed Implemented 
maxpstsp = Maximum Posted Speed 
minpstsp = Minimum Posted Speed 
parkap = Parking Approved 
parkimp = Parking Implemented 
parklnw = Parking Lane Width 
parkrest = Parking Restriction Time 
typepark = Type Parking 
schsplim = School Speed Limit 
tfactor = T Factor 
tfacthg = T Factor High 
tfactlow = T Factor Low 
strpdbwt = Stripes Double White 
strpdbyw = Stripes Double Yellow 
strpskwb = Stripes Skip Wt Blk 
strp skwt = Stripes Skip White 
strp skyw = Stripes Skip Yellow 
strp sgwt = Stripes Single White 
strpsgyw = Stripes Single Yellow 

Record Type 11 (RCI Point) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
nodeID = Node ID no City Boundary 
reasadj = Reason for Adjustment 
lengtadj = Length of Adjustment 
unitmeas = Unit of Measurement (Character) 
ninsleg = Number of Insect Legs 
intercn = Interchange Number 
tpinterc = Type of Interchange 
rrgradn = National RR Grade Number 
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trafcnst = Traffic Count Station 
datetnap = Date Turn Approved 
datetnim = Date Turn Implemented 
limtnrst = Limited Turn Restrict 
turnrest = Turning Restriction 
ngrndsig = Num Ground signs 
signcd1 = STD Sign Code One 
signcd2 = STD Sign Code Two 
signcd3 = STD Sign Code Three 
cfmutcd1 = Non Conform MUTCD One1 
cfmutcd2 = Non Conform MUTCD Two2 
cfmutcd3 = Non Conform MUTCD Three3 
sgillum1 = Sign Illumination One 
sgillum2 = Sign Illumination Two 
sgillum3 = Sign Illumination Three 
sgsupor1 = Sign Support One 
sgsupor2 = Sign Support Two 
sgsupor3 = Sign Support Three   
varmesg1 = Variable Message One 
varmesg2 = Variable Message Two 
varmesg3 = Variable Message Three 
nocounsg = Non Counted Signal 
trafsgtp = Traffic Signal Type 
wrongway  = Wrong Way Detector 
pointADT = Point ADT 
mainbgmp = Main Beginning MP 
mainedmp = Main Ending MP 
subsectp = Subsection Type 
atencond = Attenuator Condition 
atenindt = Attenuator Install Date  
atenrpdt = Attenuator Repair Date 
atenloc = Attenuator Location 
atentp = Attenuator Type 
genvehdr  = General Vehicle Direction 
tpinter = Type of Intersection 

Record Type 12 (RCI Total) 
rectype  = Record Type 
accnumb  = Accident Number 
distID = DOT District Number 
countyID = DOT County Number 
secID = DOT Section Number 
subsecID = DOT Subsection Number 
milepost = Milepost 
natenua = Number of Attenuators   
barwallg = Barrier Wall Length 
dbgrlg = Double Guardrail Length 
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miscgrlg = Misc Guardrail Length 
stdgrlg = Stand Guardrail Length 
nbrgendl = Number Bridge End Delines 
ngtdhaz = Number GTD Pst Hzrd Delin 
n24ftcrw = Number 24 foot Crosswalks 
n36ftcrw = Number 36 foot Crosswalks 
n48ftcrw = Number 48 foot Crosswalks 
n60ftcrw = Number 60 foot Crosswalks 
n72ftcrw = Number 72 foot Crosswalks 
n12ftstb = Number 12 foot Stop Bars   
n18ftstb = Number 18 foot Stop Bars 
n24ftstb = Number 24 foot Stop Bars 
n36ftstb = Number 36 foot Stop Bars  
n48ftstb = Number 48 foot Stop Bars 
nraismrk = Number Raised Markings 
ncantliv = Number Cantilever Structs 
ngrdpost  = Number Ground Post 
grdpto30 = Ground Post Over 30 
grdptu30 = Ground Post Under 30 
noverlan = Number of Overlane Structs 
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NO. VARIABLE DESCRIPTION 

1 ACCNUMB ACCIDENT NUMBER 
2 DISTID DOT DISTRICT NUMBER 
3 COUNTYID DOT COUNTY NUMBER 
4 SECID DOT SECTION NUMBER 
5 SUBSECID DOT SUBSECTION NUMBER 
6 MILEPOST MILEPOST OF ACCIDENT SITE 
7 YEAR ACCIDENT YEAR 
8 ROADTYPE DOT ROAD TYPE 
9 NUMBLANE DOT NUMBER OF LANE 
10 SITELOC DOT SITE LOCATION 
11 ADT ADT OF MAJOR ROAD 
12 RURURB DOT RURAL/URBAN 
13 FEDHWY DOT FED HWY SYS 
14 TRAVELW DOT TRAVEL WAY  
15 ACCSEVER ACCIDENT SEVERITY 
16 CROSSTRF CROSS TRAFFIC 
17 CLASSCAT CLASS CATEGORY 
18 URBRUR DHSMV RURAL/URBAN 
19 SITLOCAT DHSMV SITE LOCATION 
20 HARMEV1 FIRST HARMFUL EVENT 
21 ROADSURF ROAD SURFACE 
22 SHOULDER SHOULDER TREATMENT TYPE 
23 TRAFCTR1 FIRST TRAFFIC CONTROL 
24 TRAFCHAR TRAFFIC WAY CHRACTER 
25 NUMLANES DHSMV NUMBER OF LANE 
26 DIVIDNOT DHSMV DIVIDED/NOT 
27 ROADSYS ROADWAY SYSTEM INDICATOR 
28 INJURSEV INJURY SEVERITY 
29 DAMAGSEV DAMAGE SEVERITY 
30 ALCOHOL ALCOHOL INVOLVED/NOT 
31 DAMAGAMT TOTAL DAMAGE AMOUNT 
32 VEHDAMAG TOTAL VEHICLE DAMAGE AMOUNT 
33 PROPDAM TOTAL PROPERTY DAMAGE 
34 TOTFATAL TOTAL FATALITIES 
35 TOTINJUR TOTAL INJURIES 
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Preliminary Selected Variables (Continued) 

NO. VARIABLE DESCRIPTION 

36 LOCATYPE LOCATION TYPE 
37 VEHTYPE VVEHICLE TYPE 
38 ESTSPEED ESTIMATED SPEED 
39 POSTSPED POSTED SPEED 
40 POINTIMP POINT OF IMPACT 
41 ACCESCTR ACCESS CONTROL TYPE 
42 PREVLAND PREVAILING LAND USE 
43 HWYSHTP1 HIGHWAY SHOULDER TYPE 
44 HWYSHW1 HIGHWAY SHOULDER WIDTH 
45 MEDIANW MEDIAN WIDTH 
46 MEDIANTP MEDIAN TYPE 
47 HORPTINT HORIZONTAL PT INTERSECTION 
48 SUPERELV SUPER ELEVATION 
49 VERTPTIN VERTICAL PT INTERSECTION 
50 PASSDIST PASSING DISTANCE 
51 RDCONSIS ROAD CONSISTENCY 
52 RDALIGN ROADWAY ALIGNMENT 
53 STOPDIST STOPPING DISTANCE 
54 PAVCOND PAVEMENT CONDITION 
55 PAVINDEX PAVEMENT INDEX 
56 PVSURFTP PAVEMENT SURFACE TYPE 
57 MAXPSTSP MAXIMUM POSTED SPEED 
58 MINPSTSP MINIMUM POSTED SPEED 
59 NINSLEG NUMBER OF INTERSECTION LEGS 
60 TRAFSGTP TRAFFIC SIGNAL TYPE 
61 POINTADT POINT ADT 

62 TPINTER TYPE OF INTERSECTION 
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Total Crashes – Table One 
Statistical Modeling 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 2.94 2.49 -0.45 -15.30 

15000 to ≤ 30000 3.89 4.06 0.17 4.40 Divided 

> 30000 5.13 6.60 1.47 28.69 

≤ 15000 2.24 2.07 -0.16 -7.25 

15000 to ≤ 30000 2.95 3.37 0.42 14.32 

≤ 
4 

Undivided 

> 30000 3.90 5.49 1.59 40.90 

≤ 15000 3.82 3.25 -0.57 -14.96 

15000 to ≤ 30000 5.05 5.29 0.24 4.82 Divided 

> 30000 6.66 8.61 1.95 29.20 

≤ 15000 2.90 2.70 -0.20 -6.88 

15000 to ≤ 30000 3.83 4.40 0.57 14.77 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 5.06 7.16 2.10 41.47 

≤ 15000 2.49 2.49 0.01 0.35 

15000 to ≤ 30000 3.28 4.06 0.78 23.69 Divided 

> 30000 4.33 6.60 2.27 52.46 

≤ 15000 1.89 2.07 0.19 9.88 

15000 to ≤ 30000 2.49 3.37 0.88 35.43 

≤ 
4 

Undivided 

> 30000 3.29 5.49 2.20 66.93 

≤ 15000 3.23 3.25 0.02 0.75 

15000 to ≤ 30000 4.26 5.29 1.03 24.18 Divided 

> 30000 5.62 8.61 2.98 53.07 

≤ 15000 2.45 2.70 0.25 10.32 

15000 to ≤ 30000 3.24 4.40 1.16 35.97 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 4.27 7.16 2.89 67.60 

 
Note: Increase = After – Before 
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Total Crashes – Table Two 
Statistical Modeling 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.48 2.78 -0.70 -20.04 

15000 to ≤ 30000 4.60 4.53 -0.07 -1.45 Divided 

> 30000 6.07 7.37 1.30 21.47 

≤ 15000 2.64 2.32 -0.33 -12.45 

15000 to ≤ 30000 3.49 3.77 0.28 7.91 

≤ 
4 

Undivided 

> 30000 4.61 6.13 1.52 33.00 

≤ 15000 4.52 3.63 -0.89 -19.72 

15000 to ≤ 30000 5.97 5.91 -0.06 -1.05 Divided 

> 30000 7.88 9.61 1.73 21.96 

≤ 15000 3.43 3.02 -0.42 -12.10 

15000 to ≤ 30000 4.53 4.91 0.38 8.34 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 5.99 7.99 2.01 33.54 

≤ 15000 2.94 2.78 -0.16 -5.28 

15000 to ≤ 30000 3.88 4.53 0.65 16.75 Divided 

> 30000 5.12 7.37 2.25 43.91 

≤ 15000 2.23 2.32 0.08 3.72 

15000 to ≤ 30000 2.95 3.77 0.82 27.84 

≤ 
4 

Undivided 

> 30000 3.89 6.13 2.24 57.57 

≤ 15000 3.82 3.63 -0.19 -4.90 

15000 to ≤ 30000 5.04 5.91 0.87 17.22 Divided 

> 30000 6.65 9.61 2.96 44.48 

≤ 15000 2.90 3.02 0.12 4.13 

15000 to ≤ 30000 3.83 4.91 1.09 28.35 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 5.05 7.99 2.94 58.20 

 
Note: Increase = After – Before 
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Total Crashes – Table Three 
Statistical Modeling 

 
Surrounding Land Use: Urban Location Type: Other  Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 2.48 2.10 -0.38 -15.49 

15000 to ≤ 30000 3.28 3.41 0.14 4.16 Divided 

> 30000 4.33 5.55 1.23 28.39 

≤ 15000 1.89 1.74 -0.14 -7.47 

15000 to ≤ 30000 2.49 2.84 0.35 14.05 

≤ 
4 

Undivided 

> 30000 3.29 4.62 1.33 40.58 

≤ 15000 3.22 2.74 -0.49 -15.15 

15000 to ≤ 30000 4.26 4.45 0.20 4.58 Divided 

> 30000 5.62 7.24 1.62 28.90 

≤ 15000 2.45 2.27 -0.17 -7.10 

15000 to ≤ 30000 3.23 3.70 0.47 14.51 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.27 6.02 1.76 41.14 

≤ 15000 2.10 2.10 0.00 0.12 

15000 to ≤ 30000 2.77 3.41 0.65 23.40 Divided 

> 30000 3.65 5.55 1.90 52.10 

≤ 15000 1.59 1.74 0.15 9.63 

15000 to ≤ 30000 2.10 2.84 0.74 35.12 

≤ 
4 

Undivided 

> 30000 2.77 4.62 1.85 66.55 

≤ 15000 2.72 2.74 0.01 0.52 

15000 to ≤ 30000 3.59 4.45 0.86 23.90 Divided 

> 30000 4.74 7.24 2.50 52.71 

≤ 15000 2.07 2.27 0.21 10.06 

15000 to ≤ 30000 2.73 3.70 0.97 35.66 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.60 6.02 2.42 67.21 

 
Note: Increase = After – Before 
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Total Crashes – Table Four 
Statistical Modeling 

 
Surrounding Land Use: Urban  Location Type: Other  Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 2.94 2.34 -0.59 -20.23 

15000 to ≤ 30000 3.88 3.81 -0.06 -1.68 Divided 

> 30000 5.12 6.20 1.08 21.19 

≤ 15000 2.23 1.95 -0.28 -12.65 

15000 to ≤ 30000 2.94 3.17 0.23 7.66 

≤ 
4 

Undivided 

> 30000 3.89 5.16 1.27 32.70 

≤ 15000 3.81 3.05 -0.76 -19.91 

15000 to ≤ 30000 5.03 4.97 -0.06 -1.28 Divided 

> 30000 6.65 8.09 1.44 21.68 

≤ 15000 2.90 2.54 -0.36 -12.30 

15000 to ≤ 30000 3.82 4.13 0.31 8.09 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 5.05 6.72 1.68 33.23 

≤ 15000 2.48 2.34 -0.14 -5.49 

15000 to ≤ 30000 3.27 3.81 0.54 16.49 Divided 

> 30000 4.32 6.20 1.88 43.58 

≤ 15000 1.88 1.95 0.07 3.48 

15000 to ≤ 30000 2.48 3.17 0.68 27.55 

≤ 
4 

Undivided 

> 30000 3.28 5.16 1.88 57.21 

≤ 15000 3.22 3.05 -0.16 -5.11 

15000 to ≤ 30000 4.25 4.97 0.72 16.95 Divided 

> 30000 5.61 8.09 2.48 44.15 

≤ 15000 2.44 2.54 0.10 3.89 

15000 to ≤ 30000 3.23 4.13 0.91 28.06 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 4.26 6.72 2.46 57.84 

 
Note: Increase = After – Before 
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Total Crashes – Table Five 
Statistical Modeling 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 2.61 2.27 -0.34 -13.20 

15000 to ≤ 30000 3.45 3.69 0.24 6.98 Divided 

> 30000 4.55 6.00 1.45 31.86 

≤ 15000 1.98 1.89 -0.10 -4.96 

15000 to ≤ 30000 2.62 3.07 0.45 17.14 

≤ 
4 

Undivided 

> 30000 3.46 4.99 1.53 44.38 

≤ 15000 3.39 2.96 -0.44 -12.86 

15000 to ≤ 30000 4.48 4.81 0.33 7.41 Divided 

> 30000 5.91 7.83 1.92 32.39 

≤ 15000 2.58 2.46 -0.12 -4.58 

15000 to ≤ 30000 3.40 4.00 0.60 17.61 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.49 6.51 2.02 44.96 

≤ 15000 2.21 2.27 0.06 2.83 

15000 to ≤ 30000 2.91 3.69 0.78 26.74 Divided 

> 30000 3.84 6.00 2.16 56.22 

≤ 15000 1.67 1.89 0.21 12.59 

15000 to ≤ 30000 2.21 3.07 0.86 38.78 

≤ 
4 

Undivided 

> 30000 2.92 4.99 2.07 71.05 

≤ 15000 2.86 2.96 0.09 3.24 

15000 to ≤ 30000 3.78 4.81 1.03 27.25 Divided 

> 30000 4.99 7.83 2.84 56.85 

≤ 15000 2.18 2.46 0.28 13.04 

15000 to ≤ 30000 2.87 4.00 1.13 39.33 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.79 6.51 2.72 71.74 

 
Note: Increase = After – Before 
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Total Crashes – Table Six 
Statistical Modeling 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.09 2.53 -0.56 -18.07 

15000 to ≤ 30000 4.08 4.12 0.04 0.98 Divided 

> 30000 5.39 6.70 1.32 24.47 

≤ 15000 2.35 2.11 -0.24 -10.29 

15000 to ≤ 30000 3.10 3.43 0.33 10.57 

≤ 
4 

Undivided 

> 30000 4.09 5.57 1.48 36.29 

≤ 15000 4.01 3.30 -0.71 -17.74 

15000 to ≤ 30000 5.30 5.37 0.07 1.39 Divided 

> 30000 7.00 8.74 1.75 24.97 

≤ 15000 3.05 2.75 -0.30 -9.93 

15000 to ≤ 30000 4.02 4.47 0.44 11.02 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 5.31 7.27 1.96 36.83 

≤ 15000 2.61 2.53 -0.08 -2.94 

15000 to ≤ 30000 3.44 4.12 0.68 19.64 Divided 

> 30000 4.55 6.70 2.16 47.46 

≤ 15000 1.98 2.11 0.12 6.28 

15000 to ≤ 30000 2.62 3.43 0.81 31.00 

≤ 
4 

Undivided 

> 30000 3.45 5.57 2.12 61.46 

≤ 15000 3.39 3.30 -0.09 -2.55 

15000 to ≤ 30000 4.47 5.37 0.90 20.12 Divided 

> 30000 5.90 8.74 2.84 48.05 

≤ 15000 2.57 2.75 0.17 6.71 

15000 to ≤ 30000 3.40 4.47 1.07 31.52 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 4.48 7.27 2.78 62.11 

 
Note: Increase = After – Before 
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Total Crashes – Table Seven 
Statistical Modeling 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 2.20 1.91 -0.30 -13.40 

15000 to ≤ 30000 2.91 3.10 0.20 6.74 Divided 

> 30000 3.84 5.05 1.21 31.56 

≤ 15000 1.67 1.59 -0.09 -5.18 

15000 to ≤ 30000 2.21 2.58 0.37 16.87 

≤ 
4 

Undivided 

> 30000 2.92 4.20 1.28 44.05 

≤ 15000 2.86 2.49 -0.37 -13.06 

15000 to ≤ 30000 3.78 4.05 0.27 7.17 Divided 

> 30000 4.99 6.59 1.60 32.09 

≤ 15000 2.17 2.07 -0.10 -4.80 

15000 to ≤ 30000 2.87 3.37 0.50 17.34 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 3.79 5.48 1.69 44.63 

≤ 15000 1.86 1.91 0.05 2.59 

15000 to ≤ 30000 2.46 3.10 0.65 26.45 Divided 

> 30000 3.24 5.05 1.81 55.86 

≤ 15000 1.41 1.59 0.17 12.33 

15000 to ≤ 30000 1.86 2.58 0.72 38.46 

≤ 
4 

Undivided 

> 30000 2.46 4.20 1.74 70.66 

≤ 15000 2.42 2.49 0.07 3.00 

15000 to ≤ 30000 3.19 4.05 0.86 26.96 Divided 

> 30000 4.21 6.59 2.38 56.49 

≤ 15000 1.83 2.07 0.23 12.78 

15000 to ≤ 30000 2.42 3.37 0.94 39.01 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.20 5.48 2.28 71.34 

 
Note: Increase = After – Before 
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Total Crashes – Table Eight 
Statistical Modeling 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 2.61 2.13 -0.48 -18.26 

15000 to ≤ 30000 3.44 3.47 0.03 0.75 Divided 

> 30000 4.54 5.64 1.10 24.18 

≤ 15000 1.98 1.77 -0.21 -10.50 

15000 to ≤ 30000 2.61 2.88 0.27 10.32 

≤ 
4 

Undivided 

> 30000 3.45 4.69 1.24 35.97 

≤ 15000 3.38 2.78 -0.61 -17.93 

15000 to ≤ 30000 4.47 4.52 0.05 1.16 Divided 

> 30000 5.90 7.35 1.46 24.68 

≤ 15000 2.57 2.31 -0.26 -10.14 

15000 to ≤ 30000 3.39 3.76 0.37 10.76 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.48 6.12 1.64 36.52 

≤ 15000 2.20 2.13 -0.07 -3.16 

15000 to ≤ 30000 2.90 3.47 0.56 19.36 Divided 

> 30000 3.83 5.64 1.81 47.12 

≤ 15000 1.67 1.77 0.10 6.04 

15000 to ≤ 30000 2.21 2.88 0.68 30.70 

≤ 
4 

Undivided 

> 30000 2.91 4.69 1.78 61.09 

≤ 15000 2.86 2.78 -0.08 -2.77 

15000 to ≤ 30000 3.77 4.52 0.75 19.84 Divided 

> 30000 4.98 7.35 2.38 47.71 

≤ 15000 2.17 2.31 0.14 6.46 

15000 to ≤ 30000 2.86 3.76 0.89 31.22 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.78 6.12 2.33 61.74 

 
Note: Increase = After – Before 
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Angle Crashes – Table One 
Statistical Modeling 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.77 0.59 -0.18 -22.96 

15000 to ≤ 30000 0.96 0.80 -0.17 -17.49 Divided 

> 30000 1.21 1.07 -0.14 -11.62 

≤ 15000 0.51 0.50 -0.01 -1.23 

15000 to ≤ 30000 0.63 0.67 0.04 5.79 

≤ 
4 

Undivided 

> 30000 0.79 0.90 0.11 13.31 

≤ 15000 0.77 0.86 0.08 11.02 

15000 to ≤ 30000 0.96 1.15 0.18 18.91 Divided 

> 30000 1.21 1.54 0.33 27.37 

≤ 15000 0.51 0.72 0.21 42.33 

15000 to ≤ 30000 0.63 0.97 0.33 52.46 

>
 4

 

Undivided 

> 30000 0.79 1.30 0.50 63.30 
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Angle Crashes – Table Two 
Statistical Modeling 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.15 0.59 -0.55 -48.28 

15000 to ≤ 30000 1.44 0.80 -0.64 -44.61 Divided 

> 30000 1.80 1.07 -0.73 -40.67 

≤ 15000 0.76 0.50 -0.25 -33.69 

15000 to ≤ 30000 0.95 0.67 -0.27 -28.98 

≤ 
4 

Undivided 

> 30000 1.18 0.90 -0.28 -23.93 

≤ 15000 1.15 0.86 -0.29 -25.47 

15000 to ≤ 30000 1.44 1.15 -0.29 -20.17 Divided 

> 30000 1.80 1.54 -0.26 -14.50 

≤ 15000 0.76 0.72 -0.03 -4.45 

15000 to ≤ 30000 0.95 0.97 0.02 2.35 

>
 4

 

Undivided 

> 30000 1.18 1.30 0.11 9.63 
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Angle Crashes – Table Three 
Statistical Modeling 

 
Surrounding Land Use: Urban  Location Type: Other  Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.77 0.50 -0.27 -35.45 

15000 to ≤ 30000 0.96 0.67 -0.30 -30.86 Divided 

> 30000 1.21 0.89 -0.31 -25.94 

≤ 15000 0.51 0.42 -0.09 -17.24 

15000 to ≤ 30000 0.63 0.56 -0.07 -11.35 

≤ 
4 

Undivided 

> 30000 0.79 0.75 -0.04 -5.05 

≤ 15000 0.77 0.72 -0.05 -6.97 

15000 to ≤ 30000 0.96 0.96 0.00 -0.36 Divided 

> 30000 1.21 1.29 0.08 6.73 

≤ 15000 0.51 0.61 0.10 19.27 

15000 to ≤ 30000 0.63 0.81 0.18 27.75 

>
 4

 

Undivided 

> 30000 0.79 1.09 0.29 36.83 
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Angle Crashes – Table Four 
Statistical Modeling 

 
Surrounding Land Use: Urban Location Type: Other  Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.15 0.50 -0.65 -56.66 

15000 to ≤ 30000 1.44 0.67 -0.77 -53.58 Divided 

> 30000 1.80 0.89 -0.90 -50.28 

≤ 15000 0.76 0.42 -0.34 -44.44 

15000 to ≤ 30000 0.95 0.56 -0.38 -40.49 

≤ 
4 

Undivided 

> 30000 1.18 0.75 -0.43 -36.26 

≤ 15000 1.15 0.72 -0.43 -37.55 

15000 to ≤ 30000 1.44 0.96 -0.48 -33.11 Divided 

> 30000 1.80 1.29 -0.51 -28.35 

≤ 15000 0.76 0.61 -0.15 -19.93 

15000 to ≤ 30000 0.95 0.81 -0.13 -14.24 

>
 4

 

Undivided 

> 30000 1.18 1.09 -0.10 -8.14 
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Angle Crashes – Table Five 
Statistical Modeling 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.58 0.59 0.01 2.22 

15000 to ≤ 30000 0.73 0.80 0.07 9.49 Divided 

> 30000 0.91 1.07 0.16 17.28 

≤ 15000 0.38 0.50 0.12 31.06 

15000 to ≤ 30000 0.48 0.67 0.19 40.38 

≤ 
4 

Undivided 

> 30000 0.60 0.90 0.30 50.37 

≤ 15000 0.58 0.86 0.27 47.31 

15000 to ≤ 30000 0.73 1.15 0.42 57.79 Divided 

> 30000 0.91 1.54 0.63 69.01 

≤ 15000 0.38 0.72 0.34 88.87 

15000 to ≤ 30000 0.48 0.97 0.49 102.30 

>
 4

 

Undivided 

> 30000 0.60 1.30 0.70 116.69 
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Angle Crashes – Table Six 
Statistical Modeling 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.87 0.59 -0.27 -31.37 

15000 to ≤ 30000 1.08 0.80 -0.29 -26.49 Divided 

> 30000 1.35 1.07 -0.29 -21.27 

≤ 15000 0.57 0.50 -0.07 -12.01 

15000 to ≤ 30000 0.71 0.67 -0.04 -5.76 

≤ 
4 

Undivided 

> 30000 0.89 0.90 0.01 0.94 

≤ 15000 0.87 0.86 -0.01 -1.10 

15000 to ≤ 30000 1.08 1.15 0.06 5.93 Divided 

> 30000 1.35 1.54 0.18 13.46 

≤ 15000 0.57 0.72 0.15 26.79 

15000 to ≤ 30000 0.71 0.97 0.26 35.81 

>
 4

 

Undivided 

> 30000 0.89 1.30 0.41 45.47 
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Angle Crashes – Table Seven 
Statistical Modeling 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.58 0.50 -0.08 -14.34 

15000 to ≤ 30000 0.73 0.67 -0.06 -8.25 Divided 

> 30000 0.91 0.89 -0.02 -1.72 

≤ 15000 0.38 0.42 0.04 9.82 

15000 to ≤ 30000 0.48 0.56 0.08 17.63 

≤ 
4 

Undivided 

> 30000 0.60 0.75 0.16 26.00 

≤ 15000 0.58 0.72 0.14 23.44 

15000 to ≤ 30000 0.73 0.96 0.23 32.22 Divided 

> 30000 0.91 1.29 0.38 41.62 

≤ 15000 0.38 0.61 0.22 58.26 

15000 to ≤ 30000 0.48 0.81 0.33 69.52 

>
 4

 

Undivided 

> 30000 0.60 1.09 0.49 81.58 
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Angle Crashes – Table Eight 
Statistical Modeling 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.87 0.50 -0.37 -42.50 

15000 to ≤ 30000 1.08 0.67 -0.42 -38.41 Divided 

> 30000 1.35 0.89 -0.46 -34.03 

≤ 15000 0.57 0.42 -0.15 -26.27 

15000 to ≤ 30000 0.71 0.56 -0.15 -21.03 

≤ 
4 

Undivided 

> 30000 0.89 0.75 -0.14 -15.41 

≤ 15000 0.87 0.72 -0.15 -17.13 

15000 to ≤ 30000 1.08 0.96 -0.12 -11.24 Divided 

> 30000 1.35 1.29 -0.07 -4.92 

≤ 15000 0.57 0.61 0.04 6.25 

15000 to ≤ 30000 0.71 0.81 0.10 13.80 

>
 4

 

Undivided 

> 30000 0.89 1.09 0.20 21.90 
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Left-turn Crashes – Table One 
Statistical Modeling 

 
Surrounding Land Use: Rural or Urban  Location Type: Business 
Shoulder: Paved    Speed: ≤ 45 mph or > 45 mph 

 

Intersection Characteristics Number of Left Turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.61 0.59 -0.02 -2.91 

15000 to ≤ 30000 0.77 0.71 -0.06 -7.70 Divided 

> 30000 0.97 0.85 -0.12 -12.25 

≤ 15000 0.49 0.35 -0.14 -28.13 

15000 to ≤ 30000 0.62 0.42 -0.20 -31.68 

≤ 
4 

Undivided 

> 30000 0.78 0.51 -0.27 -35.05 

≤ 15000 0.85 0.79 -0.06 -7.57 

15000 to ≤ 30000 1.07 0.94 -0.13 -12.13 Divided 

> 30000 1.35 1.13 -0.22 -16.46 

≤ 15000 0.69 0.47 -0.22 -31.58 

15000 to ≤ 30000 0.86 0.56 -0.30 -34.96 

>
 4

 

Undivided 

> 30000 1.09 0.67 -0.41 -38.16 

 
Note: Increase = After – Before 
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Left-turn Crashes – Table Two 
Statistical Modeling 

 
Surrounding Land Use: Rural or Urban  Location Type: Business 
Shoulder: Other    Speed: ≤ 45 mph or > 45 mph 

 

Intersection Characteristics Number of Left Turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.79 0.70 -0.08 -10.55 

15000 to ≤ 30000 0.99 0.84 -0.15 -14.96 Divided 

> 30000 1.24 1.00 -0.24 -19.16 

≤ 15000 0.63 0.42 -0.21 -33.79 

15000 to ≤ 30000 0.80 0.50 -0.30 -37.05 

≤ 
4 

Undivided 

> 30000 1.00 0.60 -0.40 -40.16 

≤ 15000 1.09 0.93 -0.16 -14.85 

15000 to ≤ 30000 1.37 1.11 -0.26 -19.05 Divided 

> 30000 1.73 1.33 -0.40 -23.04 

≤ 15000 0.88 0.56 -0.33 -36.97 

15000 to ≤ 30000 1.11 0.66 -0.44 -40.08 

>
 4

 

Undivided 

> 30000 1.39 0.79 -0.60 -43.03 

 
Note: Increase = After – Before 
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Left-turn Crashes – Table Three 
Statistical Modeling 

 
Surrounding Land Use: Rural or Urban  Location Type: Other 
Shoulder: Paved    Speed: ≤ 45 mph or > 45 mph 

 

Intersection Characteristics Number of Left Turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.44 0.47 0.03 6.55 

15000 to ≤ 30000 0.56 0.57 0.01 1.29 Divided 

> 30000 0.70 0.68 -0.03 -3.71 

≤ 15000 0.36 0.28 -0.08 -21.13 

15000 to ≤ 30000 0.45 0.34 -0.11 -25.02 

≤ 
4 

Undivided 

> 30000 0.57 0.40 -0.16 -28.72 

≤ 15000 0.62 0.63 0.01 1.43 

15000 to ≤ 30000 0.78 0.75 -0.03 -3.57 Divided 

> 30000 0.98 0.90 -0.08 -8.33 

≤ 15000 0.50 0.37 -0.12 -24.92 

15000 to ≤ 30000 0.63 0.45 -0.18 -28.62 

>
 4

 

Undivided 

> 30000 0.79 0.53 -0.25 -32.15 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 190 

Left-turn Crashes – Table Four 
Statistical Modeling 

 
Surrounding Land Use: Rural or Urban  Location Type: Other  
Shoulder: Other    Speed: ≤ 45 mph or > 45 mph 

 

Intersection Characteristics Number of Left Turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.57 0.56 -0.01 -1.84 

15000 to ≤ 30000 0.72 0.67 -0.05 -6.69 Divided 

> 30000 0.90 0.80 -0.10 -11.29 

≤ 15000 0.46 0.33 -0.13 -27.34 

15000 to ≤ 30000 0.58 0.40 -0.18 -30.93 

≤ 
4 

Undivided 

> 30000 0.73 0.48 -0.25 -34.33 

≤ 15000 0.79 0.74 -0.05 -6.56 

15000 to ≤ 30000 1.00 0.89 -0.11 -11.17 Divided 

> 30000 1.25 1.06 -0.19 -15.55 

≤ 15000 0.64 0.44 -0.20 -30.83 

15000 to ≤ 30000 0.80 0.53 -0.28 -34.24 

>
 4

 

Undivided 

> 30000 1.01 0.63 -0.38 -37.49 

 
Note: Increase = After – Before 
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Rear-end Crashes – Table One 
Statistical Modeling 

 
Surrounding Land Use: Rural or Urban   Location Type: Business 

Shoulder: Paved 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.45 0.69 0.24 52.29 

15000 to ≤ 30000 0.79 1.32 0.53 66.31 Divided 

> 30000 1.38 2.51 1.13 81.63 

≤ 15000 0.53 0.55 0.02 4.25 

15000 to ≤ 30000 0.93 1.05 0.13 13.85 

≤ 
4 

Undivided 

> 30000 1.61 2.01 0.39 24.33 

≤ 15000 0.69 0.84 0.15 21.81 

15000 to ≤ 30000 1.21 1.60 0.40 33.03 Divided 

> 30000 2.10 3.06 0.95 45.28 

≤ 15000 0.81 0.67 -0.13 -16.61 

15000 to ≤ 30000 1.41 1.28 -0.13 -8.94 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 2.46 2.45 -0.01 -0.55 

≤ 15000 0.28 0.60 0.31 110.75 

15000 to ≤ 30000 0.49 1.14 0.64 130.16 Divided 

> 30000 0.86 2.17 1.31 151.36 

≤ 15000 0.33 0.48 0.15 44.27 

15000 to ≤ 30000 0.58 0.91 0.33 57.55 

≤ 
4 

Undivided 

> 30000 1.01 1.74 0.73 72.06 

≤ 15000 0.43 0.73 0.30 68.57 

15000 to ≤ 30000 0.75 1.39 0.63 84.10 Divided 

> 30000 1.31 2.64 1.33 101.05 

≤ 15000 0.50 0.58 0.08 15.40 

15000 to ≤ 30000 0.88 1.11 0.23 26.02 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.54 2.11 0.58 37.63 

Note: Increase = After – Before 



 192 

Rear-end Crashes – Table Two 
Statistical Modeling 

 
Surrounding Land Use: Rural or Urban   Location Type: Business 

Shoulder: Other 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.45 0.96 0.50 111.13 

15000 to ≤ 30000 0.79 1.83 1.03 130.57 Divided 

> 30000 1.38 3.48 2.10 151.81 

≤ 15000 0.53 0.77 0.24 44.53 

15000 to ≤ 30000 0.93 1.46 0.54 57.84 

≤ 
4 

Undivided 

> 30000 1.61 2.78 1.17 72.37 

≤ 15000 0.69 1.17 0.48 68.88 

15000 to ≤ 30000 1.21 2.22 1.02 84.43 Divided 

> 30000 2.10 4.24 2.13 101.42 

≤ 15000 0.81 0.93 0.13 15.60 

15000 to ≤ 30000 1.41 1.78 0.37 26.25 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 2.46 3.39 0.93 37.88 

≤ 15000 0.28 0.83 0.54 192.18 

15000 to ≤ 30000 0.49 1.58 1.08 219.09 Divided 

> 30000 0.86 3.01 2.14 248.48 

≤ 15000 0.33 0.66 0.33 100.01 

15000 to ≤ 30000 0.58 1.26 0.68 118.43 

≤ 
4 

Undivided 

> 30000 1.01 2.41 1.40 138.55 

≤ 15000 0.43 1.01 0.58 133.71 

15000 to ≤ 30000 0.75 1.92 1.17 155.23 Divided 

> 30000 1.31 3.66 2.35 178.74 

≤ 15000 0.50 0.81 0.30 59.98 

15000 to ≤ 30000 0.88 1.54 0.66 74.72 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.54 2.93 1.39 90.81 

Note: Increase = After – Before 
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Rear-end Crashes – Table Three 
Statistical Modeling 

 
Surrounding Land Use: Rural or Urban   Location Type: Other 

Shoulder: Paved 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.35 0.69 0.34 94.90 

15000 to ≤ 30000 0.62 1.32 0.70 112.85 Divided 

> 30000 1.08 2.51 1.43 132.45 

≤ 15000 0.41 0.55 0.14 33.42 

15000 to ≤ 30000 0.72 1.05 0.33 45.70 

≤ 
4 

Undivided 

> 30000 1.26 2.01 0.75 59.12 

≤ 15000 0.54 0.84 0.30 55.89 

15000 to ≤ 30000 0.94 1.60 0.66 70.25 Divided 

> 30000 1.64 3.06 1.41 85.93 

≤ 15000 0.63 0.67 0.04 6.72 

15000 to ≤ 30000 1.10 1.28 0.18 16.54 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.92 2.45 0.52 27.28 

≤ 15000 0.22 0.60 0.38 169.72 

15000 to ≤ 30000 0.39 1.14 0.75 194.56 Divided 

> 30000 0.67 2.17 1.49 221.68 

≤ 15000 0.26 0.48 0.22 84.63 

15000 to ≤ 30000 0.45 0.91 0.46 101.64 

≤ 
4 

Undivided 

> 30000 0.79 1.74 0.95 120.21 

≤ 15000 0.34 0.73 0.39 115.74 

15000 to ≤ 30000 0.59 1.39 0.80 135.61 Divided 

> 30000 1.03 2.64 1.61 157.31 

≤ 15000 0.39 0.58 0.19 47.68 

15000 to ≤ 30000 0.69 1.11 0.42 61.28 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.20 2.11 0.91 76.14 

Note: Increase = After – Before 



 194 

Rear-end Crashes – Table Four 
Statistical Modeling 

 
Surrounding Land Use: Rural or Urban   Location Type: Other        

Shoulder: Other 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.35 0.96 0.60 170.20 

15000 to ≤ 30000 0.62 1.83 1.21 195.09 Divided 

> 30000 1.08 3.48 2.40 222.26 

≤ 15000 0.41 0.77 0.35 84.97 

15000 to ≤ 30000 0.72 1.46 0.74 102.00 

≤ 
4 

Undivided 

> 30000 1.26 2.78 1.52 120.60 

≤ 15000 0.54 1.17 0.63 116.13 

15000 to ≤ 30000 0.94 2.22 1.28 136.03 Divided 

> 30000 1.64 4.24 2.59 157.77 

≤ 15000 0.63 0.93 0.30 47.95 

15000 to ≤ 30000 1.10 1.78 0.68 61.58 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.92 3.39 1.47 76.46 

≤ 15000 0.22 0.83 0.61 273.93 

15000 to ≤ 30000 0.39 1.58 1.19 308.37 Divided 

> 30000 0.67 3.01 2.33 345.98 

≤ 15000 0.26 0.66 0.40 155.97 

15000 to ≤ 30000 0.45 1.26 0.81 179.55 

≤ 
4 

Undivided 

> 30000 0.79 2.41 1.62 205.29 

≤ 15000 0.34 1.01 0.67 199.10 

15000 to ≤ 30000 0.59 1.92 1.33 226.64 Divided 

> 30000 1.03 3.66 2.63 256.73 

≤ 15000 0.39 0.81 0.41 104.75 

15000 to ≤ 30000 0.69 1.54 0.85 123.60 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.20 2.93 1.73 144.20 

Note: Increase = After – Before 
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Other Crashes – Table One 
Statistical Modeling 

 
Surrounding Land Use: Urban   Location Type: Business or Other 

Shoulder: Paved or Other 
 

Intersection Characteristics Number of Other Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.83 0.55 -0.27 -33.17 

15000 to ≤ 30000 1.16 0.93 -0.23 -19.66 Divided 

> 30000 1.62 1.56 -0.06 -3.42 

≤ 15000 0.63 0.55 -0.08 -12.22 

15000 to ≤ 30000 0.88 0.93 0.05 5.53 

≤ 
4 

Undivided 

> 30000 1.23 1.56 0.33 26.86 

≤ 15000 0.83 0.70 -0.13 -15.13 

15000 to ≤ 30000 1.16 1.18 0.02 2.03 Divided 

> 30000 1.62 1.98 0.37 22.65 

≤ 15000 0.63 0.70 0.07 11.48 

15000 to ≤ 30000 0.88 1.18 0.30 34.02 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.23 1.98 0.75 61.11 

≤ 15000 0.54 0.55 0.02 3.38 

15000 to ≤ 30000 0.75 0.93 0.18 24.27 Divided 

> 30000 1.05 1.56 0.52 49.39 

≤ 15000 0.41 0.55 0.15 35.78 

15000 to ≤ 30000 0.57 0.93 0.36 63.23 

≤ 
4 

Undivided 

> 30000 0.80 1.56 0.77 96.23 

≤ 15000 0.54 0.70 0.17 31.28 

15000 to ≤ 30000 0.75 1.18 0.43 57.82 Divided 

> 30000 1.05 1.98 0.94 89.72 

≤ 15000 0.41 0.70 0.30 72.44 

15000 to ≤ 30000 0.57 1.18 0.61 107.30 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 0.80 1.98 1.19 149.20 

Note: Increase = After – Before 
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Other Crashes – Table Two 
Statistical Modeling 

 
Surrounding Land Use: Rural   Location Type: Business or Other 

Shoulder: Paved or Other 
 

Intersection Characteristics Number of Other Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.59 0.41 -0.18 -30.43 

15000 to ≤ 30000 0.82 0.69 -0.13 -16.36 Divided 

> 30000 1.15 1.16 0.01 0.54 

≤ 15000 0.45 0.41 -0.04 -8.62 

15000 to ≤ 30000 0.63 0.69 0.06 9.86 

≤ 
4 

Undivided 

> 30000 0.88 1.16 0.28 32.06 

≤ 15000 0.59 0.52 -0.07 -11.64 

15000 to ≤ 30000 0.82 0.87 0.05 6.22 Divided 

> 30000 1.15 1.47 0.32 27.69 

≤ 15000 0.45 0.52 0.07 16.06 

15000 to ≤ 30000 0.63 0.87 0.25 39.51 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 0.88 1.47 0.59 67.72 

≤ 15000 0.38 0.41 0.03 7.62 

15000 to ≤ 30000 0.53 0.69 0.16 29.37 Divided 

> 30000 0.74 1.16 0.41 55.52 

≤ 15000 0.29 0.41 0.12 41.35 

15000 to ≤ 30000 0.40 0.69 0.28 69.93 

≤ 
4 

Undivided 

> 30000 0.57 1.16 0.59 104.28 

≤ 15000 0.38 0.52 0.14 36.67 

15000 to ≤ 30000 0.53 0.87 0.34 64.30 Divided 

> 30000 0.74 1.47 0.73 97.51 

≤ 15000 0.29 0.52 0.23 79.52 

15000 to ≤ 30000 0.40 0.87 0.47 115.80 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 0.57 1.47 0.90 159.43 

Note: Increase = After – Before 
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Total Crashes – Table One 
Operational Research Modeling 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 4.07 3.78 -0.29 -7.04 

15000 to ≤ 30000 4.59 4.90 0.32 6.95 Divided 

> 30000 5.17 6.36 1.19 23.04 

≤ 15000 2.73 2.47 -0.26 -9.65 

15000 to ≤ 30000 3.08 3.20 0.12 3.95 

≤ 
4 

Undivided 

> 30000 3.47 4.15 0.68 19.60 

≤ 15000 5.55 4.64 -0.91 -16.37 

15000 to ≤ 30000 6.25 6.02 -0.24 -3.78 Divided 

> 30000 7.05 7.80 0.75 10.70 

≤ 15000 3.72 3.02 -0.70 -18.71 

15000 to ≤ 30000 4.19 3.92 -0.27 -6.48 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.73 5.08 0.36 7.60 

≤ 15000 3.39 3.78 0.40 11.71 

15000 to ≤ 30000 3.82 4.90 1.09 28.52 Divided 

> 30000 4.30 6.36 2.06 47.87 

≤ 15000 2.27 2.47 0.19 8.58 

15000 to ≤ 30000 2.56 3.20 0.64 24.93 

≤ 
4 

Undivided 

> 30000 2.88 4.15 1.26 43.73 

≤ 15000 4.62 4.64 0.02 0.50 

15000 to ≤ 30000 5.20 6.02 0.81 15.63 Divided 

> 30000 5.86 7.80 1.94 33.03 

≤ 15000 3.10 3.02 -0.07 -2.31 

15000 to ≤ 30000 3.49 3.92 0.43 12.39 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.93 5.08 1.15 29.31 

 
Note: Increase = After – Before 
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Total Crashes – Table Two 
Operational Research Modeling 

 
Surrounding Land Use: Urban  Location Type: Business Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 4.50 4.22 -0.28 -6.16 

15000 to ≤ 30000 5.07 5.47 0.40 7.96 Divided 

> 30000 5.71 7.09 1.38 24.21 

≤ 15000 3.01 2.75 -0.26 -8.79 

15000 to ≤ 30000 3.40 3.57 0.17 4.94 

≤ 
4 

Undivided 

> 30000 3.83 4.62 0.79 20.74 

≤ 15000 6.13 5.17 -0.95 -15.58 

15000 to ≤ 30000 6.91 6.71 -0.20 -2.87 Divided 

> 30000 7.78 8.70 0.91 11.75 

≤ 15000 4.11 3.37 -0.74 -17.94 

15000 to ≤ 30000 4.63 4.37 -0.26 -5.59 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 5.22 5.67 0.45 8.62 

≤ 15000 3.74 4.22 0.48 12.77 

15000 to ≤ 30000 4.22 5.47 1.25 29.75 Divided 

> 30000 4.75 7.09 2.34 49.27 

≤ 15000 2.51 2.75 0.24 9.62 

15000 to ≤ 30000 2.83 3.57 0.74 26.12 

≤ 
4 

Undivided 

> 30000 3.19 4.62 1.44 45.10 

≤ 15000 5.10 5.17 0.07 1.46 

15000 to ≤ 30000 5.75 6.71 0.96 16.73 Divided 

> 30000 6.48 8.70 2.22 34.30 

≤ 15000 3.42 3.37 -0.05 -1.38 

15000 to ≤ 30000 3.85 4.37 0.52 13.46 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 4.34 5.67 1.33 30.54 

 
Note: Increase = After – Before 
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Total Crashes – Table Three 
Operational Research Modeling 

 
Surrounding Land Use: Urban Location Type: Other  Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.92 3.15 -0.77 -19.70 

15000 to ≤ 30000 4.42 4.08 -0.34 -7.62 Divided 

> 30000 4.98 5.29 0.31 6.29 

≤ 15000 2.63 2.05 -0.58 -21.95 

15000 to ≤ 30000 2.96 2.66 -0.30 -10.20 

≤ 
4 

Undivided 

> 30000 3.34 3.45 0.11 3.31 

≤ 15000 5.34 3.86 -1.48 -27.76 

15000 to ≤ 30000 6.02 5.00 -1.02 -16.89 Divided 

> 30000 6.79 6.49 -0.30 -4.38 

≤ 15000 3.58 2.52 -1.07 -29.78 

15000 to ≤ 30000 4.04 3.26 -0.78 -19.21 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.55 4.23 -0.32 -7.06 

≤ 15000 3.26 3.15 -0.11 -3.50 

15000 to ≤ 30000 3.68 4.08 0.41 11.02 Divided 

> 30000 4.14 5.29 1.15 27.73 

≤ 15000 2.19 2.05 -0.14 -6.20 

15000 to ≤ 30000 2.46 2.66 0.20 7.91 

≤ 
4 

Undivided 

> 30000 2.78 3.45 0.67 24.15 

≤ 15000 4.45 3.86 -0.59 -13.18 

15000 to ≤ 30000 5.01 5.00 -0.01 -0.12 Divided 

> 30000 5.65 6.49 0.84 14.91 

≤ 15000 2.98 2.52 -0.47 -15.62 

15000 to ≤ 30000 3.36 3.26 -0.10 -2.91 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.79 4.23 0.44 11.70 

 
Note: Increase = After – Before 
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Total Crashes – Table Four 
Operational Research Modeling 

 
Surrounding Land Use: Urban Location Type: Other  Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 4.33 3.51 -0.82 -18.94 

15000 to ≤ 30000 4.88 4.55 -0.33 -6.74 Divided 

> 30000 5.50 5.90 0.40 7.30 

≤ 15000 2.90 2.29 -0.62 -21.21 

15000 to ≤ 30000 3.27 2.97 -0.31 -9.35 

≤ 
4 

Undivided 

> 30000 3.69 3.85 0.16 4.29 

≤ 15000 5.90 4.30 -1.60 -27.07 

15000 to ≤ 30000 6.65 5.58 -1.07 -16.10 Divided 

> 30000 7.50 7.24 -0.26 -3.47 

≤ 15000 3.96 2.81 -1.15 -29.11 

15000 to ≤ 30000 4.46 3.64 -0.82 -18.45 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 5.03 4.72 -0.31 -6.17 

≤ 15000 3.60 3.51 -0.09 -2.58 

15000 to ≤ 30000 4.06 4.55 0.49 12.08 Divided 

> 30000 4.58 5.90 1.32 28.95 

≤ 15000 2.42 2.29 -0.13 -5.31 

15000 to ≤ 30000 2.72 2.97 0.24 8.94 

≤ 
4 

Undivided 

> 30000 3.07 3.85 0.78 25.34 

≤ 15000 4.91 4.30 -0.61 -12.36 

15000 to ≤ 30000 5.53 5.58 0.05 0.83 Divided 

> 30000 6.24 7.24 1.00 16.01 

≤ 15000 3.29 2.81 -0.49 -14.81 

15000 to ≤ 30000 3.71 3.64 -0.07 -1.99 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 4.18 4.72 0.53 12.76 

 
Note: Increase = After – Before 
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Total Crashes – Table Five 
Operational Research Modeling 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.36 3.26 -0.10 -3.06 

15000 to ≤ 30000 3.79 4.23 0.44 11.53 Divided 

> 30000 4.27 5.48 1.21 28.31 

≤ 15000 2.26 2.13 -0.13 -5.78 

15000 to ≤ 30000 2.54 2.76 0.21 8.41 

≤ 
4 

Undivided 

> 30000 2.87 3.57 0.71 24.72 

≤ 15000 4.59 4.00 -0.59 -12.79 

15000 to ≤ 30000 5.17 5.19 0.02 0.34 Divided 

> 30000 5.83 6.73 0.90 15.44 

≤ 15000 3.08 2.61 -0.47 -15.23 

15000 to ≤ 30000 3.47 3.38 -0.09 -2.47 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 3.91 4.38 0.48 12.21 

≤ 15000 2.80 3.26 0.46 16.50 

15000 to ≤ 30000 3.16 4.23 1.07 34.03 Divided 

> 30000 3.56 5.48 1.93 54.20 

≤ 15000 1.88 2.13 0.25 13.24 

15000 to ≤ 30000 2.12 2.76 0.64 30.28 

≤ 
4 

Undivided 

> 30000 2.38 3.57 1.19 49.89 

≤ 15000 3.82 4.00 0.18 4.81 

15000 to ≤ 30000 4.30 5.19 0.89 20.58 Divided 

> 30000 4.85 6.73 1.88 38.73 

≤ 15000 2.56 2.61 0.05 1.87 

15000 to ≤ 30000 2.88 3.38 0.50 17.21 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.25 4.38 1.13 34.85 

 
Note: Increase = After – Before 
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Total Crashes – Table Six 
Operational Research Modeling 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.72 3.64 -0.08 -2.14 

15000 to ≤ 30000 4.19 4.72 0.53 12.59 Divided 

> 30000 4.72 6.11 1.39 29.53 

≤ 15000 2.49 2.37 -0.12 -4.88 

15000 to ≤ 30000 2.81 3.07 0.27 9.44 

≤ 
4 

Undivided 

> 30000 3.17 3.99 0.82 25.91 

≤ 15000 5.07 4.46 -0.61 -11.96 

15000 to ≤ 30000 5.71 5.78 0.07 1.29 Divided 

> 30000 6.44 7.50 1.06 16.54 

≤ 15000 3.40 2.91 -0.49 -14.42 

15000 to ≤ 30000 3.83 3.77 -0.06 -1.54 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.32 4.89 0.57 13.27 

≤ 15000 3.09 3.64 0.54 17.61 

15000 to ≤ 30000 3.48 4.72 1.23 35.31 Divided 

> 30000 3.93 6.11 2.19 55.67 

≤ 15000 2.07 2.37 0.30 14.31 

15000 to ≤ 30000 2.34 3.07 0.74 31.52 

≤ 
4 

Undivided 

> 30000 2.63 3.99 1.35 51.31 

≤ 15000 4.22 4.46 0.24 5.80 

15000 to ≤ 30000 4.75 5.78 1.03 21.73 Divided 

> 30000 5.35 7.50 2.14 40.05 

≤ 15000 2.83 2.91 0.08 2.84 

15000 to ≤ 30000 3.19 3.77 0.58 18.32 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.59 4.89 1.30 36.13 

 
Note: Increase = After – Before 
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Total Crashes – Table Seven 
Operational Research Modeling 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.24 2.71 -0.53 -16.26 

15000 to ≤ 30000 3.65 3.52 -0.13 -3.66 Divided 

> 30000 4.11 4.56 0.45 10.84 

≤ 15000 2.17 1.77 -0.40 -18.61 

15000 to ≤ 30000 2.45 2.29 -0.16 -6.36 

≤ 
4 

Undivided 

> 30000 2.76 2.97 0.21 7.74 

≤ 15000 4.42 3.33 -1.09 -24.67 

15000 to ≤ 30000 4.98 4.32 -0.66 -13.33 Divided 

> 30000 5.61 5.59 -0.02 -0.28 

≤ 15000 2.96 2.17 -0.79 -26.77 

15000 to ≤ 30000 3.34 2.81 -0.53 -15.75 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 3.76 3.64 -0.12 -3.07 

≤ 15000 2.70 2.71 0.02 0.63 

15000 to ≤ 30000 3.04 3.52 0.48 15.78 Divided 

> 30000 3.42 4.56 1.14 33.20 

≤ 15000 1.81 1.77 -0.04 -2.19 

15000 to ≤ 30000 2.04 2.29 0.26 12.54 

≤ 
4 

Undivided 

> 30000 2.30 2.97 0.68 29.47 

≤ 15000 3.68 3.33 -0.35 -9.47 

15000 to ≤ 30000 4.14 4.31 0.17 4.16 Divided 

> 30000 4.67 5.60 0.93 19.84 

≤ 15000 2.47 2.17 -0.30 -12.00 

15000 to ≤ 30000 2.78 2.81 0.03 1.24 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.13 3.65 0.52 16.48 

 
Note: Increase = After – Before 
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Total Crashes – Table Eight 
Operational Research Modeling 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.58 3.03 -0.55 -15.47 

15000 to ≤ 30000 4.03 3.92 -0.11 -2.74 Divided 

> 30000 4.55 5.09 0.54 11.89 

≤ 15000 2.40 1.97 -0.43 -17.83 

15000 to ≤ 30000 2.70 2.56 -0.15 -5.47 

≤ 
4 

Undivided 

> 30000 3.05 3.32 0.27 8.76 

≤ 15000 4.88 3.71 -1.17 -23.95 

15000 to ≤ 30000 5.50 4.81 -0.69 -12.50 Divided 

> 30000 6.20 6.24 0.04 0.67 

≤ 15000 3.27 2.42 -0.85 -26.08 

15000 to ≤ 30000 3.69 3.14 -0.55 -14.95 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.16 4.07 -0.09 -2.15 

≤ 15000 2.98 3.03 0.05 1.59 

15000 to ≤ 30000 3.36 3.92 0.57 16.88 Divided 

> 30000 3.78 5.09 1.30 34.47 

≤ 15000 2.00 1.97 -0.03 -1.25 

15000 to ≤ 30000 2.25 2.56 0.31 13.61 

≤ 
4 

Undivided 

> 30000 2.54 3.32 0.78 30.70 

≤ 15000 4.06 3.71 -0.35 -8.60 

15000 to ≤ 30000 4.58 4.81 0.24 5.15 Divided 

> 30000 5.16 6.24 1.08 20.98 

≤ 15000 2.72 2.42 -0.30 -11.16 

15000 to ≤ 30000 3.07 3.14 0.07 2.21 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.46 4.07 0.61 17.59 

 
Note: Increase = After – Before 
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Angle Crashes – Table One 
Operational Research Modeling 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.06 0.72 -0.33 -31.53 

15000 to ≤ 30000 1.08 0.90 -0.18 -16.55 Divided 

> 30000 1.11 1.13 0.02 1.70 

≤ 15000 0.63 0.59 -0.03 -5.53 

15000 to ≤ 30000 0.64 0.74 0.10 15.13 

≤ 
4 

Undivided 

> 30000 0.66 0.92 0.26 40.30 

≤ 15000 1.06 0.92 -0.14 -13.09 

15000 to ≤ 30000 1.08 1.15 0.06 5.92 Divided 

> 30000 1.11 1.43 0.32 29.08 

≤ 15000 0.63 0.75 0.12 19.90 

15000 to ≤ 30000 0.64 0.94 0.30 46.13 

>
 4

 

Undivided 

> 30000 0.66 1.17 0.51 78.08 

 
Note: Increase = After – Before 
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Angle Crashes – Table Two 
Operational Research Modeling 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.55 0.72 -0.82 -53.13 

15000 to ≤ 30000 1.58 0.90 -0.68 -42.88 Divided 

> 30000 1.62 1.13 -0.49 -30.39 

≤ 15000 0.92 0.59 -0.32 -35.34 

15000 to ≤ 30000 0.94 0.74 -0.20 -21.20 

≤ 
4 

Undivided 

> 30000 0.96 0.92 -0.04 -3.97 

≤ 15000 1.55 0.92 -0.63 -40.51 

15000 to ≤ 30000 1.58 1.15 -0.44 -27.50 Divided 

> 30000 1.62 1.43 -0.19 -11.65 

≤ 15000 0.92 0.75 -0.16 -17.93 

15000 to ≤ 30000 0.94 0.94 0.00 0.02 

>
 4

 

Undivided 

> 30000 0.96 1.17 0.21 21.89 

 
Note: Increase = After – Before 
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Angle Crashes – Table Three 
Operational Research Modeling 

 
Surrounding Land Use: Urban Location Type: Other  Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.06 0.57 -0.48 -45.81 

15000 to ≤ 30000 1.08 0.72 -0.37 -33.96 Divided 

> 30000 1.11 0.89 -0.22 -19.52 

≤ 15000 0.63 0.47 -0.16 -25.24 

15000 to ≤ 30000 0.64 0.59 -0.06 -8.90 

≤ 
4 

Undivided 

> 30000 0.66 0.73 0.07 11.03 

≤ 15000 1.06 0.73 -0.33 -31.22 

15000 to ≤ 30000 1.08 0.91 -0.18 -16.18 Divided 

> 30000 1.11 1.13 0.02 2.15 

≤ 15000 0.63 0.60 -0.03 -5.12 

15000 to ≤ 30000 0.64 0.74 0.10 15.63 

>
 4

 

Undivided 

> 30000 0.66 0.93 0.27 40.92 

 
Note: Increase = After – Before 
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Angle Crashes – Table Four 
Operational Research Modeling 

 
Surrounding Land Use: Urban Location Type: Other  Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.55 0.57 -0.97 -62.91 

15000 to ≤ 30000 1.58 0.72 -0.87 -54.80 Divided 

> 30000 1.62 0.89 -0.73 -44.92 

≤ 15000 0.92 0.47 -0.45 -48.83 

15000 to ≤ 30000 0.94 0.59 -0.35 -37.64 

≤ 
4 

Undivided 

> 30000 0.96 0.73 -0.23 -24.00 

≤ 15000 1.55 0.73 -0.82 -52.93 

15000 to ≤ 30000 1.58 0.91 -0.67 -42.63 Divided 

> 30000 1.62 1.13 -0.49 -30.08 

≤ 15000 0.92 0.60 -0.32 -35.05 

15000 to ≤ 30000 0.94 0.74 -0.20 -20.85 

>
 4

 

Undivided 

> 30000 0.96 0.93 -0.03 -3.54 

 
Note: Increase = After – Before 
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Angle Crashes – Table Five 
Operational Research Modeling 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.85 0.72 -0.13 -14.87 

15000 to ≤ 30000 0.87 0.90 0.03 3.74 Divided 

> 30000 0.89 1.13 0.24 26.43 

≤ 15000 0.50 0.59 0.09 17.44 

15000 to ≤ 30000 0.52 0.74 0.22 43.13 

≤ 
4 

Undivided 

> 30000 0.53 0.92 0.39 74.43 

≤ 15000 0.85 0.92 0.07 8.05 

15000 to ≤ 30000 0.87 1.15 0.28 31.68 Divided 

> 30000 0.89 1.43 0.54 60.47 

≤ 15000 0.50 0.75 0.25 49.06 

15000 to ≤ 30000 0.52 0.94 0.42 81.66 

>
 4

 

Undivided 

> 30000 0.53 1.17 0.64 121.39 

 
Note: Increase = After – Before 
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Angle Crashes – Table Six 
Operational Research Modeling 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.24 0.72 -0.52 -41.73 

15000 to ≤ 30000 1.27 0.90 -0.37 -28.99 Divided 

> 30000 1.30 1.13 -0.18 -13.46 

≤ 15000 0.74 0.59 -0.14 -19.61 

15000 to ≤ 30000 0.75 0.74 -0.02 -2.03 

≤ 
4 

Undivided 

> 30000 0.77 0.92 0.15 19.39 

≤ 15000 1.24 0.92 -0.32 -26.04 

15000 to ≤ 30000 1.27 1.15 -0.13 -9.87 Divided 

> 30000 1.30 1.43 0.13 9.84 

≤ 15000 0.74 0.75 0.01 2.03 

15000 to ≤ 30000 0.75 0.94 0.18 24.34 

>
 4

 

Undivided 

> 30000 0.77 1.17 0.40 51.53 

 
Note: Increase = After – Before 
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Angle Crashes – Table Seven 
Operational Research Modeling 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.85 0.57 -0.28 -32.64 

15000 to ≤ 30000 0.87 0.72 -0.16 -17.90 Divided 

> 30000 0.89 0.89 0.00 0.05 

≤ 15000 0.50 0.47 -0.04 -7.06 

15000 to ≤ 30000 0.52 0.59 0.07 13.26 

≤ 
4 

Undivided 

> 30000 0.53 0.73 0.20 38.03 

≤ 15000 0.85 0.73 -0.12 -14.50 

15000 to ≤ 30000 0.87 0.91 0.04 4.20 Divided 

> 30000 0.89 1.13 0.24 26.99 

≤ 15000 0.50 0.60 0.09 17.96 

15000 to ≤ 30000 0.52 0.74 0.23 43.76 

>
 4

 

Undivided 

> 30000 0.53 0.93 0.40 75.20 

 
Note: Increase = After – Before 
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Angle Crashes – Table Eight 
Operational Research Modeling 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.24 0.57 -0.67 -53.89 

15000 to ≤ 30000 1.27 0.72 -0.56 -43.81 Divided 

> 30000 1.30 0.89 -0.41 -31.52 

≤ 15000 0.74 0.47 -0.27 -36.39 

15000 to ≤ 30000 0.75 0.59 -0.17 -22.48 

≤ 
4 

Undivided 

> 30000 0.77 0.73 -0.04 -5.52 

≤ 15000 1.24 0.73 -0.52 -41.48 

15000 to ≤ 30000 1.27 0.91 -0.36 -28.68 Divided 

> 30000 1.30 1.13 -0.17 -13.08 

≤ 15000 0.74 0.60 -0.14 -19.26 

15000 to ≤ 30000 0.75 0.74 -0.01 -1.60 

>
 4

 

Undivided 

> 30000 0.77 0.93 0.15 19.92 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 214 

Left-turn Crashes – Table One 
Operational Research Modeling 

 
Surrounding Land Use: Urban or Rural      Location Type: Business 

Shoulder: Paved     Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Left-turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.82 0.53 -0.29 -35.46 

15000 to ≤ 30000 0.98 0.70 -0.29 -29.18 Divided 

> 30000 1.18 0.91 -0.26 -22.29 

≤ 15000 0.55 0.28 -0.27 -49.68 

15000 to ≤ 30000 0.66 0.36 -0.29 -44.78 

≤ 
4 

Undivided 

> 30000 0.78 0.47 -0.31 -39.40 

≤ 15000 1.17 0.73 -0.44 -37.92 

15000 to ≤ 30000 1.40 0.95 -0.45 -31.88 Divided 

> 30000 1.67 1.25 -0.42 -25.25 

≤ 15000 0.78 0.38 -0.40 -51.59 

15000 to ≤ 30000 0.93 0.49 -0.44 -46.88 

>
 4

 

Undivided 

> 30000 1.11 0.65 -0.46 -41.71 

 
Note: Increase = After – Before 
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Left-turn Crashes – Table Two 
Operational Research Modeling 

 
Surrounding Land Use: Urban or Rural       Location Type: Business 

Shoulder: Other     Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Left-turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.94 0.70 -0.24 -25.32 

15000 to ≤ 30000 1.12 0.92 -0.20 -18.05 Divided 

> 30000 1.34 1.20 -0.13 -10.08 

≤ 15000 0.62 0.36 -0.26 -41.77 

15000 to ≤ 30000 0.75 0.48 -0.27 -36.10 

≤ 
4 

Undivided 

> 30000 0.89 0.62 -0.27 -29.88 

≤ 15000 1.33 0.96 -0.37 -28.17 

15000 to ≤ 30000 1.59 1.25 -0.34 -21.18 Divided 

> 30000 1.90 1.64 -0.26 -13.50 

≤ 15000 0.89 0.50 -0.39 -43.99 

15000 to ≤ 30000 1.06 0.65 -0.41 -38.54 

>
 4

 

Undivided 

> 30000 1.27 0.85 -0.41 -32.55 

 
Note: Increase = After – Before 
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Left-turn Crashes – Table Three 
Operational Research Modeling 

 
Surrounding Land Use: Urban or Rural   Location Type: Other 

Shoulder: Paved    Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Left-turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.68 0.49 -0.19 -28.40 

15000 to ≤ 30000 0.81 0.64 -0.17 -21.43 Divided 

> 30000 0.97 0.84 -0.13 -13.78 

≤ 15000 0.45 0.25 -0.20 -44.17 

15000 to ≤ 30000 0.54 0.33 -0.21 -38.73 

≤ 
4 

Undivided 

> 30000 0.65 0.43 -0.21 -32.77 

≤ 15000 0.97 0.66 -0.30 -31.13 

15000 to ≤ 30000 1.15 0.87 -0.28 -24.42 Divided 

> 30000 1.38 1.14 -0.24 -17.07 

≤ 15000 0.64 0.35 -0.30 -46.29 

15000 to ≤ 30000 0.77 0.45 -0.32 -41.07 

>
 4

 

Undivided 

> 30000 0.92 0.59 -0.32 -35.33 

 
Note: Increase = After – Before 
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Left-turn Crashes – Table four 
Operational Research Modeling 

 
Surrounding Land Use: Urban or Rural   Location Type: Other 

Shoulder: Other    Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Left-turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.77 0.64 -0.13 -17.15 

15000 to ≤ 30000 0.92 0.84 -0.08 -9.08 Divided 

> 30000 1.10 1.10 0.00 -0.23 

≤ 15000 0.51 0.33 -0.18 -35.39 

15000 to ≤ 30000 0.62 0.44 -0.18 -29.11 

≤ 
4 

Undivided 

> 30000 0.74 0.57 -0.16 -22.21 

≤ 15000 1.10 0.87 -0.22 -20.30 

15000 to ≤ 30000 1.31 1.15 -0.16 -12.55 Divided 

> 30000 1.57 1.50 -0.06 -4.03 

≤ 15000 0.73 0.45 -0.28 -37.85 

15000 to ≤ 30000 0.87 0.60 -0.28 -31.81 

>
 4

 

Undivided 

> 30000 1.04 0.78 -0.26 -25.17 

 
Note: Increase = After – Before 
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Rear-end Crashes – Table One 
Operational Research Modeling 

 
Surrounding Land Use: Urban or Rural   Location Type: Business 

Shoulder: Paved 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.54 0.91 0.37 68.00 

15000 to ≤ 30000 0.90 1.44 0.54 60.47 Divided 

> 30000 1.49 2.29 0.80 53.28 

≤ 15000 0.57 0.55 -0.02 -3.42 

15000 to ≤ 30000 0.94 0.87 -0.07 -7.75 

≤ 
4 

Undivided 

> 30000 1.57 1.38 -0.19 -11.88 

≤ 15000 0.66 1.03 0.37 55.21 

15000 to ≤ 30000 1.10 1.63 0.53 48.25 Divided 

> 30000 1.83 2.59 0.76 41.60 

≤ 15000 0.70 0.62 -0.07 -10.77 

15000 to ≤ 30000 1.15 0.98 -0.17 -14.77 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.92 1.56 -0.36 -18.59 

≤ 15000 0.39 0.97 0.59 151.65 

15000 to ≤ 30000 0.64 1.54 0.90 140.37 Divided 

> 30000 1.06 2.44 1.38 129.59 

≤ 15000 0.41 0.59 0.18 44.67 

15000 to ≤ 30000 0.67 0.93 0.26 38.19 

≤ 
4 

Undivided 

> 30000 1.12 1.48 0.36 31.99 

≤ 15000 0.47 1.10 0.63 132.49 

15000 to ≤ 30000 0.78 1.74 0.96 122.06 Divided 

> 30000 1.30 2.76 1.46 112.11 

≤ 15000 0.50 0.66 0.17 33.65 

15000 to ≤ 30000 0.82 1.05 0.23 27.66 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.37 1.67 0.30 21.94 

Note: Increase = After – Before 
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Rear-end Crashes – Table Two 
Operational Research Modeling 

 
Surrounding Land Use: Urban or Rural   Location Type: Business 

Shoulder: Other 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.54 1.22 0.68 125.48 

15000 to ≤ 30000 0.90 1.94 1.04 115.37 Divided 

> 30000 1.49 3.07 1.58 105.72 

≤ 15000 0.57 0.74 0.17 29.63 

15000 to ≤ 30000 0.94 1.17 0.22 23.82 

≤ 
4 

Undivided 

> 30000 1.57 1.85 0.29 18.27 

≤ 15000 0.66 1.38 0.72 108.31 

15000 to ≤ 30000 1.10 2.19 1.09 98.97 Divided 

> 30000 1.83 3.47 1.64 90.05 

≤ 15000 0.70 0.83 0.14 19.75 

15000 to ≤ 30000 1.15 1.32 0.17 14.39 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.92 2.10 0.18 9.26 

≤ 15000 0.39 1.30 0.92 237.74 

15000 to ≤ 30000 0.64 2.07 1.43 222.60 Divided 

> 30000 1.06 3.28 2.22 208.14 

≤ 15000 0.41 0.79 0.38 94.17 

15000 to ≤ 30000 0.67 1.25 0.58 85.46 

≤ 
4 

Undivided 

> 30000 1.12 1.98 0.86 77.15 

≤ 15000 0.47 1.47 1.00 212.02 

15000 to ≤ 30000 0.78 2.34 1.55 198.03 Divided 

> 30000 1.30 3.71 2.40 184.67 

≤ 15000 0.50 0.89 0.39 79.38 

15000 to ≤ 30000 0.82 1.41 0.59 71.34 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.37 2.24 0.87 63.66 

Note: Increase = After – Before 
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Rear-end Crashes – Table Three 
Operational Research Modeling 

 
Surrounding Land Use: Urban or Rural   Location Type: Other 

Shoulder: Paved 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.38 0.91 0.53 137.33 

15000 to ≤ 30000 0.64 1.44 0.81 126.69 Divided 

> 30000 1.06 2.29 1.23 116.53 

≤ 15000 0.40 0.55 0.15 36.44 

15000 to ≤ 30000 0.67 0.87 0.20 30.32 

≤ 
4 

Undivided 

> 30000 1.11 1.38 0.27 24.48 

≤ 15000 0.47 1.03 0.56 119.26 

15000 to ≤ 30000 0.78 1.63 0.85 109.43 Divided 

> 30000 1.29 2.59 1.29 100.04 

≤ 15000 0.49 0.62 0.13 26.05 

15000 to ≤ 30000 0.82 0.98 0.17 20.40 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.36 1.56 0.20 15.00 

≤ 15000 0.27 0.97 0.70 255.50 

15000 to ≤ 30000 0.45 1.54 1.09 239.56 Divided 

> 30000 0.75 2.44 1.69 224.34 

≤ 15000 0.29 0.59 0.30 104.37 

15000 to ≤ 30000 0.48 0.93 0.45 95.21 

≤ 
4 

Undivided 

> 30000 0.79 1.48 0.68 86.46 

≤ 15000 0.33 1.10 0.76 228.42 

15000 to ≤ 30000 0.56 1.74 1.19 213.70 Divided 

> 30000 0.92 2.76 1.84 199.64 

≤ 15000 0.35 0.66 0.31 88.81 

15000 to ≤ 30000 0.58 1.05 0.47 80.35 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 0.97 1.67 0.70 72.26 

Note: Increase = After – Before 
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Rear-end Crashes – Table Four 
Operational Research Modeling 

 
Surrounding Land Use: Urban or Rural   Location Type: Other 

Shoulder: Other 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.38 1.22 0.84 218.53 

15000 to ≤ 30000 0.64 1.94 1.30 204.25 Divided 

> 30000 1.06 3.07 2.02 190.61 

≤ 15000 0.40 0.74 0.33 83.12 

15000 to ≤ 30000 0.67 1.17 0.50 74.91 

≤ 
4 

Undivided 

> 30000 1.11 1.85 0.74 67.07 

≤ 15000 0.47 1.38 0.91 194.27 

15000 to ≤ 30000 0.78 2.19 1.41 181.08 Divided 

> 30000 1.29 3.47 2.18 168.48 

≤ 15000 0.49 0.83 0.34 69.17 

15000 to ≤ 30000 0.82 1.32 0.50 61.59 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.36 2.10 0.74 54.35 

≤ 15000 0.27 1.30 1.03 377.12 

15000 to ≤ 30000 0.45 2.07 1.61 355.73 Divided 

> 30000 0.75 3.28 2.53 335.30 

≤ 15000 0.29 0.79 0.50 174.29 

15000 to ≤ 30000 0.48 1.25 0.77 162.00 

≤ 
4 

Undivided 

> 30000 0.79 1.98 1.19 150.25 

≤ 15000 0.33 1.47 1.14 340.78 

15000 to ≤ 30000 0.56 2.34 1.78 321.02 Divided 

> 30000 0.92 3.71 2.79 302.15 

≤ 15000 0.35 0.89 0.54 153.40 

15000 to ≤ 30000 0.58 1.41 0.83 142.04 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 0.97 2.24 1.27 131.19 

Note: Increase = After – Before 
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Other Crashes – Table One 
Operational Research Modeling 

 
Surrounding Land Use: Urban  Location Type: Business or Other 

Shoulder: Paved or Other 
 

Intersection Characteristics Number of Other Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.70 0.70 0.00 0.36 

15000 to ≤ 30000 1.02 1.01 -0.01 -1.18 Divided 

> 30000 1.49 1.45 -0.04 -2.69 

≤ 15000 0.65 0.70 0.06 8.68 

15000 to ≤ 30000 0.94 1.01 0.07 7.02 

≤ 
4 

Undivided 

> 30000 1.38 1.45 0.07 5.38 

≤ 15000 0.70 0.84 0.14 20.02 

15000 to ≤ 30000 1.02 1.21 0.19 18.18 Divided 

> 30000 1.49 1.73 0.24 16.37 

≤ 15000 0.65 0.84 0.19 29.97 

15000 to ≤ 30000 0.94 1.21 0.26 27.98 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.38 1.73 0.36 26.02 

≤ 15000 0.61 0.70 0.10 16.08 

15000 to ≤ 30000 0.88 1.01 0.13 14.30 Divided 

> 30000 1.29 1.45 0.16 12.55 

≤ 15000 0.56 0.70 0.14 25.71 

15000 to ≤ 30000 0.82 1.01 0.19 23.78 

≤ 
4 

Undivided 

> 30000 1.19 1.45 0.26 21.89 

≤ 15000 0.61 0.84 0.24 38.82 

15000 to ≤ 30000 0.88 1.21 0.32 36.69 Divided 

> 30000 1.29 1.73 0.45 34.59 

≤ 15000 0.56 0.84 0.28 50.33 

15000 to ≤ 30000 0.82 1.21 0.39 48.02 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.19 1.73 0.54 45.76 

Note: Increase = After – Before 
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Other Crashes – Table Two 
Operational Research Modeling 

 
Surrounding Land Use: Rural   Location Type: Business or Other 

Shoulder: Paved or Other 
 

Intersection Characteristics Number of Other Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.51 0.50 -0.01 -1.61 

15000 to ≤ 30000 0.74 0.71 -0.02 -3.12 Divided 

> 30000 1.08 1.03 -0.05 -4.60 

≤ 15000 0.47 0.50 0.03 6.55 

15000 to ≤ 30000 0.68 0.71 0.03 4.92 

≤ 
4 

Undivided 

> 30000 0.99 1.03 0.03 3.31 

≤ 15000 0.51 0.60 0.09 17.66 

15000 to ≤ 30000 0.74 0.85 0.12 15.86 Divided 

> 30000 1.08 1.23 0.15 14.08 

≤ 15000 0.47 0.60 0.13 27.42 

15000 to ≤ 30000 0.68 0.85 0.17 25.46 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 0.99 1.23 0.23 23.54 

≤ 15000 0.44 0.50 0.06 13.80 

15000 to ≤ 30000 0.64 0.71 0.08 12.06 Divided 

> 30000 0.93 1.03 0.10 10.34 

≤ 15000 0.40 0.50 0.09 23.24 

15000 to ≤ 30000 0.59 0.71 0.13 21.35 

≤ 
4 

Undivided 

> 30000 0.86 1.03 0.17 19.49 

≤ 15000 0.44 0.60 0.16 36.09 

15000 to ≤ 30000 0.64 0.85 0.22 34.00 Divided 

> 30000 0.93 1.23 0.30 31.95 

≤ 15000 0.40 0.60 0.19 47.37 

15000 to ≤ 30000 0.59 0.85 0.27 45.12 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 0.86 1.23 0.37 42.89 

Note: Increase = After – Before 
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Total Crashes – Table One 
Combined Results 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.51 3.14 -0.37 -10.51 

15000 to ≤ 30000 4.24 4.48 0.24 5.78 Divided 

> 30000 5.15 6.48 1.33 25.85 

≤ 15000 2.48 2.27 -0.21 -8.57 

15000 to ≤ 30000 3.01 3.29 0.27 9.03 

≤ 
4 

Undivided 

> 30000 3.68 4.82 1.14 30.87 

≤ 15000 4.69 3.95 -0.74 -15.79 

15000 to ≤ 30000 5.65 5.65 0.00 0.06 Divided 

> 30000 6.86 8.20 1.35 19.69 

≤ 15000 3.31 2.86 -0.45 -13.53 

15000 to ≤ 30000 4.01 4.16 0.15 3.67 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.89 6.12 1.23 25.11 

≤ 15000 2.94 3.14 0.20 6.90 

15000 to ≤ 30000 3.55 4.48 0.93 26.29 Divided 

> 30000 4.32 6.48 2.17 50.17 

≤ 15000 2.08 2.27 0.19 9.17 

15000 to ≤ 30000 2.53 3.29 0.76 30.11 

≤ 
4 

Undivided 

> 30000 3.09 4.82 1.73 56.09 

≤ 15000 3.92 3.95 0.02 0.60 

15000 to ≤ 30000 4.73 5.65 0.92 19.48 Divided 

> 30000 5.74 8.20 2.46 42.84 

≤ 15000 2.77 2.86 0.09 3.27 

15000 to ≤ 30000 3.36 4.16 0.80 23.74 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 4.10 6.12 2.02 49.24 
 
Note: Increase = After – Before 
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Total Crashes – Table Two 
Combined Results 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.99 3.50 -0.49 -12.22 

15000 to ≤ 30000 4.83 5.00 0.17 3.49 Divided 

> 30000 5.89 7.23 1.34 22.80 

≤ 15000 2.83 2.53 -0.30 -10.50 

15000 to ≤ 30000 3.44 3.67 0.22 6.44 

≤ 
4 

Undivided 

> 30000 4.22 5.38 1.16 27.44 

≤ 15000 5.33 4.40 -0.92 -17.34 

15000 to ≤ 30000 6.44 6.31 -0.13 -2.03 Divided 

> 30000 7.83 9.16 1.32 16.89 

≤ 15000 3.77 3.20 -0.58 -15.28 

15000 to ≤ 30000 4.58 4.64 0.06 1.30 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 5.60 6.83 1.23 21.93 

≤ 15000 3.34 3.50 0.16 4.83 

15000 to ≤ 30000 4.05 5.00 0.95 23.52 Divided 

> 30000 4.94 7.23 2.30 46.49 

≤ 15000 2.37 2.53 0.16 6.84 

15000 to ≤ 30000 2.89 3.67 0.78 27.00 

≤ 
4 

Undivided 

> 30000 3.54 5.38 1.84 51.95 

≤ 15000 4.46 4.40 -0.06 -1.26 

15000 to ≤ 30000 5.39 6.31 0.91 16.96 Divided 

> 30000 6.56 9.16 2.59 39.46 

≤ 15000 3.16 3.20 0.04 1.15 

15000 to ≤ 30000 3.84 4.64 0.80 20.88 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 4.70 6.83 2.13 45.41 

 
Note: Increase = After – Before 
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Total Crashes – Table Three 
Combined Results 

 
Surrounding Land Use: Urban Location Type: Other  Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.20 2.62 -0.58 -18.07 

15000 to ≤ 30000 3.85 3.75 -0.10 -2.60 Divided 

> 30000 4.65 5.42 0.77 16.56 

≤ 15000 2.26 1.90 -0.36 -15.90 

15000 to ≤ 30000 2.73 2.75 0.02 0.87 

≤ 
4 

Undivided 

> 30000 3.31 4.03 0.72 21.80 

≤ 15000 4.28 3.30 -0.99 -23.01 

15000 to ≤ 30000 5.14 4.73 -0.41 -8.00 Divided 

> 30000 6.20 6.87 0.66 10.69 

≤ 15000 3.02 2.40 -0.62 -20.57 

15000 to ≤ 30000 3.64 3.48 -0.15 -4.22 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.41 5.13 0.72 16.27 

≤ 15000 2.68 2.62 -0.06 -2.08 

15000 to ≤ 30000 3.22 3.75 0.53 16.34 Divided 

> 30000 3.90 5.42 1.53 39.15 

≤ 15000 1.89 1.90 0.01 0.47 

15000 to ≤ 30000 2.28 2.75 0.47 20.43 

≤ 
4 

Undivided 

> 30000 2.78 4.03 1.26 45.33 

≤ 15000 3.58 3.30 -0.29 -7.98 

15000 to ≤ 30000 4.30 4.73 0.43 9.91 Divided 

> 30000 5.19 6.87 1.67 32.17 

≤ 15000 2.52 2.40 -0.13 -5.10 

15000 to ≤ 30000 3.04 3.48 0.44 14.37 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.69 5.13 1.43 38.76 

 
Note: Increase = After – Before 
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Total Crashes – Table Four 
Combined Results 

 
Surrounding Land Use: Urban  Location Type: Other  Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.63 2.93 -0.71 -19.46 

15000 to ≤ 30000 4.38 4.18 -0.20 -4.50 Divided 

> 30000 5.31 6.05 0.74 13.99 

≤ 15000 2.57 2.12 -0.45 -17.49 

15000 to ≤ 30000 3.11 3.07 -0.04 -1.29 

≤ 
4 

Undivided 

> 30000 3.79 4.50 0.71 18.87 

≤ 15000 4.86 3.68 -1.18 -24.26 

15000 to ≤ 30000 5.84 5.28 -0.57 -9.71 Divided 

> 30000 7.07 7.66 0.59 8.35 

≤ 15000 3.43 2.67 -0.75 -22.01 

15000 to ≤ 30000 4.14 3.89 -0.26 -6.20 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 5.04 5.72 0.68 13.57 

≤ 15000 3.04 2.93 -0.11 -3.77 

15000 to ≤ 30000 3.67 4.18 0.51 14.04 Divided 

> 30000 4.45 6.05 1.60 36.05 

≤ 15000 2.15 2.12 -0.03 -1.46 

15000 to ≤ 30000 2.60 3.07 0.46 17.82 

≤ 
4 

Undivided 

> 30000 3.17 4.50 1.33 41.80 

≤ 15000 4.07 3.68 -0.39 -9.49 

15000 to ≤ 30000 4.89 5.28 0.38 7.83 Divided 

> 30000 5.92 7.66 1.74 29.33 

≤ 15000 2.87 2.67 -0.20 -6.84 

15000 to ≤ 30000 3.47 3.89 0.42 11.98 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 4.22 5.72 1.50 35.50 

 
Note: Increase = After – Before 
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Total Crashes – Table Five 
Combined Results 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 2.99 2.76 -0.22 -7.49 

15000 to ≤ 30000 3.62 3.96 0.34 9.36 Divided 

> 30000 4.41 5.74 1.33 30.14 

≤ 15000 2.12 2.01 -0.11 -5.40 

15000 to ≤ 30000 2.58 2.91 0.33 12.84 

≤ 
4 

Undivided 

> 30000 3.16 4.28 1.12 35.47 

≤ 15000 3.99 3.48 -0.51 -12.82 

15000 to ≤ 30000 4.82 5.00 0.17 3.62 Divided 

> 30000 5.87 7.28 1.41 23.98 

≤ 15000 2.83 2.53 -0.29 -10.38 

15000 to ≤ 30000 3.43 3.69 0.26 7.47 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.20 5.45 1.25 29.72 

≤ 15000 2.50 2.76 0.26 10.47 

15000 to ≤ 30000 3.03 3.96 0.93 30.53 Divided 

> 30000 3.70 5.74 2.04 55.25 

≤ 15000 1.78 2.01 0.23 12.93 

15000 to ≤ 30000 2.16 2.91 0.75 34.62 

≤ 
4 

Undivided 

> 30000 2.65 4.28 1.63 61.53 

≤ 15000 3.34 3.48 0.14 4.13 

15000 to ≤ 30000 4.04 5.00 0.96 23.70 Divided 

> 30000 4.92 7.28 2.36 47.92 

≤ 15000 2.37 2.53 0.17 7.01 

15000 to ≤ 30000 2.88 3.69 0.81 28.24 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.52 5.45 1.93 54.71 

 
Note: Increase = After – Before 
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Total Crashes – Table Six 
Combined Results 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.40 3.08 -0.32 -9.37 

15000 to ≤ 30000 4.13 4.42 0.28 6.86 Divided 

> 30000 5.05 6.41 1.36 26.83 

≤ 15000 2.42 2.24 -0.18 -7.50 

15000 to ≤ 30000 2.95 3.25 0.30 10.03 

≤ 
4 

Undivided 

> 30000 3.63 4.78 1.15 31.76 

≤ 15000 4.54 3.88 -0.66 -14.51 

15000 to ≤ 30000 5.50 5.58 0.07 1.34 Divided 

> 30000 6.72 8.12 1.41 20.93 

≤ 15000 3.22 2.83 -0.40 -12.30 

15000 to ≤ 30000 3.93 4.12 0.19 4.89 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.81 6.08 1.26 26.27 

≤ 15000 2.85 3.08 0.23 8.21 

15000 to ≤ 30000 3.46 4.42 0.95 27.52 Divided 

> 30000 4.24 6.41 2.17 51.26 

≤ 15000 2.03 2.24 0.21 10.39 

15000 to ≤ 30000 2.48 3.25 0.77 31.24 

≤ 
4 

Undivided 

> 30000 3.04 4.78 1.74 57.07 

≤ 15000 3.80 3.88 0.08 2.08 

15000 to ≤ 30000 4.61 5.58 0.97 20.95 Divided 

> 30000 5.63 8.12 2.49 44.25 

≤ 15000 2.70 2.83 0.13 4.68 

15000 to ≤ 30000 3.29 4.12 0.83 25.13 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 4.04 6.08 2.04 50.56 

 
Note: Increase = After – Before 
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Total Crashes – Table Seven 
Combined Results 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Paved 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 2.72 2.31 -0.41 -15.11 

15000 to ≤ 30000 3.28 3.31 0.03 0.95 Divided 

> 30000 3.98 4.81 0.83 20.84 

≤ 15000 1.92 1.68 -0.25 -12.77 

15000 to ≤ 30000 2.33 2.44 0.11 4.66 

≤ 
4 

Undivided 

> 30000 2.84 3.59 0.75 26.39 

≤ 15000 3.64 2.91 -0.73 -20.10 

15000 to ≤ 30000 4.38 4.18 -0.20 -4.49 Divided 

> 30000 5.30 6.09 0.79 14.95 

≤ 15000 2.57 2.12 -0.45 -17.48 

15000 to ≤ 30000 3.10 3.09 -0.01 -0.46 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 3.77 4.56 0.79 20.86 

≤ 15000 2.28 2.31 0.03 1.43 

15000 to ≤ 30000 2.75 3.31 0.56 20.55 Divided 

> 30000 3.33 4.81 1.47 44.22 

≤ 15000 1.61 1.68 0.07 4.18 

15000 to ≤ 30000 1.95 2.44 0.49 24.92 

≤ 
4 

Undivided 

> 30000 2.38 3.59 1.21 50.78 

≤ 15000 3.05 2.91 -0.14 -4.52 

15000 to ≤ 30000 3.67 4.18 0.52 14.08 Divided 

> 30000 4.44 6.09 1.65 37.21 

≤ 15000 2.15 2.12 -0.03 -1.43 

15000 to ≤ 30000 2.60 3.09 0.49 18.84 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.16 4.56 1.40 44.20 

 
Note: Increase = After – Before 
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Total Crashes – Table Eight 
Combined Results 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Other 

 

Intersection Characteristics Total Number of Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 3.09 2.58 -0.51 -16.64 

15000 to ≤ 30000 3.74 3.69 -0.04 -1.13 Divided 

> 30000 4.54 5.36 0.82 18.04 

≤ 15000 2.19 1.87 -0.32 -14.52 

15000 to ≤ 30000 2.66 2.72 0.06 2.29 

≤ 
4 

Undivided 

> 30000 3.25 4.00 0.75 23.21 

≤ 15000 4.13 3.24 -0.89 -21.48 

15000 to ≤ 30000 4.98 4.67 -0.32 -6.38 Divided 

> 30000 6.05 6.80 0.75 12.38 

≤ 15000 2.92 2.36 -0.56 -19.06 

15000 to ≤ 30000 3.54 3.45 -0.09 -2.63 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 4.32 5.09 0.77 17.91 

≤ 15000 2.59 2.58 -0.01 -0.43 

15000 to ≤ 30000 3.13 3.69 0.56 18.03 Divided 

> 30000 3.81 5.36 1.56 40.84 

≤ 15000 1.83 1.87 0.04 2.07 

15000 to ≤ 30000 2.23 2.72 0.49 22.06 

≤ 
4 

Undivided 

> 30000 2.72 4.00 1.28 46.94 

≤ 15000 3.46 3.24 -0.21 -6.20 

15000 to ≤ 30000 4.17 4.67 0.49 11.79 Divided 

> 30000 5.07 6.80 1.73 34.11 

≤ 15000 2.45 2.36 -0.08 -3.35 

15000 to ≤ 30000 2.97 3.45 0.48 16.21 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 3.62 5.09 1.47 40.65 

 
Note: Increase = After – Before 
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Angle Crashes – Table One 
Combined Results 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.91 0.66 -0.26 -27.92 

15000 to ≤ 30000 1.02 0.85 -0.17 -16.99 Divided 

> 30000 1.16 1.10 -0.06 -5.24 

≤ 15000 0.57 0.55 -0.02 -3.61 

15000 to ≤ 30000 0.64 0.71 0.07 10.49 

≤ 
4 

Undivided 

> 30000 0.73 0.91 0.19 25.53 

≤ 15000 0.91 0.89 -0.03 -2.93 

15000 to ≤ 30000 1.02 1.15 0.12 12.03 Divided 

> 30000 1.16 1.48 0.33 28.19 

≤ 15000 0.57 0.74 0.17 29.94 

15000 to ≤ 30000 0.64 0.95 0.31 49.27 

>
 4

 

Undivided 

> 30000 0.73 1.23 0.51 69.99 
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Angle Crashes – Table Two 
Combined Results 

 
Surrounding Land Use: Urban Location Type: Business Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.35 0.66 -0.69 -51.07 

15000 to ≤ 30000 1.51 0.85 -0.66 -43.70 Divided 

> 30000 1.71 1.10 -0.61 -35.80 

≤ 15000 0.84 0.55 -0.29 -34.60 

15000 to ≤ 30000 0.94 0.71 -0.24 -25.10 

≤ 
4 

Undivided 

> 30000 1.07 0.91 -0.16 -14.99 

≤ 15000 1.35 0.89 -0.46 -34.11 

15000 to ≤ 30000 1.51 1.15 -0.36 -24.01 Divided 

> 30000 1.71 1.48 -0.22 -13.15 

≤ 15000 0.84 0.74 -0.10 -11.84 

15000 to ≤ 30000 0.94 0.95 0.01 1.18 

>
 4

 

Undivided 

> 30000 1.07 1.23 0.16 15.12 
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Angle Crashes – Table Three 
Combined Results 

 
Surrounding Land Use: Urban  Location Type: Other  Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.91 0.54 -0.38 -41.45 

15000 to ≤ 30000 1.02 0.69 -0.33 -32.50 Divided 

> 30000 1.16 0.89 -0.26 -22.87 

≤ 15000 0.57 0.44 -0.12 -21.66 

15000 to ≤ 30000 0.64 0.57 -0.06 -10.12 

≤ 
4 

Undivided 

> 30000 0.73 0.74 0.02 2.23 

≤ 15000 0.91 0.72 -0.19 -21.01 

15000 to ≤ 30000 1.02 0.93 -0.09 -8.73 Divided 

> 30000 1.16 1.21 0.05 4.53 

≤ 15000 0.57 0.60 0.03 5.78 

15000 to ≤ 30000 0.64 0.78 0.14 21.66 

>
 4

 

Undivided 

> 30000 0.73 1.01 0.28 38.68 
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Angle Crashes – Table Four 
Combined Results 

 
Surrounding Land Use: Urban Location Type: Other  Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.35 0.54 -0.81 -60.25 

15000 to ≤ 30000 1.51 0.69 -0.82 -54.22 Divided 

> 30000 1.71 0.89 -0.82 -47.74 

≤ 15000 0.84 0.44 -0.39 -46.85 

15000 to ≤ 30000 0.94 0.57 -0.37 -39.07 

≤ 
4 

Undivided 

> 30000 1.07 0.74 -0.33 -30.77 

≤ 15000 1.35 0.72 -0.62 -46.38 

15000 to ≤ 30000 1.51 0.93 -0.57 -38.10 Divided 

> 30000 1.71 1.21 -0.50 -29.17 

≤ 15000 0.84 0.60 -0.24 -28.22 

15000 to ≤ 30000 0.94 0.78 -0.17 -17.54 

>
 4

 

Undivided 

> 30000 1.07 1.01 -0.07 -6.08 
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Angle Crashes – Table Five 
Combined Results 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.72 0.66 -0.06 -7.94 

15000 to ≤ 30000 0.80 0.85 0.05 6.36 Divided 

> 30000 0.90 1.10 0.20 21.81 

≤ 15000 0.44 0.55 0.10 23.32 

15000 to ≤ 30000 0.50 0.71 0.21 41.81 

≤ 
4 

Undivided 

> 30000 0.56 0.91 0.35 61.65 

≤ 15000 0.72 0.89 0.17 23.97 

15000 to ≤ 30000 0.80 1.15 0.35 43.55 Divided 

> 30000 0.90 1.48 0.58 64.78 

≤ 15000 0.44 0.74 0.29 66.23 

15000 to ≤ 30000 0.50 0.95 0.46 91.59 

>
 4

 

Undivided 

> 30000 0.56 1.23 0.67 118.89 
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Angle Crashes – Table Six 
Combined Results 

 
Surrounding Land Use: Rural  Location Type: Business Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.05 0.66 -0.40 -37.49 

15000 to ≤ 30000 1.18 0.85 -0.33 -27.85 Divided 

> 30000 1.33 1.10 -0.23 -17.44 

≤ 15000 0.65 0.55 -0.11 -16.30 

15000 to ≤ 30000 0.73 0.71 -0.03 -3.84 

≤ 
4 

Undivided 

> 30000 0.83 0.91 0.08 9.51 

≤ 15000 1.05 0.89 -0.17 -15.81 

15000 to ≤ 30000 1.18 1.15 -0.03 -2.61 Divided 

> 30000 1.33 1.48 0.16 11.69 

≤ 15000 0.65 0.74 0.08 12.82 

15000 to ≤ 30000 0.73 0.95 0.22 29.91 

>
 4

 

Undivided 

> 30000 0.83 1.23 0.40 48.29 
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Angle Crashes – Table Seven 
Combined Results 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Paved 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.72 0.54 -0.18 -25.22 

15000 to ≤ 30000 0.80 0.69 -0.11 -13.51 Divided 

> 30000 0.90 0.89 -0.01 -0.85 

≤ 15000 0.44 0.44 0.00 0.22 

15000 to ≤ 30000 0.50 0.57 0.08 15.36 

≤ 
4 

Undivided 

> 30000 0.56 0.74 0.18 31.64 

≤ 15000 0.72 0.72 0.01 0.89 

15000 to ≤ 30000 0.80 0.93 0.14 16.94 Divided 

> 30000 0.90 1.21 0.31 34.38 

≤ 15000 0.44 0.60 0.16 35.33 

15000 to ≤ 30000 0.50 0.78 0.28 56.14 

>
 4

 

Undivided 

> 30000 0.56 1.01 0.44 78.58 
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Angle Crashes – Table Eight 
Combined Results 

 
Surrounding Land Use: Rural  Location Type: Other  Shoulder: Other 

Speed: ≤ 45 mph or > 45 mph 
 

 
Note: Increase = After – Before 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Intersection Characteristics Number of Angle Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 1.05 0.54 -0.52 -49.22 

15000 to ≤ 30000 1.18 0.69 -0.49 -41.33 Divided 

> 30000 1.33 0.89 -0.44 -32.80 

≤ 15000 0.65 0.44 -0.21 -31.98 

15000 to ≤ 30000 0.73 0.57 -0.16 -21.77 

≤ 
4 

Undivided 

> 30000 0.83 0.74 -0.09 -10.82 

≤ 15000 1.05 0.72 -0.33 -31.49 

15000 to ≤ 30000 1.18 0.93 -0.24 -20.66 Divided 

> 30000 1.33 1.21 -0.12 -8.92 

≤ 15000 0.65 0.60 -0.05 -8.15 

15000 to ≤ 30000 0.73 0.78 0.04 5.88 

>
 4

 

Undivided 

> 30000 0.83 1.01 0.17 20.98 
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Left-turn Crashes – Table One 
Combined Results 

 
Surrounding Land Use: Rural or Urban  Location Type: Business  
Shoulder: Paved    Speed: ≤ 45 mph or > 45 mph 

 

Intersection Characteristics Number of Left Turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.72 0.56 -0.15 -21.59 

15000 to ≤ 30000 0.88 0.70 -0.17 -19.75 Divided 

> 30000 1.07 0.88 -0.19 -17.75 

≤ 15000 0.52 0.32 -0.21 -39.48 

15000 to ≤ 30000 0.64 0.39 -0.25 -38.41 

≤ 
4 

Undivided 

> 30000 0.78 0.49 -0.29 -37.23 

≤ 15000 1.01 0.76 -0.25 -25.14 

15000 to ≤ 30000 1.23 0.95 -0.29 -23.31 Divided 

> 30000 1.51 1.19 -0.32 -21.33 

≤ 15000 0.73 0.42 -0.31 -42.22 

15000 to ≤ 30000 0.90 0.53 -0.37 -41.15 

>
 4

 

Undivided 

> 30000 1.10 0.66 -0.44 -39.96 

 
Note: Increase = After – Before 
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Left-turn Crashes – Table Two 
Combined Results 

 
Surrounding Land Use: Rural or Urban  Location Type: Business 
Shoulder: Other    Speed: ≤ 45 mph or > 45 mph 

 

Intersection Characteristics Number of Left Turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.86 0.70 -0.16 -18.59 

15000 to ≤ 30000 1.05 0.88 -0.17 -16.61 Divided 

> 30000 1.29 1.10 -0.19 -14.46 

≤ 15000 0.63 0.39 -0.24 -37.75 

15000 to ≤ 30000 0.77 0.49 -0.28 -36.60 

≤ 
4 

Undivided 

> 30000 0.95 0.61 -0.33 -35.32 

≤ 15000 1.21 0.94 -0.27 -22.16 

15000 to ≤ 30000 1.48 1.18 -0.30 -20.19 Divided 

> 30000 1.81 1.49 -0.33 -18.05 

≤ 15000 0.88 0.53 -0.36 -40.49 

15000 to ≤ 30000 1.08 0.66 -0.43 -39.32 

>
 4

 

Undivided 

> 30000 1.33 0.82 -0.51 -38.04 

 
Note: Increase = After – Before 
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Left-turn Crashes – Table Three 
Combined Results 

 
Surrounding Land Use: Rural or Urban   Location Type: Other 

Shoulder: Paved    Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Left Turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.56 0.48 -0.08 -14.60 

15000 to ≤ 30000 0.68 0.60 -0.08 -12.17 Divided 

> 30000 0.84 0.76 -0.08 -9.55 

≤ 15000 0.41 0.27 -0.14 -34.01 

15000 to ≤ 30000 0.50 0.33 -0.16 -32.50 

≤ 
4 

Undivided 

> 30000 0.61 0.42 -0.19 -30.88 

≤ 15000 0.79 0.65 -0.15 -18.43 

15000 to ≤ 30000 0.96 0.81 -0.15 -16.04 Divided 

> 30000 1.18 1.02 -0.16 -13.44 

≤ 15000 0.57 0.36 -0.21 -36.97 

15000 to ≤ 30000 0.70 0.45 -0.25 -35.49 

>
 4

 

Undivided 

> 30000 0.85 0.56 -0.29 -33.86 

 
Note: Increase = After – Before 
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Left-turn Crashes – Table Four 
Combined Results 

 
Surrounding Land Use: Rural or Urban   Location Type: Other 

Shoulder: Other    Speed: ≤ 45 mph or > 45 mph 
 

Intersection Characteristics Number of Left Turn Crashes 

Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.67 0.60 -0.07 -10.65 

15000 to ≤ 30000 0.82 0.75 -0.07 -8.04 Divided 

> 30000 1.00 0.95 -0.05 -5.21 

≤ 15000 0.49 0.33 -0.15 -31.59 

15000 to ≤ 30000 0.60 0.42 -0.18 -29.98 

≤ 
4 

Undivided 

> 30000 0.73 0.52 -0.21 -28.23 

≤ 15000 0.94 0.81 -0.14 -14.54 

15000 to ≤ 30000 1.15 1.02 -0.14 -11.95 Divided 

> 30000 1.41 1.28 -0.13 -9.15 

≤ 15000 0.69 0.45 -0.24 -34.59 

15000 to ≤ 30000 0.84 0.56 -0.28 -32.98 

>
 4

 

Undivided 

> 30000 1.03 0.71 -0.32 -31.23 

 
Note: Increase = After – Before 
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Rear-end Crashes – Table One 
Combined Results 

 
Surrounding Land Use: Rural or Urban   Location Type: Business  

Shoulder: Paved 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.50 0.80 0.30 60.84 

15000 to ≤ 30000 0.85 1.38 0.53 63.20 Divided 

> 30000 1.44 2.40 0.96 66.90 

≤ 15000 0.55 0.55 0.00 0.28 

15000 to ≤ 30000 0.94 0.96 0.03 2.94 

≤ 
4 

Undivided 

> 30000 1.59 1.69 0.10 6.49 

≤ 15000 0.68 0.93 0.26 38.16 

15000 to ≤ 30000 1.15 1.62 0.46 40.29 Divided 

> 30000 1.96 2.82 0.86 43.57 

≤ 15000 0.75 0.65 -0.10 -13.91 

15000 to ≤ 30000 1.28 1.13 -0.15 -11.56 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 2.19 2.00 -0.18 -8.45 

≤ 15000 0.33 0.78 0.45 134.36 

15000 to ≤ 30000 0.57 1.34 0.77 135.93 Divided 

> 30000 0.96 2.31 1.34 139.34 

≤ 15000 0.37 0.53 0.16 44.50 

15000 to ≤ 30000 0.63 0.92 0.29 47.14 

≤ 
4 

Undivided 

> 30000 1.06 1.61 0.54 51.00 

≤ 15000 0.45 0.91 0.46 101.97 

15000 to ≤ 30000 0.77 1.56 0.80 103.47 Divided 

> 30000 1.31 2.70 1.39 106.56 

≤ 15000 0.50 0.62 0.12 24.45 

15000 to ≤ 30000 0.85 1.08 0.23 26.82 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.45 1.89 0.44 30.24 

Note: Increase = After – Before 
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Rear-end Crashes – Table Two 
Combined Results 

 
Surrounding Land Use: Rural or Urban   Location Type: Business 

Shoulder: Other 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.50 1.09 0.59 118.94 

15000 to ≤ 30000 0.85 1.88 1.04 122.48 Divided 

> 30000 1.44 3.28 1.84 127.86 

≤ 15000 0.55 0.75 0.20 36.82 

15000 to ≤ 30000 0.94 1.32 0.38 40.66 

≤ 
4 

Undivided 

> 30000 1.59 2.32 0.73 45.72 

≤ 15000 0.68 1.27 0.60 88.18 

15000 to ≤ 30000 1.15 2.21 1.05 91.37 Divided 

> 30000 1.96 3.85 1.89 96.13 

≤ 15000 0.75 0.88 0.13 17.52 

15000 to ≤ 30000 1.28 1.55 0.27 20.91 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 2.19 2.74 0.55 25.34 

≤ 15000 0.33 1.07 0.73 218.48 

15000 to ≤ 30000 0.57 1.82 1.26 221.08 Divided 

> 30000 0.96 3.14 2.18 226.20 

≤ 15000 0.37 0.73 0.36 96.80 

15000 to ≤ 30000 0.63 1.26 0.63 100.70 

≤ 
4 

Undivided 

> 30000 1.06 2.19 1.13 106.27 

≤ 15000 0.45 1.24 0.79 174.63 

15000 to ≤ 30000 0.77 2.13 1.36 177.07 Divided 

> 30000 1.31 3.68 2.38 181.70 

≤ 15000 0.50 0.85 0.35 69.59 

15000 to ≤ 30000 0.85 1.47 0.62 73.08 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.45 2.58 1.13 78.02 

Note: Increase = After – Before 
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Rear-end Crashes – Table Three 
Combined Results 

 
Surrounding Land Use: Rural or Urban   Location Type: Other 

Shoulder: Paved 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.37 0.80 0.43 116.94 

15000 to ≤ 30000 0.63 1.38 0.75 119.87 Divided 

> 30000 1.07 2.40 1.33 124.57 

≤ 15000 0.41 0.55 0.14 34.90 

15000 to ≤ 30000 0.70 0.96 0.27 38.32 

≤ 
4 

Undivided 

> 30000 1.19 1.69 0.51 42.91 

≤ 15000 0.50 0.93 0.43 85.35 

15000 to ≤ 30000 0.86 1.62 0.76 87.98 Divided 

> 30000 1.47 2.82 1.35 92.14 

≤ 15000 0.56 0.65 0.09 15.19 

15000 to ≤ 30000 0.96 1.13 0.17 18.19 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.64 2.00 0.36 22.19 

≤ 15000 0.25 0.78 0.54 217.12 

15000 to ≤ 30000 0.42 1.34 0.92 218.86 Divided 

> 30000 0.71 2.31 1.59 223.08 

≤ 15000 0.27 0.53 0.26 95.00 

15000 to ≤ 30000 0.46 0.92 0.46 98.35 

≤ 
4 

Undivided 

> 30000 0.79 1.61 0.82 103.30 

≤ 15000 0.34 0.91 0.58 171.85 

15000 to ≤ 30000 0.57 1.56 0.99 173.54 Divided 

> 30000 0.97 2.70 1.73 177.34 

≤ 15000 0.37 0.62 0.25 67.06 

15000 to ≤ 30000 0.64 1.08 0.44 70.03 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.08 1.89 0.81 74.41 

Note: Increase = After – Before 
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Rear-end Crashes – Table Four 
Combined Results 

 
Surrounding Land Use: Rural or Urban   Location Type: Other 

Shoulder: Other 
 

Intersection Characteristics Number of Rear-end Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.37 1.09 0.72 195.29 

15000 to ≤ 30000 0.63 1.88 1.25 199.74 Divided 

> 30000 1.07 3.28 2.21 206.60 

≤ 15000 0.41 0.75 0.34 84.06 

15000 to ≤ 30000 0.70 1.32 0.62 88.99 

≤ 
4 

Undivided 

> 30000 1.19 2.32 1.13 95.55 

≤ 15000 0.50 1.27 0.77 152.46 

15000 to ≤ 30000 0.86 2.21 1.35 156.42 Divided 

> 30000 1.47 3.85 2.39 162.48 

≤ 15000 0.56 0.88 0.32 57.25 

15000 to ≤ 30000 0.96 1.55 0.59 61.58 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.64 2.74 1.10 67.30 

≤ 15000 0.25 1.07 0.82 330.95 

15000 to ≤ 30000 0.42 1.82 1.40 333.94 Divided 

> 30000 0.71 3.14 2.43 340.33 

≤ 15000 0.27 0.73 0.45 165.59 

15000 to ≤ 30000 0.46 1.26 0.79 170.55 

≤ 
4 

Undivided 

> 30000 0.79 2.19 1.40 177.72 

≤ 15000 0.34 1.24 0.91 269.66 

15000 to ≤ 30000 0.57 2.13 1.56 272.48 Divided 

> 30000 0.97 3.68 2.71 278.23 

≤ 15000 0.37 0.85 0.48 127.67 

15000 to ≤ 30000 0.64 1.47 0.84 132.06 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 1.08 2.58 1.50 138.39 

Note: Increase = After – Before 
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Other Crashes – Table One 
Combined Results 

 
Surrounding Land Use: Urban    Location Type: Business or Other 

Shoulder: Paved or Other 
 

Intersection Characteristics Number of Other Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.76 0.63 -0.14 -17.78 

15000 to ≤ 30000 1.09 0.97 -0.12 -10.99 Divided 

> 30000 1.55 1.51 -0.05 -3.07 

≤ 15000 0.64 0.63 -0.01 -1.62 

15000 to ≤ 30000 0.91 0.97 0.06 6.30 

≤ 
4 

Undivided 

> 30000 1.30 1.51 0.20 15.52 

≤ 15000 0.76 0.77 0.01 1.00 

15000 to ≤ 30000 1.09 1.19 0.10 9.61 Divided 

> 30000 1.55 1.86 0.31 19.64 

≤ 15000 0.64 0.77 0.13 20.86 

15000 to ≤ 30000 0.91 1.19 0.28 30.89 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 1.30 1.86 0.56 42.59 

≤ 15000 0.57 0.63 0.06 10.13 

15000 to ≤ 30000 0.82 0.97 0.15 18.87 Divided 

> 30000 1.17 1.51 0.34 29.05 

≤ 15000 0.48 0.63 0.14 29.96 

15000 to ≤ 30000 0.69 0.97 0.28 39.99 

≤ 
4 

Undivided 

> 30000 0.99 1.51 0.51 51.69 

≤ 15000 0.57 0.77 0.20 35.29 

15000 to ≤ 30000 0.82 1.19 0.38 46.38 Divided 

> 30000 1.17 1.86 0.69 59.29 

≤ 15000 0.48 0.77 0.29 59.65 

15000 to ≤ 30000 0.69 1.19 0.50 72.38 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 0.99 1.86 0.87 87.23 

Note: Increase = After – Before 
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Other Crashes – Table Two 
Combined Results 

 
Surrounding Land Use: Rural    Location Type: Business or Other 

Shoulder: Paved or Other 
 

Intersection Characteristics Number of Other Crashes 

Speed Lanes Median ADT (vpd) Before After Increase % Increase 

≤ 15000 0.55 0.45 -0.09 -17.10 

15000 to ≤ 30000 0.78 0.70 -0.08 -10.10 Divided 

> 30000 1.11 1.09 -0.02 -1.94 

≤ 15000 0.46 0.45 0.00 -0.87 

15000 to ≤ 30000 0.65 0.70 0.05 7.28 

≤ 
4 

Undivided 

> 30000 0.93 1.09 0.16 16.79 

≤ 15000 0.55 0.56 0.01 1.91 

15000 to ≤ 30000 0.78 0.86 0.08 10.77 Divided 

> 30000 1.11 1.35 0.23 21.11 

≤ 15000 0.46 0.56 0.10 21.86 

15000 to ≤ 30000 0.65 0.86 0.21 32.19 

≤ 
45

 m
ph

 

>
 4

 

Undivided 

> 30000 0.93 1.35 0.41 44.24 

≤ 15000 0.41 0.45 0.04 10.92 

15000 to ≤ 30000 0.58 0.70 0.12 19.93 Divided 

> 30000 0.84 1.09 0.25 30.42 

≤ 15000 0.35 0.45 0.11 30.79 

15000 to ≤ 30000 0.50 0.70 0.20 41.14 

≤ 
4 

Undivided 

> 30000 0.71 1.09 0.38 53.19 

≤ 15000 0.41 0.56 0.15 36.36 

15000 to ≤ 30000 0.58 0.86 0.28 47.77 Divided 

> 30000 0.84 1.35 0.51 61.09 

≤ 15000 0.35 0.56 0.21 60.79 

15000 to ≤ 30000 0.50 0.86 0.37 73.92 

>
 4

5 
m

ph
 

>
 4

 

Undivided 

> 30000 0.71 1.35 0.64 89.21 

Note: Increase = After – Before 


