DEVELOPMENT OF MODELS TO QUANTIFY
THE IMPACTS OF SIGNALI ZATION
ON INTERSECTION CRASHES

Prepared for:
Florida Department of Transportation

January 2002



DEVELOPMENT OF MODELS TO QUANTIFY THE IMPACTS
OF SIGNALI ZATION ON INTERSECTION CRASHES

Written by

Juan C. Pernia
Research Associate

Jian John Lu, Ph.D, P.E.,
Associate Professor

Michael X. Weng, Ph.D.
Associate Professor
Department of Industrial and Management Systems

Xiangli Xie,
Research Assistant

and

Zhuo Yu
Research Assistant

Transportation Program
Department of Civil and Environmental Engineering
University of South Florida,
4202 E. Fowler Ave., ENB 118,
Tampa, Florida 33620
Phone: (813) 974-5817
Fax (813) 974-2957.

Presented to
Florida Department of Transportation

A Project Sponsored by
Florida Department of Transportation

January 2002



TABLE OF CONTENTS

LIST OF TABLES . ..o e v
LIST OF FIGURES . . .. ix
ABSTRACT . . .t e e xi
ACKNOWLEDGMENT ... e, Xiv
CHAPTER 1. INTRODUCTION. ...ttt 1
L1, Back@round. ... ..o e 1
1.2. Crashes at INterseCtionsS. ... ......ouuiitiiti i 6
1.3 MOAEIING. . ..ot e e 6
1.3.1. Statistical Properties of Intersection Crash Frequencies........................ 6

1.3.2. Poisson Regression Model............coooiiiiiiiiiiiiic 9

1.3.3. Negative Binomial Model...............cooiiiiiiiiiiie 12

1.3.4. Case-Based Crash Prediction...............c.oooiiiiiiiiiiiiiie 14

1.4. Research ObDJECtIVE. ...ttt e 15
CHAPTER 2. LITERATURE REVIEW......ooiiiiii e, 16
2.1. Change of Crash Patterns at Intersections with Control Change.................... 16
2.2. Traffic Crash Prediction Modeling.............oooiiiiiiiiii e, 18
2.3. Simple Linear Regression vs. Generalized Linear Regression....................... 21
2.4. Poisson Regression vs. Negative Binomial Regression..........................o.... 23
CHAPTER 3. RESEARCH APPROACH. ......c..iiiiiiiiii e 25
3.1. Phase One- Crash Data AnalySiS.......co.veeriiiiiiiiiiiiiiiieiieeieeieeiieeaens 25
3.1.1. Methods of Evaluation.............c..coiuiiiiiiiiiiiii e 25
3.1.1.1. Number of Crashes and Crash Rates...................c.ocoi 25

3.1.1.2. Types of Crashes.........ociuiiiniiiiii e 27

3.1.1.3. Crash SeVerity....o.uiviiee it 27

3.1.1.4. Surrounding Land USe..........c.oiiiiiiiiiiiiiiii e 29

3.1.2. Statistical ANalySiS. .. .uenrietiiit e 30
3121 Paired T-Test .. enne i 30

3.1.2.2. Distribution FItting...........ooviiiiiiiii i, 31

3.1.2.3. The Chi-Square Test.........coouiiimiiiiiiiii i 32

3.2. Phase Two — Statistical Modeling............oovviiiiiiiiiiiiiiiiiii e, 33
3.2.1. Statistical Prediction Modeling Procedure....................ocooiiiii 34

3.2.2. Critical Issues with Crash Prediction Modeling.......................cooeea. 36
3.2.2.1. Dependent Variables. ..........c.oviiiiiiiiiiiiiiiiiiii e, 36

3.2.2.2. Predictor Variables...........coeiiiiiiiiiiii i 36

3.2.3. Test Of OVer-diSPerSION. ... .ueuutent ettt eeeenees 37

3.2.4. Evaluation of Goodness-of-fit of Models..............c...coooiit. 39

3.2.5. Application of Crash Prediction Models...............c.ooooiiiiiiiiiiiin. 40

3.3. Phase Three- Operational Research Modeling.................cccoooiiiiiiiinnn. 41



3.3.1. Retrieve the Most Similar IntersectionsS. .........oovviviiiieiieiiiiiiiiaeneennns 41

3.3.2. Adaptation or Reuse of Previous Known Cases.................coceevvennnn.. 41
3.3.3. Evaluation of Crash Frequency Prediction...................cooooiiiiiann. 42
3.3.4. Genetic AIOTIthMS........vii i 43
3.3.5. Implementation. ... ....ooueieei e 44
TR T 11 01 1 0 44
CHAPTER 4. DATA COLLECTION AND REDUCTION.........ccoviiiiiiiiiiiiieennn. 46
4.1. FDOT Crash Database. .........coouiiiiiiii e 46
4.1.1. Crash Data Format............cooiiiii e 46
4.1.2. Format Change Using a SAS Program................coocoiiiiiiiiiiiiinn. 46
4.1.3.C0de CReCK. ....uei e 47
4.2. Intersection SAMPIE. .......o.oiuiiii e, 48
4.3. Signal Activation Date. ..., 49
4.4, TIMe Frames........o.oouiiiii i e e 49
4.5. Identification of Intersection-related Crashes.................coooiiiiiiiiii. 52
4.6. Data Reduction Using SAS Programming..............ccooviiiiiiiiiiiineinnnnn.. 54
4.6.1. Software and Basic CONCEPLS......uvvuuiiriiiieetteieeieeieeeeeaeennan, 54
4.6.2. SAS Programs and Flow Chart...............ooooiiiiiiiiiiiiiiiiiiens 56
4.7. Preliminary Screening of Variables..............occoiiiiiiiiiiiiiiiiiiiiiie e 57
4.8. Further Screening of Variables............cooiiiiiiiiiiii e 58
4.8.1. Variables Describing Severity of Individual Crashes.......................... 58
4.8.2. Variables with High Proportion of Missing Values............................ 58
4.8.3. Variables with High Percentage of Unknown Values.......................... 59
4.8.4. Variables Providing Similar Information......................oo. 59
4.8.5. Other Discarded Variables............c.ooiiiiiiiiiiiiiiiiiciieee 60
4.8.6. Variables Left in the Database.................coooiiiiiii, 61
4.9. Converting Crash-based Database to Intersection-based Database..................62
4.10. Intersections with No Crash...........coooii e, 64
4.11. Closely Spaced INterSeCtionS. .......uverueernitetteite e et eieeaiaeenneenans 65
4.12. Discarding SOme INterseCtions. . ......ouueeuieritiitene e aieenen, 65
4.12.1. Intersections with Significant Geometric Improvements..................... 65
4.12.2. Intersections on US-1 Bus-way corridor.............c.ccoviiiiiiiiininn... 66
4.12.3. Intersections without “Before” Data..................coooiiiiiii 68
T TN 110 1 0 1y 2 69
CHAPTER 5. CRASH DATA ANALYSIS. .. 70
5.1. Analysis by Crash Type......oouiiiiiiiiii e e 70
5.2. Analysis by Crash SeVerity........coueiiuiiiiiii e, 72
5.3. Analysis for Surrounding Land Use............ccooiiiiiiiiiiiiiiiiic e, 74
5.4. Analysis for Total Number of Crashes and Crash Rates............................. 75
5.5. Crash Distributions for Before and After Conditions............c..ccooeiieiiiiainen. 76
5.6. Distribution Fitting for Number of Crashes.................oooiiiiiiiii 76
5.7. Fitting for Crash Rate Distributions.............coviuiiiiiiiiiiiiiii e, 80
5.8. The 50™ and 85™ Percentile Values of Crashes. .............c...ceevcceeeeeeeeeninnn 85

i1



CHAPTER 6. RESULTS FOR STATISTICAL MODELING..........cccooviviiiiiiinnnn.. 89

6.1. Dependent Variables. .........oo.eiiiiii i 89
6.2. Predictor Variables. ........oouoiiii i 90
6.2.1. ADT on the Major Road.............coiiiiiiii e 90
6.2.2. Surrounding Land Use€..........ooiuiiiiiiiiiiiii e 92
6.2.3. Location TYPe.....cueniii i 93
6.2.4. Number of Lanes on the Major Road...................ooooin.. 94
6.2.5. Posted Speed on the Major Road................cooiiiiiiiii 95
6.2.6. Presence of Median on Major Road.................oooiiiiiiiiiiiiiine, 95
6.2.7. Shoulder Treatment. ... .. ..ot 96
6.2.8. Functional Class of Major Road.................cooiiiiiiiii e 97
6.3. Crash Frequency Distributions.......... ..o 97
6.4. Crash Predictive Modeling............oovuiiiiiiiiiiii e, 101
6.4.1. Models for All Crashes. .........co.oiiiiiiiiii e 101
6.4.1.1. The Model for Before Signalization......................oooioiiiin.t. 101
6.4.1.2. The Model for After Signalization..................ccoviiiiiinnn... 106
6.4.1.3. Comparison of All Crashes "Before" and "After" Models............. 109

6.4.2. Models for Angle Crashes............ccooeiiiiiiiiiiiiiiii e, 110
6.4.2.1. The Model for Before Signalization......................ooooiiiiinn.t. 110
6.4.2.2. The Model for After Signalization..................ccoviviiiinenn... 112
6.4.2.3. Comparison of Angle Crashes "Before" and "After" Models.........112

6.4.3. Models for Left-turn Crashes..............oooiiiiiiiiiiiiiii e, 114
6.4.3.1. The Model for Before Signalization......................cooiiiinne.. 114
6.4.3.2. The Model for After Signalization.................ccvviiiiiiiiineenn... 116
6.4.3.3. Comparison of Left-turn Crashes "Before" and "After" Models.....116

6.4.4. Models for Rear-end Crashes..............coiiiiiiiiiiiiiiiii 118
6.4.4.1. The Model for Before Signalization..................c..ocviiiinn.t. 118
6.4.4.2. The Model for After Signalization..................cooviiiiinnen... 118
6.4.4.3. Comparison of Rear-end Crashes "Before" and "After" Models.....120

6.4.5. Models for Other Crashes.............ccooeiiiiiiiiiiiii 122
6.4.5.1. The Model for Before Signalization......................oooiiiiiin.t. 122
6.4.5.2. The Model for After Signalization.................ccovviviiiinennn... 122
6.4.5.3. Comparison of Other Crashes "Before" and "After" Models..........122

6.5. Impacts of Signalization on Crashes.............ccoviiiiiiiiiiiiiiiiiiiiii e, 124
6.6. Model Validation...........couiiuiiiii i 126
CHAPTER 7: RESULTS FOR OPERATIONAL RESEARCH MODELING............ 127
7.1, Crash Prediction. ... .....o.oioii i 127
7.2. Lognormal Modeling..........o.oiuiiiiiiiii e 127
7.2.1. Models for All Crashes. .........co.eiiiiiiiii e 127
7.2.1.1. The Model for Before Signalization..................ccoociiiiiiinn. 127
7.2.1.2. The Model for After Signalization................c.ccovvviviiinnnnnn... 130
7.2.1.3. Comparison of All Crashes “Before” and “After” Models............ 133

7.2.2. Models for Angle Crashes..........ccooiiiiiiiiiiiii i 133
7.2.2.1. The Model for Before Signalization..................c..ocviiiiinin... 133
7.2.2.2. The Model for After Signalization................cccvviiiiiiiininininn. 135

11



7.2.2.3. Comparison of Angle Crashes “Before” and “After” Models........ 135

7.2.3. Models for Left-turn Crashes. ..o 137
7.2.3.1. The Model for Before Signalization..................c.ocoviiiiiin.. 137

7.2.3.2. The Model for After Signalization................c.ooviiiiiiiiiinnen. 139

7.2.3.3. Comparison of Left-turn Crashes “Before” and “After” Models.....139

7.2.4. Models for Rear-end Crashes...........c..cooiiiiiiiiiiiiiiiiiiiis 141
7.2.4.1. The Model for Before Signalization..................cooociiiiiiinn. 141

7.2.4.2. The Model for After Signalization.................ccovviiiiiinnnnn... 141

7.2.4.3. Comparison of Rear-end Crashes “Before” and “After” Models.....143

7.2.5. Models for Other Crashes............ccoiiiiiiiiiiiii 145
7.2.5.1. The Model for Before Signalization..................c.oociiiiiiiiin, 145

7.2.5.2. The Model for After Signalization.................ccoviiiiinnnenn... 145

7.2.5.3. Comparison of Other Crashes “Before” and “After” Models.........147

7.3. Impacts of Signalization on Crashes.............c.ooiiiiiiiiiiiiiiiiiii, 149
CHAPTER 8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS.......... 150
B L. SUIMMATY . ...ttt e e 150
8.2, CONCIUSIONS . .. ettt et 151
8.3. Recommendations. ... .....couuiitiiitiit i 153
REFERENCES . .. .. e 154
APPENDIX A: LIST OF VARIABLES IN FDOT DATABASE........c.ccoiiiiiiin 157
APPENDIX B: PRELIMINARY SELECTED VARIABLES.............c...oooiiiai. 167
APPENDIX C: STATISTICAL MODELING RESULTS.......cciiiiiiiiiiiine, 170
APPENDIX D: OPERATIONAL RESEARCH MODELING RESULTS................. 197
APPENDIX E: COMBINED RESULTS. ...t 224

iv



LIST OF TABLES

Table 1.1. Crash Types. .. .oouiii i e 7
Table 3.1. Yearly Average Crash Data for the Before-and-After Period.................... 26
Table 3.2. Crash Types in FDOT Database...........cooeiiiiiiiiiiiiiiiiiieieeaee 28
Table 3.3. Crash Type Categories for Mean Value Before-and-After Analysis............ 29
Table 3.4. Rural and Urban Categories. .........cooueiiiiiiiiiiii e, 30
Table 4.1. Description of Record Type........ccoviiiiiiiiiiiiiii i, 47
Table 4.2. Examples of Codes for Different Crash Types...........c.ooiiiiiiiiiiiin.. 48
Table 4.3. Intersections by Location and Activation Year............c.ccoveviiiiinnennn. 49
Table 4.4. Districts iIn FDOT ... ..o e, 49
Table 4.5. Time Frame for Intersections with Signals Activated in Different Years...... 51
Table 4.6. Number of Newly Signalized Intersections per Year...........c..ccooeviinnnnn. 52
Table 4.7. Format of Intersections from FDOT Districts............cooiiiiiiiiiinann 53
Table 4.8. Crash Severity Variables...........cooiiiiiiii 58
Table 4.9. Variables with High Percentage of Missing Values..............cccccoooooinne. 59
Table 4.10. Variables with High Percentage of Unknown Values........................... 59
Table 4.11. Variables List after Final Screening...............ccoooiiiiiiiiiiiiiiiinin.. 61
Table 4.12. Variables in the Final Modeling Database....................oooiiiin 62
Table 4.13. Intersection with Significant Geometric Improvements......................... 67
Table 4.14. Intersections on US-1Busway Corridor.............ooeiiiiiiiiiiiiiiniiiiiann 68
Table 4.15. Intersections without “Before” Data.................ooooiiiiiiiiiiiii . 68

Table 5.1. Comparison of Average Number of Crashes for Different Crash Types....... 70

Table 5.2. Statistics for Average Number of Crashes by Crash Type........................ 71
Table 5.3. Statistics for Change of Average Crash Rates by Crash Type................... 73
Table 5.4. Statistics for Crashes and Crash Rates by Crash Severity........................ 73



Table 5.5. Statistics for Crashes and Crash Rates for Surrounding Land Use............... 75
Table 5.6. Statistics for Change of Total Number of Crashes and Crash Rates............ 75

Table 5.7. Mean and Variance of Total Number of Crashes for Before Period............ 77

Table 5.8. Chi-Square Test for Poisson Distribution Fitted for Total Number of
Crashes in Before Period. ... 78

Table 5.9. Chi-Square Test for Negative Binomial Distribution Fitted for Total
Number of Crashes in Before Period................c.oooiiiiii 79

Table 5.10. Chi-Square Test Comparison for Poisson and Negative Binomial
Distribution Fitting for Number of Crashes Distributions........................ 82

Table 5.11. Chi-Square Test Comparison for Poisson and Negative Binomial
Distribution Fitting for Crash Rate Distributions...................cocvivinie. 85

Table 5.12. Equation and 50™ and 85™ Percentile Values for Number of
Crashes DistribUtiON. ......o.ueieii e 86

Table 5.13. Equation and 50™ and 85" Percentile Values for Crash Rate

DIStIDULION. ... 86
Table 5.14. Before and After Difference for 50™ and 85" Percentile Values................ 86
Table 6.1. Descriptive Statistics for Dependent Variables.......................cool. 91
Table 6.2. Descriptive Statistics for the Variable AVGADT................coooiiiiiinne. 92
Table 6.3. Levels of the Variable ADT in Models............cccoooiiiiiiiiiiiiiii 92
Table 6.4. Descriptive Statistics for the Variable URBRUR.....................c.ooo 93
Table 6.5. Descriptive Statistics for the Variable LOCATYPE........................... 93
Table 6.6. Levels of the Variable LOCATYPE in Models............c..cooiiiiinnn. 94
Table 6.7. Descriptive Statistics for the Variable LANE....................o 94
Table 6.8. Levels of the Variable LANE in Models..............cooooiiiiiiiiiiiii 95
Table 6.9. Descriptive Statistics for the Variable SPEED.........................oo. 95
Table 6.10. Levels of the Variable SPEED in Models...............coocoiiiiiiiinnn 96
Table 6.11. Descriptive Statistics for the Variable MEDIAN.....................co 96
Table 6.12. Descriptive Statistics for the Variable SHOULDER............................. 97

Vi



Table 6.13. Levels of the Variable SHOULDER in Models...............c.cooiiiiiinin 97
Table 6.14. Criteria for Assessing Over-Dispersion (All, Before).......................... 102

Table 6.15. Estimated Parameters of the Negative Binomial Model (All, Before)....... 103

Table 6.16. Explanation of Contents of the Results.....................ooooiiiiiinnn. 104
Table 6.17. Criteria for Assessing the Goodness-of-fit (All, Before,

Negative Binomial Model)..........cooviiiiiiiiiiii e, 105
Table 6.18. Criteria for Assessing Over-Dispersion (All, After)..................oooeeei. 106
Table 6.19. Estimated Parameters of the Negative Binomial Model (All, After)......... 108
Table 6.20. Criteria for Assessing the Goodness-of-fit (All, After,

Negative Binomial Model)..........c.oooiiiiiiiiii i, 109
Table 6.21. Estimated Parameters of the Negative Binomial Model

(Angle, Before).......ovniiiiiii i 111
Table 6.22. Criteria for Assessing the Goodness-of-fit (Angle)............c.c.ocoieiiie. 112
Table 6.23. Estimated Parameters of the Poisson Model (Angle, After).................... 113
Table 6.24. Estimated Parameters of the Negative Binomial Model

(Left-turn, Before).....ooovvviiii i 115
Table 6.25. Criteria for Assessing the Goodness-of-fit (Left-turn).......................... 116
Table 6.26. Estimated Parameters of the Poisson Model (Left-turn, After)................ 117
Table 6.27. Estimated Parameters of the Poisson Model (Rear-end, Before)............. 119
Table 6.28. Criteria for Assessing the Goodness-of-fit (Rear-end).......................... 120
Table 6.29. Estimated Parameters of the Negative Binomial Model

(Rear-end, After)...cc.uvviiii i e 121
Table 6.30. Estimated Parameters of the Poisson Model (All Other, Before).............. 123
Table 6.31. Criteria for Assessing the Goodness-of-fit (All Other)......................... 124
Table 6.32. Estimated Parameters of the Poisson Model (All Other, After)............... 125

Table 6.33. Average Number of All Crashes for Actual Data and Predicted Values.....126

Table 7.1. Estimated Parameters of Lognormal Model (All, Before)...................... 128

vii



Table 7.2.
Table 7.3.
Table 7.4.
Table 7.5.
Table 7.6.
Table 7.7.
Table 7.8.
Table 7.9.

Table 7.10

Table 7.11.

Table 7.12.

Table 7.13.

Table 7.14.

Table 7.15

Table 7.16.
Table 7.17.
Table 7.18.
Table 7.19.

Table 7.20.

Table 7.21

Analysis of Variance (Total, Before).............cooiiiiiiiiiiiiiii 129
Explanation of Contents of Results...............coooiiiiiiiiiiiiiiiiiii s 130
Estimated Parameters of Final Lognormal Model (All, After).................. 131
Analysis of Variance (Total, After)...........ccoeviiiiiiiiiiiiiiiii e, 132
Estimated Parameters of Lognormal Model (Angle, Before)................... 134
Analysis of Variance (Angle, Before)...........cooooiiiiiiiiiiiiiiii . 135
Estimated Parameters of Lognormal Model (Angle, After)..................... 136
Analysis of Variance (Angle, After).........coovviiiiiiiiiiiiiiiiiiieeeen, 137
. Estimated Parameters of Lognormal Model (Left-turn, Before).............. 138
Analysis of Variance (Left-turn, Before)...................ooooiiiii 139
Estimated Parameters of Lognormal Model (Left-turn, After)................ 140
Analysis of Variance (Left-turn, After)............c.oooviiiiiiiiiiiiinn, 141
Estimated Parameters of Lognormal Model (Rear-end, Before)............. 142
. Analysis of Variance (Rear-end, Before)...................coooiiiiii. 143
Estimated Parameters of Lognormal Model (Rear-end, After)............... 144
Analysis of Variance (Rear-end, After).............coooviiiiiiiiiiiiinnn. 145
Estimated Parameters of Lognormal Model (Other, Before).................. 146
Analysis of Variance (Other, Before).............coooiiiiiiiiiiiiiiiiiin, 147
Estimated Parameters of Lognormal Model (Other, After).................... 148
. Analysis of Variance (Other, After)...........c.ccoviiiiiiiiiiiiiiiiiiiiens 149

viil



LIST OF FIGURES

Figure 1.1. National Statistics of Accidents by Location and Severity.................
Figure 1.2. Variation Structure of Crash Frequencies ................ccovvviiiiviiinnnnn..
Figure 4.1. Concept to Identify Intersection Related Crashes............................
Figure 4.2. Relationship Among Files............oooviiiiiiiiiiiiiii e
Figure 4.3. Data Matching Procedure for “Before”...................cooiiiiiian.

Figure 4.4. Data Matching Procedure for “After”.............cooiiiiiiiiiiiiiiann...

Figure 5.1. Before/After Average Number of Crashes for Different Crash Types

Figure 5.2. Before/After Average Crash Rates for Different Crash Types.............
Figure 5.3. Before/After Average Number of Crashes Comparison.....................
Figure 5.4. Before/After Average Crash Rates Comparison................c.ccevevennn...
Figure 5.5. Total Number of Crashes Distribution Before Signalization...............

Figure 5.6. Total Number of Crashes Distribution After Signalization.................

Figure 5.7. Comparison of Poisson Distribution and Observed Total Number

Of Crashes DIStribUION. . ... vuue ettt e

Figure 5.8. Comparison of Negative Binomial Distribution and Observed Total

Number of Crashes Distribution..............c.ooooiiiiiiii,
Figure 5.9. Total Crash Rate Distribution Before Signalization.........................

Figure 5.10. Total Crash Rate Distribution After Signalization.........................

Figure 5.11. Comparison of Poisson Probability Distribution and Observed

Urban Crash Rate Probability Distribution.................ccoooeviiiinnn....

Figure 5.12. Comparison of Poisson Cumulative Distribution and Observed

Urban Crash Rate Cumulative Distribution.................c.ocoooiiien..
Figure 5.13. 50" Percentile Before/After Comparison for Number of Crashes. .......
Figure 5.14. 85™ Percentile Before/After Comparison for Number of Crashes........

Figure 5.15. 50" Percentile Before/After Comparison for Crash Rate..................

ix



Figure 5.16. 85" Percentile Before/After Comparison for Crash Rate....................... 88

Figure 6.1.
Figure 6.2.
Figure 6.3.
Figure 6.4.
Figure 6.5.
Figure 6.6.
Figure 6.7.
Figure 7.1.

Figure 7.2.

Frequency Distribution for All Crashes.............c.ooooiiiiiiiiiiiiiii 98
Frequency Distribution for Angle Crashes...............c.oooiiiiiiiiiiiiiin. 98
Frequency Distribution for Left-turn Crashes..................cociiii.. 99
Frequency Distribution for Rear-end Crashes...............c..coooiiiiin 99
Frequency Distribution for Other Crashes............ccccocooviiiiiiiiiiiiinn.. 100
Pearson Residual for Initial Negative Binomial Model (All, Before).........102
Pearson Residual for Initial Negative Binomial Model (All, After).......... 107
Residual for Lognormal Model (Total, Before)................c.ooooiiiii. 129
Residual for Lognormal Model (Total, After)............ccooeviiiiiiiininnnn. 132



ABSTRACT

Traffic signals have been considered a way to improve traffic safety and operations at
intersections where the warrants for traffic signal installation, specified by the Manual on
Uniform Traffic Control Devices (MUTCD), are met. However, the impacts of
signalization on crashes at intersections are complicated and have not been investigated
in depth. This research focused in the evaluation of the impacts of signalization on
crashes at newly signalized intersections in Florida through the development of statistical
crash prediction models that can estimate the expected number of crashes at an
intersection before and after the installation of traffic signals, in terms of total number of
crashes and number of crashes for different crash types, including angle, left-turn, rear-
end and other crashes. In the research, a before and after analysis was also performed for
number of all crashes, different type of crashes, different crash severities, and crash rates,
as well as an evaluation of the impacts of signalization on crashes through a case based
crash prediction system. The original crash database used in this research was taken from
the Florida crash database maintained by FDOT. It consists of all crashes occurred on
state roads within a ten-year period from 1989 to 1998. This database is updated yearly
and includes all long form reported crashes with a fatality, an injury, and high property

damage occurred on state roads.

The first part of the project focuses on a before-and-after analysis to compare the number
of crashes and crash rates based on different crash types, crash severities and surrounding
land uses. Distribution fitting for Poisson distribution or Negative Binomial distribution
was performed based on crash data. From the distribution fitting, the 50™ and 85"
percentile values were estimated and compared between the before and after period. The
annual average number of crashes and crash rates were also compared to explore the
safety impact of signalization on intersection crashes. Paired t-test was employed to

determine if there was a statistically significant difference between both periods.

On the second part of the research, statistical crash predictive models were developed to
estimate the average number of crashes as well as the corresponding variances in terms of

all crashes and specific type of crashes at intersections before and after the installation of

X1



traffic signals. During the modeling process, Poisson regression was first conducted as
the initial step for each model, with negative binomial regression being applied where the
crash data showed over-dispersion. The regression parameters were estimated by using
maximum likelihood method with Statistical Analysis Software. The goodness-of-fit of

developed models were evaluated based on Pearson's R-square and likelihood ratio index.

In the third part, an operational research approach denominated case-based crash
prediction system was used to predict crash frequencies at new intersections based on
some known cases. In this method, the most similar intersections with respect to roadway
environment for application to a new intersection were retrieved from a training database.
Then, the information and knowledge from the previous cases were adapted or reused to
solve the new case, and the predicted crash frequency for the new intersection was
evaluated. Once this system was ready, a testing database was used to estimate the
number of crashes for intersections with specific characteristics. Lognormal modeling

was performed to obtained the final results for this new approach.

With the models developed during the research, the average number of crashes at an
intersection before and after the installation of a traffic signal can be estimated given the
intersection characteristics. The change (increase or decrease) of the estimated crash
frequencies before and after signalization can be calculated, using either the tables found
in the appendices or the developed models, to represent the impacts of signalization.
Based on the results of the crash data analysis (before-and-after comparison of mean
values), it was concluded that signalization did have some impacts on traffic safety at
intersections. All the following results were statistically significant at a 95% confidence

level.

= Non-injury number of crashes and non-injury crash rates would increase, fatal
crash rates would decrease, and number of injury crashes would increase after

signalization.

= Total number of crashes and total crash rates, as well as number of rear-end

crashes and rear-end crash rates, would increase after signals were installed, while

Xii



number of angle and left turn crashes, angle and left turn crash rates, and right

turn crash rates would be reduced.

=  Number of all crashes and all crash rates would be increased in urban areas, and

crash rates for rural areas would be reduced.

For statistical models and operational research models, different variables of the
intersections would be related to the occurrence of crashes depending on the crash types
considered. The estimated impacts on crashes of different characteristics of intersections

could be found on the result tables on the appendices.
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CHAPTER 1. INTRODUCTION

1.1. Background

Traffic crashes are an inevitable, however undesirable, transportation outcome. They
cause the loss of wages, time, productivity, and especially loss of human lives, for which
value cannot be estimated. Each year, hundreds of thousands of traffic crashes occurred
in the United States. As an example, in 1999 there were 6,279,000 estimated traffic
crashes according to the Traffic Safety Facts 1999. Out of this estimated number of
crashes, 37,043 were fatal crashes with 41,611 fatalities. For the state of Florida,
specifically, a total of 2,626 fatal crashes caused 2,918 fatalities in 1999. These figures
clearly illustrate why traffic safety problems are a major concern to public, politicians
and transportation professionals. These figures also indicate that there is a tremendous
need for improving traffic safety, especially at intersections, where crashes happen more

frequently as compared to roadway segments.

Intersection-related crashes make up a very high percentage of the total number of
crashes in the roadway system. For example, Figure 1.1 presents the national statistics for
crashes by location and crash severity for 1999. For all fatal crashes, 22.98% occurred at
intersections or intersection-related locations. In regard to all traffic crashes, 44.69%
occurred at intersections or intersection-related locations. For injury crashes, the
percentage is close to 50%, and for property damaged only (PDO) crashes over 42%. The
main reason for these high percentages is that intersections are areas shared by two or
more roads, where roadway users including vehicle drivers, cyclists, and pedestrians have
to make a decision or are confronted with many choices to make, whether to stop or keep
going, go left, right or straight, etc. The complexity of movements of vehicles at
intersections results in the basic problem for intersections, too many conflict points.
Usually, once a traffic conflict is not avoided, a traffic crash will occur. Therefore, safety

analyses at intersections are necessary.

A valid approach to address safety at intersection is through intersection crash studies. An
appropriate intersection crash study is to explore the different crash patterns before and

after signalization based on intersection data. This research was conducted by using this



approach to find out the crash patterns before and after the signalization, and then based
on the different patterns, the impact of signalization on intersection crashes was found
out. Furthermore, crash prediction models were developed to quantify the impacts of

signalization on intersection crashes.
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Figure 1.1. National Statistics of Accidents by Location and Severity
(Source: Traffic Safety Facts 1999)

It is very important to develop crash prediction models to estimate intersection crash
frequencies. However, crash frequency prediction is not an easy task due to the large
number of factors that affect crash occurrences and possible complicated interactions
among them. These factors can be grouped into five categories: drivers, traffic,
intersection or roadway segment, vehicles, and environment (e.g. weather condition).
Although four of the five factors play an important role in traffic safety, traffic engineers
can only directly manage factors related to roadway through intersection design or

improvement phases.

Within roadway factors, traffic controls at intersections are very important. These traffic
controls include yield sign, stop sign, flashing beacon and traffic signals. Traffic signals

are in the higher level of these controls. Furthermore, it has long been thought by the



general public that traffic signals could reduce the number and/or severity of crashes at an
intersection. However, many traffic engineers and traffic operations professionals know
this is not necessarily the case. Results from many studies showed that the number of
crashes could increase and crash rates may not have a significant decrease after signal
installation. Moreover, previous research also indicates that rear end crashes will increase
after the installation of a traffic signal while angle crashes will decrease. Rear end crashes
will increase after a signal is installed because more vehicles will have to stop on the
major road than before. Angle crashes will decrease because the traffic signal will give
the vehicles from the minor road the right of way when crossing the major road.
However, the effects of signal installation on traffic safety at intersections have not been
fully investigated, especially in Florida. Therefore, this research focused in the evaluation
of the impacts of signalization on crashes at newly signalized intersections in Florida
through the development of statistical crash prediction models that can estimate the
expected number of crashes at an intersection before and after the installation of traffic
signals, in terms of total number of crashes and number of crashes for different crash
types, including angle, left-turn, rear-end and other crashes. A before and after analysis
for number of all crashes, crash types, crash severities, and crashes by surrounding land
use, as well as for crash rates, and an evaluation of the impacts of signalization on crashes
through a case based crash prediction system were also performed. In the before-and-
after comparison, statistical tests were performed to evaluate the significance of the

increase or decrease of crashes or crash rates.

Furthermore, it had long been thought that a crash prediction model to predict the number
of crashes at an intersection before and after signalization was sorely needed. The models
of this research could be used by traffic operations and safety engineers to estimate the
changes in total number of crashes and number of crashes by type when they are faced
with the decision whether or not a traffic signal is in the best interest of the public. These
models would also be extremely helpful to inform politicians and public what could
happen once a traffic signal is installed. As an example, the possible impacts of a signal
on crashes at an intersection could be used as additional information during the analysis
of signal warrants at an intersection when considering signalization as an alternative

solution for the intersection’s problems. These impacts, which could be estimated with



the models by predicting the number of crashes before and after signalization, may
illustrated the increase or decrease of specific type of crashes depending on the

conditions of the intersection.

This research project not only developed crash prediction models but also covered other
related aspects. The project was divided into three phases: before and after comparison
study, development of statistical crash prediction models, and development of case-based
crash prediction models. In the first phase, the following tasks were completed: 1)
collecting the specific crash data from the original FDOT crash database, and creating a
crash database for the intersections considered in the research; 2) conducting a before-
and-after comparison analysis to determine the change in the number of crashes and crash
rates after traffic signals were installed at intersections; and 3) Poisson and Negative
Binomial distributions were used to fit the observed crash distributions, and the 50™
percentile and 85" percentile values were gathered from the fitted distributions matching
with the observed data. Because the crash counts are discrete numbers, Poisson
distribution was usually used to analyze the number of crashes and crash rates to
investigate the impact of signalization on intersection crashes for this phase. Negative
Binomial distribution was also used due to the fact that recent studies indicated that this
distribution would be more accurate to fit the crash distribution when the data is over

dispersed [Nicholson (1985), Poch et. al. (1996)].

In the second phase of the project, the preliminary database was further reduced and
processed to generate the final database for statistical modeling purposes. The modeling
procedure can be summarized into five steps: (1) finding an appropriate probability
function to describe the random variation of crash frequencies; (2) determining an
appropriate functional form and parameterization to describe the effects of independent
variables on the expected crash frequencies; (3) selecting the right independent variables
to include and collect associated data; (4) estimating the regression parameters using
appropriate statistical algorithm based on the crash data and the probability assumptions;
and (5) assessing the quality of the model to make sure that the developed model makes
good engineering sense as well as fulfilling corresponding statistical goodness-of-fit

criteria. For modeling, five types of crashes were selected: (1) number of all crashes per



year; (2) number of rear-end crashes per year; (3) number of angle crashes per year; (4)
number of left-turn crashes per year; and (5) number of other crashes per year (including
all other crash types). The reason to combine other types of crashes together was the
insufficient crash counts for each crash type to perform separate modeling analysis. For
each of the cases considered, two models were developed, one based on data before
signalization, and the other based on data after signalization. In the model developing
process, the Poisson regression was used as an initial step, with the negative binomial
model then being applied where over dispersion existed in the crash data. In regard to
predictor variables for the model, a total of seven characteristics related to intersections
were selected, including the average daily traffic (ADT) of the major road, urban/rural,
land use of surrounding area, number of lanes on major road, posted speed on major road,
type of median, and shoulder treatment. The maximum likelihood method was used to
estimate the regression coefficients. The methods applied to test the goodness-of-fit of
the models include Pearson's residual, Pearson's R-square, and likelihood ratio index.
Once the models were developed, the expected number of crashes at an intersection
before and after the signalization were estimated by using the "before" model and the
"after” model. Then, the changes of the estimated number of crashes were estimated as
impacts of signalization. These estimated results were finally tabulated in order to present
a simple and clear overview of the impact of signalization on crashes for intersections

with different characteristics.

The third phase of the project consisted of a new approach (operational research) to
predict crash frequencies at a new intersection based on some known cases. The basic
idea of this new approach is to remember old solutions (crash frequencies) to similar
problems (intersections) and to adapt them to fit a new problem (intersection) rather than
having to solve it from scratch. This method, denominated case-based crash prediction
system, involves the following basic steps: (1) retrieving from a training database the
most similar known intersections with respect to roadway environment for application to
the new intersection, (2) adapting or reusing the information and knowledge from the
previous cases to solve the new case, (3) evaluating the proposed solution (crash
frequency) to the new case. This case-based crash prediction system was evaluated to

know what was going right and what was going wrong. Once this system was ready, a



testing database was used to estimate the number of crashes for intersections with

specific characteristics.

1.2. Crashes at Intersections

In reference to crashes, there are many different types that can occur at an intersection.
One of the most common types is the rear end crash, which usually occurs when one
vehicle collides with another vehicle in the "rear end" of the vehicle. Angle crashes are
also common at intersections where one vehicle tries to cross the path perpendicular to
the other vehicle. Left turn and right turn are similar to angle crashes except that one
vehicle is making a turn of some sort when they cross the path of the other vehicle.
Sideswipe is another type of crash that can occur at an intersection, which usually happen
when one vehicle attempts to change lanes and collides with another vehicle on the side.
Finally, crashes related to pedestrians are also important to be considered at the
intersection. There are some other types of crashes that can occur at an intersection but

these crash types rarely happen. Table 1.1 presents all the different types of crashes.

In reference to these types of crashes at intersections, several previous studies concluded
that rear end crashes would increase significantly after signal installation, and angle
crashes would decrease significantly after signal installation [King et. al (1975), Short et.
al. (1982), Shen (1984), Radwin et. al. (1987)]. As for left turn crashes, different
researches have different results in regard to the change of number of crashes and crash
rates after the traffic control is changed [King et. al (1975), Radwin et. al. (1987)]. This
research investigated the impacts of signalization in total number of crashes and in
several types of crashes based on data collected only in Florida. Therefore, it can give a

very important insight on crashes at intersections.

1.3. Modeling

1.3.1. Statistical Properties of Intersection Crash Frequencies

Traffic crashes are random and discrete events that are sporadic in nature, and obviously,
crash frequencies and crash rates are necessarily non-negative. In fact, crash frequencies
for particular intersections or relatively short roadway segments at a time interval are

typically small integers. Furthermore, it is not uncommon for a substantial proportion of



locations in a crash study to have no crashes at all during the study period. Also, crash
frequency data show great variation. These variations are clearly consistent with the
complex traffic crash mechanics, which includes pure randomness and the interactions of
five major factors: drivers, traffic, intersection or roadway segment, vehicles and

environment.

Table 1.1. Crash Types

Crash Code NumberCrash Type

1 Rear End

2 Head On

3 Angle

4 Left Turn

5 Right Turn

6 Sideswipe

7 Backed Into

8 Parked Car

9 W/Other Motor Vehicle on Road
10 Pedestrian

11 Bike

12 Bike in Bike Lane

13 Moped

14 Train

15 Animal

16 Sign/Sign Post

17 Utility/Light Pole

18 Guardrail

19 Fence

20 Concrete Barrier Wall

21 Bridge Abutment/Pier

22 Tree/Shrub

23 Construction Barricade/Sign
24 Traffic Gate

25 Crash Attenuators

26 Fixed Object Above Road
27 Other Fixed Object

28 Moveable Object on Road
29 Ran Into Ditch/Culvert

30 Ran Off Road Into Water
31 Overturned

32 Occupant Fell From Vehicle
33 Tractor Trailer Jack-knifed
34 Fire

35 Explosion

77 All Other




Figure 1.2 shows the concept of variation of crash frequencies [Miaou et al. (1985)]. The
total variation of crash frequencies can be decomposed into two components: systematic
variation and random variation. To better understand this, it is assumed that the crash
process could be repeated over and over again while keeping the five major factors
constant for each site and time interval. The crash frequency for each site and time
interval could be observed over and over again. The replication would allow the
computation of the long-term mean value of crash frequency for each site and time
interval. The variation of these mean values among those sites (between-site variation)
and time intervals (between-time variation) is the systematic variation. The variation of
crash frequencies observed from various replications about the long-term mean at each

site and time interval is the random variation (within-site-within-time variation).
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Figure 1.2. Variation Structure of Crash Frequencies [Miaou et al. (1985)]




The random variation can be thought of as the variation beyond explanation. Statistically,
it is assumed that the random variation follows certain probability laws and can be
characterized by the corresponding probability function, such as Poisson probability
function and negative binomial probability function. The systematic variation is further
decomposed into three types: (1) explained variation by variable X; (2) unexplained but
statistically significant variation caused by omitted variable U; and (3) unexplained and
statistically insignificant variation caused by variable Z. In reality, not all the information
needed on the major crash related factors to explain the variation of crash frequencies is
available. For example, in developing intersection crash prediction model, X may
comprise traffic volume and some geometric parameters, which are used in the model,
showing statistical significance in explaining the variation of crash. U may include
vehicular parameters, driver information and on-site weather condition, etc. All of these
factors are definitely crucial to the occurrence of crashes, but unfortunately are difficult
to be included into the prediction model. Z consists of two types of factors: one, available
but dropped due to statistical insignificance in explaining the variation, and another,

unavailable and statistically insignificant.

Developing crash prediction models is a means of summarizing the complicated
interactive effects of these crash related factors on the basis of information contained in
the data, as well as engineering judgment (e.g. the selection of independent variables),
and analytical assumptions about the crash process (e.g. which probability law will be
relatively appropriate to apply to the crash study). A crash prediction model with good
quality should estimate the occurrence of crash accurately at a specific statistical

confidence level; meanwhile, the model shall make good engineering sense.

1.3.2. Poisson Regression Model

Many types of regression models have been used to develop crash prediction models in
the past 30 years. However, conventional regression models are proved to be
inappropriate by many studies [Jovanis et al. (1985), Hauer et al. (1988), Saccomanno et
al. (1988), Miauo et al. (1993)]. Meanwhile, recent researches show that the Poisson
regression model possesses the most desirable statistical properties in describing vehicle

crash events that are random, discrete, nonnegative and typically sporadic.



Consider a set of n intersections of a given class (e.g. intersections with medium traffic
volume, 50 mph posted speed on the major road, in the vicinity of business area, located
in the urban area). Associated with each intersection ith, is a set of parameters, Xj;, Xi,
..., Xiq, which describe the safety-related characteristics of this intersection, such as
traffic volume, number of lanes on major road, posted speed on major road and/or minor
road, etc.. Let the average number of crashes occurring at the i™ intersection during a
specific time interval (e.g. crashes/per year or crashes/three-year) be denoted by Yj,
where, i= 1, 2, ..., n. then denote the actual observation of Y; during the same time
interval by y;, where y; = 0, 1, 2, .... and i = 1, 2, ..., n. The objective of a statistical
model is to provide a relationship between a function of the expected number of crashes,
E(Yi) = Wi, at the it intersection, and the q parameters of this intersection, Xj;, Xi, ...,
Xiq- This relationship can be formulated through a general linear form:

8l )= By + By Xy + ByXyp +4 B Xy -1
where, the regression coefficients, By, Bi, B2, ... , Bg, are to be estimated from the data and
the estimation procedure to be adopted is dependent on the assumption made about the
distribution of Y;. The assumption underlying Poisson regression is that the number of
crashes, Yj, follows a Poisson distribution with mean ;. The probability that an
intersection defined by a set of explanatory variables, Xii, X, ..., Xjq, experiences Yy;
crashes during a fixed time interval can be expressed as:

wYi X e i

_ __1 _
P(Y, =y, u.)= 7 (1-2)

where,
Y; — discrete and random variable representing the number of crashes occurring at
i"™ intersection during a period of time;
yi - actual or observed number of crash at i™ intersection during a period of time;
L - expected number of crashes, the dependent variable corresponding to a set of

predictor variables.

The natural logarithm link function is adopted in Poisson regression models.

10



ln(ui):ﬁ0+ﬁ1Xil+ﬂ2Xi2+---+,Bquq (1-3)

From mathematics perspective, it is not always clear in practice what link should be
employed, and very often the data are analyzed by comparing several alternative choices.
The reason to choose the natural logarithm link function here is taking into account the
non-negative feature of crash count data. As stated by McCullagh and Nelder (1989),
although canonical link may be found to be adequate over the range of the data, it is often
dubious and logically unsatisfactory for extrapolation. By using natural logarithm link,
In(W; ) rather than ; obeys the linear model. This construction ensures that |; remains
positive for all combination of independent variables and parameters. In addition, recent
crash prediction studies also show that the natural logarithm link function is a reasonable
choice. The Poisson probability function has only one parameter, mean, |, and the
variance, (52, equals the mean of the distribution. This inherent limitation of Poisson
model is uncovered to be the major shortcoming of applying Poisson regression to crash

prediction study.

Under the assumption of Poisson distribution, the regression coefficients, Bo, B1, B2, ... ,
Bg, are estimated by the maximum likelihood method. The likelihood function is the

product of the individual probability density functions.

Liu(= T (1-4)

This is a function of the parameter, L;, and through them, the parameters, Bo, B1, B2, ... ,
By, are estimated by maximizing the likelihood, or more usually, by maximizing the
logarithm of the likelihood. Because the logarithm is a strictly monotone transformation,

the values that maximize L will also maximize log-L, which can be written as,

n
LL(u)= 3 [y;In(u,)=p; ~In(y.!)] (1-5)
i=1

The actual maximization procedure always requires an iterative calculation.
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1.3.3. Negative Binomial Model

Regarding the types of models used for crash frequency studies, Poisson regression
models have been shown to be more appropriate than conventional linear regression
models. However, the inability of the Poisson model to handle over-dispersed data is a
major concern with regard to studying crash frequencies. This inability results from the
major limitation of the Poisson regression model, which requires the variance of the
dependent variable to be equal to its mean. Literature shows that most crash count data
are likely to be over-dispersed, which means that the variance will likely be significantly
greater than the mean [Shankar et al. (1995)]. When the mean and the variance of the data
are not approximately equal, the variances of the estimated Poisson model coefficients

tend to be underestimated and the coefficients themselves are biased.

This limitation can be readily overcome by using the negative binomial regression model,
which assumes that the crash frequencies are distributed by negative binomial
distribution. The negative binomial regression model is an extension of Poisson
regression model and arises from Poisson regression model by adding an extra and
independently distributed error term €. For mathematics convenience the error term,
exp(¢e), is usually assumed to follow a gamma distribution with mean 1 and variance o.
The resulting joint probability function, which is called negative binomial probability

function, can be expressed as:

_ -1
F(y.+a 1) oL, yl a
P(Y. =y, U, a)z : L 1 (1-6)
i 0 F(a_l)yi 1+0c,ul. 1+a,ul.

where,
Y; - discrete, random variable representing the number of crashes occurring at i
intersection during a period of time;
yi - actual or observed number of crash at i intersection during a period of time;
L; - expected number of crashes, the dependent variable corresponding to a set of
predictor variables;

o - dispersion parameter.
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Note that the mean and variance of the negative binomial distribution of crash data can be

expressed as:

El.)=u. (1-7)

Var(Yl. )- E(Yl. e+ aE(Yl. - u+au® (1-8)

The second term on the right hand of equation (1-8), (xu2, arises from the combination of
the Poisson distribution with the gamma distribution assumption, and relaxes the
constraints of Poisson distribution. Actually, as o goes to zero, the negative binomial

regression yields the Poisson regression.

Like Poisson regression model, the relationship between the expected value of dependent

variable and the corresponding q parameters, X, X, ..., Xjg, 1s still taken to be:
ln(,ul.):ﬁ0+ﬁ1Xl.l+ﬁ2Xi2+---+ﬁquq (1-9)
The model coefficients, Bo, B1, B2, ... , Bg, and the extra parameter, dispersion parameter

o, are estimated by maximum likelihood method [Lawless (1987)]. The likelihood

function is:

-1 -1
n F(yi +a ) o, Y; | a
L(u.,a)= 1] (1-10)
i =1 F(a_l)yi.’ I+ au; I+ au,
The log-likelihood function is:
n F(yl. +a_1) L 1 1
LL(u.; 0 = Y |[In I +y.1n(1 )+a " In( )| (1-11)
S T | B B A e A o L+au,

i

All the estimation procedure of coefficients was done using the Statistical Analysis

System (SAS).
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1.3.4. Case-Based Crash Prediction

As mentioned previously, statistical approaches such as linear regression, Poisson
regression and Negative Binomial regression analysis have been the main tool used to
uncover the relationship between roadway parameters and crash frequencies. This
research used these statistical approaches and also incorporated a new approach. Unlike
the regression methods, this new approach is model free. It attempts to predict the crash
frequency at a new intersection based on the (past and known) crash frequencies at

similar intersections.

Since the new approach attempts to predict crash frequency at a new intersection based
on some known cases, it is called case-based crash prediction (CBCP). Its foundations or
origins rely on the early work by Schank and Abelson (1977) and Schank (1982). Its
basic idea is to remember old solutions (crash frequencies) to similar problems
(intersections) and to adapt them to fit a new problem (intersection) rather than having to
solve it from scratch. In other words, CBCP requires access to past experience to improve

system performance.

A CBCP system involves the following basic steps.

(1) Retrieve the most similar known cases (intersections) for application to the
new case (intersection), with respect to roadway environment.

(2) Adapt or reuse the information and knowledge from the previous cases to
solve the new case. The selected most similar cases have to be adapted when
they do not match the new case perfectly.

(3) Evaluate the proposed solution (crash frequency) to the new case. A case-
based reasoned requires some feedback to know what is going right and what
is going wrong. Usually, this is done by performing some sort of search. In

this study, the genetic algorithms (GA) approach is used.

Case-based reasoning approach has been successfully used in practice [Krovvidy et. al.
(1993), Sanchez et al. (1997)]. Zhang and Yang’s work (1997) on the main highways of
Utah is the only literature available for traffic safety application. Experimental results by

Zhang and Yang show that this approach is applicable to highway crash prediction and
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compared favorably with traditional methods in terms of prediction errors. Zhang and
Yang did not, however, discuss the impact of traffic signal installation on crashes at

intersections.

1.4. Research Objective

The main objective of this research was to develop statistical crash prediction models that
can estimate the expected number of crashes at an intersection before and after the
installation of traffic signals, in terms of total number of crashes and number of crashes
for different crash types. The research mainly focused on the following objectives: (1) to
estimate the change or impact of signalization on the expected number of crashes based
on the expected total number of crashes and number of crashes for different crash types
for the before and after period, (2) to use the Poisson regression and Negative binomial
regression models in the determination of the prediction models, (3) to incorporate a new
approach denominated case-based crash prediction, which is model free, in the evaluation
of safety at intersections, (4) to explore the safety impacts of traffic signalization on
intersection crashes on a statewide sampling of intersections in Florida through a before-
and-after comparison analysis of yearly average number of crashes, crash rates, and crash
severity, and (5) to evaluate the differences in the distribution of crashes by crash type,

severity and surrounding land use type.
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CHAPTER 2. LITERATURE REVIEW

2.1. Change of Crash Patterns at Intersections with Control Change

Crash patterns will change at intersections after the installation of traffic signals;
however, the patterns changes are not clear. As stated by Box et al. (1970), the effect of
installing traffic signals cannot be described specifically because the signal may reduce
crashes under certain circumstances but widespread examples of higher rates after signal
installation indicate the possibility of worse crash experiences under other circumstances.
Regarding the effect of signalization on crash types and severities, it is indicated that
right angle crashes tend to decrease, turning crashes and rear-end crashes tend to

increase, and. the percent of injury crashes does not appear to increase.

King and Goldbatt (1975) carried out a comprehensive study to investigate the
relationship of crash patterns to type of intersection control. They investigated 250
intersections located in nine different states (Colorado, Illinois, Maryland, Massachusetts,
New York, Oklahoma, Pennsylvania, Washington and West Virginia). An analysis of
crash data for the cases of before and after signalization was performed by using analysis
of variance and regression techniques to show the relationship between crash patterns and
type of control. The type of controls included signalization, four-way stop sign control,
and two-way stop sign control. The study found that safety at an intersection was
improved by the installation of a traffic signal, and that signalization leads to a significant
reduction in right-angle crashes and a significant increase in rear-end crashes. The
authors indicated that intersections after signalization may have higher crash rates that are
usually offset by less disutility per crash, which leads to a no significant change in total

crash-related disutility.

Short et al (1982) performed a before-and-after signalization crash study using 31
recently signalized intersections within the City of Milwaukee. Upon signalization, little
or no change was noted overall either in the number of crashes, or in crash severities as
measured by property-damage-only-equivalent (PDOE) and severity index (SI). A
significant decrease of 34% in the number of right angle crashes and a significant

increase of 37% in rear-end crashes after signalization were reported in the study. The
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authors also indicated a significance shift in crashes occurred between flash and normal
operation time periods at thirty intersections that had flash operation at night. At these
intersections, the PDOE crashes increased by 42% during flash operation, and decreased

by 8% during normal operation. This shift was caused by a change in crash severity.

Shen (1984) performed an analysis to determine the safety aspects of newly signalized
intersections in the District of Columbia. Twelve newly signalized intersections installed
between January 1978 and June 1980 were randomly selected for the study. The author
used the Poison distribution test to determine whether the changes in the number of
crashes as a result of signalization were statistically significant. The conclusion of the
research was that the decrease of approximately 35% of right angle crashes, 40% of
sideswipe crashes, and 67% of pedestrian crashes could all be attributed to the installation
of traffic signals. It was also found that the increase of more than 40% of rear-end crashes
was statistically significant. Based on four of the twelve intersections, it was also
indicated that when a signal was installed in conjunction with the opening of a new
METRO station, it always resulted in higher crash frequencies even after signalization

due to the substantial increase in traffic volume.

Radwan and Wing (1987) presented a report that contained a comprehensive review of
signal installation and their impacts on crash patterns, crash frequency and crash severity.
The report contained information on crash statistics by type and severity; crash rates for
stop controlled and signalized intersections, crash patterns on arterials, and crash
statistics for different signal types. Pedestrian safety due to signal installation was also
addressed. This report indicated that due to signal installation, right-angle crashes
decreased, rear-end and miscellaneous crashes increased, and overall crash rates did not
change significantly. In regard to total number of crashes, no consensus in the results was
presented. It was also concluded that in order to improve crash rates, intersections must
have high traffic volumes, high existing crash rates, and complex geometric
configurations before signalization becomes effective. The report also indicated that
signalization is not a reliable measure for the reduction of crashes but it does not produce
a significant increase in crashes either. Traffic signal removal was also addressed in terms

of traffic safety. The analysis concluded that after signal removal the total number of
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crashes and injury crashes decreased; right angle crashes increased and rear-end crashes
decreased. Finally, recommendations such as "Crash Reduction Using Signal

Coordination on Arterial Streets” for future research were given.

Wattleworth et. al. (1988) developed several tables with estimated Florida crash
reductions factors for different situations such as signalization, and channelization. For
the signalization part, a total of ten improvements including new signal at channelized
intersection, and new signal at non-channelized intersections were considered. For each
improvement, the percentage of crash reduction for different crash types, crash severities,
and weather conditions were listed. Their conclusions indicated that angle, left turn, and
right turn crashes were reduced after adding traffic signals at channelized intersections. In
reference to non-channelized intersections, only left-turn crashes decreased after a signal
was installed. The specific changes of rear-end and other crash types were not analyzed

in the study.

2.2. Traffic Crash Prediction Modeling

The most commonly used approach in the study of safety at intersections with new
signals are the before and after signal installation studies. These studies can be applied to
individual intersections where a new traffic signal has been installed. However, the
conclusions for the particular intersection under study may not apply to other
intersections of similar configuration and traffic demand. To overcome this problem,
before and after studies may be performed collecting crash data at a large number of
intersections in order to cover a wide range of traffic, roadway, and environmental
characteristics. By using appropriate statistical techniques, such as analysis of variance
and regression modeling, the safety impacts of traffic signal installation at intersections

could be assessed.

Although before and after studies could provide some insights regarding the safety
consequences of the installation of signals at intersections, engineers may be more
interested in what factors cause these change, and the relationship between intersection

crashes and these factors. Furthermore, it will be very helpful to be able to estimate the
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safety at intersections based on available crash related information. An appropriate

approach to address these concerns is traffic crash modeling.

Up to date, most of the traffic crash modeling studies had focused in developing the
statistical relationship between crashes at intersections or roadway sections and geometric
variables. Then, the safety of an intersection can be estimated using the developed crash
models [Hauer (1988), Bonneson et. al. (1993), Bauer (1996)]. However, very few
studies had combined the before-and-after comparison approach together with the
prediction modeling approach. Given some safety related explanatory variables, the
combination of these two approaches gives the possibility for engineers to quantitatively
estimate the safety at intersections before and after the installation of signals, and to
investigate the impacts of signalization. Therefore, the crash prediction results from the

before-after models would be a very helpful reference for decision-making.

David and Norman (1975) evaluated the relationship between motor-vehicle crash rates
and geometric and traffic of a group of intersections with common design features. This
analysis was based on a relatively detailed on-scene inventory of the geometry, design
features, and traffic counts of 558 intersections coupled with police reports of 4372
crashes that occurred in those areas during the three-year study period. Forty-one crashes
were investigated in-depth by a multidisciplinary team to determine causal factors and to
evaluate the effects of federal safety standards on intersection crashes and severities,
Finally, six design features including left-turn storage lanes and multiphase signalization

were found to be crash-related-sight-distance obstructions.

Datta and Dutta (1990) worked on a research project to determine the changes in crash
characteristics and crash severities at 102 newly signalized intersections in Michigan. It
was also evaluated the effect of traffic signals at intersections with no geometric changes.
This study used two to three years of crash data for both the before and after periods to
evaluate the impact of signal installation based on crash rates. The conclusions based on
statistically significant values of crash rates for the before and after periods at 67
intersections with no geometric improvements of the 102 locations were summarized as

follows: total crash rate decreased by 15.5 percent; right-angle crash rate decreased by
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52.5 percent; rear-end crash rate increased by 64.5 percent; head-on and left-turn crash
rates increased by 75 percent; and other type crash rate decreased by 31.8 percent. In the
study, there is no indication of the left turn treatment of the intersections considered but it

is mentioned that only 28 percent of the locations had left turn lanes.

Huang and May (1991) employed a three level modeling approach for crash prediction
models of unsignalized and signalized intersections. The objective of the study was the
application of prediction models to understand the cause-and-effect relationship of
crashes in unsignalized and signalized intersections. Their results indicated that for
signalized intersections, actuated controllers were better from a safety point of view. For
very wide intersections, multiphase actuated controllers were necessary in order to
accommodate turning movements required in wide intersections. The study also indicated
that the most important factors affecting crash occurrences in both unsignalized and
signalized intersections were level of conflicts, where higher level of conflicts related to

higher risk; and severity of conflicts, where higher speed related to more direct conflicts.

Bauer and Harwood (1996) worked in a research to develop statistical models of the
relationship between traffic crashes and highway geometric elements for at-grade
intersections. These models also incorporated the effect of traffic control features and
traffic volumes on intersection crashes. The database used to develop the models was
obtained from the California Department of Transportation. Field data were also collected
for a sample of Urban, four-leg, signalized intersections to provide information on
additional geometric design variables and turning-movement counts that were not
available from the database. The statistical modeling approaches used in the research
included Poisson, Lognormal, Negative Binomial, and Logistic regression, as well as
discriminate and cluster analysis. Regression models of the relationships between crashes
and intersection geometric design, traffic control, and traffic volume variables were
found to explain between 16 and 38 percent of the variability in the crash data. However,
most of that variability was explained by traffic volume variables considered; geometric

design variables accounted for only a very small additional portion of the variability.
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Vogt and Bared (1998) presented a report for the implementation of the Crash Analysis
Module in the Interactive Highway Safety Design Model (IHSDM). This report described
the collection, analysis, and modeling of crashes on rural roads in Minnesota (1985-1989)
and Washington State (1993-1995). Poisson, Negative Binomial, and extended Negative
Binomial models were developed. The models indicated that exposure and traffic counts
were the key highway variables contributing to crashes. Also, it was found that the other
variables affecting crashes at intersections were: vertical and horizontal alignments,
roadside conditions, number of driveways, posted speed, approach angles, and turning
lanes. In this study, advanced statistical techniques were applied to assess the explanatory
value of the models in the presence of Poisson randomness and over dispersion. A non-
parametric statistical modeling technique known as the Classification Regression Tree
(CART) was used to group intersections by significance of prediction. This method

seems to be very accurate, but it is also very complicated to apply.

2.3. Simple Linear Regression vs. Generalized Linear Regression

Researchers have attempted several statistical approaches when relating traffic safety
measures (e.g. crash frequencies, severity-weighted crash frequencies, crash rates) to
traffic related explanatory variables. Among them, simple linear regression and
generalized linear regression are the two most commonly used statistical techniques to
develop crash prediction models. Simple linear regression is the traditional approach to
develop crash prediction models. In the classical linear model, the dependent variable
(e.g. crash frequency) is expressed as a linear combination of explanatory parameters
with or without interactions, under the assumption that the dependent variable is normally
distributed. Unlike conventional simple linear regression, generalized linear models, such
as Poisson regression, negative binomial regression and lognormal regression, are based
on alternative distributions. Poisson regression is appropriate for dependent variables that
have a Poisson distribution, as crash counts often do. Negative binomial regression
assumes the negative binomial distribution, and lognormal regression assumes the
lognormal distribution. For each of these models, the dependent variable can be crash

frequencies, or similar safety measures mentioned above.
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Even though simple linear regression has generated many useful findings, studies show
that this approach suffers some undesirable statistical properties, for example, the poor
explanatory ability of the variation in crash data. In the study performed by King (1975),
the authors indicated that a linear regression model, even one with many independent
variables, would not furnish an adequate model of crash experience associated with a
given type of intersection control, and suggested to explore some more complex,

probably non-linear regression model.

Joshua and Garber (1990) studied the relationship between crash involvements of trucks
and associated traffic and geometric variables using both linear and Poisson regression
models. The authors concluded that the multiple linear regression models did not

adequately describe that relationship, but that the Poisson models did.

Miaou and Lum (1993) completed a study to evaluate the statistical properties of two
conventional linear regression models and two Poisson regression models. The four types
of models considered were: (1) an additive linear regression model; (2) a multiplicative
linear regression model; (3) a multiplicative Poisson regression with exponential
function; and (4) a multiplicative Poisson regression with non-exponential rate function.
The authors concluded that of the four models tested, Poisson regression models
outperformed linear regression models. Furthermore, the Poisson regression model with

exponential rate function was the favored model.

Bauer and Harwood (1996) summarized several reasons indicating why conventional
linear regression models are inappropriate for modeling crash frequencies or crash rates.
The first reason indicate that traffic crashes are random and discrete events that are
sporadic in nature. Secondly, crash frequencies for particular intersections or relatively
small roadway sections are typically very small integers even if several years of crash
data are obtained for those intersections and roadway sections. In fact, it is not
uncommon for a substantial proportion of the sites in a crash study to have experienced
no crashes at all during the study period. Small integer counts, often zero or close to zero,

do not typically follow a normal distribution. Finally, crash frequencies and crash rates
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are necessarily non-negative, and traditional linear regression models could predict

negative values for them.

2.4. Poisson Regression vs. Negative Binomial Regression

According to previous research, generalized linear regression definitely is a more
adequate crash prediction approach than simple linear regression. Poisson regression
models and negative binomial regression models are the generalized linear regression
models that are being used widely. For the Poisson regression model, one important basic
assumption is that the mean and the variance of the error distribution are equal. This
feature simplifies the probability function, which only has one parameter. On the other
hand, this advantage turns out to be the major disadvantage of Poisson regression models
when applied to modeling crash data, which exhibits extra variation. If the variance of the
crash frequencies exceeds the mean, then the data are over dispersed. When over
dispersion exists in the data and Poisson regression models are used, the variances of the
estimated model coefficients tend to be underestimated, which means the significance of

the models will be overstated.

In their study, Miaou and Lum (1993) suggested the use of a more general probability
distribution such as the negative binomial distribution to overcome the over-dispersion
problem. In the follow-up study, Miaou (1994) recommended that the Poisson regression
model should be used as the initial step to establish the relationship between the
dependent variable and independent variables. Then, if over dispersion exists and is
found to be moderate or high, both the negative binomial regression models and zero-

inflated Poisson regression models can be explored.

J. Nicholson (1985) analyzed the considerable variation in the variability of crash counts.
His results revealed that the pattern of crash occurrence at many locations was either too
regular or too irregular to be well described by the Poisson process. Thus, the procedure
for analyzing temporal variations in crash occurrences at particular locations should take
into account the variations in the variability of crash counts. Based on the variance/mean
ratio, the Binomial (variance/mean < 1.0) and Negative Binomial distribution

(variance/mean ratio > 1.0) were complements to the Poisson distribution.

23



Poch and Mannering (1996) used seven years of crash data from 63 intersections in
Bellevue, Washington, to estimate negative binomial regressions of the frequency of total
crashes, rear-end crashes, angle crashes, and approach turn crashes at intersection
approaches. The estimation results uncover the interactions between geometric and
traffic-related elements and crash frequencies. In the study, each intersection was divided
into separate approaches, and crash data were taken for each approach in one-year
intervals. For the models, each intersection approach was considered as an observation,
and a total of 64 possible explanatory variables were collected. The developed regression
models identified significant traffic and geometric elements that tend to increase or
decrease crash frequencies. The understanding of these elements can be beneficial to

crash reduction at intersections.

Bernardo and Ivan (1997) utilized the Poisson regression to study the number of crashes
versus crash rates at an unspecified number of intersections in Connecticut. The authors
believed that the Poisson regression analysis was a better estimator of crashes than the
linear regression analysis. In the study, three years of existing crash data were utilized for
modeling. The intersections in the data were not separated into signalized or non-
signalized locations, which have different impact on traffic operations. Results indicated
that modeling crashes appears to be more logical than crash rates for the Poisson
distribution, in the sense that the relationship between exposure and crashes is more

accurate.
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CHAPTER 3. RESEARCH APPROACH

3.1. Phase One — Crash Data Analysis

3.1.1. Methods of Evaluation

In order to conduct an objective before-and-after crash study, it is necessary to select an
adequate crash database. FDOT has a very large crash database that is updated yearly.
The database includes crashes gathered from the Department of Highway Safety and
Motor Vehicles (DHSMYV). Crash data maintained in the database are kept for five years.
The crashes included in the database are those with a high amount of property damage, an
injury, or a fatality. Crashes with high property damage are those with an estimated
property damage of $500.00 or more. Crashes with minor property damage are not
included in this database. The exclusion of crashes reported in short forms in the database
may affect the estimated impacts of signalization on crashes in the sense that not all
crashes occurred at intersections are considered, and specific type of crashes, such as
rear-end crashes, may be under reported because many of these crashes have low
property damage. For each crash, there are more than 300 variables used to describe the
site and time of the crash, the geometric conditions, the traffic control, and drivers and
pedestrian’s characteristics. Among these variables, crash type, crash severity and
surrounding land use type were used for the before-and-after comparison analysis. Other
variables were incorporated to the modeling part of the project. Details of the database

handling process are presented later in the data collection chapter.

3.1.1.1. Number of Crashes and Crash Rates

A summary of number of crashes for all crashes and by crash type can be used to identify
the change of pattern of crashes after a signal is installed. As mentioned before, previous
intersection crash studies [King et. al (1975), Short et. al. (1982), Shen (1984), Radwin
et. al. (1987)] strongly indicate that adding a new traffic signal results in a reduction of
right-angle crashes but in an increase in rear-end crashes. For this study, the yearly
average number of crashes was considered when performing the before and after analysis
for each intersection. Similarly, the yearly average number of crashes by type at each
intersection was also used in the analysis. Table 3.1 presents the years considered for the

average crash data according to different years of signal installation.
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Because traffic volume of many intersections most likely changes after a signal is
installed, crash rates are considered to be more accurate than the number of crashes.
Therefore, in this research, the crash rates for all crashes and different crash types and
crash severities were also calculated. Crash rate is defined as the number of crashes per
million entering vehicles. The following equation is used to calculate crash rates at
intersections:

CRS = % (3-1)
where:

CRS = crash rate for spot;

A = number of crashes in this time frame;

T = time frame of the analysis, years;

ADT = average daily traffic volume.

Table 3.1.Yearly Average Crash Data for the Before-and-After Period

After
3 year average, 91,92, and 93

Year Before
90  Crash data in 89

91 2 year average, 89, and 90 3 year average, 92,93, and 94
92 3 year average, 89,90, and 91 3 year average, 93,94, and 95
93 3 year average, 90,91, and 92 3 year average, 94,95, and 96
94 3 year average, 91,92, and 93 3 year average, 95,96, and 97
95 3 year average, 92,93, and 94 3 year average, 96,97, and 98
96 3 year average, 93,94, and 95 2 year average, 97, and 98
97 3 year average, 94,95, and 96 Crash data in 98

The procedure to compute crash rates for different crash types and crash severities is: (1)
for each intersection, calculate the sum of crashes for all crashes and each crash type and
crash severity for each year considered; (2) select the yearly average ADT for each
intersection directly from the database; (3) calculate the crash rate for each intersection
for each year considered; (4) average crash rates for each intersection are calculated, for a

two or three year period based on years of crash data available at the intersection.
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3.1.1.2. Types of Crashes

The installation of traffic signals has been found to influence crash patterns at
intersections. The types of crashes commonly considered are: rear-end, right angle, left-
turn, right-turn, sideswipe, and pedestrian-related. Among them, right-angle crashes have
been found to have a significant decrease due to signal installation. Rear-end crashes will
increase due to signalization. Left turn, right turn, and sideswipe crashes have both
increased and decreased as a result of adding traffic signals according to previous studies.
Crashes related to pedestrians are found to decrease after signal installation [King et. al

(1975), Short et. al. (1982), Shen (1984), Radwin et. al. (1987)].

Table 3.2 lists all the different crash types maintained in the FDOT mainframe database.
The crash types selected for mean value comparison are rear-end, angle, left-turn, right
turn, sideswipe, and crashes related with pedestrian. Table 3.3 shows the crash types
selected. All other crash types are added together in a category called "all other" crash
type. In regard to the statistical analysis in the distribution fitting part, rear-end, angle,
and left turn are investigated separately while right turn, sideswipe and crashes related to
pedestrians are placed into the "all other" crash category due to the fact that each one of
these crash types did not have enough number of observations for the analysis in the

distribution fitting part.

3.1.1.3. Crash Severity

Although signalized intersections have been found to have a higher number of crashes
and no significant decrease in crash rates after signal installation, it is believed that there
is a reduction in crash severity. The reason for this relies on the fact that right angle
crashes are reduced. An angle collision will usually have at least one injury, and it is also
more common to have fatalities. Left turn and right turn crashes are similar to angle
crashes. Therefore, the severity of these crashes is also similar to angle crashes. The
coding scheme for the extent of injuries in FDOT database includes the following

categories:
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Table 3.2. Crash Types in FDOT Database

Code Number Crash Type
1 Rear End
2 Head On
3 Angle
4 Left Turn
5 Right Turn
6 Sideswipe
7 Backed Into
8 Parked Car
9 w/Other Motor Vehicle on Road
10 Pedestrian
11 Bike
12 Bike in Bike Lane
13 Moped
14 Train
15 Animal
16 Sign/Sign Post
17 Utility/Light Pole
18 Guardrail
19 Fence
20 Concrete Barrier Wall
21 Bridge Abutment/Pier
22 Tree/Shrub
23 Construction Barricade/Sign
24 Traffic Gate
25 Crash Attenuators
26 Fixed Object Above Road
27 Other Fixed Object
28 Moveable Object on Road
29 Ran Into Ditch/Culvert
30 Ran Off Road Into Water
31 Overturned
32 Occupant Fell From Vehicle
33 Tractor Trailer Jack-knifed
34 Fire
35 Explosion
77 All Other

No Injury

Possible Injury: The person complained of pain or momentary loss of

consciousness due to an injury during the crash, but no visible sign of injury is

evident to the investigators.

Non-Incapacitating Injury: The person experienced a visible but not serious or

incapacitating injury during the crash.
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4. Incapacitating Injury: The person experienced serious, incapacitating, nonfatal
injuries during the crash. Broken bones, massive losses of blood, or more
serious injuries are rated in this category.

5. Fatality: The person died within 90 days of the crash as a direct result of
injuries received during the crash.

6. Non-Traffic Fatality.

Table 3.3. Crash Type Categories for Mean Value Before-and-After Analysis

Crash type Crash Code Number

Rear end 01
Angle 03
Left turn 04
Right turn 05
Sideswipe 06
Pedestrian 10

All others  02,07~09,11~35 &77

In the study, crash severity is categorized into three severity classes for the before and
after analysis of mean values: fatal (F), personal injury (PI), and property damage (PD).
The type of possible injury, non-incapacitating injury, and incapacitating injury
categories are combined into a unique injury category. For the statistical analysis in the
distribution fitting part, fatal crashes are combined with injury data, and only the
categories property damage and injury are taken into account. The reason for this was the
insufficient data available to perform a separate accurate distribution analysis for the fatal

crash data.

3.1.1.4. Surrounding Land Use

The last method for the before-and-after analysis and distribution fitting is based on
surrounding land use type classification. This primary classification is essential since
urban and rural areas have fundamentally different characteristics, which significantly
influence travel patterns, particularly those related to land use and population density. In
this study, the impacts of surrounding land use type on number of crashes and crash rates

were investigated. Also, different crash types in rural and urban areas were explored. For
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the distribution fitting part, only crashes under urban condition were analyzed because
the number of crashes occurred in rural area was not enough to be divided by different
crash types. The classification for urban and rural was taken directly from FDOT
database. The code scheme for state roads in this database contained five categories as
shown in Table 3.4. From coding description of urban and rural, the code number 1 and 2
are combined as Rural, and 3 and 4 are combined as Urban for the before and after
analysis of mean values and distribution fitting. Originally, Outside-City (1 and 3) and
Inside-City (2 and 4) were also investigated, but the results were not statistically

significant and they are not shown in this report.

Table 3.4. Rural and Urban Categories

Code number Description
1 Outside City, Outside Urban
2 Inside City, Outside Urban
3 Outside City, Inside Urban
4 Inside City, Inside Urban
5 Unknown

3.1.2. Statistical Analysis

3.1.2.1. Paired t-Test

Before and after analysis of mean number of crashes and crash rates on a statewide
sampling of cash records were conducted to get the reduction or increase of crashes at
intersections where traffic signals were being investigated to replace STOP/YIELD signs.
Paired t-tests were conducted to determine if the difference between the before and after

period was statistically significant.

Paired t-test is a special case of the two-sample t-test. It occurs when the observation on
the two populations of interest are collected in pairs. Each pair of observations is taken
under homogeneous conditions, which is at the same intersection in this study. Number
of crashes and crash rates, both before and after signal installation for all locations, were
compared by paired t-test to determine if there was a statistically significant difference
between the two periods. There are two types of paired t-test that can be conducted: one-

tail or two-tail. The one-tail test is used to test whether one mean is significantly greater
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than another. The two-tail test is used to test whether the means are significantly
different. In this study, only two-tail tests are conducted to determine the change of all

crashes and different crash types, severities, and surrounding land use after signalization.

The formula used for calculating the t statistic is shown here:

t= b Ca (3-2)

where:

X , = the sample mean for ‘before’ case,

X, = the sample mean for ‘after case,
I < o o

S¢=S;+S;-2 [FZ(XM - X)X, —Xa)] (3-3)
—Llia

S, = the sample standard deviation for ‘before’ case,
S, = the sample standard deviation for ‘after’ case,

N = sample size

If t >t cigiear (t criticar 1S Obtained from standard statistical tables), the difference in mean
number of crashes and crash rates is statistically significant for an assumed level of
significance o, where the degree of freedom is equal to the number of locations minus
one. Therefore, the null hypothesis is rejected. The null hypothesis is that there is no
significant difference between the mean number of crashes and crash rates for the

“before” and “after” cases. A significance level o of 0.05 was used in the analysis.

3.1.2.2. Distribution Fitting

The average number of crashes and crash rates per year were calculated for each
intersection with the use of SAS. Details of this procedure to process data will be
explained in the next chapter. The estimated values are then plotted into histograms,
where the independent variable (x-axis) is the average number of crashes per intersection
and the dependent variable (y-axis) is the number of intersections. Poisson and Negative
Binomial distributions are used to fit the frequency of crash data for the before and after

period using the observed mean and variance. Subsequently, the Chi-Square goodness-of-
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fit test was used to test the hypothesis whether the number of crashes (or crash rates)
follows a particular probability distribution. The following paragraphs present a brief

introduction to Poisson and Negative Binomial distribution.

The definition of Poisson distribution is: if the mean number of counts (A) in the interval
is greater than zero (A>0), the random variable X that equals the number of counts in the
interval has a Poisson distribution with parameter A, and the probability mass function of
Xis

efl b

flx)= X'k, x=0,1,2,..... (3-4)

where,

A -- observed mean value of the crash frequency

In regard to the negative binomial distribution, the probability function of X is:

x—1 ~
f(x)= ( 1)p’(1—p)x ", X=r,1+l,...... (3-5)
r_

where

I, p — two parameters calculated from observed mean and variance.

The mean and variance of this distribution of crash counts can be expressed in terms of

parameters p and r as follows:

Mean = E(Y) =1/p (3-6)
Variance = Var(Y) = r(l—p)/p2 (3-7)

3.1.2.3. The Chi-Square Test

The Chi-Square goodness-of-fit test is used to test the hypothesis whether the number of
crashes (or crash rates) follows a particular probability distribution. The test procedure
requires a set of randomly chosen samples of size n from X, whose probability density
function is unknown. These n observations are then plotted into a frequency histogram of

k class interviews.
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O; represents the observed frequency in the i™ class interval. The expected frequency in
the i™ class interval denoted E; could be calculated from the hypothesized probability
distribution. The test statistic is,

2 _ S (Oi — Ei )2

XO—ZZI,T (3-8)

1
where
O - observed frequency in the class interval i,

E — expected frequency in the class interval i.

It can be shown that, if the population follows the hypothesized distribution, % has,

approximately a Chi-square distribution with k-p-1 degrees of freedom, where p
represents the number of parameters of the hypothesized distribution estimated by sample

statistics. This approximation improves as n increases. If the calculated value of the test

statistic (> Xeo_p» the hypothesis that the distribution of the population is the

hypothesized distribution would be rejected. o0 = 0.05.

3.2. Phase Two — Statistical Modeling

The second phase concentrated on developing statistical models that can estimate the
average number of intersection-related crashes as well as the corresponding variances at
an intersection, in terms of all and different crash types, before and after the installation
of traffic signals. There are five cases considered: (1) total crash frequency (all crash
types); (2) rear-end crash frequency; (3) angle crash frequency; (4) left-turn crash
frequency; and (5) other crash frequency (including all of other crash types). For each
case, two models were developed, one based on the data before signalization, the other
based on the data after signalization. The reason to use two models for before and after
situations respectively rather than one model (using a dummy variable to describe the

before-after situations) is to reduce the time series effect of crash data.

The regression models adopted in this study are based on observed crash frequency
distributions and previous researches. Two general types of statistical regression models

have been considered to apply to the crash data: (1) conventional linear regression
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models; and (2) generalized linear models, including log-normal regression models,

Poisson regression models and negative binomial regression models.

As mentioned before, many previous researches in this field show that conventional
linear regression models are incapable to model the traffic crash data, which are non-
negative, random, discrete and sporadic in nature. As alternatives, generalized linear
models were explored and adopted in recent crash studies due to their advantages over

conventional linear regression models.

3.2.1. Statistical Prediction Modeling Procedure

The crash modeling consists of seven major tasks: (1) to collect and reduce the crash
data; (2) to analyze the crash data to determine the safety measures that were adopted as
dependent variables in the modeling, and find appropriate probability functions to
describe the random variation of crash frequencies; (3) to select and analyze the predictor
variables; (4) to determine an appropriate functional form and parameterization, f(.;B), to
describe the effects of predictor variables on expected crash frequencies; (5) to estimate
the regression parameters B in f(.;B) using appropriate statistical algorithm based on
crash data and probability assumptions; (6) to assess the quality of developed models, and
make sure that the models make good engineering sense in addition to fulfilling statistical
goodness-of-fit criteria; and (7) to apply the developed models, and convert the modeling

results to tables for use. These tasks are briefly presented in the following paragraphs.

The modeling database was built by selecting the 518 newly signalized intersections
collected from across the state from the crash database generated in phase one. This crash
database generated in phase one was created from the Florida crash database maintained
by FDOT, which consists of all crashes occurred on state roadways from 1989 to 1998.
The 518 intersections included in the modeling database contained safety related
characteristics and crash counts occurred within the influence area of those intersections.

The process of generating the modeling database will be presented in detail later.

Based on data analyses, five types of intersection safety measures were adopted: (1)
average number of all crashes per year; (2) average number of angle crashes per year; (3)

average number of left-turn crashes per year; (4) average number of rear-end crashes per
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year; and (5) average number of all other crashes per year (including all the other crash
types). For each safety measure, two models were developed as mention previously, the

“before” and ““after” models.

Another important issue was to determine which intersection characteristics should be
used as predictor variables in the model. The principle to select the predictor variables
was to include as many useful variables available in the FDOT database as possible. At
the same time, the variables should be easy to obtain by FDOT traffic engineers when
applying the models. According to these criteria, totally seven intersection characteristics
including ADT of major road, urban/rural, land use of surrounding area, number of lanes
on the major road, posted speed on the major road, type of median, and shoulder

treatment were included in the model as predictor variables.

Based on crash frequency distributions and previous studies Poisson regression and
negative binomial regression were chosen to estimate the model parameters. Generally,
Poisson regressions can be used to build the relationships between crash frequencies and
a set of predictor variables under assumptions that crash frequencies are Poisson
distributed. However, Poisson regression has a limitation requiring the variance of the
data to be equal to the mean. This restraint can be overcome by negative binomial
regressions assuming crash frequencies are negative binomial distributed. Thus, for each
model, Poisson regression was used as an initial step in the modeling process, with a
negative binomial regression being applied where over-dispersion was founded existed in
the crash data. Both in Poisson and negative binomial regressions, the regression
parameters were estimated by maximum likelihood method with GENMOD procedure in
SAS. Once the models were developed, two methods were applied to test the goodness-

of-fit of the models: Pearson's R-square, and likelihood ratio index.

With the developed models, the expected number of all crashes and crashes by type at an
intersection before and after signalization were estimated. Then, the changes of the
estimated crash counts were calculated as the impacts of signalization. The calculated
results were tabulated in order to furnish a simple and clear overview of the impacts of

signalization on intersections with different characteristics.
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3.2.2. Critical Issues with Crash Prediction Modeling

3.2.2.1. Dependent Variables

The dependent variables adopted in the crash modeling process include: (1) average
number of all crashes per year before and after signalization, (2) average number of angle
crashes per year before and after signalization, (3) average number of left-turn crashes
per year before and after signalization, (4) average number of rear-end crashes per year
before and after signalization, and (5) average number of all other crashes per year before
and after signalization. The "all other" crashes includes all of the crashes except angle,
left-turn, and rear-end crashes. The reason to use the average number of crashes per year
is that the time frame used in this study is not uniform because of the limitation of the
database. For example, for some intersections, three-year "before" or "after" crash data
were available, for some intersections only one-year or two-year "before" or "after" crash
data were available. Considering this fact, using the average number of crashes per year

was the best choice.

Regarding the crash types, the selection was based on the results of data analyses. In
addition to the average number of all crashes per year, the average number of angle, left-
turn, and rear-end crashes per year were chosen as safety measures. All of the other types
of crashes were aggregated in one category called the "all other" crash type and were also
used as one of the safety measures due to insufficient crash counts for each one of these

crash types at intersections.

After the dependent variables were determined, statistical distributions of the dependent
variables were analyzed. It was found that the shapes of crash frequency distributions
follow the Poisson distribution, which means that Poisson regression might be an
appropriate choice in crash modeling. This confirms the results for distribution fitting

from phase one.

3.2.2.2. Predictor Variables
Statistically, the more predictor variables in the model, the more predictive ability the
model will have. Thus, the principle for selecting the predictor variables is to try to

include as many predictor variables as possible, based on the data available and
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engineering judgment. The selection of predictor variables was incorporated in the
database building process in the modeling process. For this selection of predictor
variables, all possible factors that may affect the occurrence of crashes at intersections
should be considered. These factors can be grouped into five categories: drivers, traffic,
intersection or roadway segment, vehicles, and environment (e.g. weather condition) but,
even though, four of the five factors play an important role in traffic safety, traffic
engineers can only directly manage factors related to roadway through intersection design
or improvement phases. Moreover, many of those factors cannot be adequately measure
or control, such as driver’s characteristics and reactions. Therefore, the variables
considered for the models were basically in the intersection or roadway segment group.
Furthermore, within this group only variables that were available in the database were
considered due to the fact that the models should be easy to apply when evaluating an
intersection. Finally eight predictor variables, such as ADT on the major road, number of
lanes on the major road, posted speed, land use of surrounding area, and so on, were
included in the final modeling database and were available for the crash predictive
modeling. Among the predictor variables, ADT was transformed from continuous
variable to categorical variable because the results of crash modeling were going to be
tabulated. Other predictor variables were also categorized into different levels during the

modeling process to generate the best modeling results.

The selected predictor variables were initially considered for all the models, including the
models for all crashes and for each type of crash studied, even though, all crashes and
each one of the different types of crashes have specific and particular factors affecting
them. One of the reasons that supported this approach is the limited number of variables
available in the database. It also has to be mention that the main purpose of the models is
to evaluate the change of the number of crashes due to signalization and not to another

specific factor.

3.2.3. Test of Over-Dispersion
Firstly, Poisson regression was performed during the modeling process for each case.
After that, the crash data were tested for over-dispersion related to Poisson regression. If

extra-Poisson variation is proved to be significant, the Poisson distribution assumption is
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violated; then the negative binomial regression model would be a more appropriate

choice.

To test the over-dispersion of data, the mean deviance and Pearson's X2 ratio were used
due to two reasons. First, these methods are widely used [Bauer et al. (1996), McCullagh
and Nelder (1983)]; secondly, these methods are adopted by SAS software. Let L denote
the maximum likelihood estimated from the saturated model that has as many parameters
as observations, making each fitted value equal to the observed value, and let Lg denote
the likelihood estimated by the current model. For Poisson regression model, log-

likelihood can be expressed as,

log(Lﬂ)zé[ —p,+y Ing —In(y.)] (3-9)

log(Ls)zé[—yi+yi Iny, —In(y./)] (3-10)

where,
yi - actual or observed number of crash at i™ intersection during a period of time;
L; - expected number of crashes, the dependent variable corresponding to a set of

predictor variables.

The deviance, or G2, is defined as minus twice the logarithm of the ratio of likelihood of
the current model to the saturated model [Nelder et. al. (1972), Agresti (1990), Greene

(1997)], and for Poisson regression, can be expressed as,

G? = 2%@1. In2L ) (3-11)

l

The deviance has an asymptotic distribution that is Chi-squared with degree of freedom
equal to n-p, where n is the sample size and p is the number of parameters estimated. By
forming the ratio of the deviance to its residual degree of freedom, n-p, an estimate of the
scale constant Gz/(n—p), called the mean deviance, can be found. For the Poisson
regression, this scale constant should theoretically be equal to one. Values substantially in
excess of one reflect over-dispersion of the data. The acceptable range for the mean

deviance, Gz/(n—p), is from 0.8 to 1.2.
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Similar to the mean deviance statistic, the Pearson's x2 ratio statistic is also used to test

the over-dispersion of crash data. The over-dispersion index can be calculated as,

P ' 2
o, = earson's y (3-12)
n—p
where, n is the number of observations and p is the number of parameters used in the
model. Pearson's x2 can be calculated by,
z (y, - [)2
i T

i=1 Var(Y,) (5-13)

2
Pearsony” =

where, for Poisson regression, Var(Yj)=W;. The value of 64 tends to be one. If 64>1.0,
then the data have greater dispersion than is explained by the Poisson distribution and a

further analysis with a negative binomial error structure is required.

3.2.4. Evaluation of Goodness-of-fit of Models

So far there is no commonly acceptable measure that can give an absolute assessment of
goodness-of-fit for generalized linear models. Therefore, several measures are selected
and calculated, and jointly will give a relatively accurate evaluation of the models. First,
deviance, as stated previously, is defined as minus twice the logarithm of the ratio of the
maximum likelihood under current model and the maximum likelihood under saturated
model. Thus, deviance describes lack of fit, greater deviance indicates poorer fit [Agresti
(1990)]. Secondly, according to McCullagh and Nelder (1983), the Pearson's x2 is
asymptotic to the x2 distribution with n-p-1 degrees of freedom for large sample sizes and
exact for normally distributed error structures. Therefore, for a model, similar to
deviance, the greater the Pearson's x2 , the poorer the fit. However, this statistic is not
well defined in terms of minimum sample size when applied to non-normal distributions.

Therefore, it should not be used as an absolute measure of model significance.

In traditional least square regression, the coefficient of determination, R2, is frequently
used to assess the goodness-of-fit of a model. It represents the proportion of variation in
the data that is explained by the model. However, it was shown that R” is not an
appropriate measure to assess the goodness-of-fit of crash prediction models due to their

non-normal and nonlinear nature [Miaou et al. (1985)]. As a variation, a measure based
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on the standardized residuals, Pearson's RZ, can be calculated for each model to give

some indication of the goodness-of-fit,

R? R o B (3-14)

where,

RIZ, -- Pearson's R-square statistic;

.th - . . . .
y; --observed number of crash ati " intersection during a time period;

U, -- estimated number of crashes during a time period;

; -- average crash counts at all intersections of interest.

.. 2 . . .
In addition, as the counterpart of R” in nonlinear regression, a measure of overall

statistical fit, the likelihood ratio index can be computed as,

p2=1—L—(ﬁ)

2(0) (3-15)

where,
L(p) --Log-likelihood at convergence;
L(0) --restricted log-likelihood (all parameters are set to zero except for the

intercept).

The value of 0.200 is quite satisfactory considering the variance in the data, and values
tend to be generally lower than typical R* values [Ben-Akiva and Lerman (1985), Poch
and Mannering (1996)].

3.2.5. Application of Crash Prediction Models

Once the parameters of crash predictive models were estimated, the average number of
crashes in terms of all crashes and specific types of crashes before or after signalization
can be estimated by replacing the regression parameters, Bo, Bi, B2, ... , Bq Wwith the

estimated values, and the variables Xj;, Xi, ..., Xjq, with the corresponding values of the
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intersection characteristics. If a predictor variable is insignificant and was excluded from
the final model, the variable would be omitted in the linear equation. However, the
estimated average number of crashes will only provide a statistic of the safety measure
either for an infinite number of intersections with the same characteristics or an

intersection in an infinite time period with every characteristic unchanged.

3.3. Phase Three — Operational Research Modeling

3.3.1. Retrieve the Most Similar Intersections

In order to predict crashes and the impact of traffic signal installation at an intersection, it
is necessary to see if there are similar intersections for which the impact due to traffic
signal installation is known. Therefore, the term similarity should be defined. As
mentioned earlier, each intersection will be characterized by seven variables. That is,
each intersection can be represented by x = (X, Xp, X3, X4, X5, Xg, X7). Then, the similarity

or closeness between two intersections x and y is defined as

distance(x, y) = \/i w; (xi;yi_)2 , (3-16)
j=]  max;—min;

where w; is the weight of the i-th variable to be determined, and max; and min; are the

maximum and minimum values of the i-th variable. Function (3-16) is a normalized

Euclidean measure between intersections x and y, and is called the distance function.

Once intersection similarity is defined, the database is searched to identify a small

number of intersections that is most similar to the new intersection (i.e., having the

smallest distance function values).

In order to use the distance function (3-16), the weights w; must be determined first.
Many weight-learning methods are available [Wettschereck et. al. (1997)]. In this
research, the genetic algorithms (GA) approach to learn the best weights is applied.

Details are given later.

3.3.2. Adaptation or Reuse of Previous Known Cases
Let x be the new intersection whose crash frequency is to be determined by prediction. In

addition, let yl, y2, s yk represent the k intersections identified from the database as
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described in last section. If f; denotes the known actual crash frequency at the j-th
identified intersection. Then, crash frequency f . at the new intersection is predicted by

k

2 Pifj

fo=o— ) (3-17)

Xj —yij‘

7
where p; is computed by Y, (1- ) . In this research, p; is called the similarity

i=1 max; — min;

function.

The number of intersections k selected from the database is yet to be determined. Several
methods exist for finding the best k value [Duda et. al. (1973), Zhang et. al. (1997)]. In
this study, k value would be determined by experiments, using a simple line search

approach.

3.3.3. Evaluation of Crash Frequency Prediction

It is obvious that different intersections may be selected from the database if different
weights w; are used in the distance function (3-16). To evaluate what weights are the best,
performance measures should be set. In this study, the squared error between actual crash
frequency and predicted crash frequency was used as the measure of performance of

CBCP. Particularly, the search of the best weights is conducted by GA.

The basic idea of GA can be simply described as: given a collection (population) of
solutions (here, each solution represents a specific set of weights), GA seeks to “breed”
good solutions by simulating the natural evolutionary process (survival of the fittest). To

evaluate the goodness of a solution, a fitness function should be defined as follows.
_ 7 N2
Fy=(fy -1y, (3-18)

where f, and f yare the actual and predicted crash frequencies at intersection y in testing

database to be defined later. Let N be the total number of intersections in the testing
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database. Then, the average fitness over all the testing intersections is used as the final

fitness of a solution (i.e., weights w;). That is,

N 1
Fw) = —F,. -1
(w) E,lN - (3-19)

The best (fittest) solutions are allowed, by combining their best features, to breed new
solutions in such a way that the population steadily improves (on the average) in terms of
fitness function (3-19). In order to keep the population stable, the best solutions
(including the newly produced solutions) survive into the nest generation while the worst

solutions die off.

In this research, each solution is represented by a string of 28 binary variables with each
weight defined by 4 binary variables. Therefore, each weight will have an integer value
ranging from O to 15. Each binary variable is called a gene in GA terminology. A single
point crossover is used to produce new solutions (weights). To prevent premature
convergence at a local optimum, a mutation rate of 3% is applied to all new solutions. If a

new solution is to be mutated, a gene is randomly selected to mutate.

The GA is executed for a fixed number of iterations or until the fitness function does not
improve for a number of consecutive iterations, and the overall best solution (i.e.,
weights) is output as the final solution. The GA is summarized in the following

paragraphs.

3.3.4. Genetic Algorithms
Step 1. Randomly generate the initial population of P solutions, and compute the
fitness of each solution.
Step 2. Repeat for K iterations or until the best fitness of some weight meet the

error tolerance (e.g., fitness < 0.05):

Select the best two unused solutions, and apply the crossover and mutation operators to
breed P new solutions. Compute the fitness function value for each new solution. Let the

P best of both the old and new solutions survive into the next generation.
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3.3.5. Implementation

This section discusses the implementation of the CBCP described earlier. The collected
intersections are partitioned into two sub-databases: training database and testing
database. The training database consists of the majority intersections, and is used to train
the system and predict intersection crash frequencies. The testing database consists of
approximately 10% of the intersections and is used to evaluate the fitness of the weight

solutions as described previously.

The computational experiments indicates that using a population size of P = 50 and K =
50 in the Genetic Algorithm is appropriate. A simple line search method is used to find
the best k value (the number of intersections selected from the training database). In
particular, the values 5, 8, 10, 12, 15, and 20 for k were tried, and found that k£ = 10 yields

the best prediction. Therefore, k was set equal to 10 in the computational experiments.

CBCP can be used to predict total number of all crashes, angle crashes, rear-end crashes,
left-turn crashes, and ‘“all other” crashes, which includes the remainder of crashes, at
intersections before and after traffic signal installation. CBCP can also be used to directly
predict the impact of traffic signal installation on intersection crashes. But in this study,
the impact is computed using the predicted crash frequencies before and after

signalization.

Since CBCP is based on known data, its prediction accuracy is closely dependent on the
availability of data. With all the seven characteristic variables that define an individual
intersection, there will be a total of 192 different intersection types. This leads to, on the
average, fewer than 3 data points for each unique intersection type. This can make the
prediction results difficult to use. To overcome this, statistical regression analysis using

the predicted crashes was applied

3.4 Summary

The research approach used in each one of the three phases of the project was presented
in this chapter. For the crash analysis, the methodology used in identifying the critical
group of intersections needed for the analysis and the evaluation method used for the

analysis and distribution fitting were described. In the statistical analysis, a paired T-test,
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the Poisson and Negative Binomial distributions were implemented. In reference to the
statistical crash predictive modeling, once the statistical properties of crash frequencies
were explored to determine the best regression model to use, the modeling procedure was
presented with a detail description of each one of its steps. The steps included: analysis of
dependent variables, analysis of predictor variables, Poisson regression and negative
binomial regression, test of over-dispersion, evaluation of the goodness-of-fit of
developed models, and applications of modeling results. Finally, the methodology used
for the crash-based prediction model was presented. The steps followed for this
methodology included the retrieve of most similar intersections, reused of previous
known cases, evaluation of crash frequency prediction and implementation of the

procedure.
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CHAPTER 4. DATA COLLECTION AND REDUCTION

4.1. FDOT Crash Database

FDOT maintains a very large crash database generated by merging crash data from the
Department of Highway Safety and Motor Vehicles (DHSMV) with roadway information
from FDOT. This database is updated yearly. All reported crashes with a fatality, an
injury, and high property damage occurred on state roads are included in this database.
Therefore, the FDOT database not only contains crashes occurred at intersections, but

also crashes occurred on roadway sections.

4.1.1. Crash Data Format

The crash data used in this study cover a 10-year period from 1989 to 1998.
Corresponding to each year, there is one data file consisting of all crashes occurred on
state roads during that year. For each crash, several record types containing specific
information related to the crash are included. Table 4.1 shows the different record types
for each crash. All ten files, stored in ASCII format, have the same database structure. As
an example in ASCII format, the first two numbers “00” indicate the record type, the next
8 numbers represents the crash number; the twelfth number is the district number, and so
on. A SAS program was written and used in order to change the ASCII format to SAS

format.

4.1.2. Format Change Using a SAS Program

Several factors were considered in order to read the original database and to create the
variables in SAS. One of them refers to the number of lines for record types "02" and
"04", which may be different, and the varied length of each record type from "00" to
"11". Additionally, 168 variables were selected for the original database for the research.
The variables were selected based on their possible contribution to crash occurrences.
These variables were selected from five of the twelve record types. The variable selection
process is explained in detail later in the chapter. The record types selected were record
"00"(Time and Location), record "O1"(Characteristics), record "09" (RCI-Features-I),
record "10"(RCI-Features-1I), and record "11"(RCI-Point). In order to put the 168
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variables in one file, these files with record type "00", "01", "09", "10" and "11" were

merged into one merged file for each year.

Table 4.1. Description of Record Type

Record Type Description

00 Time and location

01 Characteristics

02 Vehicle

03 Towed

04 Driver

05 Passenger

06 Pedestrian

07 Property Damage Amount
08 Reserved for future use

09 RCI-Features-I
10 RClI-Features-1I
11 RCI-Point
12 RCI-Total

4.1.3. Code Check

The code for different crash types was changed in the FDOT crash database in 1993.
Therefore, a code check was required for crash data files from 1989 to 1992. FDOT
personnel were certain that the code for crash types for 1991 and 1992 were updated
when the code was changed in 1993, but they were not certain about 1989 and 1990. The
code change means that the numbering scheme for the different types of crashes changed
in 1993. In the scheme, the codes used to define a crash type are numeric. As an example
for the code change, an "angle” crash is coded as "03" since 1993 but it was coded as
"02" before 1993. Table 4.2 shows the difference between the new code and the old code
for the first ten numbers in the scheme of crash type. In order to check if the data for
1989 and 1990 had the new or old code in the FDOT database, a random number of
crashes were selected for each one of the years. For each one of the crashes, the
information was checked and compared with the information for the same crashes pulled
out from the Fatality Analysis Reporting Systems database. This database has the old
code for the crash data up to 1992. The comparison was done or match base on the crash

number, which is unique for any crash and it is listed in both databases. Once the code
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was checked based on the comparison, it was found that the code from 1989 to 1992 had
been already updated to the new code in the FDOT crash database. Therefore, no code

adjustment was necessary for the yearly database utilized in this project.

Table 4.2. Examples of Codes for Different Crash Types

1989-1992 1993 Code Explanation
00 Not Applicable
01 01 Collision with MV in Transport (Rear-end)
02 03 Collision with MV in Transport (Angle)
03 04 Collision with MV in Transport (Left-turn)
04 08 Collision with Parked Car
05 06 Collision with MV in Transport (Sideswipe)
06 07 Collision with MV in Transport (Backed Into)
07 05 Collision with MV in Transport (Right Turn)
08 27 MV Hit Other Fixed Object
09 17 MYV Hit Utility Pole/Light Pole
10 02 Collision with MV in Transport (Head-on)

4.2. Intersection Sample

The principle for collecting the intersection sample was to obtain as many intersections as
possible to better evaluate the impacts of signalization on intersection crash experience.
For this reason, seven FDOT district offices were contacted and with their cooperation
518 intersections were identified. These intersections had traffic signals installed during
the period from 1990 to 1997. Furthermore, almost all the intersections collected were
considered in the research due to the limited number of intersections available, and only
intersections with major improvements besides signalization were eliminated. No random
selection of intersections was performed, which raises a concern in regard to the
possibility of a bias on the intersection sample. But, since this research is evaluating the
impacts of signalization on intersection crashes and the sample size was limited, the
sample selected consisted of almost all the newly signalized intersections. The signalized
intersections are located on state roads with two to seven lanes on the major road in rural
and urban areas. Table 4.3 shows the intersection sample collected from FDOT district
offices by district and activation year. The source of the intersection sample shows that
this sample is a representative at state level. Table 4.4 shows the different districts of

FDOT.
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4.3. Signal Activation Date

There are two very important dates regarding the installation of a traffic signal. The first
is the maintenance agreement date and the second is the actual date when the traffic
signal is activated. In this study, the activation date was used. The data from the signal
activation year was not considered for the analysis. Details are presented in the following

subsection.

Table 4.3. Intersections by Location and Activation Year

District Activation Year Total
1990 1991 1992 1993 1994 1995 1996 1997

1 6 9 2 7 6 0 5 5 40
2 12 9 8 12 11 6 4 4 66
3 6 12 6 10 11 10 14 13 82
4 1 6 11 11 0 5 0 0 34
5 36 29 21 31 21 16 14 11 179
6 30 0 0 0 30 4 5 26 95
7 0 0 1 1 6 5 5 4 22

Total 91 65 49 72 85 46 47 63 518

Table 4.4. Districts in FDOT

District Location of District County of District
Number Office Office
One Bartow Polk
Two Lake City Columbia
Three  Chipley Washington
Four Fort Lauderdale Broward
Five Deland Volusia
Six Miami Dade
Seven  Tampa Hillsborough

Eight  Turnpike District Orange

4.4. Time Frames

The crash data utilized for this study from the original FDOT crash database must be
isolated from the remainder of the data file. One of the first steps in this data reduction
process was to choose analysis time frames and discard data from outside the time

frames.
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Regarding time frames for crash analysis, the Manual of Transportation Engineering
Studies indicates that a three-year window is the most common choice [Hummer (1994)].
Choosing a three-year time frame has several advantages. A three-year time frame
enables analysts to collect sufficient crash counts. Whether or not enough crash counts
are available is always the major concern for the analysts when conducting traffic crash
studies, because traffic crash events are sporadic in nature, a large proportion of
intersections could experience no crash at all if the time window selected is too narrow.
In addition to aiding to increase the crash sample size, to some extent a three-year time
frame could reduce the regression-to-the-mean effect compared to a shorter time frame.
Regression-to-the-mean is a common phenomenon encountered in crash analysis studies.
Simply stated, it means that the occurrences of crashes at an intersection vary statistically
from year to year even if the conditions of the intersection have not changed, and have
the tendency to regress to the long-term mean value. For example, the average number of
crashes at an intersection during a long-term period is assumed to be M. If the number of
crashes in the first year is M; which is larger than M, statistically the probability of
having less crashes than M; in the second year (M» < M;) will be higher than having more
crashes than M; (M, > M;) under the same conditions. So, statistically the average
number of crashes during a three-year period will be closer to M than the average number
of crashes during a one-year period. Considering this, a three-year time frame will enable
the crash data to represent the real pattern of intersection safety more accurately than a
shorter time frame. Also, compared to a four-year or five-year time frame, a three-year
time window is not so wide that some changes in background conditions can be tolerated
within the scope of the study. Thus, a three-year time frame represents a good
compromise between the desire for larger crash sample size and the desire for time
frames within which conditions were unlikely to have changed a great deal. Therefore, a
three-year time frame was used in this study. For example, for an intersection where
signals were installed in 1994, crash data for 1991, 1992, and 1993 were kept in the
database for the "before" period, and crash data for 1995, 1996, and 1997 were kept in the

database for the "after" period.

Due to the fact that the original database covers a ten-year period from 1989 to 1998,

some intersections have only one or two-year crash data available for the "before" or
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"after" period. In this case, time frames had to change according to the data available. For
example, for those intersections where signals were installed in 1990, the time frame for
the "before" study is one-year because only the crash data for 1989 are available in the
original database. But the time frame for the "after" study is still a three-year period
because the crash data for 1991, 1992 and 1993 are available in the database. Similarly,
for those intersections where signals were installed in 1996, the time frame for the
"before" study is a three-year period, which means crash data for 1993, 1994 and 1995
were included in the database for the "before" study. But the time frame for the "after"
study is two-years, because only crash data for 1997 and 1998 are available in the

original database.

Table 4.5 shows the time frames for intersections where traffic signals were installed in
different years. The white cells filled with "before" represent the years in which crash
data were kept for the "before" study. The white cells filled with "after" represent the
years in which crash data were kept for the "after" study. The blank shaded cells
represent the years in which crash data will not be used in the study. Table 4.6 presents
the time frame information in numbers. This table also includes the number of newly

signalized intersections gather per year.

Table 4.5. Time Frame for Intersections with Signals Activated in Different Years

1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998
before| 1990 | after | after | after
before|before| 1991 | after | after | After
before | before |before| 1992 | after | After | after
before | before |before| 1993 | after | after | after
before | before |before| 1994 | after | after | after
before | before |before| 1995 | after | after | after
before | before |before| 1996 | after | after
before | before |before| 1997 | after
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Table 4.6. Number of Newly Signalized Intersections per Year

Before After Number of

Year (years) (years) Intersections
90 1 3 91
91 2 3 65
92 3 3 50
93 3 3 72
94 3 3 85
95 3 3 46
96 3 2 47
97 3 1 46

In Table 4.5 the cells filled with the figures "1990" - "1997" are also shaded. That means
that crash data within the year when the signals were installed were not used neither in
the "before" study nor in the "after" study. One of the reasons for this decision considers
that it takes time for drivers to get used to the new signals. In other words, during the
time period right after signalization, the driver behavior may be affected to some extent
and the occurrence of crashes may appear to be abnormal. In addition, in the modeling
process the average number of crashes per year based on one-year, two-year or three-year
periods was used as dependent variable. If the crash data for several-months before or
after the installation of traffic signals were used, data would have to be converted into
annual average number of crashes. This type of data conversion is not commonly used in
statistical analysis. Therefore, discarding the crash data for the activation year makes the

dependent variable more consistent and easier to handle.

4.5. Identification of Intersection-related Crashes

The roadway numbering and milepost systems were used to identify from the FDOT
crash database a crash occurred within the influence area of an intersection. Within
FDOT, every state road has been given an eight-digit code called "Section" number that
uniquely defines that roadway. The first two digits are the county number, the next three
digits are the actual section number of the roadway, and the last three digits are known as
the subsection number. In addition to this numbering system, a milepost system is being
used to label a point located on a roadway. Most state roads in the State of Florida are

labeled either from south to north or west to east. Milepost zero begins at the southern or
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western most terminus of the road within that county. Mileposts are kept with three digits
after the decimal point. Thus, any point within the right-of-way of a roadway will be
accurately identified using the numbering and milepost systems. For example, an
intersection will be uniquely pinpointed once its eight-digit "Section" number and the

milepost of its center point are available.

The roadway numbering and milepost systems are also applied in the FDOT crash
database to identify the exact site location of a crash. There are totally five variables used
to convey the information in the database: DISTID, COUNTYID, SECID, SUBSECID,
and MILEPOST. The first four variables are used to identify on which road a crash
occurred. MILEPOST is used to locate the exact position where the crash occurred. If the
crash vehicle ran off the road, MILEPOST records the milepost of the point on the
roadway that is nearest to the crash site. The subsection number is only used when a
roadway is reconfigured (a one way pair is constructed which used to be a four-lane
roadway). Consequently, a subsection is usually "000", but occasionally it could be
another number such as "001" if reconfigured. Table 4.7 shows the format for the section

number of the state road system.

Table 4.7. Format of Intersections from FDOT Districts

. . Signal
Section No. Mile Post Activation Date
16006000 2.484 03/22/91
16006000 3.239 03/22/91
16006000 3.74 03/22/91
16011000 2.762 03/12/96
16011000 5.379 02/12/90
16060000 11.871 08/02/94
16110000 5.836 02/23/93
16110000 21.354 02/17/93
16140000 0.373 02/12/90

Based on the numbering and milepost systems, all crashes occurred within the influence
area of an intersection can be identified by searching the FDOT database by the crash ID
number and milepost range according to the ID number and milepost of the intersection.

The influence area of an intersection considered in the research to investigate the impacts
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of signalization on intersection crashes is defined as a distance (250 ft) from the center
point of the intersection in either direction of travel along the major road. This distance
could be shorter in some special cases such as intersections closely spaced. The
geometric information of the minor road for each intersection is not available. Thus, all
crashes occurred within this 500 ft on the major road would be identified as intersection-
related crashes. In other words, the influence area covers a 500 ft long area within the
right-of-way of the roadway, and the base point to identify crashes within the intersection
is its center point. This method is also used by other intersection crash studies [Bauer, et.
al. (1996), Ogden et. al. (1996), Sayed et. al. (1999)]. Figure 4.1 shows the concept to

identify intersection-related crashes.

250 ft 250 ft

Major Road

|
|
|
|
j Center of Intersection
|
|
|
|

Figure 4.1. Concept to Identify Intersection-Related Crashes

4.6. Data Reduction Using SAS Programming

4.6.1. Software and Basic Concepts

For the project, the crash database containing only crashes for the newly signalized
intersections was needed. For this purpose, a SAS program with Structured Query
Language (SQL) was written to automatically gather all of crash data needed from the
merged files. The SQL procedure implements Structured Query Language (SQL) for the
SAS System. SQL is a standardized, widely used language that retrieves and updates data

in tables and views based on those tables. The SQL procedure in SAS allows to:
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e Retrieve and manipulate data stored in tables or views.
o (reate tables, views, and indexes on columns in tables.
e Create SAS macro variables that contain values from rows in a query's result

e Add or modify the data values in a table's columns or insert and delete rows.

In this study, each intersection in the list needed to be matched with several different
files. As mentioned before, if the signal was installed in 1991 at an intersection, crashes
occurred in the before period need to be gathered from the files that contain crash data for
1989 and 1990, and in the after period from crash data files for 1992, 1993 and 1994. If
the intersection had been signalized in 1996, crash data from 1993, 1994, and 1995 were
needed for the "before" period, and crash data from 1997 and 1998 were needed for the
"after" period. Figure 4.2 illustrates the relationship between the ten FDOT crash data
files, the intersection list and the final "before" and "after" files. After the matching, the
result file for “before" contains all the crashes occurred at the newly signalized
intersections for the time period between 1 to 3 years before the signal was installed, and
the "after" file contains the crash information for the period of 1 to 3 years after the signal

was activated.

Crash Data Files Intersection List File Result Files
1 16 6 0 2484 91
1 16 6 0 3239 91
1 16 6 0 3740 91
1 16 11 © 2762 96 < Before
1 16 11 © 5379 90 3
1 16 60 0 11871 94
|1 16 110 @ 5836 93
byl 16 110 0 21354 93
1 16 140 © 373 94
1 16 140 © 517 90
After

Figure 4.2. Relationship Among Files
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4.6.2. SAS Programs and Flow Chart

In order to get the crashes from the yearly-merged-files, each intersection in the list of
newly signalized intersections needed to be matched with each yearly-merged-file. For
example, for intersections with signal installed in 1991, 1992 and 1993, the yearly
merged crash data file "94" contains the crashes to be taken into the final "after" file. On
the other hand, for those intersections where a signal was installed in 1995, 1996, and
1997, the crashes contain in the yearly merged crash data file “94” were taken into the

final "before" file. This is the basic structure in the SAS program.

Figure 4.3 shows the procedure used to get the crashes for the "before" period. In the
program, the ‘before’ file was established by matching the crash file in 1996 with the
intersections with signal activated in 1997. Then, crash data from 1995 matching the
intersections with signal activated in 1996 or 1997 were added to the “before” file. The
“before” file was completed applying the loop method to the same procedure for the data
from yearly-merged-files from 1989 to 1994. Each yearly-merged-file had three years of
intersections with signal activation from (i+1) to (i+3), where "i" is the year of the crash

data.

Crash database Matching Intersections Insert crash data

<< 1
~— Intersections

File 96 Signalized in 97
\_/

é Intersections Final
File 95 | ——» Signalized in Before

— 97,96

File i Intersections
— > Signalized in
(89-94) (i+1) to (i+3)

Figure 4.3. Data Matching Procedure for "Before"

Similarly, Figure 4.4 shows the procedure to get the "after" file. This file can be
established by matching the year 1991 crash file with the intersections where the stop
sign was changed to signal in 1990. Then, crashes from 1992 matching intersections

where the signal was installed in 1990 and 1991 were added to the “after” file. Finally,
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the “after” file was completed by adding crashes from each crash data file from 1993 to
1998 matching three years of intersections from the year (i-3) to (i-1), where "i" is the
year of the crash data. Two SAS data sets with 4565 and 6122 crashes occurred at the

newly signalized intersections for the before and after period respectively were obtained

4.7. Preliminary Screening of Variables

As mentioned earlier, there are 12 record types for each crash to describe the crash-
related information in the FDOT crash database. Each data record consists of a fixed
number of variables. For example, there are totally 49 variables in record type 00, and
only 9 variables in record type 03. At most, there will be up to 295 variables to describe a

crash. Appendix A lists all the variables in the database.

Crash database Matching Intersections Insert crash data

- Intersections
File 91 Signalized in 90
Intersections
File92 |—» Signalized in
90, 91

Intersections
> Signalized in
(i-3) to (i-1)

Figure 4.4. Data Matching Procedure for "After"

One step necessary in the database processing was to drop some variables that are not
useful for this study in order to make the database smaller and easier to manipulate. First,
several types of variables, including driver-specific variables, passenger-specific
variables, pedestrian-specific variables, vehicle-specific variables, and time-specific
variables were dropped. For an individual crash, these variables definitely are crucial to
explain how the crash occurred. However, these variables are not useful in developing the
aggregate relationship between the average number of crashes occurred at an intersection
and the safety-related characteristics of this intersection. Based on this criterion, record

types 03, 04, 05, 06, 07 and 12 were discarded. In record types 00, 01, 02, 09, 10, and 11,
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many variables that provide useful information for the study were kept. Appendix B lists

the 62 variables that were included in the database after the preliminary screening.

4.8. Further Screening of Variables
During the data analyses, it was found that some variables were not necessary for the
study due to different reasons. The variables eliminated from the database are classified

into the following categories and are presented one by one in the following subsections.

4.8.1. Variables Describing Severity of Individual Crashes
Eight variables describing the severity of individual crashes were discarded because crash

severity wee not modeled in this study. These variables are presented in Table 4.8.

Table 4.8. Crash Severity Variables

No. Variable Description
1 ACCSEVER  Crash Severity
2 INJURSEV Injury Severity
3 DAMAGSEV Damage Severity
4 DAMAGAMT Total Damage Amount
5 VEHDAMAG Total Vehicle Damage Amount
6 PROPDAM Total Property Damage Amount
7 TOTFATAL  Total Fatalities
8§ TOTINJUR Total Injuries

4.8.2. Variables with High Proportion of Missing Values

Among 4565 crashes in the “before” data, there are 3411 crashes (74.72%) with missing
values for the variables shown in Table 4.9. Among 6122 crashes in the “after” data file,
there are 4640 crashes (75.79%) with missing values for those variables. The missing

value is denoted by a symbol " . ", which means that the variables were not given any
value while inputting data from hardcopy crash reports to compute-based database. These

variables were eliminated from the database.
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Table 4.9. Variables with High Percentage of Missing Values

No. Variable Description
1  ACCESCTR Access Control Type
2 PREVLAND Prevailing Land Use
3  HWYSHTP1 Highway Shoulder Type
4 HWYSHWI1 Highway Shoulder Width
5 MEDIANW Median Width
6 MEDIANTP Median Type
7 HORPTINT Horizontal PT of Intersection
8 SUPERELV  Super elevation
9 VERTPTIN Vertical PT of Intersection

4.8.3. Variables with High Percentage of Unknown Values

In addition to variables with missing values, a group of variables were found to have very
high percentage (even 100%) of unknown values according to each variable's coding
system. The unknown values are denoted by "0", "9", "99", "unknown", or other symbols.

Table 4.10 lists these variables and their percentage of unknown values.

Table 4.10. Variables with High Percentage of Unknown Values

Crashes with Unknown Values

No.  Variable Description
“Before” “After”
1  CROSSTRF Cross Traffic 100.00% 100.00%
2 PASSDIST Passing Distance 81.01% 100.00%
3  RDSONSIS Roadway Consistency 81.01% 100.00%
4 RDALIGN Roadway Alignment 81.01% 100.00%
5 STOPDIST Stopping Distance 81.01% 100.00%
6 POINTADT Point ADT 100.00% 100.00%
7  TPINTER Type of Intersection 100.00% 100.00%

4.8.4. Variables Providing Similar Information

Some variables describe similar characteristics of the intersection. In most cases, the
information the variables provide is consistent between them although the values of these
variables are different due to different codes. In each case, one of the similar variables
was kept in the database while the other(s) was dropped after careful examination and

comparison. This method applied to the following variables:
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NUMBLANE (DOT number of lanes) and NUMLANES (DHSMV number of
lanes). Both of them describe the number of lanes on the major road but from
different sources. Either one of them can be used in the database. NUMLANES
was chosen.

RURURB (DOT rural/urban) and URBRUR (DHSMV rural/urban). Both
variables describe the type of land surrounging the intersection. URBRUR was
chosen.

Totally 4 variables were used to describe the crash-related speed. ESTSPEED
describes the estimated speed of the first vehicle involved in each individual
crash; POSTSPED describes the posted speed on the major road; MAXPSTSP
describes the maximum posted speed; MINPSTSP describes the minimum posted
speed. The first speed variable was eliminated because it only describes individual
crashes. MINPSTSP was dropped due to the fact that its vlaue was zero for more
than 98% of total crashes. Either POSTSPED or MAXPSTSP could be used in the
modeling. In the project, POSTSPED was chosen.

ROADTYPE and DIVIDNOT are used to describe whether the major road is
divided or not. DIVIDNOT was chosen.

CLASSCAT determines the class/category of the roadway, providing the
comprehensive information provided by DIVIDNOT, NUMLANES, and

URBRUR. This variable was discarded for the convenience of data process.

4.8.5. Other Discarded Variables

Several other variables were eliminated from the database. The following variables were

eliminated because their limited effects on intersection safety. ROADSYS describes the

type of function of a roadway where a crash occurred, such as interstate highway, state
road, local road, or turnpike. ROADSURF, PAVINDEX and PVSURFTP are used to
describe the type of pavement. SITELOC and SITLOCAT are used to describe the site

location of individual crash, for example, at intersection, on bridge, on ramp, etc.

The rest of the variables eliminated included the following. TRAFSGTP are used to

describe traffic signal type at the site of a crash, such as intersection control, mid-block

pedestrian control, emergency control or flashing beacon. In this study, all traffic signals
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are used for intersection control. TRAFCTR1 describes the first traffic control type at the
site of a crash. In this study, this information is already known for each intersection.
TRAFCHAR describes the geometric characteristics of roadway, such as straight or
curve. Data analysis shows that there is very little variation for this variable. Straight
situation covers 93.8% and 95.04% of crashes in the "before" and "after" data files
respectively. NINSLEG records the number of intersection legs. The intersections of
interest in the modeling process were analyzed as a whole, and not based on intersection

types separately, such as three-leg intersections and four-leg intersections.

4.8.6. Variables Left in the Database

After the final screening, 19 variables were left in the database, including intersection
identification variables, roadway characteristics variables, and crash counts variables.
Table 4.11 lists these 19 variables. The final modeling database was built based on these

variables.

Table 4.11. Variables List after Final Screening

No. Variable Description
1  ACCNUMB Crash ID Number
2 DISTID District Number
3 COUNTYID County Number
4  SECID Section Number
5 SUBSECID  Subsection Number
6 MILEPOST  Milepost of Crash Spot
7 ACCYEAR  Crash Year
8 ADT ADT of Major Road
9 FEDHWY Roadway Functional Level
10 URBRUR Rural/urban
11 HARMEVI1 First Harmful Event
12 SHOULDER Shoulder Treatment Type
13 NUMLANES Number of Lane on Major Road
14 DIVIDNOT  Presence of Median
15 LOCATYPE Surrounding Land Use
16 POSTSPED  Posted Speed on Major Road
17 POINTIMP Point of Impact
18 TURNONYR Signal Activation Year
19 MILEPO Milepost of Intersection Center
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4.9. Converting Crash-based Database to Intersection-based Database

Once the final variable screening was completed, the next step was to convert the crash-
based database to intersection-based database. In the intersection-based modeling
database, a record corresponds to an intersection. Three types of variables were included
in the modeling database: (1) intersection ID variables, (2) intersection characteristics

variables, and (3) crash counts variables. The definitions of variables are shown in Table

4.12.

Table 4.12. Variables in the Final Modeling Database

Type Variable Description
A DISTID District Number
‘= 3 COUNTYID County Number
-% <  SECID Section Number
2 'S SUBSECID  Subsection Number
2 > MILEPO Milepost of Intersection
— TURNONYR Signal Activation Year
AVGADT Average ADT of Major Road
» CLASS Roadway Functional Level
£% 4 URBRUR  Rural/urban
35S LOCATYPE Surrounding Land Use
g 3 ‘5 LANE Number of Lane on Major Road
£ £ SPEED Posted Speed on Major Road
© MEDIAN Presence of Median
SHOULDER Shoulder Treatment Type
CRASH Total Number of All Crashes
AVGCRASH Average Number of All Crashes Per Year
ANGLE Total Number of Angle Crashes
AVGANG Average Number of Angle Crashes per Year
8 REAREND  Total Number of Rear-end Crashes
;3 AVGREAR  Average Number of Rear-end Crashes per Year
C; LEFTTURN  Total Number of Left-turn Crashes
@ AVGLEFT Average Number of Left-turn Crashes per Year
§ HEADON Total Number of Head-on Crashes
O AVGHEAD  Average Number of Head-on Crashes per Year
Sg RIGHT Total Number of Right-turn Crashes
O AVGRIGHT Average Number of Right-turn Crashes per Year
SIDESWIPE Total Number of Sideswipe Crashes
AVGSIDE Average Number of Sideswipe Crashes per Year
OTHER Total Number of All Other Crashes
AVGOTHER Average Number of All Other Crashes per Year
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The procedure to obtain the intersection-based database involved the selection of the
three types of variables mentioned above for a three-year period for each intersection.
Crash data for an intersection in any of the years considered could be zero, one or more
crashes. This possibility of having different number of crashes also means that it could be
zero, one or more crash records related to this intersection in the crash-based database. If
there was zero crash or no crash at the intersection, the values of all the characteristic
variables were set to missing. If there was one crash, the total number of crashes was
equal to one. Crash type was identified based on the code of HARMEV1, which will be
presented in the following paragraph. The values of the characteristic variables would be
equal to the values of the corresponding variables in the crash record, e.g. NUMLANES
corresponding to LANE. Finally, if there were more than one crash at the intersection, the
total number of crashes and the total number of different types of crashes were
determined base on HARMEV1. For the characteristic variables, inconsistency of the
data among the crash records could be possible. This means that for each variable it could
be one value for all the crash records, or as many values as the number of crash records.
If all records had the same value, that value would be taken for the variable at this
intersection. If the values are different, the value that appeared most frequently for a

variable was chosen to represent that variable at the intersection.

The same method was applied to process the "before" data each one of the years
considered. Once this task was completed, three "before" values were available for each
variable. The next step was to calculate or select a value for each variable based on the
three values. The values of the variables representing the average numbers of crashes per
year (different types as well as all types), such as AVGCRASH, AVGANG, AVGLEFT,
AVGREAR, AVGHEAD, AVGRIGHT, AVGSIDE and AVGOTHER, were calculated
based on crash counts in each year. For example, there were two crashes in the first year,
four in the second year, and five in the last year at this intersection; then the value of
AVGCRASH was equal to 3.7. The value of AVGADT, representing average ADT on
the major road, was calculated by averaging the three ADT values. If the value of ADT
was missing in a year, then a reasonable value according to the ADT in a near year was

assigned. For characteristic variables, one of the three values for each variable was
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selected because the three values were the same in most cases. If any inconsistency

among the three values was found, the value with the highest frequency was chosen.

In regard to crash types, they were determined based on the variable HARMEV 1. Coding
system for this variable in the FDOT database was listed on the previous chapter on
Table 3.2. The most important types of crashes that could occur at intersections include
angle, left-turn, rear-end, head-on, right-turn, and sideswipe crashes. All of the other
crash types were lumped together in category called "Other" crash type. In the modeling
process, head-on, sideswipe and right-turn crashes were also added to “Other” crash type
due to insufficient crash counts to be modeled separately. Summarily, the crash types
selected for modeling include: all crashes, angle crashes, left-turn crashes, rear-end

crashes, and other crashes.

Once the two steps were completed, the "before" value of the variables for this
intersection were available. The "after" value of the variables for this intersection were
determined in the same way except that all the values were based on a two-year period
because only two-year "after" data were available in the second step. If the time frame
was a one-year period, the values of the variables would be based on one-year data. This
same procedure presented above was applied to other intersections in the intersection
sample. Once this task was completed, the intersection-based modeling database was

constructed.

4.10. Intersections with No Crash

For intersections without crash in the intersection influence area within the chosen time
frame, FDOT database was analyzed again to find out the intersection characteristics.
Two measures were used: either expanding the time frame or expanding the coverage of

the intersection influence area.

To illustrate the procedure, an intersection with signals activated in 1996 is taken as an
example. Assume there was no crash at this intersection from 1993 to 1995. In order to
determine the intersection characteristics, the influence area was adjusted from 250 ft to a
relatively longer distance, say, 300 ft or 400 ft, and the FDOT database was searched

again. Usually, one or two crash would be found, and the intersection characteristics were
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identified based on these data. If this method failed, but there are some crash records after
signalization, the intersection characteristics can be identified based on the crash data
after signalization. The methods may have some drawbacks, but its effects are

neglectable for modeling.

4.11. Closely Spaced Intersections

There are several pairs of intersections that are closely spaced. It is possible that the
influence areas of the two intersections overlap. Additional work was done to make sure
crashes were not counted twice. If so, the influence areas for those particular intersections
were adjusted to avoid it happening. Among the closely spaced intersections in the
intersection sample, some intersections were combined together as one intersection. For
example, there are two intersections with the same district number, county number,
section number and subsection number, the milepost of one intersection is 3.817, and the
milepost of the other is 3.825. Thus, the center points of the two intersections are 42ft
away. In data processing, they were combined as one intersection with the milepost being
3.821. Three pairs of intersections were found with this situation in the intersection

sample.

4.12. Discarding Some Intersections

4.12.1. Intersections with Significant Geometric Improvements

The capability of the crash predictive models to explain the impacts of the signalization
could be reduced if too many intersections with significant geometric improvement are
kept in the intersection sample because the variation of crash frequency at intersections
before and after the signalization could result from randomness, geometric changes,
signalization and other factors. To avoid this, 14 intersections with significant geometric
improvements in a three-year period before and/or after signalization were eliminated

from the database.

Intersections with minor improvements from a safety point of view, such as installation
of new signs, striping, resurfacing, extension of left-turn or right-turn lanes, etc., were not
eliminated from the intersection sample. The extension of either left turn or right turn

lanes were not taken into account because there was not information in regard to the
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length of the original turn lanes and the length of their extension, which does not allow to
determine if the influence area considered for the research was exceeded. In regard to
resurfacing, only two intersections had this improvement and a decision to keep them in
the sample was made. On the other hand, intersections with significant geometric
improvements such as reconstruction, change from 3-leg to 4-leg, adding left-turn lane,
roadway widening, etc. were eliminated. Table 4.13 lists those intersections and their

corresponding improvement.

4.12.2. Intersections on US-1 Bus-way Corridor
Seventeen intersections on US-1 bus-way corridor were eliminated from the intersection
sample because there is no crash record in FDOT database for those intersections. Table

4.14 shows the ID variables of those intersections.
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Table 4.14. Intersections on US-1 Busway Corridor

NO. DISTID COUNTYID SECID SUBSECID MILEPO TURNONYR

1 6 87 207 0 369 97
2 6 87 207 0 1228 97
3 6 87 207 0 1734 97
4 6 87 207 0 1918 97
5 6 87 207 0 2385 97
6 6 87 207 0 2697 97
7 6 87 207 0 3066 97
8 6 87 207 0 3467 97
9 6 87 207 0 4189 97
10 6 87 207 0 4740 97
11 6 87 207 0 5311 97
12 6 87 207 0 5864 97
13 6 87 207 0 6148 97
14 6 87 207 0 6990 97
15 6 87 207 0 7548 97
16 6 87 207 0 7967 97
17 6 87 207 0 8360 97

4.12.3. Intersections without ''Before' Data

There were eight intersections listed in Table 4.15 without "before" crash data. These
intersections are located along the same roadway according to the ID variables. However,
these intersections had relatively high crash experiences after signalization. Based on the
findings, they were excluded from the intersection sample to avoid possible biased effects

on the modeling.

Table 4.15. Intersections without "Before" Data

No. DISTID COUNTYID SECID SUBSECID MILEPO TURNONYR

1 1 16 6 0 215 91
2 1 16 6 0 596 91
3 1 16 6 0 1097 91
4 1 16 6 0 1223 91
5 1 16 6 0 1360 91
6 1 16 6 0 2484 91
7 1 16 6 0 3239 91
8 1 16 6 0 3740 91
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4.13. Summary

Once the steps choosing time frames for crash analysis, identifying intersection related
crashes, and selecting variables for the database were completed, the program SAS was
chosen to conduct the database-building task. Data processing programs were written to
retrieve data from the FDOT database, and generate two data files: the “before” and
“after” crash data files. The "before" data file consists of 4565 crashes that occurred in
the influence area of the 518 intersections within the "before" time frame, while the

"after" data file consists of 6122 crashes within the “after” time frame.

After data reduction and analyses were completed, the final modeling database was built.
The database consists of two intersection-based data files, one for the "before" period,
and the other for the "after" period. In each data file, totally 447 intersections were
included. For each intersection, 30 variables were used to record the safety-related
information. The 30 variables are categorized into the following three groups: (1)
intersection  ID variables, including DISTID, COUNTYID, SECID, SUBSECID,
MILEPO, and TURNONYR, (2) Intersection characteristic variables, including
AVGADT, CLASS, URBRUR, LANE, LOCATYPE, SPEED, MEDIAN, and
SHOULDER, and (3) Crash counts variables, including CRASH, AVGCRASH, ANGLE,
AVGANG, REAREND, AVGREAR, LEFTTURN, AVGLEFT, HEADON, AVGHEAD,
RIGHT, AVGRIGHT, SIDESWIPE, AVGSIDE, OTHER and AVGOTHER.
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CHAPTER 5. CRASH DATA ANALYSIS

5.1. Analysis by Crash Type

Six crash types were selected for the before and after comparison. The six types are rear-
end, right angle, left turn, right turn, sideswipe, and pedestrian. The mean values of
annual number of crashes were calculated for the crash data of newly signalized

intersections. Table 5.1 shows the results.

Table 5.1. Comparison of Average Number of Crashes for Different Crash Types

Period Rear-end Angle Leftturn Rightturn Sideswipe Pedestrian  Other

Before 0.95 1.05 0.96 0.12 0.18 0.07 0.25
After 1.93 0.91 0.80 0.10 0.25 0.067 0.65

Figure 5.1 presents the changes for each crash type for the intersections after
signalization. Paired t-test was performed to verify whether the change was significant or
not. Table 5.2 shows the results of the paired t-test. This table also presents the percent of
change of the mean values, which is the absolute value between the “before” mean and

“after” mean divided by the before mean value:

Percent of Change = | (after mean — before mean) | / (before mean) (5-1)
2.5
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Figure 5.1. Before/After Average Number of Crashes for Different Crash Types
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Table 5.2. Statistics for Average Number of Crashes by Crash Type

Crash Before After T Critical ~ Significance of  Increase or Percent of

Type Mean Variance Mean Variance two-tail Difference Decrease Change
Rear-end 095 282 193 652 -7.18 1.96 Significant. Increase 102%
Angle 1.05 219 091 132 1.99 1.96 Significant. Decrease 14.30%
Left-turn 096 2.17 0.80 146 2.08 1.96 Significant. Decrease 17%
Right turn 0.12  0.09 0.10 0.07 1.37 1.96 No Significant. Decrease 18.6%
Sideswipe 018 0.13 025 0.23 -2.83 1.96 Significant. Increase 41.9%
Pedestrian 0.07 0.078 0.07 0.04 0.208 1.96 No Significant. Decrease 4.6%
All-other 0.25 045 0.65 0.63 -8.76 1.96 Significant. Increase 163.3%

Results indicate that rear-end crashes would significantly increase after the signal is
installed. The average number of rear-end crashes in the “after” period is twice as much
as that in the “before” period. This increase in rear-end crashes due to signalization may
be caused by the fact that vehicles on the major have to stop in the after period while in
the before period no stopping was necessary. This increase already is of common
knowledge to traffic engineers, but the 102% increase maybe higher than expected.
Results also show that angle crashes, left turn crashes, right turn crashes, and crashes
related with pedestrian decrease after signals are installed. The severity of some of these
types of crashes may compensate the increase of the total number of crashes after signal
installation. The increase of total number of crashes is caused basically by the increase of

rear-end crashes.

Angle crashes are caused when one vehicle tries to cross the road, and a vehicle strikes it
perpendicularly. After a signal is installed, angle crashes should decease because vehicles
from the side street will be assigned the right of way so they could leave the side street
and cross the main street without problems. From this study, it was found that the number
of angle crashes decreased significantly with a 14% reduction. Left turn crashes were
similar to angle crashes. It is known that after the signal is installed at the intersection, the
opportunity of collision of left turn vehicles with vehicles at right-angle direction will
decrease. But the possibility of collision of left turn vehicles with the vehicles coming in
opposite direction depends on the signal operations (left turn treatment). If left turn
movements are protected, left turn crashes will most likely decrease. In this study, left-
turn crashes decreased significantly with a 17% reduction. In reference to the decrease in

the number of right turn crashes, it could be a consequence of the right of way given by
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the signal to through movement and right turn from the same approach. This decrease of
crashes is not statistically significant based on the paired t test. Sideswipe crashes
occurred due to the lane changing near intersections. At signalized intersections, lane
changing will be more difficult due to the stopping of other vehicles. The decrease of
average number of crashes related with pedestrian may indicated that the traffic signal
protects pedestrians. It was found that 4.6 percent of crashes related with pedestrian

decreased after the signal was installed, but this decrease was not statistically significant.

In addition to the comparison of number of crashes, the average crash rates for the new
signalized intersections were estimated based on the methodology explained earlier, and a
before and after analysis was performed. Crash rates of rear-end crashes increased by
47.6%, which is lower than the 102% obtained for number of rear-end crashes. However,
angle, left-turn, and right turn crash rates decreased in 29.02%, 37.6% and 50.2%
respectively, which were more significant than their percentage decrease in number of
crashes. Based on crash data, it is found that the change of sideswipe crash rates and
crash rates related with pedestrian is not significant. The increase of crash rate of all other
types of crashes is still very high with a 131.7% change. Figure 5.2 presents the changes
of crash rates for different crash types from the before and after analysis. Table 5.3

presents the results of paired t-test for these changes.

5.2. Analysis by Crash Severity

For crash severity, the number of crashes and crash rates for the before and after periods
were investigated to reveal the impacts of signalization in three categories: no injury,
injury, and fatal. Here, injury crashes are the combination of possible injury, non-
incapacitating injury, and incapacitating injury in the before-and-after analysis. Table 5.4
gives the changes of number of crashes and crash rates by different severities. The
number of fatal crashes decreased by 13.2% and fatal crash rates decreased by 38% after
the signal was installed. After signal installation, the number of no injury crashes
increased by 30% and no injury crash rates by 14.8%. The number of injury crashes
increased 17.2%, however, injury crash rates decreased by 5%. In conclusion, fatal
crashes decreased, and no injury and injury crashes increased after signalization. Figures

5.3 and 5.4 show the results for number of crashes and crash rates by crash severity.
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Figure 5.2. Before/After Average Crash Rates for Different Crash Types

Table 5.3. Statistics for Change of Average Crash Rates by Crash Type

Crash Before After T Critical ~ Significance of Increase or Percent of
T stat . .

Type  Mean Variance Mean Variance two-tail Difference Decrease Change
Rear-end 0.11 0.12 020 0.04 -3.49 1.96 Significant. Increase 47.6%
Angle 0.16 044 0.11 0.03 254 1.96 Significant. Decrease 29.02%
Left-turn 0.13 0.15 0.10 0.02 3.25 1.96 Significant. Decrease 37.6%
Rightturn 0.02 0.00 0.01 0.00 345 1.96 Significant. Decrease 50.2%
Sideswipe 0.02 0.01 0.03 0.00 -0.31 1.96 No Significant. Increase 6.04%
Pedestrian 0.09 0.00 0.01 0.00 0.81 1.96 No Significant. =~ Decrease 17.4%
All-other 0.03 0.01 0.08 0.01 -6.82 1.96 Significant. Increase 131.7%

Table 5.4. Statistics for Crashes and Crash Rates by Crash Severity
Crash Measure Period Observed Observed tstat. ¢ Critical  Significance Percent of
Severity Mean Variance " two-tail of Difference = Change
Number of  Before 1.38 4.23 Significant
No Injury crashes After 1.79 5.97 294 1.965 Increase 30.0%
Before 0.18 0.067 Significant
Crash Rate After 019 0.061 -2.031  1.965 Increase 14.8%
Number of  Before 2.39 7.08 Significant
Injury crashes After 2.80 8.27 251 1.965 Increase 17.2%
Before 0.33 0.16 No Significant
Crash Rate After 0.32 0.08 0-89 1.965 Decrease >%
Number of  Before 0.06 0.03 No Significant
Fatal crashes After 0.05 0.03 0.67 1.965 Decrease 13.2%
Before 0.01 0.002 Significant
Crash Rate After 0.06 0.0004 1.98 1.965 Decrease 38%
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5.3. Analysis for Surrounding Land Use

In general, urban areas tend to exhibit greater crash frequency than rural areas. Compared
with rural areas, there are more driveways, and higher traffic volumes in urban areas with
lower speeds. Based on the analysis of the crash data for surrounding land use, the impact

of signalization on intersection crashes was found to be quite distinct between rural and
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urban areas. In rural areas, the number of crashes did not decrease significantly while the
crash rates decreased significantly after signalization. In urban areas, the number of
crashes and crash rates increased significantly. The results showed a decrease in the
number of rural crashes, which was statistically insignificant, and a decrease in crash
rates in rural areas, which was statistically significant. In regard to urban areas, the results
analysis showed a statistically significant increase for number of crashes and crash rates.
The reason for the increase of the number of crashes in urban areas could be related to the
increase of specific types of crashes such as rear-end after signalization, which will have
a greater increase in urban areas due to the high volume of vehicles. Table 5.5 presents
the percent of change and results of paired t-test by number of crashes and crash rates for
rural and urban areas. Figures 5.3 and 5.4 also present the results for number of crashes

and crash rates by surrounding land use.

Table 5.5. Statistics for Crashes and Crash Rates for Surrounding Land Use

Crash Measure  Period Observed Obsserved tostat. tCriticzjll Sign.ificance of  Percent of
location Mean Variance two-tail Difference Change
I e — L
e
Rate  After 0.41 0207 22 1965 Tnorease 16.60%

5.4. Analysis for Total Number of Crashes and Crash Rates

Based on the mean value comparison for the before and after periods, total number of
crashes significantly increased, while crash rates did not change. Table 5.6 lists the
percent of change and the results of paired t-test by the total number of crashes and crash

rates. These results are also show above on Figures 5.3 and 5.4.

Table 5.6. Statistics for Change of Total Number of Crashes and Crash Rates

Measure Period Observed Observed tostat t Critical ~ Significance of Percent of
Mean Variance ) two-tail Difference Change
Total Number Before 3.82 18.18 Significant
of crashes  After 4.64 23.48 371 1.96 Increase 21%
Total Crash Before 0.517 0.348 Significant
Rate After 0.520 0.219 0.092 1.96 Increase 0.58%
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5.5. Crash Distributions for Before and After Conditions

Crash distribution modeling was performed for total number of crashes, crash types,
crash severity and crash by surrounding land use. These distributions show how crashes
varied and the type of distribution they followed. As examples, Figures 5.5 and 5.6
present the crash distributions for total number of crashes for before and after conditions.
Both distributions show high number of intersections with low number of crashes.

Similar results were founded for the rest of the crash distributions.

Number of Intersections

0 2 4 6 8 10 12 14 16 18 More
Number of Crashes

Figure 5.5. Total Number of Crashes Distribution Before Signalization

5.6. Distribution Fittings for Number of Crashes

Based on the frequency distributions and cumulative probability for total number of
crashes, the mean and variance were calculated for the distribution fitting. The mean or
expected value of the discrete random variable X, denoted as E(x), and the variance of X,

denoted as V(x), are calculated as

E(x)= ) xx f(x) (5-2)

Vx)= Y (x— E(x)* X f(x) (5-3)

where,

f(x) = the probability of each random variable x.
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Figure 5.6. Total Number of Crashes Distribution After Signalization

Table 5.7 shows the procedure to get the mean and variance for total number of crashes

for the before period.

Table 5.7. Mean and Variance of Total Number of Crashes for Before Period

X Frequency Cumulative % F(x) Xf(x) (x-E(x))* f(x) (x-mean)’
0 62 12.35% 12.35%  0.00 16.24 2.01
1 88 29.88% 17.53%  0.18 9.18 1.61
2 65 42.83% 1295%  0.26 4.12 0.53
3 55 53.78% 10.96%  0.33 1.06 0.12
4 52 64.14% 1036%  0.41 0.00 0.00
5 50 74.10% 9.96%  0.50 0.94 0.09
6 31 80.28% 6.18% 037 3.88 0.24
7 19 84.06% 3.78% 026 8.82 0.33
8 17 87.45% 339% 027 15.76 0.53
9 12 89.84% 239% 022 24.70 0.59
10 16 93.03% 3.19% 032 35.64 1.14
11 2 93.43% 0.40%  0.04 48.58 0.19
12 9 95.22% 1.79%  0.22 63.52 1.14
13 5 96.22% 1.00%  0.13 80.46 0.80
14 2 96.61% 0.40%  0.06 99.40 0.40
15 1 96.81% 020%  0.03 120.34 0.24
16 6 98.01% 1.20%  0.19 143.28 1.71
17 5 99.00% 1.00%  0.17 168.22 1.68
18 0 99.00% 0.00%  0.00 195.16 0.00
19 2 99.40% 0.40%  0.08 224.10 0.89
More 3 100.00% 0.60%
Total = 502 E(x)= 4.03 V(x)=14.24
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Using the observed mean and variance, the Poisson and Negative Binomial distributions
were fitted to the crash data distribution for different crash types and severities. Table 5.8
demonstrates that the Chi-Square test for Poisson distribution fitted for total number of

crashes for the before period. Thus,

-A9qx —-4.03 x
x) -Poisson = = , x=0,1,2,...... , -
(x) -Poi e?’ ¢ 4"03 0.1,2 (5-4)
X! X.

where, A is the mean value of observed data from Table 5.7, and A = 4.03.

Table 5.8. Chi-Square Test for Poisson Distribution Fitted for Total
Number of Crashes in Before Period

FG)  f(x)-Poisson F@)-f(x) (f()-f(x))’ (F(Q)-f(x))*(x)

>
=

0 12.35% 0.01777 0.10573  0.01118 0.62895
1 17.53% 0.07163 0.10367  0.01075 0.15004
2 12.95% 0.14434 -0.01485  0.00022 0.00153
3 10.96% 0.19389 -0.08433 0.00711 0.03668
4 10.36% 0.19534 -0.09176  0.00842 0.04310
5 9.96% 0.15745 -0.05785 0.00335 0.02125
6 6.18% 0.10575 -0.04400 0.00194 0.01831
7 3.78% 0.06088 -0.02303  0.00053 0.00871
8 3.3% 0.03067 0.00319  0.00001 0.00033
9 239%% 0.01373 0.01017  0.00010 0.00753
10 3.19% 0.00553 0.02634  0.00069 0.12534
11 0.40% 0.00203 0.00196  0.00000 0.00189
12 1.79% 0.00068 0.01725  0.00030 0.43684
13 1.00% 0.00021 0.00975  0.00010 0.45024
14 0.40% 0.00006 0.00392  0.00002 0.25331
15 0.20% 0.00002 0.00198  0.00000 0.23910

16  1.20% 0.00000 0.01195 0.00014 34.71697
17 1.00% 0.00000 0.00996  0.00010 101.75062
18 0.00% 0.00000 0.00000  0.00000 0.00000

19  0.40% 0.00000 0.00398  0.00002 342.88459

The Chi-Square calculation value obtained from the Poisson distribution fitted for the

observed total number of crashes was calculated with:
R 2
Xo= D, (£)-f(x))*/f(x) . (5-5)
i=1
The value estimated of y; is 481.77. This value is much bigger than the Chi-Square test

value obtained from the Negative Binomial distribution fitting (0.131), as well as the Chi-
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Square table value xi,kfpfl =28.87 (a0 = 0.05, k = 20, p = 1). These Chi square results

indicate that the hypothesis which state that the distribution of the total number of crashes

in the before period is the hypothesized Poisson distribution is rejected.

Table 5.9 explains how the Chi-Square test is processed for the Negative Binomial
distribution fitted for the total number of crashes for the intersections for the before
period. As mentioned before, the Negative Binomial distribution has two parameters,

mean E(x) and variance V(x). The probability function of X is:

x—1
fx)= ( 1)p’(l—p))‘", X=r1,1+l,...... (5-6)
r—
Changing the scale in the previous equation by replacing x by x +,
x+r—1
f(x)= ( )p’(l—p)", x=0,1,2,...... (5-7)
X
In this case, from the observed mean E(x) and variance V(x), parameter p can be obtained
from E(x)/V(x) and parameter r acquired from E(x)/(1/p-1) 2

Table 5.9. Chi-Square Test for Negative Binomial Distribution
Fitted for Total Number of Crashes in Before Period

x f(i) f(x)-Negative Binomial. f(i)-f(x) (f(Q)-f(x))* (£(})-£(x))*/f(x)

0 12.35% 0.07840 1 0.07840  0.04511
1 17.53% 0.05645 2 0.11290  0.06240
2 12.95% 0.040064 3 0.12193 0.00755
3 10.96% 0.02926 4 011705  -0.00749
4 10.36% 0.02107 5 0.10535  -0.00176
5 9.96% 0.01517 6 0.09102  0.00858
6 6.18% 0.01092 7 0.07646  -0.01470
7 3.78% 0.00786 8 0.06291  -0.02506
8 3.39% 0.00566 9 0.05096 -0.01709
9 2.39% 0.00408 10 0.04077  -0.01686
10 3.19% 0.00294 11 0.03229  -0.00041
11 .40% 0.00211 12 0.02536  -0.02138
12 1.79% 0.00152 13 0.01978  -0.00185
13 1.00% 0.00110 14 0.01534  -0.00538
14 .40% 0.00079 15 0.01183  -0.00785
15 .20% 0.00057 16 0.00909  -0.00710
16 1.20% 0.00041 17 0.00695  0.00500
17 1.00% 0.00029 18  0.00530  0.00466
18 .00% 0.00021 19 0.00403  -0.00403
19 .40% 0.00015 20 0.00305 0.00093
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In Table 5.9, p =4.03/14.24 = 0.28, r = E(x)/(1/p-1)=2.

2+x-D!

2 Dixl (0.28)*(1-0.28)"

f(x)-Negative Binomial =

Chi-Square calculation value estimated from the Negative Binomial distribution fitted

with observed total number of crashes isy;= 0.131. This value is smaller than the Chi-
Square table value X(zx,k—p—l = 27.59 (o = 0.05, k = 20, p=2), which indicates that the

hypothesis that the distribution of the total number of crashes for the before period is the
hypothesized Negative Binomial distribution will not be rejected. Finally, it could be
concluded that the Negative Binomial distribution is better to fit the distribution of total
number of crashes at the intersections from the Chi-Square test comparison. The same
result was obtained for the total number of crashes in the after period, with Chi-Square
calculation value 45842.89 for Poisson and 0.063 for Negative Binomial, respectively.
Figures 5.7 and 5.8 present the graphs of frequency distributions, which illustrate the
same outcome for distribution fitting of the total number of crashes. Table 5.10 exhibits
the Chi-Square test for fitting Poisson and Negative Binomial distributions by different

crash types, crash severities, and crash by surrounding land use. If both Poisson and

Negative Binomial distribution were not rejected by the Chi-square test (¢ < X(zx,k—p—l)’

the distribution with smaller Chi-square calculation value was selected as the fitted
distribution. Table 5.10 shows that the Negative Binomial distributions are selected as the

fitted distribution to fit the number of crash distributions.

5.7. Fitting for Crash Rate Distributions

The method used for the number of crashes distribution fitting was also applied for crash
rate distribution fittings. As examples for frequency distributions, crash rate distributions
for total crashes are presented for the before and after periods in Figures 5.9 and 5.10,

respectively.
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Table 5.10. Chi-Square Test Comparison for Poisson and Negative
Binomial Distribution Fitting for Number of Crashes Distributions

Poisson Negative Binomial
Category Period Chi-Squ'are Ch}l:ggll:?are Chi-Squ'are Ch%igll;are Distribution
Calcul;mon. Value Calcul;mon. Value Selected
2 2
XO Xoc,k—p—l XO Xoc,k—p—l
Total Number of  Before 481.77 28.87 0.131 27.59  Negative Binomial
crashes After  45842.89 35.17 0.063 33.92  Negative Binomial.
Rear End Before  146.29 18.31 0.208 1692  Negative Binomial
After 6.32 18.31 0.075 16.92  Negative Binomial
Anel Before 0.3 12.59 0.033 11.07 Negative Binomial
ngle After 0.09 12.59 0.055 11.07  Negative Binomial
Before 0.294 12.59 0.012 11.07 Negative Binomial
Left Turn - - -
After 0.116 12.59 0.058 11.07 Negative Binomial
Other Before 0.186 12.59 0.053 11.07 Negative Binomial
After 0.176 12.59 0.148 11.07  Negative Binomial
. Before 398.5 21.03 0.077 19.68 Negative Binomial
No Injury - - :
After 26.24 21.03 0.26 19.68  Negative Binomial
Iniur Before 1.39 18.31 0.087 16.92  Negative Binomial
Iary After  169.3 26.3 0.074 25  Negative Binomial
Rural Before 0.03 9.488 0.004 7.815  Negative Binomial
After 0.229 9.488 0.012 7.815  Negative Binomial
Urb Before 0.3 14.07 0.01 12.59  Negative Binomial
roan After  0.254 14.07 0.026 1259  Negative Binomial
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Figure 5.9. Total Crash Rate Distribution Before Signalization
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Figure 5.10. Total Crash Rate Distribution After Signalization

Similar to the results for total number of crashes, the Negative Binomial distribution was
found to be the best fitting distribution for most of the cases for crash rate distribution
fitting, except for urban crash rate distribution. In previous research studies, the ratio of
variance and mean were used to choose the fitted Negative Binomial and Poisson

distribution. The selection criteria are:

1. Poisson distribution, if variance/mean ratio =1.0, and

2. Negative Binomial distribution, if variance/mean ratio >1.0

In this study, Negative Binomial was found to be better than Poisson distribution even
with the variance/mean ratio closed to 1.0, due to the tail part. But when variance/mean
ratio is less than 1, the Negative Binomial distribution cannot be employed because the
parameter 1 is less than 0. Thus, Poisson distribution was used to fit these cases. Poisson
distribution was used for the crash rate distribution in urban area because the
variance/mean ratio was less than 1. Figures 5.11 and 5.12 illustrate the same results.
Table 5.11 lists the Chi-Square test values for Poisson and Negative Binomial
Distributions. Eight of them were fitted to Negative Binomial distributions, and the last

one was fitted to a Poisson distribution.
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Table 5.11. Chi-Square Test Comparison for Poisson and Negative
Binomial Distribution Fitting for Crash Rate Distributions

Poisson Negative Binomial

. Chi-Square . Chi-Square
Category Period Chi-Square TableC{/alue Chi-Square Table %;alueDistribution Selected

Calculation. ) 2 Calculation. ) 2
X(x,kfpfl Xoc,k—p—l
Total Crashes Before 0.21 16.92 0.069 15.51 Negative Binomial
After 0.156 16.92 0.093 15.51 Negative Binomial
Rear End Before 0.058 11.07 0.0085 9.488 Negative Binomial
After 0.021 11.07 0.012 9.488 Negative Binomial
Anele Before 12.36 16.92 0.095 15.51 Negative Binomial
5 After 1.5 16.92 0.164 1551  Negative Binomial
Before 1.87 15.51 0.064 14.07 Negative Binomial
Left Turn - - -
After 2.03 15.51 0.256 14.07 Negative Binomial
Other Before 1.372 15.51 0.019 14.07 Negative Binomial
After 0.05 15.51 0.022 14.07 Negative Binomial
. Before 2.01 16.92 0.087 15.51 Negative Binomial
No Injury - - -
After 0.834 16.92 0.098 15.51 Negative Binomial
Iniur Before 1.40 16.92 0.263 15.51 Negative Binomial
Y TAfer  0.084 16.92 0.072 1551  Negative Binomial
Rural Before 0.676 14.07 0.0025 12.59 Negative Binomial
After 0.373 11.07 0.101 9.488 Negative Binomial
Before 0.109 11.07 \ 0.488 Poisson
Urban -
After 0.009 11.07 \ 0.488 Poisson

5.8. The 50™ and 85™ Percentile Values of Crashes

The 50™ and 85™ percentile values of each crash distribution were obtained for the before
and after periods. The 85" percentile is the point where 85 percent of the crashes at an
intersection will occur either at or below this measurement. This value is often used in
engineering analysis because the data in the top 15 percent, considered the top portion of
the population, is not targeted in design. Table 5.12 and 5.13 present the parameters used
in the distribution equations, and the 50" and 85" percentile values for number of crashes

and crash rate, respectively

Table 5.14 shows the percentage change for each 50™ and 85™ percentile value. These
percentile values for the number of crashes and crash rates for before and after periods
are shown from Figure 5.13 to 5.16. In the fitted Negative Binomial distributions, the
increase of the total number of crashes after the installation of signals is not considerable.

Based on the Negative Binomial distributions, the number of crashes and crash rates for
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rear-end crash type increased significantly, and left turn crashes deceased in a big extent
However, the 50" percentile of the number of angle crashes is found to increase in the
observed crash distribution and the fitted Negative Binomial distribution. Parameters r

and p are calculated from observed the mean and variance of the distribution.

Table 5.12. Equation and 50" and 85" Percentile Values for
Number of Crashes Distribution

Before After
Category ];unatlon 50%  85% Equation 50% 85%
Total Number 028 43 86 2 027 45 89
of crashes
Rear End 1 0.55 0.6 1.6 2 0.49 1.2 3.7
Angle 2 0.62 04 2.2 6 0.84 0.5 1.8
Left Turn 2 0.64 0.5 2.0 6 0.86 04 1.6
Other 5 082 0.7 1.9 15 0.92 1.0 2.0
No Injury 5 0.66 04 2.7 2 0.45 1.7 4.8
Injury 1 040 1.6 2.8 2 0.42 1.3 4.8
Rural 9 088 1.2 4.0 2 0.64 0.7 3.9
Urban 3 064 2.8 8.4 4 0.69 3.0 8.6

Table 5.13. Equation and 50™ and 85™ Percentile Values for Crash Rate Distribution

Before After

Category Equation 500 g5h Equation 50 g5

r p r p
T(’ti‘{lafer“h 071 039 1.01 15 087 046  0.10
Rear End 4 0.78 0.06 0.28 20 0.92 0.15 0.40
Angle 2 0.52 0.15 0.48 4 0.76 0.07 0.30
Left Turn 1 0.44 0.03 0.20 1 0.54 0.00 0.15
Other 2 0.59 0.05 0.02 10 0.87 0.07 0.02
No Injury 2 0.58 0.05 0.25 2 0.53 0.09 0.30
Injury 8 0.79 0.27 0.675 24 0.92 0.27 0.66

2

Rural 0.51 020 0.77 2 0.56 0.14 0.60
Urban A=1.26 025 0.25 A=0.75 0.30 0.90

Table 5.14. Before and After Difference for 50" and 85" Percentile Values

Type Percentile Total Rear End Angle Left Turn Other No Injury Injury Rural Urban
50" 5% 100% 13% -20% 43% 325% -19% -42% T%
85" 3% 131% -18% -20% 5% 8% 11% -3% 2%
50" 18% 150% -53% -100% 40%  10% 0% -30% 20%
85" 2%  45% -38% -25% 0% @ 20% 2% -22% 20%

Number of crashes

Crash Rate
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Similar to the mean value comparison results, the number of no injury crashes and crash
rates increased significantly while injury crash rates did not increase for the 50
percentile value and decreased for the 85" percentile value. Thus, signalization would
improve safety at the intersections in rural areas. However, the number of crashes and

crash rates would increase at intersections in urban areas after signal installation.
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Figure 5.13. 50" Percentile Before/After Comparison for Number of Crashes
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Figure 5.14. 85™ Percentile Before/After Comparison for Number of Crashes
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CHAPTER 6. RESULTS FOR STATISTICAL MODELS

6.1. Dependent Variables

The dependent variables adopted in the modeling process included: (1) average number
of all crashes per year before and after signalization, (2) average number of angle crashes
per year before and after signalization, (3) average number of left-turn crashes per year
before and after signalization, (4) average number of rear-end crashes per year before and
after signalization, and (5) average number of all other crashes per year before and after
signalization. It is important to note that "all other" crashes include all crashes except for
angle, left-turn and rear-end crashes. The determination of the dependent variables was

based on data analyses, which is presented in the following paragraphs.

Originally, the most common crash types such as angle, left-turn, rear-end, head-on,
right-turn, and sideswipe were analyzed to develop predictive models, separately.
However, based on data analysis, it was found that head-on, right-turn and sideswipe
crash counts were not statistically sufficient. Out of the 447 intersections, about 90% of
the intersections had no head-on crash, the remaining 10% of the intersections had more
than zero but no more than one average head-on crash per year. About 80% of the
intersections had no right-turn crash, the remaining 20% of the intersections had more
than zero but no more than one average crash per year. More than 60% of the
intersections had no sideswipe crashes, and about 30% of the intersections had more than
zero but no more than one average sideswipe crash per year. Therefore, lack of variation
as well as insufficient crash counts for the three types of crashes made it impossible to do
modeling, separately. Only angle, left-turn, and rear-end crashes were chosen to develop
predictive models, separately. Based on data analyses, the remaining types of crashes
were aggregated in one category called the "all other" crash type. Thus, totally five types

of crashes were chosen to be dependent variables to develop the predictive models.

The summary descriptive statistics for the dependent variables are shown in Table 6.1. It
can be found that the mean value of the average number of angle and left-turn crashes per
year after signalization was lower than the mean value before signalization. However, the

mean value of the average number of rear-end crashes per year after signalization was
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significantly larger than the mean value before signalization. Overall, the mean value of
the average number of all crashes per year after signalization was larger than the mean
value before signalization. These results are in line with the results shown in the previous

chapter and the common knowledge of traffic engineers.

It was found that the maximum value of the average number of crashes was much higher
than the median value, which implies that there are some "black spots" in the intersection
sample. The abnormal higher values may be a result of particular reasons different to
normal traffic conditions at intersections. In the modeling process, the "black spots" were

taken out from the intersection sample.

6.2. Predictor Variables

The selection of predictor variables was based on the available data and engineering
judgment. The task was carried out through the database building process for the
modeling. After the modeling database was built, totally eight variables were available.
The following subsections provide detailed description and analyses for the eight

variables selected.

6.2.1. ADT on the Major Road

Traffic volume is the most significant factor contributing to crash occurrence. The change
of traffic volume entering an intersection imposes multiple effects on the traffic
operations and safety at the intersection. In this project ADT data on the major road were
available at each intersection, and it was represented by the variable AVGADT. The

descriptive statistics of AVGADT are provided in Table 6.2.

ADT value was transformed from continuous to discrete value because the results of
developed models will be tabulated for application by traffic engineers so that traffic
engineers could easily apply the level of traffic volume (low, medium or high) to the
models rather than search for the accurate ADT volume. Therefore, the wvariable
AVGADT was converted to discrete variable based on its distribution. The 25% quantile
was about 14,000 vpd, and the 75% quantile, 32,000 vpd. Thus, the thresholds to divide
the ADT into low, medium, and high categories were set to 15,000 vpd and 30,000 vpd.

Table 6.3 shows the range of each level and the value used in the models.
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Table 6.2. Descriptive Statistics for the Variable AVGADT

Descriptive Statistics ~ "Before" Data "After" Data

Number of Intersections 447 447
Mean (vpd) 24,304 26,878
Standard Deviation 14,924 15,713
100% (Maximum) 116,266 125,519
99% 70,056 74,423
95% 54,042 55,146
2 90% 44,517 48,606
Z 75% 31,467 34,167
S 50% (Median) 21,833 23,833
= 25% 13,613 14,501
S 10% 8,599 9,703
5% 6,961 7,500
1% 2,160 5,300
0% (Minimum) 927 2,167

Table 6.3 Levels of the Variable ADT in Models

Level Traffic Volume Range  Value Used in Models

Low < 15,000 vpd 0
Medium 15,000 vpd ~ 30,000 vpd 1
High > 30,000 vph 2

6.2.2. Surrounding Land Use

Surrounding land use refers to urban or rural area. Generally, more crashes were
observed in urban areas. Furthermore, in urban areas traffic volumes are higher, there are
more lanes on the roadway, driveways are spaced more closely within the influence area
of an intersection, turning traffic volumes are higher due to the complex travel
destinations, and so on. On the other hand, vehicle speeds in urban areas usually are
lower, congestion situations are more common, and proportion of heavy vehicles is
lower. Thus, the effect of surrounding land use on intersection crash frequency is very

complicated. The best way to explore the possible answer is to perform data analyses.

The variable URBRUR in the database describes whether an intersection is located in

urban area or in rural area. Table 6.4 provides the descriptive statistics for this variable.
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Roughly, the intersections were evenly split both before and after signalization. In the
Table, frequency before and after refers to the number of intersections within each

specific area, urban and rural for the before and after signalization period.

Table 6.4. Descriptive Statistics for the Variable URBRUR

Type Value Frequency Percentage
Before After Before — After
Rural 0 244 243 54.59% 54.36%
Urban 1 203 204 45.41% 45.64%
6.2.3. Location Type

The variable LOCATYPE describes the land use of the area near the intersection
including business, residential, shopping and recreational. As an environmental factor,
land use can capture the effects of the area and its impacts on driver driving behavior. In
residential areas, a relatively higher percentage of drivers are familiar with the operations
of an intersection. Also, the access to the roadway tends to be regulated effectively within
the influence area of an intersection. In business areas, to some extent turning movements
could be performed more often, and there are more access points within the influence

area of an intersection, that usually leads to more conflicts on the roadway.

Table 6.5 presents the descriptive statistics of the variable LOCATYPE, and Table 6.6
shows the levels and values used in modeling. The conversion from three levels to two
levels was based on preliminary modeling efforts showing that the best results were
obtained by this treatment. In the Table, frequency before and after refers to the number
of intersections within each specific type, business or other for the before and after

signalization period.

Table 6.5. Descriptive Statistics for the Variable LOCATYPE

Type Value Frequency Percentage
Before After Before  After
Business 1 347 356 77.63% 79.64%
Residential 2 49 46 10.96% 10.29%
Other 3 51 45 1141% 10.07%
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Table 6.6. Levels of the Variable LOCATYPE in Models

Level  Value Frequency Percentage
Before After Before — After
Business 1 347 356 77.63% 79.64%
Other 2 100 91 2237% 20.36%

6.2.4. Number of Lanes on the Major Road

The number of lanes on the major road is one of the most important geometric factors in
explaining crash occurrence. Although there is correlation, which was found not to be
high, between the number of lanes and traffic volume, it is not always true that higher
volume imply more lanes. Together with traffic volume, it determines the level of service
at an intersection, which directly influences and relates to the intersection safety. Level of
service may have been an interesting variable to include in the models but this

information was not available in the database.

Table 6.7 presents the descriptive statistics for the variable LANE that describes the
number of lanes on the major road in both directions. Two-lane, four-lane, and six-lane
are the most common cases. Table 6.8 shows the levels of this variable used in the
modeling process. Based on preliminary modeling efforts, in order to get the best
modeling results four lanes were used as threshold to divide the data into two categories.
In the Table, frequency before and after refers to the number of intersections within each

specific number of lanes, > 4 or < 4 lanes for the before and after signalization period.

Table 6.7. Descriptive Statistics for the Variable LANE

Frequency Percentage
Before After Before  After

112 83 25.06% 18.57%
12 16 2.68% 3.58%

257 257 5749% 57.49%

1 8 022% 1.79%

58 75 1298% 16.78%

0 0 0.00% 0.00%

7 8 1.57% 1.79%

Number of Lanes on Major Road

e BEN e WV, BESNRIV I S}
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Table 6.8. Levels of the Variable LANE in Models

Level Value Frequency Percentage
Before After Before  After
> 4 lanes 1 66 91 1477% 20.36%
<=4 lanes 0 381 356 85.23% 79.64%

6.2.5. Posted Speed on the Major Road

Posted speed is an important traffic speed control factor for traffic safety analysis.
Usually, it is believed that crashes are more likely to occur at higher speed, which
actually is not well documented. However, common engineering knowledge is that high
speed more likely results in severe crashes. Also, the effect of posted speed on crash
occurrences is more significant at unsignalized intersections than at signalized
intersections. From another point of view, drivers tend to travel at speeds in which they
feel comfortable given the prevailing conditions. Therefore, lower posted speed more
likely promotes speed differential that is generally more closely associated with crashes.
Table 6.9 presents the descriptive statistics for the variable SPEED, which describes the
posted speed on the major road. Table 6.10 shows the levels of SPEED used in modeling.
In the Table, frequency before and after refers to the number of intersections within each

specific category, > 45mph or < 45mph for the before and after signalization period.

Table 6.9. Descriptive Statistics for the Variable SPEED

. Frequency Percentage
Posted Speed on the Major Road Before After Before  After
15 1 0 022% 0.00%
25 8 5 1.79% 1.12%
30 37 18 828% 4.03%
35 60 59 13.42% 13.20%
40 57 59 12.75% 13.20%
45 182 200 40.72% 44.74%
50 20 25 447% 5.59%

6.2.6. Presence of Median on Major Road
Another important roadway geometric factor to be considered is whether the roadway is

divided or not. Generally, roadways having more lanes to carry higher traffic volume are
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divided and probably located in urban areas. On the contrary, roadways having fewer
lanes and serving low traffic volume are undivided and probably located in rural areas.
For the effect of median on intersection safety, there is no clear answer to whether the
presence of median on the major road would increase or decrease the crash frequency. It
also depends on many other factors such as traffic control, crash type, and so on. Table
6.11 gives the descriptive statistics of the variable MEDIAN and corresponding values
for modeling. In the Table, frequency before and after refers to the number of
intersections within each specific level, divided or undivided for the before and after

signalization period.

Table 6.10. Levels of the Variable SPEED in Models

Level Value Frequency Percentage
Before After Before After
> 45 mph 1 102 106 22.82% 23.71%
<45 mph 0 345 341 77.18% 76.29%

Table 6.11. Descriptive Statistics for the Variable MEDIAN

Level Value Frequency Percentage
Before After Before — After
Divided 1 282 283 63.09% 63.31%
Undivided 0 165 164 36.91% 36.69%

6.2.7. Shoulder Treatment

Shoulder treatment is another interesting factor to include during modeling. Paved
shoulder makes the drivers traveling on the right lane to feel safer. In some cases, paved
shoulder can provide space to accommodate right-turn vehicles at intersections or
vehicles traveling out of the proper lane. Unpaved shoulder could worsen the
consequence once a vehicle runs off the pavement, especially for inexperienced drivers.
Table 6.12 presents the descriptive statistics of the variable SHOULDER, indicating the
type of shoulder treatment at an intersection. Curbed shoulders were combined with
unpaved shoulders considering the fact that curbed shoulder also provides restraint on the

lateral movement of vehicles traveling on the right lane, which could have similar effects
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on safety. Table 6.13 shows the levels of the variable SHOULDER used in modeling.
These levels already included the combination of the unpaved and curb shoulder into the
other category. In the Table, frequency before and after refers to the number of
intersections within each specific type, paved and unpaved for the before and after

signalization period.

Table 6.12. Descriptive Statistics for the Variable SHOULDER

Type  Value Frequency Percentage
Before After Before — After
Paved 1 134 148 29.98% 33.11%
Unpaved 2 202 210 65.32% 46.98%
Curb 3 21 89 4.70% 1991%

Table 6.13. Levels of the Variable SHOULDER in Models

Level Value Frequency Percentage
Before After Before — After

Paved 1 134 148 2998% 33.11%

Other 2 313 299 70.02% 66.89%

6.2.8. Functional Class of Major Road

The variable describing the functional class of the major road is also included in the
modeling database. According to this variable, the major road of an intersection can be
identified as either arterial or collector. Originally, this variable was treated as one of the
predictor variables. However, preliminary modeling results showed that in any case its
effect was insignificant. Also, the classification of the functional class of a roadway
usually is determined based on its functional position within the roadway network rather
than roadway geometric characteristics. With these limitations, this variable was

excluded from the predictor variables.

6.3. Crash Frequency Distributions
Prior to the statistical modeling, the general shapes of crash frequency distributions were

assessed in order to provide the basis for crash distribution assumptions for modeling.
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Figures 6.1 through 6.5 show the statistical results for all crashes, angle crashes, left-turn

crashes, rear-end crashes, and all other crashes.
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Figure 6.1. Frequency Distribution for All Crashes
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Figure 6.5. Frequency Distribution for Other Crashes

In Figure 6.1, it is clearly shown that a large number of intersections had no or low crash
experience, and the distributions for the before and after period seems to follow the
Poisson distribution. This was also statistically proven in phase one. Also, it can be found
visually that the number of signalized intersections with high crash experience were more
than the number of unsignalized intersections, which is consistent with the statistics
shown in Table 6.1. The distributions shown in Figures 6.2 through 6.5 also follow the
Poisson distribution. In Figure 6.2, the number of intersections with more than 3 angle
crashes decreases after signalization while the number of intersections with 1 or 2 angle
crashes increases, which leads to the decrease of the overall number of angle crashes. A
similar situation can be found for left-turn crashes shown in Figure 6.3. However, the
trend goes to the opposite direction for rear-end crashes as presented in Figure 6.4. The
number of intersections with no or one rear-end crash decreases after signalization while
the number of intersections with more than two rear-end crashes increases significantly,
which leads to the increase of the overall number of rear-end crashes. In Figure 6.5, the
change pattern for all other crashes is not very obvious, only showing slight increase of

the number of intersections with more than one crash after signalization.
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6.4. Crash Predictive Modeling

The following section presents the detailed modeling process for all crashes: For angle
crashes, left-turn crashes, rear-end crashes, and all other crashes, the rest of the sections
present a summary of the modeling. The parameter estimations were performed with the
GENMOD procedure of the SAS statistical software package. Mean deviance and
Pearson's Chi-square ratio were adopted as the criteria to test over-dispersion of crash
data. Backward elimination method was used through the regression process to remove
statistically insignificant predictor variables. Deviance, Pearson's Chi-square, Pearson's
R-square and likelihood ratio index were adopted to evaluate the goodness-of-fit of

developed models.

6.4.1. Models for All Crashes

6.4.1.1. The Model for Before Signalization

First, all seven predictor variables were included in the regression equation. The Poisson
regression was performed as the initial step. Initial Poisson regression results provided
the basis to test whether the crash data were over-dispersed. Two statistics were adopted
as the criteria to assess the over-dispersion: mean deviance and Pearson's Chi-square
ratio. Generally, the mean deviance and the Pearson's Chi-square ratio should be close to
one or within the range between 0.8 and 1.2 in order to consider the Poisson model
appropriate to fit the data. If the mean deviance ant the Pearson’s Chi-square ratio values
exceed one, the data are considered to display extra variation or over-dispersion relative
to the Poisson model. If the values are less than one, the data are said to display under-
dispersion relative to the Poisson model. In Table 6.14, the mean deviance for the initial
Poisson model is 3.209, and the Pearson's Chi-square ratio is 3.524, which indicate that
the extra variation exists in the "before" data. An initial negative binomial regression was
performed as an alternative to Poisson model; and the mean deviance and Pearson's Chi-
square ratio were calculated again. As shown in Table 6.14, the mean deviance and
Pearson's Chi-square ratio for the negative binomial model are very close to one, which

indicate that the negative binomial model was an appropriate choice.

Based on the results of the negative binomial regression, Pearson residual for each

observation was calculated and plotted in Figure 6.6. Pearson residual was used to check
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the model fit, where the best-fitted data points should be around the zero line in the plot.
A 20 percent significance level was assumed to keep the parameters estimated in the
model. The choice of a 20 percent significance level or 80 percent confidence level
would allow to include several predictor variables in the predictive model that may
improve the overall predictive ability of the model than if a more restrictive significance
level was considered. The results of the negative binomial regression are presented in

Table 6.15. The explanations of the contents of Table 6.15 are listed on Table 6.16.

Table 6.14. Criteria For Assessing Over-Dispersion (All, Before)

Poisson Model (Initial) NEGATIVE BINOMIAL Model

Criterion DOF (Initial)
Value  Value/DOF Value Value/DOF
Deviance 439 1408.571 3.209 481,505 1.097
Pearson’s Chi- 439 1546.937 3.524 466218 1.062

square

Pearson Residual

Figure 6.6. Pearson Residual for Initial Negative Binomial Model (All, Before)
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Table 6.16 Explanation of Contents of the Results

Column Explanation

Predictor Variable  Describe the variables associated with estimated parameters. The
INTERCEPT represents the intercept in the regression equation.
The over-dispersion parameter is an additional parameter estimated
in the negative binomial model relative to Poisson model.

Name Variable name in the modeling database.

Level Represents the levels of the variable. Please note that ADT was
treated as discrete variable with three values: 0, 1 and 2. Other
variables were treated as categorical variables with two levels.

Value Value of variable to be input in the developed model.

DOF Degrees of freedom associated with each parameter estimate. Each
categorical variable has k-1 degrees of freedom; k represents the
levels of the variable. The intercept has one degree of freedom.

Parameter Estimate  Estimated parameters.

Standard Error Estimated standard deviation associated with each parameter.

Relative Effect Exponent of the estimated parameter of the variable. Represents
the effects of different levels.

Chi-square Chi-square test statistic for testing that the parameter is 0. This was

computed as the square of the ratio of the parameter estimate
divided by its standard error.

Pr > Chi-Sq The probability of obtaining a Chi-square statistic greater than that
observed given that the true parameter is 0. A small p-value is
evidence for concluding that the parameter is not 0.

The following step is to assess the goodness-of-fit of the model. Four statistics, including
deviance, Pearson's Chi-square, Pearson's R-square, and likelihood ratio index, were
adopted. Table 6.17 presents the four statistics for the "before" negative binomial model
of all crashes. Both the mean deviance and Pearson's Chi-square ratio are close to one,
and the Pearson's R- square and the likelihood ratio index are around 20%. The statistics
indicate that the developed model has satisfactory capability in fitting the "before" data

and explaining the variation of the data.

In addition to statistical justification, the model should also satisfy engineering judgment.
This can be assessed by examining the relative effect of each variable. For example, the
relative effect of ADT is 1.32, which means that the average number of crashes would
increase by 32% if the ADT increase from low to medium level, given all other variables

constant. Similarly, if ADT increases from medium to high level, the average number of
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crashes would increase by 32%. An intersection in urban area would have 13% more
crashes than the similar intersection in rural area. Intersections located in business area
are more likely to have crashes by 19% than intersections located in other area, e.g.
residential area. The same trend applies to other factors such as number of lanes.
However, intersections with posted speed more than 45 mph would have 16% fewer
crashes than similar intersections with posted speed less than or equal to 45 mph. Even
though this result may not be as expected, the analysis of the data indicated this trend,
where intersections with high-posted speed experienced lower number of crashes than
intersections with low-posted speed. This could be explained by the fact that in areas with
higher volume, the posted speed is lower than in areas with lower traffic volume. Higher
volume usually means high number of crashes. It is also interesting to find that
intersections with median on the major road would have 32% more crashes than without
median. The presence of median is generally an indicator that intersections are located in
areas with high traffic volume, probably with several lanes, which will produce more
conflicts and thus more crashes. Finally, intersections with paved shoulder would have

15% fewer crashes than the intersections with other types of shoulder.

Table 6.17. Criteria for Assessing the Goodness-of-Fit
(All, Before, Negative Binomial Model)

Item Value
Number of Observations (n) 439
Number of Predictor Variables in Model 7
Number of Parameters in Model (p) 7
Degree of Freedom (n-p-1) 431
Log-likelihood at Convergence -914.001
Restricted Log-likelihood -1149.14
Deviance 458.399
Deviance/(n-p-1) 1.064
Pearson Chi-square 413.318
Pearson Chi-square/(n-p-1) 0.959
Pearson R-square 20.33%
Likelihood Ratio Index 20.46%
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6.4.1.2. The Model for After Signalization

The model for “after” signalization for all crashes was developed using a similar
procedure as the model “before” signalization. Firstly, all predictor variables were
included and Poisson regression was performed. Based on the results of the initial
Poisson model, the mean deviance and Pearson's Chi-square ratio were calculated. Table
6.18 shows the results. Both statistics were larger than 3.0 showing that the "after" data
were over-dispersed. As an alternative, negative binomial (NB) regression was
performed, and the mean deviance and Pearson's Chi-square ratio were calculated again
based on the negative binomial model. Both statistics are also presented in Table 6.18,
these values were close to one indicating that the negative binomial regression is an
appropriate choice. Then, Pearson residuals were calculated for each observation based
on the results of negative binomial regression and plotted in Figure 6.7. Most of the
points clustered between the -1 and 1 lines, indicating that the model fits the data

satisfactorily

Table 6.18. Criteria For Assessing Over-Dispersion (All, After)

Poisson Model (Initial) Negative Binomial

Criterion DOF Model (Initial)
Value  Value/DOF Value Value/DOF
Deviance 439 1378.279 3.140 470.613 1.072
Pearson's Chi-square 439 1509.108 3.438 477.831 1.088

Of the seven-predictor variables in the model, the estimated parameter for posted speed is
0.004, with Chi-square statistic equal to 0.0000 and p-value equal to 0.9665, which
means that the effect of posted speed is extremely insignificant. The negative binomial
regression was run again after the predictor variable posted speed was removed from the
regression equation. The results are shown in Table 6.19. After the comparison of the two
sets of results, it was found that removing posted speed from the model had very few
effects on other variables. Among the estimated parameters presented in Table 6.19, the
parameter of the variable urban/rural is significant at 22 percent confidence level.
Considering that it is only slightly lower than the adopted 20 percent confidence level,

the variable has been kept in the model. The parameters for ADT, number of lanes on
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major road, and presence of median are significant at 5% significance level. The
parameter of LOCATYPE is significant at 10% significance level. The parameter of
shoulder treatment is significant at 20% significance level. The dispersion parameter is

0.3450 showing that the “after” data is over-dispersed relative to Poisson distribution.

Pearson Residual

0 100 200 300 400 500

Figure 6.7. Pearson Residual for Initial Negative Binomial Model (All, After)

Also, the goodness-of-fit statistics were calculated for the final negative binomial model
and are presented in Table 6.20. The mean deviance and Pearson's Chi-square ratio are
close to one, which indicates that the negative binomial model fits the "after" data very
well. The Pearson R-square value is equal to 34.84% and the likelihood ratio index is
equal to 27.75 %, representing that the model has a satisfactory ability in explaining the
variation of the "after" data. Each variable in the final " after" model shows the similar

relative effect on crash occurrence at intersections as the final "before" model.

107



00700  0S¥€0 Iorewered uotsiadsiq
0 SEITQ)

¥SLT'0 78l 060 €1800  TOIT°0- dTNOHS JudUILAL], 1P[NOYS
1 paAed

) ) ) . . 0 papraIpuf) peoy Jofe]

1S€0°0 iy 0T'1 9,800  S¥81°0 X Po— NVIAEN o ramopy jo oouasorg

0 SH=> peoy

- ” - - - I Cp < dddds JofeJA uo paadg paisod

: . . . . 0 v=> peoy Jofely

000 81'8 0¢'l 87600 5920 X = ANVT 0 soue jo soquinyg
0 SELITQ)

LELOO 0T'¢ 611 99600  8TLI0 HdALVOO1 adA 1, uoneso]
1 ssauisng
0 [eny

85120 €Sl 011 99L00  6%60°0 ANIGIN  9s() pue] Surpunorng
1 ueqin
C pda 000°0€=<

10000>  ¥O'IL €91 8,500 8980 I 0000£~000ST  LAVOAYV LAV d8e1oAy
0 pda 000°ST>

10000>  80°SCT W10 8ILSO 1doorayug

arenbg 1091 Joxrg drewnsy
bsyDH<ig T SATEIPY PIEDUEIS  TUSOLIE00) J0Od onfeA [PA9T QureN dIqerre A I0)o1paid

(I0JV “IIV) [9POIA [eTwIourg 9ANRION ) JO sIdjowered pajewnsy ‘61 9 9[qel,

108



Table 6.20. Criteria for Assessing the Goodness-of-fit
(All, After, Negative Binomial Model)

Item Value
Number of Observations (n) 438
Number of Predictor Variables in Model 6
Number of Parameters in Model (p) 6
Degree of Freedom (n-p-1) 431
Log-likelihood at Convergence -911.514
Restricted Log-likelihood -1261.53
Deviance 439.624
Deviance/(n-p-1) 1.020
Pearson Chi-square 420.532
Pearson Chi-square/(n-p-1) 0.976
Pearson R-square 34.84%
Likelihood Ratio Index 27.75%

6.4.1.3. Comparison of All Crashes '"Before'' and 'After' Models

The final "before" and "after" models are negative binomial models since the "before"
and "after" data display extra variations relative to Poisson distributions. All seven
predictor variables are statistically significant in the "before" negative binomial model at
a 20% significance level, while posted speed are not included in the "after" negative
binomial model due to its insignificance. Regarding the goodness-of-fit, the "after" model
performs better in explaining the variation of data than the "before" model based on

either Pearson's R-square or likelihood ratio index.

The relative effects of each predictor variable in the final "before" and "after" models are
in the same direction. The relative effect of ADT is 63% after signalization, higher than
32% before signalization, which means that intersection crashes are more sensitive to
ADT changes after signalization. Intersections in urban areas would have about 10%
more crashes than in rural areas, and intersections in business areas would have 20%
more crashes than in other areas, regardless of before or after signalization. These results
can be explained by the fact that the percentage of turning movements is relatively higher
in urban areas and/or business areas. The average number of crashes would increase by
30% with the number of lanes increasing from less than or equal to four to more than

four, regardless of before or after signalization. Generally more lanes on the roadway
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mean higher volume, which will cause more conflicts. For the variable posted speed in
the case of before signalization, intersections with higher than 45 mph posted speed
would have 16% less crashes as compared to intersections with lower or equal to 45 mph
posted speed. This result may be explained by the speed differential that could be caused
by the lower posted speed. From another perspective, drivers on the minor road may be
more conservative and more careful to enter or cross the major road if the vehicles’
speeds on this road are high. Nevertheless, traffic on the minor road will be assigned
right-of-away after the installation of the traffic signal, and the effect of posted speed
becomes insignificant. For the case of before signalization, intersections with median
would have 30% more crashes than intersections without median, while this figure
decreases to 20% for after signalization. This could be caused by the fact that roadways
with median usually are serving high volume of traffic, at the same time, are more likely
located in urban areas and business areas. Intersections with paved shoulder would have
15% less crashes as compared to unpaved shoulder for the case of before signalization
and 10% less crashes as compared to unpaved shoulder for the case of after signalization.
It is reasonable because paved shoulders generally can make drivers feel safer, provide
space for right-turn vehicles, and could function as a travel lane in case vehicles run off

road.

6.4.2. Models for Angle Crashes

6.4.2.1. The Model for Before Signalization

The "before" angle crash data had extra variation based on the results of initial Poisson
model, with mean deviance equal to 1.634 and Pearson Chi-square ratio equal to 1.839.
Then, Negative binomial regression was run with all seven predictor variables in the
model. Of the seven-predictor variables, coefficients of location type, number of lanes
and posted speed were insignificant at 20 percent significant level. Backward elimination
method was used to remove the insignificant variables from the model. The estimated
parameters of the negative binomial model for angle crashes for “before” are presented in
Table 6.21. Goodness-of-fit statistics were also calculated for the negative binomial
model and are shown in Table 6.22. The Pearson R-square and likelihood ratio index are
11.85% and 7.00% respectively indicating that the "before" model for angle crashes

explain a relatively low percent of systematic variation of the data.
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Table 6.22. Criteria for Assessing the Goodness-of-fit (Angle)

Item Before (Poisson) After (Negative Binomial)
Number of Observations (n) 436 437
Number of Predictor Variables in Model 4 4
Number of Parameters in Model (p) 4 4
Degree of Freedom (n-p-1) 431 432
Log-likelihood at Convergence -558.35 -490.37
Restricted Log-likelihood -600.36 -515.78
Deviance 422.55 404.67
Deviance/(n-p-1) 0.980 0.937
Pearson Chi-square 432.79 397.78
Pearson Chi-square/(n-p-1) 1.004 0.921
Pearson R-square 11.85% 16.63%
Likelihood Ratio Index 7.00% 4.93%

6.4.2.2. The Model for After Signalization

The calculated mean deviance and Pearson Chi-square ratio for the after model were 1.13
and 1.23 respectively, indicating that the Poisson regression is appropriate. Backward
elimination method was used to take out those variables that were not significant at 20%
significance level, including variables describing urban/rural, posted speed and shoulder.
The other four variables were kept in the Poisson model. The estimated parameters of the
Poisson model for "after" angle crashes are presented in Table 6.23. Goodness-of-fit

statistics for the Poisson model were calculated and shown in Table 6.22.

6.4.2.3. Comparison of Angle Crashes ''Before'' and ''After'' Models

The “before” model is a negative binomial model because “before" angle crash data
showed extra variation relative to Poisson distribution while the ‘“after” model is a
Poisson model because "after" angle crash data followed the Poisson distribution very
well. In both models, the variable posted speed on major road is insignificant, which
indicates that the change of posted speed from less than or equal to 45mph to higher has
very limited effect on angle crash occurrence at intersections. Surrounding land use and
shoulder treatment are significant in the "before" model but insignificant in the "after"
model. Location type and number of lanes are insignificant in the "before" model but

significant in the "after model. Presence of median is significant in both models.
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The Pearson R-square statistics and the likelihood ratio for both angle crash models are
lower than for the models for all crashes. This happens very often to disaggregate data in
modeling compared to aggregate data. It was also found that Pearson R-square statistic
and likelihood ratio index are inconsistent in assessing the goodness-of-fit of developed
models. The Pearson R-square increases from 11.85 % for the "before" model to 16.63%
for the "after" model, while the likelihood ratio index decreases from 7.00% for the
“before” model to 4.93% for the “after” model. Considering this finding, it is better to
count on more than one statistic when evaluating the goodness-of-fit of generalized linear

models.

6.4.3. Models for Left-turn Crashes

6.4.3.1. The Model for Before Signalization

Initial Poisson regression had mean deviance of 1.612 and Pearson Chi-square ratio of
1.939, indicating over-dispersion in the data. Therefore, negative binomial regression was
performed. Of seven predictor variables, urban/rural and posted speed are insignificant at
50% significance level. Backward elimination method was used to remove these two
variables and it was found that the model was insensitive to these two variables. The
estimated parameters for the negative binomial model are presented in Table 6.24. The
relative effects of each predictor variable in the negative binomial model for the “before”
left-turn crashes are in the same direction as for all crashes. For example, with the
increase of ADT from low to medium, there would be 26% more left-turn crashes. The
estimated dispersion parameter is equal to 0.2717 indicating that crash data were only
slightly over-dispersed. Table 6.25 shows the goodness-of-fit statistics calculated for the
final negative binomial model. Pearson R-square is 13.84% and likelihood ratio index is

5.01% indicating that the model explains the variation very limitedly.
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Table 6.25. Criteria for Assessing the Goodness-of-fit (Left-turn)

Item Before (Poisson) After (Negative Binomial)
Number of Observations (n) 434 436
Number of Predictor Variables in Model 5 5
Number of Parameters in Model (p) 5 5
Degree of Freedom (n-p-1) 428 430
Log-likelihood at Convergence -516.833 -458.237
Restricted Log-likelihood -544.098 -480.849
Deviance 423.225 392.697
Deviance/(n-p-1) 0.989 0.913
Pearson Chi-square 421.926 402.987
Pearson Chi-square/(n-p-1) 0.986 0.937
Pearson R-square 13.84% 15.90%
Likelihood Ratio Index 5.01% 4.70%

6.4.3.2. The Model for After Signalization

The Poisson model was run, and the "after" data showed only slightly over-dispersion
with mean deviance equal to 1.205 and Pearson Chi-square ratio equal to 1.466. The
variables urban/rural and posted speed were insignificant at 50% significance level. Then,
backward elimination method was used to remove ported speed and urban/rural. The
significance level of shoulder treatment increases form 22% to 17.35% once urban/rural
and posted speed were removed from the model. The estimated parameters for the
Poisson model are presented in Table 6.26. The relative effect of each predictor variable
is in the same direction as in the “before” model. Goodness-of-fit statistics for the final

model were calculated and presented in Table 6.25.

6.4.3.3. Comparison of Left-turn Crashes '"'Before'' and ''After'' models

The "before" model is a negative binomial model because the "before" left-turn crash
data were found to have extra variation relative to Poisson distribution. The "after" model
is a Poisson model because the "after" left-turn crash data were found to match the
Poisson distribution. For both models, posted speed and surrounding land use
(urban/rural) were insignificant at 20 percent significance level. Other variables included
in the after model affect the left-turn crashes in the same direction as in the “before”
model. For example, keeping other characteristics constant, an intersection in business

area would have more crashes than in other area whether before or after signalization. An
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intersection with more than 4 lanes on the major road would have more crashes than one
with less than or equal to 4 lanes whether before or after signalization. Regarding the
goodness-of-fit of the two models, the Pearson R-square for the "after" model has a
minor increase while the likelihood ratio index has a minor decrease. Overall, a similar
conclusion can be made like for angle models that the regression models performed better

for aggregate data that for disaggregate data.

6.4.4. Models for Rear-end Crashes

6.4.4.1. The Model for Before Signalization

The calculated mean deviance for the “before” Poisson regression with all predictor
variables was 1.08 and Pearson Chi-square ratio was 1.13. In the model, variables
describing surrounding land use and shoulder treatment were insignificant at 20 percent
significance level. Backward elimination method was used to remove insignificant
variables. Table 6.27 shows the estimated parameters for the “before” Poisson model.
Finally, five variables were significant at 20 percent significance level. The relative
effects of all variables except for presence of median have the same sign as in other
developed models. Goodness-of-fit statistics for the "before" model were calculated and
shown in Table 6.28. Pearson R-square of 30.54%, and likelihood ratio index of 10.16%

show that the final Poisson model fit the data satisfactorily.

6.4.4.2. The Model for After Signalization

The after data show extra-variation relative to the Poisson model, with mean deviance
equal to 1.875 and Pearson Chi-square ratio equal to 2.218. Therefore, negative binomial
regression was used to overcome the over-dispersion. The variables describing
surrounding land use, land use and posted speed were insignificant at 20 percent
significance level. Backward elimination method was used to try different combinations
of predictor variables and to remove the insignificant variables. Finally, only surrounding
land use and location type were removed from the model, and the other five variables
were included in the negative binomial model for rear-end crashes after signalization.
Table 6.29 shows the estimated parameters. Goodness-of-fit statistics were also

calculated and shown in Table 6.28.
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Table 6.28. Criteria for Assessing the Goodness-of-fit (Rear-end)

Item Before (Poisson) After (Negative Binomial)
Number of Observations (n) 441 440
Number of Predictor Variables in Model 6 5
Number of Parameters in Model (p) 6 5
Degree of Freedom (n-p-1) 434 434
Log-likelihood at Convergence -504.805 -676.271
Restricted Log-likelihood -561.864 -826.682
Deviance 468.978 429.635
Deviance/(n-p-1) 1.081 0.990
Pearson Chi-square 489.616 416.549
Pearson Chi-square/(n-p-1) 1.128 0.960
Pearson R-square 30.54% 35.74%
Likelihood Ratio Index 10.16% 18.19%

6.4.4.3. Comparison of Rear-end Crashes ''Before'' and ''After' Models

Unlike the angle and left-turn crash data, the "before" rear-end crash data do not show
extra-variation relative to Poisson model while the "after" data show extra-variation. The
variable describing surrounding land use is insignificant at 20 percent significance level
in both models. Shoulder treatment is insignificant in the "before" model but significant
in the "after" model. Location type is significant in the "before" model but insignificant in
the "after" model. The other variables are significant in both models. The relative effects
of each predictor variable included in the models are in the same direction as in
developed models for all crashes, except for the variable presence of median. The effect
of median on rear-end crashes indicate that intersections would have less rear-end crashes
if the major road is divided before signalization. This could be explained in the sense that
the median could provide space for left-turn vehicles to clear the left through lane,
otherwise, rear-end crashes are very likely to happen on the left through lane blocked by
suddenly stopped left-turn vehicles. But, for signalized intersections, the presence of
median would increase rear-end crashes which is a similar effect as in other models.
Regarding the goodness-of-fit, both models have very high values of Pearson R-square
and likelihood ratio index indicating that the developed models perform very well in
explaining the systematic variations in the crash data. Relatively, the negative binomial

model for the "after" data performs better than the Poisson model for the "before" data.
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6.4.5. Models for Other Crashes

6.4.5.1. The Model for Before Signalization

The "before" other crash data fitted the Poisson model with mean deviance and Pearson
Chi-square ratio equal to 0.91. Backward elimination method was used to remove
insignificant variables which included location type, number of lanes on major road, and
shoulder treatment. Finally, four variables that were significant at 20 percent significance
level were included in the Poisson model. The results of the "before" model are shown in
Table 6.30. The relative effects of predictor variables have the same sign as most of other
developed models. For example, intersections with 50 mph posted speed on major road
would have 35% less other type of crashes than intersections with 40 mph posted speed
on major road. Intersections in urban areas would have 40% more other type of crashes
than in rural areas. Also, goodness-of-fit statistics for the "before" model were calculated
and shown in Table 6.31. Pearson R-square and likelihood ratio index indicate that the

developed model has limited ability in explaining the data variation.

6.4.5.2. The Model for After Signalization

The data show no extra-variation relative to Poisson model. Backward elimination
method was used to remove the insignificant predictor variables that include land use,
posted speed, median, and shoulder. The results of the Poisson model are shown in Table
6.32. Only ADT, urban/rural and number of lanes were included in the “after” model.

Goodness-of-fit statistics of the model were also calculated and are shown in Table 6.31.

6.4.5.3. Comparison of Other Crashes ''Before'' and ''After' Models

It was found that both the "before" and "after" data for other crashes follow the Poisson
distribution without showing extra variation. Thus, Poisson regression is an appropriate
choice in both cases. Variables describing location type and shoulder treatment are
insignificant in both Poisson models. Number of lanes is insignificant in the "before"
model, while posted speed and median are insignificant in the "after" model. The
variables included in the models have relative effects in the same direction of other
models. Goodness-of-fit statistics show that the "after" model fits the "after" data better

than the "before" model fits the "before" data.
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Table 6.31. Criteria for Assessing the Goodness-of-fit (All Other)

Item Before (Poisson) After (Negative Binomial)
Number of Observations (n) 440 437
Number of Predictor Variables in Model 4 3
Number of Parameters in Model (p) 4 3
Degree of Freedom (n-p-1) 435 433
Log-likelihood at Convergence -491.213 -495.212
Restricted Log-likelihood -521.98 -540.979
Deviance 397.06 336.046
Deviance/(n-p-1) 0.913 0.776
Pearson Chi-square 399.097 317.303
Pearson Chi-square/(n-p-1) 0.917 0.733
Pearson R-square 17.61% 31.43%
Likelihood Ratio Index 5.89% 8.46%

6.5. Impacts of Signalization on Crashes

Once the models for each crash type considered were developed, the average numbers of
crashes before and after signalization were estimated for all crashes and for each crash
type for intersections with different characteristics. These characteristics varied
accordingly with the variables used: ADT, surrounding land use, location type, number of
lanes, posted speed, median, and shoulder type. The impacts of signalization on
intersection crashes were estimated by subtracting the average number of crashes after
signalization from the number of crashes before signalization. A positive sign indicates
an increase in crashes and a negative sign a decrease. These impacts were estimated with
the average number of crashes obtained from the developed models and not from crash
history in order to make a comparison between estimated values for both the before and
after period, and not from a combination of values from real data for the before period
and predicted results for the after period. Tables were calculated for the impacts of
signalization on crashes for all crashes and each crash type. Appendix C presents the
results for all crashes, angle crashes, left-turn crashes, rear-end crashes and all other

crashes for different characteristics of intersections.
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These estimated impacts of signalization on crashes for intersections with different
characteristics would provide information in regard to the increase or decrease in the
number of all crashes and different type of crashes, and might help traffic engineers when
considering the installation of a traffic signal as a solution for the intersection problems.
The estimated impacts are not to be used as an instrument to decide but rather as a tool to
evaluate how a signal may affect crashes at an intersection under analysis. In order to
estimate the impacts of signalization on intersection crashes, the engineer could either use
the tables included in the appendices or the software provided with this report. For the
tables, each table has specific characteristics of the intersections for which those results
were estimated, and for the software, the specific characteristics could be used as input in

order to estimate the impacts of signalization.

6.6. Model Validation

A group of 30 newly signalized intersections were not considered in the intersection
modeling database in order to compare the results obtained from the developed models to
the real data values. Based on the characteristics of the intersections and the models for all
crashes, the number of crashes was determined for the before and after period for each one
of the intersections. Then, an average of the estimated number of all crashes was done and
compare to the average of the number of all crashes for the actual data for both periods.
The difference between the averages for either the before or after signalization periods was

very small. The following table shows these results.

Table 6.33. Average Number of All Crashes
for Actual Data and Predicted Values

Average Number of All Crashes

Period ;
Actual Predicted

Before 3.55 3.80

After 4.53 4.50

126



CHAPTER 7: RESULTS FOR OPERATIONAL RESEARCH MODELING

7.1. Crash Prediction

CBCP was used to predict total number of all crashes, angle crashes, rear-end crashes,
left-turn crashes, and ‘“all other” crashes, which includes the remainder of crashes, at
intersections before and after traffic signal installation. For this study, the impact of
traffic signal installation on intersection crashes was computed using the predicted crash
frequencies before and after signalization. Even though, the CBCP procedure could
directly predict this impact, it was not used because the method is based on known data,
and its prediction accuracy is closely dependent on the availability of data. In the
research, with all the seven characteristic variables that define an individual intersection,
few data points for each unique intersection type would be available. Therefore, the
statistical regression analysis, specifically, the lognormal modeling using the predicted
crashes was applied to estimate the impacts of signal installation on crashes at

intersections.

7.2. Lognormal Modeling
Lognormal modeling was applied using the predictive number of crashes for all crashes
and each crash type estimated with CBCP. The following paragraphs present the results

of this modeling.

7.2.1. Models for All Crashes

7.2.1.1. The Model for Before Signalization

In particular, residual analysis was used to check the model fit. In general, the best-fitted
data points should have residuals whose absolute values are close to zero. The lognormal
regression results are shown Tables 7.1 and 7.2, and in Figure 7.1. As it is expected, all
residuals are between 1 and —1 and most are close to 0. This implies that the model fits
the data satisfactorily. The p-value in Table 7.1 means that the regression model is

significant at more than 99% confidence level.



Table 7.1. Estimated Parameters of Lognormal Model (All, Before)

Coefficient Standard Relative

Predictor Variable Name Level Value DOF Estimate Error Effect t-Stat  P-value

Intercept 1 0.875 0.045 19.320 <=0.001
< 15,000 vpd 0

Average ADT AVGADT 15,000~30,000 1 2 0.120 0.029 1.127 4.097 <=0.001
>= 30,000 vpd 2
Urban 1

Urban/Rural URBRUR 1 0.190 0.032 1.210 6.018 <=0.001
Rural 0
Land Use of Business 1

i LOCATYPE 1 0.038 0.038 1.038 0.998 0.319

Surrounding Area Other 0
>4 1

Number of Lanes on LANE 1 0.310 0.050 1363 6211 <=0.001
Major Road <=4 0
> 45 1

Posted Speed on SPEED 1 -0.184 0039 0832 -4757 <=0.001
Major Road <=45 0
Presence of Median Divided 1

on MEDIAN — 1 0.400 0.034 1.491 11.751 <=0.001
Major Road Undivided 0
Paved 1

Shoulder Treatment SHOULD o 0 1 -0.099 0.035 0905 -2.828 0.005
er




Table 7.2. Analysis of Variance (Total, Before)

Square of Variation  Sum of Squares DOF Mean Square  F-Stat P-Value

Regression 44.101 7 6.30 63.14 <0.001
Error 44.001 441 0.10
Total 88.103 448

Residual

Intersection points

Figure 7.1. Residual for Lognormal Model (Total, Before)

From Table 7.1, it can be seen clearly that all the estimated parameters (except
LOCALTYPE) were significant at more than 99 % confidence level, while the estimated
parameter for LOCALTYPE is significant at only 68 % confident level. The variable
LOCALTYPE is included in the “before” model to be consistent with the statistical
model presented in Chapter 6. The contents in Table 7.1 are the same as those in Table

6.21, except the last two columns, which are explained in Table 7.3.

The relative effect of ADT is 1.127. This means that the average number of crashes
would increase by 12.7% if the ADT increases from the low level to the medium level
given that all the other variables are unchanged. Similarly, if ADT increases from the

medium level to the high level, the average number of crashes would increase by 12.7%.



Intersections in urban areas would have 21 % more crashes than similar intersections in
rural areas. Intersections in business area would have about 4% more crashes than similar
ones in other areas. Intersections with median on the major road would have 49% more
crashes than similar ones without median on the major road. Similarly, more lanes means
more crashes. However, high-speed intersections (mph > 45) have about 17% fewer
crashes than low speed intersections (mph < 45). Likewise, intersections with paved
shoulder are safer than those with other types of shoulder. All these results are consistent

with the results of the statistical models.

Table 7.3. Explanation of Contents

Column Explanation

t-Stat t-test statistic for testing whether the parameter is 0. t is computed as the
ratio of the point estimate of a parameter to the standard error of the
parameter. Note that this is usually a partial or marginal test, because the
point estimate of a parameter depends on all the other regressor variables
that are in the regression model.

P-value The probability of obtaining a t-test statistic greater than the obtained,
given that the true parameter is 0. A small P-value indicates that the true
parameter is not 0.

7.2.1.2. The Model for After Signalization

The “after” model for all crashes was developed through a similar procedure as the
“before” model. In particular, all the seven variables were initially included and a
lognormal regression was performed. It turned out that variable SPEED is insignificant.
With variable SPEED removed, the lognormal regression was run again. As the “before”
model, the statistics indicate that the lognormal regression is an appropriate choice. The
obtained parameter estimates along with statistics and variances are presented in Tables
7.4 and 7.5, respectively. Residuals were also computed and plotted in Figure 7.2. Again,
all residuals are between 1 and —1, and most are close to 0. This indicates the model fits

the data satisfactorily.

The P-values in Table 7.4 indicates that all the estimated parameters included in the

model were significant at more than 99 % confidence level.



Table 7.4. Estimated Parameters of Final Lognormal Model (All, After)

Predictor Variable Name Level Value DOF Coeff1c1ent Standard - Relative t-Stat  P-value
Estimate Error Effect

Intercept 1 0.679 0.042 16.135 <=0.001
< 15,000 vpd 0

Average ADT AVGADT 15,000~30,000 1 2 0.260 0.026 1.297 10.090 <=0.001
>= 30,000 vpd 2
Urban 1

Urban/Rural URBRUR 1 0.148 0.030 1.160 4.878 <=0.001
Rural 0
Land Use of Business 1

i LOCATYPE 1 0.184 0.036 1.202 5.149 <=0.001
Surrounding Area Other 0
>4 1

Number of Lanes on LANE 1 0.204 0.042 1227 4921 <=0.001
Major Road <=4 0
> 45 1

Posteq Speed on SPEED | _ 5 5 5 5

Major Road <=45 0
Presence of Median Divided 1

on MEDIAN — 1 0.428 0.033 1.534 12970 <=0.001
Major Road Undivided 0
Paved 1

Shoulder Treatment SHOULD 1 -0.109 0.032 0.897 -3.374 0.001

Other 0




Table 7.5. Analysis of Variance (Total, After)

Square of Variation  Sum of Squares DOF Mean Square =~ F-Stat  P-Value

Regression 66.250 6 11.042 117.303 < 0.001
Error 41.699 442 0.094
Total 107.979 448

Residual

Intersection Points

Figure 7.2. Residual for Lognormal Model (Total, After)

The relative effect of ADT is 1.297. This means that the average number of crashes
would increase by 29.7% if the ADT increases by one level (i.e., from the low level to the
medium level, or from the medium level to the high level), given that all the other
variables are unchanged. Urban area intersections would have 16% more crashes than
similar rural area intersections. Intersections in business area would have about 20%
more crashes than similar ones in other areas. Intersections with median on the major
road would have about 53% more crashes than similar ones without median on the major
road. Similarly, more lanes means more crashes. As mentioned earlier, speed is
insignificant and is excluded from the model. Intersections with paved shoulder are about

9% safer than those with other types of shoulder, in terms of number of all crashes.



7.2.1.3. Comparison of All Crashes “Before” and “After’” Models

The relative effects of each model variable, in the “before” and “after” models, are in the
same direction. The relative effect of ADT is 1.127 and 1.297 for the “before” and “after”
models, respectively. This implies that intersection crashes are more sensitive to ADT
changes after signalization. Similar conclusion can be observed for LOCALTYPE. In
other words, variable LOCALTYPE is more significant after signalization. The variables
LANE and SPEED are just the opposite. That is, intersection crashes are more sensitive
to LANE or SPEED changes before signalization. In fact, intersection crashes are
insensitive to SPEED after signalization. The relative effects of URBRUR on “before”
and “after” crashes are pretty the same, indicating that intersection crashes are not very
sensitive to whether intersections are in an urban area or in a rural area. Similar

conclusions can be derived for MEDIAN and SHOULDER.

7.2. 2. Models for Angle Crashes

7.2.2.1. The Model for Before Signalization

Initial run of the lognormal regression included all the seven variables. Run results
indicated that parameters for four variables AVGADT, SPEED, LANE and
LOCALTYPE are insignificant. However, only three variables SPEED, LANE and
LOCALTYP have been removed from the model. Variable AVGADT is included in the
model in order to be consistent with the statistical model. The model with the remaining
four variables had most residuals closed to zero, as in the case of total crashes, indicating
that the model fits the data satisfactorily. The regression results are presented in Tables

7.6 and 7.7.



Table 7.6. Estimated Parameters of Lognormal Model (Angle, Before)

Predictor Variable Name Level Value DOF Coeff1c1ent Standard - Relative t-Stat  P-value
Estimate Error Effect

Intercept 1 -0.304 0.050 -6.117  <=0.001
< 15,000 vpd 0
Average ADT AVGADT 15,000~30,000 1 2 0.023 0.040 1.023 0.574 0.566
>= 30,000 vpd 2
Urban 1
Urban/Rural URBRUR 1 0.218 0.046 1.243 4713 <=0.001
Rural 0
Land Use of Business 1
) LOCATYPE 1 ~ ~ ~ ~ ~
Surrounding Area Other 0
>4 1
Number‘ of Lanes on LANE 1 _ 5 5 _ 5
Major Road <=4 0
> 45 1
Posteq Speed on SPEED | _ 5 5 5 5
Major Road <=45 0
Presence of Median Divided 1
on MEDIAN — 1 0.523 0.050 1.686 10.350 <=0.001
Major Road Undivided 0
Paved 1
Shoulder Treatment SHOULD 1 -0.379 0.051 0.684 -7.453 <=0.001

Other 0




Table 7.7. Analysis of Variance (Angle, Before)

Square of Variation Sum of Squares DOF Mean Square F-Stat P-Value

Regression 41.595 4 10.399 37.279 <0.001
Error 96.775 440 0.22
Total 138.37 444

7.2.2.2. The Model for After Signalization

Initial run of the lognormal regression included all the seven variables. Run results
indicated that parameters for three variables SPEED, SHOULD and URBRUR are very
insignificant, and these three variables should be removed from the model. As in the
previous cases, most residuals are closed to zero for the lognormal model with four
variables, indicating that the model fits the data satisfactorily. The regression results are

presented in Tables 7.8 and 7.9

7.2.2.3. Comparison of Angle Crashes “Before” and “After” Models

In both the “before” and “after” models, medium is the only variable that is extreme
significant, and SPEED is the only variable that is insignificant, Variables URBRUR and
SHOULD are both significant in the “before” model but insignificant in the “after”
model. To the contrary, variables LOCALTYPE and LANE are both insignificant in the
“before” model but significant in the “after” model. Variable ADT is significant at more
than 99% confidence level in the “after” model, but at pretty low (43%) confidence level

in the “before” model.



Table 7.8. Estimated Parameters of Lognormal Model (Angle, After)

Coefficient Standard Relative

Predictor Variable Name Level Value DOF Estimate Error Effect t-Stat  P-value
Intercept -0.757 0.051 -14.85 <=0.001
< 15,000 vpd 0
Average ADT AVGADT 15,000~30,000 1 0.220 0.035 1.247 6.370 <=0.001
>= 30,000 vpd 2
Urban 1
Urban/Rural URBRUR ~ ~ ~ ~ ~
Rural 0
Land Use of Business 1
. LOCATYPE 0.234 0.044 1.264 5264 <=0.001
Surrounding Area Other 0
Number of Lanes on LANE - : 0.238 0.051 1269 4.649 <=0.001
Major Road <=4 0 ) ) ' ) e
> 45 1
Posteq Speed on SPEED _ 5 5 5 5
Major Road <=45 0
Presence of Median Divided 1
on MEDIAN — 0.201 0.041 1.222 4956 <=0.001
Major Road Undivided 0
Paved 1
Shoulder Treatment SHOULD ~ ~ ~ ~ ~
Other 0




Table 7.9. Analysis of Variance (Angle, After)

Square of Variation Sum of Squares DOF Mean Square =~ F-Stat P-Value

Regression 42.833 4 10.71 35.365 <0.001
Error 132.622 438 0.30
Total 175.455 442

7.2.3. Models for Left-turn Crashes

7.2.3.1. The Model for Before Signalization

Initial run of the lognormal regression included all the seven variables. Run results
indicated that two variables SPEED and URBRUR are very insignificant, and are
removed from the model. The model with the remaining five variables was rerun, and
again, most residuals are closed to zero, indicating the model fits the data satisfactorily.
The regression results are presented in Tables 7.10 and 7.11. All the remaining variables

are significant at more than 98% confidence level.



Table 7.10. Estimated Parameters of Lognormal Model (Left-turn, Before)

Coefficient Standard Relative

Predictor Variable Name Level Value DOF Estimate Error Effect t-Stat  P-value
Intercept 1 -0.664 0.063 -10.50 <=0.001
< 15,000 vpd 0
Average ADT AVGADT 15,000~30,000 1 2 0.178 0.047 1.195 3.825 <=0.001
>= 30,000 vpd 2
Urban 1
Urban/Rural URBRUR 1 ~ ~ ~ ~ ~
Rural 0
Land Use of Business 1
) LOCATYPE 1 0.192 0.055 1.212 3.482 0.001
Surrounding Area Other 0
>4 1
Number of Lanes on LANE 1 0.351 0076 1421  4.638 <=0.001
Major Road <=4 0
> 45 1
Posteq Speed on SPEED | _ 5 5 5 5
Major Road <=45 0
Presence of Median Divided 1
on MEDIAN — 1 0.405 0.051 1.500 7915 <=0.001
Major Road Undivided 0
Paved 1
Shoulder Treatment SHOULD 1 -0.128 0.052 0.880 -2.474 0.014

Other 0




Table 7.11. Analysis of Variance (Left-turn, Before)

Square of Variation Sum of Squares DOF Mean Square =~ F-Stat P-Value

Regression 48.244 5 9.65 41.857 <0.001
Error 100.967 438 0.231
Total 149.211 443

7.2.3.2. The Model for After Signalization

Initial run of the lognormal regression included all the seven variables. Run results
indicated that the same two variables SPEED and URBRUR are very insignificant, and
are removed from the model. The lognormal regression was run again. As in the previous
models, most residuals are closed to zero, indicating the model fits the data satisfactorily.
The regression results are presented in Tables 7.12 and 7.13. It can be seen from Table
7.13 that LOCAL TYPE is significant at about 80% confidence level, while the other 4

remaining parameters are significant at more than 99% confidence level.

7.2.3.3. Comparison of Left-turn Crashes “Before” and “After’” Models

Variables URBRUR and SPEED are very insensitive both before and after signalization,
and were excluded from the models. All the remaining model parameters are pretty
significant. In terms of relative effect, median has the largest impact on intersection
crashes both before and after signalization. In particular, intersections with median on the
major road would have 50% and 92.4% more crashes than those without median before
and after signalization, respectively. Left-turn intersection crashes are less sensitive to
ADT, MEDIUM and SHOULD but more sensitive to LOCATYPE and LANE before
signalization than after signalization. It is worth pointing out that intersections with paved
shoulder would have 12% and 24% fewer left-turn crashes than similar ones with other

type of shoulder, before and after signalization, respectively.



Table 7.12. Estimated Parameters of Lognormal Model (Left-turn, After)

Predictor Variable Name Level Value DOF Coeff1c1ent Standard - Relative t-Stat  P-value
Estimate Error Effect

Intercept 1 -1.101 0.080 -13.73 <=0.001
< 15,000 vpd 0

Average ADT AVGADT 15,000~30,000 1 2 0.271 0.056 1.311 4815 <=0.001
>= 30,000 vpd 2
Urban 1

Urban/Rural URBRUR 1 ~ ~ ~ ~ ~
Rural 0
Land Use of Business 1
i LOCATYPE 1 0.088 0.070 1.092 1.263 0.207

Surrounding Area Other 0
>4 1

Number of Lanes on LANE 1 0.313 0.081 1367 3.861 <=0.001
Major Road <=4 0
> 45 1

Posteq Speed on SPEED | _ 5 5 5 5

Major Road <=45 0
Presence of Median Divided 1

on MEDIAN — 1 0.654 0.063 1.924 10439 <=0.001
Major Road Undivided 0
Paved 1

Shoulder Treatment SHOULD 1 -0.274 0.061 0.760 -4.529 <=0.001

Other 0




Table 7.13. Analysis of Variance (Left-turn, After)

Square of Variation Sum of Squares DOF Mean Square =~ F-Stat P-Value

Regression 103.328 5 20.67 61.212 <0.001
Error 145.17 430 0.34
Total 248.498 435

7.2.4. Models for Rear-end Crashes

7.2.4.1. The Model for Before Signalization

Initial run of the lognormal regression included all the seven variables. Run results
indicated that two variables SHOULD and URBRUR are very insignificant, and are
removed from the model. The regression was run again and results are presented in
Tables 7.14 and 7.15. All the remaining variables are significant at more than 99%
confidence level, except that the confidence level for MEDIAN is only 70%. This
variable was kept in the model in order to be consistent with the statistical model for

before signalization for rear-end crashes.

7.2.4.2. The Model for After Signalization

Initial run of the lognormal regression included all the seven variables. Run results
indicated that two variables URBRUR and LOCATYPE are insignificant, and were
removed from the model. The lognormal regression was run again with the remaining
five variables. The regression results are presented in Tables 7.16 and 7.17. All the
remaining variables are significant with a confidence level of at least 80 %. In fact, all the
remaining model parameters are at a confidence level of at least 97%, except for SPEED

with an 84 % confidence level.



Table 7.14. Estimated Parameters of Lognormal Model (Rear-end, Before)

Predictor Variable Name Level Value DOF Coeff1c1ent Standard - Relative t-Stat  P-value
Estimate Error Effect

Intercept 1 -0.910 0.060 -15.07 <=0.001
<15000vpd 0
Average ADT AVGADT 15,000~30,000 1 2 0.507 0.040 1.660 12.716 <=0.001
>=30,000 vpd 2
Urban 1
Urban/Rural URBRUR 1 ~ ~ ~ ~ ~
Rural 0
Land Use of Business 1
) LOCATYPE 1 0.345 0.052 1.413 6.674 <=0.001
Surrounding Area Other 0
>4 1
Number of Lanes on LANE 1 0.201 0.068 1223 2960  0.003
Major Road <=4 0
> 45 1
Posted Speed on SPEED 1 -0.338 0052  0.713 -6.453 <=0.001
Major Road <=45 0
Presence of Median Divided 1
on MEDIAN — 1 -0.049 0.047 0.952 -1.041 0.298
Major Road Undivided 0
Paved 1
Shoulder Treatment SHOULD 1 ~ ~ ~ ~ ~

Other 0




Table 7.15. Analysis of Variance (Rear-end, Before)

Square of Variation Sum of Squares DOF Mean Square =~ F-Stat P-Value

Regression 84.252 5 16.85 87.20 <0.001
Error 85.605 443 0.19
Total 169.857 448

7.2.4.3. Comparison of Rear-end Crashes “Before’” and ‘““After’’ Models

Variable URBRUR is very insignificant in both the “before’ and “after” models and is
deleted from consideration. All the remaining variables are pretty significant. ADT has
significant relative effects both before and after signalization. Specifically, number of
rear-end intersection crashes would increase by almost 60% both before and after
signalization as ADT increases from low to medium level or from medium to high level.
One observation that is worth noting is that before signalization, intersections with
median on the major road have about 5% fewer rear-end crashes than similar
intersections without median on the major road, but after signalization, intersections with
median on the major road have 65.7% more rear-end crashes than similar intersections
without median on the major road. Rear-end intersection crashes are very sensitive to

LOCATYPE before signalization, but insensitive to LOCATYPE after signalization.



Table 7.16. Estimated Parameters of Lognormal Model (Rear-end, After)

Predictor Variable Name Level Value DOF Coeff1c1ent Standard - Relative t-Stat  P-value
Estimate Error Effect

Intercept 1 -0.305 0.043 -7.092  <=0.001
< 15,000 vpd 0
Average ADT AVGADT 15,000~30,000 1 2 0.461 0.034 1.586 13.504 <=0.001
>= 30,000 vpd 2
Urban 1
Urban/Rural URBRUR 1 ~ ~ ~ ~ ~
Rural 0
Land Use of Business 1
] LOCATYPE 1 ~ ~ ~ ~ ~
Surrounding Area Other 0
>4 1
Number of Lanes on LANE 1 0.122 0.055  1.130 2211  0.028
Major Road <=4 0
> 45 1
Posted Speed on SPEED 1 0.066 0046  1.068 1425  0.155
Major Road <=45 0
Presence of Median Divided 1
on MEDIAN — 1 0.505 0.045 1.657 11.343 <=0.001
Major Road Undivided 0
Paved 1
Shoulder Treatment SHOULD 1 -0.294 0.042 0.745 -7.082 <=0.001

Other 0




Table 7.17. Analysis of Variance (Rear-end, After)

Square of Variation Sum of Squares DOF Mean Square F-Stat P-Value

Regression 115.241 5 23.048 138.965 <0.001
Error 73.640 443 0.166
Total 188.881 448

7.2.5. Models for Other Crashes

7.2.5.1. The Model for Before Signalization

As usual, the initial run of the lognormal regression included all the seven variables. Run
results indicated that three variables LOCALTYPE, LANE and SHOULD are very
insignificant, and have been removed from the model. The lognormal regression was run
again and results are presented in Tables 7.18 and 7.19. All the remaining parameters are

significant at more than 93% confidence level.

7.2.5.2. The Model for After Signalization

Again, the initial run of the lognormal regression included all the model parameters. Run
results indicated that four variables LOCALTYPE, SPEED, MEDIUM and SHOULD are
insignificant, and are deleted from the model. The lognormal regression was run again
with the remaining four variables. The regression results are presented in Tables 7.20 and
7.21. All the remaining model parameters are significant with a confidence level of at

least 99 %.



Table 7.18. Estimated Parameters of Lognormal Model (Other, Before)

Predictor Variable

Name Level

Value

DOF

Coefficient Standard Relative

t-Stat  P-value

Estimate Error Effect
Intercept 1 -0.760 0.045 -16.99  <=0.001
< 15,000 vpd 0
Average ADT AVGADT 15,000~30,000 1 2 0.377 0.034 1.457 11.098 <=0.001
>= 30,000 vpd 2
Urban 1
Urban/Rural URBRUR 1 0.326 0.040 1.386 8.258 <=0.001
Rural 0
Land Use of Business 1
i LOCATYPE 1 ~ ~ ~ ~ ~
Surrounding Area Other 0
>4 1
Number‘ of Lanes on LANE 1 _ 5 5 _ 5
Major Road <=4 0
> 45 1
Posted Speed on SPEED 1 -0.146 0.047 0865 -3.071  0.002
Major Road <=45 0
Presence of Median Divided 1
on MEDIAN — 1 0.080 0.043 1.083 1.838 0.067
Major Road Undivided 0
Paved 1
Shoulder Treatment SHOULD 1 ~ ~ ~ ~ ~
Other 0




Table 7.19. Analysis of Variance (Other, Before)

Square of Variation Sum of Squares DOF Mean Square =~ F-Stat P-Value

Regression 45.858 4 11.464 70.121 < 0.001
Error 71.774 439 0.163
Total 117.632 443

7.2.5.3. Comparison of Other Crashes “Before’” and ‘““After’ Models

Two variables LOCALTYPE and SHOULD are very insignificant in both the “before’
and “after” models and are both deleted from consideration. Two variables ADT and
URBRUR are significant in both the “before” and “after” models. Variables SPEED and
MEDIUM are significant before signalization but insignificant after signalization. To the
contrary, variable LANE is insignificant before signalization but significant after
signalization. ADT and URBRUR have the largest relative effects on intersection crashes

both before and after signalization.



Table 7.20. Estimated Parameters of Lognormal Model (Other, After)

Coefficient Standard Relative

Predictor Variable Name Level Value Estimate Error Effect t-Stat
Intercept -0.697 0.042 -16.47
< 15,000 vpd 0
Average ADT AVGADT 15,000~30,000 1 0.361 0.033 1.435 10.860
>= 30,000 vpd 2
Urban 1
Urban/Rural URBRUR 0.346 0.038 1.414 9.196
Rural 0
Land Use of Business 1
) LOCATYPE ~ ~ ~ ~
Surrounding Area Other 0
Number of Lanes on >4 1
Major Road LANE —d 0 0.179 0.054 1.196 3.305
> 45 1
Posteq Speed on SPEED _ 5 5 5
Major Road <=45 0
Presence of Median Divided 1
on MEDIAN — ~ ~ ~ ~
Major Road Undivided 0
Paved 1
Shoulder Treatment SHOULD ~ ~ ~ ~
Other 0




Table 7.21. Analysis of Variance (Other, After)

Square of Variation Sum of Squares DOF Mean Square F-Stat P-Value

Regression 50.982 3 16.994 110.326 < 0.001
Error 67.622 439 0.154
Total 118.604 442

7.3. Impacts of Signalization on Crashes

Similar to the impacts of signalization on crashes for statistical models, the average
numbers of crashes before and after signalization were estimated for all crashes and for
each crash type for intersections with different characteristics based on lognormal
models. Tables were calculated for the impacts of signalization on crashes for all crashes
and each crash type. Appendix D presents the results for all crashes, angle crashes, left-
turn crashes, rear-end crashes, and all other crashes for different characteristics of

intersections.

Furthermore, tables with the average impacts of signalization on intersection crashes
were calculated and are presented in Appendix E. These average impacts were estimated
by averaging the statistical modeling and operational research modeling impacts of

signalization on intersection crashes presented on Appendices C and D.



CHAPTER 8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

8.1. Summary

This research was performed to evaluate the impacts of signalization on traffic crashes at
intersections. A ten-year crash history database including traffic crashes from
intersections all over Florida was used for the research. In the first phase of the research,
a before-and-after analysis was performed to compare number of crashes and crash rates
based on different types, severities and surrounding land uses. Distribution fitting for the
Poisson distribution or the Negative Binomial distribution was performed based on crash
data. The 50™ and 85" percentile values were estimated from the distribution fitting.
Then, these values were compared between the before and after period. The average
yearly number of crashes and crash rates were also compared to explore the safety
impacts of signalization on intersection crashes. Paired t-test was employed to determine
if there was a statistically significant difference between the before and after period. In
the second phase, statistical crash predictive models were developed to estimate the
average number of crashes for all crashes, angle crashes, left-turn crashes, rear-end
crashes, and other crashes at intersections before and after the installation of traffic
signals. During the modeling process, Poisson regression was performed as the initial
step, and negative binomial regression was applied where over-dispersion was tested
existing in the crash data. The regression parameters were estimated by using the
maximum likelihood method with SAS. The goodness-of-fit for the developed models
were evaluated based on Pearson's R-square and likelihood ratio index. In the third phase,
case-based crash prediction system was used to predict crash frequencies at a new
intersection based on some known cases. In this method, the most similar intersections
with respect to roadway environment for application to a new intersection were retrieved
from a training database. Then, the information and knowledge from the previous cases
were adapted or reused to solve the new case. Subsequently, the predicted crash
frequency for the new intersection was evaluated. Once this system was ready, a testing
database was used to estimate the number of crashes for intersections with specific
characteristics. Lognormal modeling was performed to obtained the final results for this
new approach. Finally, the average numbers of crashes at intersections before and after

signalization were estimated given the intersection characteristics. The change of the
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estimated crash frequencies before and after signalization was calculated to represent the

impacts of signalization. The estimation of number of crashes and impacts of

signalization at intersections were performed based on the statistical modeling approach,

operational research modeling approach, and combining both approaches. The results for

each one of these approaches are presented in appendices C, D, and E, respectively.

8.2. Conclusions

The following conclusions were made based on crash data analysis, statistical crash

prediction modeling and operational research modeling:

Based on the before and after comparison of mean values, total number of crashes
and crash rates increased after signalization. Based on the paired t-test, the
following results were statistically significant at a 95% confidence level: total
number of crashes increased by 21%, In reference to crash severity, the number of
fatal crashes decreased by 13.2% and fatal crash rates decreased by 38% after
signal installation. Non-injury crashes increased by 30% for the number of
crashes and by 14.8% for crash rates, rear-end crashes had a 102% increase in the
number of crashes, and a 47.6% increase in crash rates after signalization. Angle
crashes decreased by 14% for number of crashes and by 29% for crash rates. Left
turn crashes decreased both in number of crashes and crash rates. Sideswipe
crashes increased by 42% in number of crashes. Right turn crash rates decrease by
50.2%. Finally, the following results were not statistically significant at the 95%
confidence level: the increase of total crash rates, the decrease after signalization
of the number of right turn crashes and crashes related with pedestrian, the
increase of crash rates for sideswipe crashes, and the decrease of crash rates for

crashes related with pedestrian

In reference to crash severity, the following results were statistically significant
based on the paired t-test at a 95% confidence level: fatal crash rates decreased by
38% after signal installation, injury crashes had an increase of 17.2%, and non-
injury number of crashes and non-injury crash rates increased by 30%-and by

14.8%, respectively.. Finally, the following results were not statistically
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significant at the 95% level of confidence: number of fatal crashes decreased by

13.2%, and injury crash rates decreased by 5% after signalization.

In regard to surrounding land use, the impact of signalization on intersection
crashes was found differently between rural and urban areas. In rural area, the
number of crashes decrease was not significant while crash rates decreased
significantly. In urban area, the number of crashes and crash rates increased

significantly.

For the statistical modeling, both the “before” and “after” data for all crashes
showed extra-variations relative to Poisson distributions. Negative binomial
regressions were proved to be appropriate to model the data. For angle and left-
turn crashes, the before data showed extra-variation relative to Poisson
distribution while the after data did not. For rear-end crashes, Poisson regression
was appropriate to model the before data while negative binomial regression was
appropriate for the after data. For all other crashes, Poisson regressions were

appropriate for both the before and after data.

Regarding the relative effects of predictor variables in the statistical models and
operational models, intersections with higher ADT on the major road would have
more crashes than with lower ADT; intersections in urban area would have more
crashes than in rural area; intersections located in business area would have more
crashes than in other area; intersections with more than four lanes on the major
road would have more crashes than those with four or less lanes; intersections
with posted speed higher than 45 mph would have less crashes than with posted
speed lower or equal to 45 mph; intersections with median on the major road
would have more crashes than without median except for rear-end crashes before
signalization statistical model; and intersections with paved shoulder would have

less crashes than with other types of shoulder.

Regarding the goodness-of-fit, statistical models developed based on aggregate
data (all crashes) performed better than models developed based on disaggregate

data (angle, left-turn, rear-end, and other). According to likelihood ratio index,
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models for all crashes explained more than 20% systematic variation in the crash
data while models for angle, left-turn, and other crashes explained less than 10%
of the systematic variation in the data. Models for rear-end crashes explained
more than 10% systematic variation in the data. In regard to the operational
research, lognormal models show very good fit for the data according to the p

value

ADT on the major road was the only predictor variable with estimated parameters

significant at the 5% significance level for all developed models.

In the before and after statistical models for all crashes, the estimated parameters
of all seven predictor variables were significant at 20% significance level except
for posted speed in the after model. For angle crashes, the estimated parameters of
ADT, urban/rural, presence of median, and shoulder treatment were significant
for the before model while ADT, land use, number of lanes and presence of
median were significant in the after model. For left-turn crashes, the estimated
parameters of ADT, land use, number of lanes, presence of median, and shoulder
treatment were significant in the before and after models. For rear-end crashes,
ADT, land use, number of lanes, posted speed and presence of median are
significant in the before model while ADT, number of lanes, posted speed,
presence of median and shoulder treatment were significant in the after model.
For other crashes, the estimated parameters of ADT, urban/rural, posted speed and
median were significant in the before model while ADT, urban/rural, and number

of lanes are significant in the after model.

8.3. Recommendations

In future studies, more safety related intersection characteristics are necessary to be

considered when doing a before-and after analysis, and/or intersection crash prediction

modeling in order to improve the quality of the analysis and the developed models. It is

also desirable to have a larger intersection sample. Also, it will be very interesting to

develop models for different groups of intersections, such as three-leg or four-leg

intersections.
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APPENDIX A

LIST OF VARIABLES IN FDOT DATABASE
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Record Type 00 (Time Log Record)
rectype = Record Type

accnumb = Accident Number

distID = DOT District Number
countylD = DOT County Number
secID = DOT Section Number
subsecID = DOT Subsection Number
milepost = Milepost

year = Accident Year

month = Accident Month

day = Accident Day

counnumb = County Number
citynumb = City Number

node = Node Number

distfrom = Distance from Node
measure = Measurement Type
fromnode = From Node Number
nextnode = Next Node Number
codeable = Codeable Non

typefac = DOT Type Facility
roadtype = DOT Road Type
numblane = DOT Number of Lanes
siteloc = DOT Site Location

skidres = Skid Resistance

friction = Friction Coarse

ADT = ADT

dotnode = DOT Node Number
dotdist = DOT Distance to Node
dotdirec = DOT Direction from Node (Character)
roadnumb = DOT St Road Number
USroad = DOT US Road Number (Character)
rururb = DOT Rural Urban

fedhwy = DOT Fed Hwy Sys

travelw = DOT Travelway

thptroop =FHP Troop (Character)
thpdistr = FHP District

accerror = Acc Error Indicator
nodetype = Node Type

fixttype = Fixture Type

sideroad = Side of Road

accsever = Accident Severity

crosstrf = Cross Traffic

classcat = Class Category

milepoin = Node Milepoint A
xtrafveh = Xtraf Veh Miles

accsidrd = Accident Side of Road (character)
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acclane = Accident Lane Number
skiddate = Skid Date A
skidnumb = Skid Number
microlD = Micro Fish ID

Record Type 01 (Characteristics)

rectype = Record Type

accnumb = Accident Number

distID = DOT District Number

countylD = DOT County Number

secID = DOT Section Number

subsecID = DOT Subsection Number
milepost = Milepost

weekday = Day of the Week

houracc = Hour of Accident

minacc = Minute of Accident

populat =Population

urbrur = DHSMYV Urban Rural

sitlocat = DHSMYV Site Location

harmev1 = First Harmful Event

harmev2 = Second Harmful Event

offon = Off On Roadway

light = Lighting Conditions

weather = Weather

roadsurf = Road Surface

shoulder = Shoulder Type

surfcond = Road Surface Condition
causerd] = First Contributing Cause Road
causerd2 = Second Contributing Cause Road
causenvl = First Contributing Cause Environment
causenv2 = Second Contributing Cause Environment
trafctr]l = First Traffic Control

trafctr2 = Second Traffic Control

trafchar = Trafficway Character

numlanes = DHSMYV Number of Lanes
dividnot = DHSMYV Divided Not

roadsys = DHSMV Road Sys Indicator
invagent = Investigating Agency

injursev = Injury Severity

damagsev = Damage Severity

insurcod = Insurance Code (Character)
faultcod = Fault Code

alcohol = Alcohol Involved

damagamt = Total Damage Amount
vehdamag = Total Vehicle Damage Amount
propdam = Total Property Damage Amount
totpers = Total Persons
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totdriv = Total Drivers

totveh = Total Vehicles

totfatal = Total Fatalities

totnonfa = Total Non Traff Fatals
totinjur = Total Injuries

totpedes = Total Pedestrian
totcycli = Total Pedalcyclist
invagnum = Investigating Agy Number
invcomp = Investigation Complete
hitrun = Hit and Run

locatype = Location Type

Record Type 02 (Vehicle Record)
rectype = Record Type

accnumb = Accident Number

distID = DOT District Number

countylD = DOT County Number

secID = DOT Section Number

subsecID = DOT Subsection Number
milepost = Milepost

formsecn = Form Section Number
vehowndr = Vehicle Owner Driver Same
vehdract = Vehicle Driver Action
vehtype = Vehicle Type

directrv = Direction of Travel (character)
estspeed = Estimated Speed

postsped = Posted Speed

estvehdm = Estimated Vehicle Damage
damtype = Damage Type

pointimp = Point of Impact

vehmov =Vehicle Movement

vehfunc = Vehcile Function

vehcaus1 = First Contributing Cause Vehicle
vehcaus2 = Second Contributing Cause Vehicle
vehrdloc = Vehicle Roadway Location
hazarmat = Hazardous Material

totoccup = Total Occupants

totoccsf = Total Occupants Using Safe
movviol = Moving Violation

vehfault = Vehicle Fault code

vehuse = Vehicle Use

placar = Placarded

oldhazar = Old Hazardous Material

Record Type 03 (Towed Record)
rectype = Record Type
accnumb = Accident Number
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distID = DOT District Number
countylD = DOT County Number
secID = DOT Section Number
subsecID = DOT Subsection Number
milepost = Milepost

towtype = Towed Type

towdamag = Towed Damage Amount

Record Type 04 (Driver Record)

rectype = Record Type

accnumb = Accident Number

distID = DOT District Number

countylD = DOT County Number

secID = DOT Section Number

subsecID = DOT Subsection Number
milepost = Milepost

drvage = Driver’s Age

drvlictp = Driver License Type

drvbacts = Driver Bac Test

drvbacrs = Driver Bac Results

drvalcol = Driver Alcohol Drug

drvphdef = Driver Physical Defects

drvresid = Driver Residence

drvrace = Driver Race

drvsex = Driver Sex

drvinjsv = Driver Injury Severity

safeeql = First Driver Safe Equipment Used
safeeq2 = Second Driver safe Equipment Used
drveject = Driver Eject Code

drvabgst = Driver Ability Question

drvcaus] = First Contributing Cause Driver
drvcaus2 = Second Contributing Cause Driver
drvcaus3 = Third Contributing Cause Driver
drvofcgl = First Driver Offense Charged
drvofcg2 = Second Driver Offense Charged
drvofcg3 = Third Driver Offense Charged
regendor = Required Endorsement

Record Type 05 (Passenger Record)
rectype = Record Type

accnumb = Accident Number

distID = DOT District Number
countylD = DOT County Number
secID = DOT Section Number
subsecID = DOT Subsection Number
milepost = Milepost

pasgage = Passengers Age
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pasgloc = Passengers Location

pasgijsv = Passengers Injury Severity

pasgeql = First Passengers Safe Equipment
pasgeq2 = Second Passengers Safe Equipment
pasgejct = Passengers Eject Code

Record Type 06 (Pedestrian Record)

rectype = Record Type

accnumb = Accident Number

distID = DOT District Number

countylD = DOT County Number

secID = DOT Section Number

subsecID = DOT Subsection Number

milepost = Milepost

pedage = Pedestrian Age

pedbacts =Pedestrian Bac Test Type

pedbacrs = Pedestrian Bac Test Result

pedalcol = Pedestrian Alcohol Drug

pedphdef = Pedestrian Physical Defect
pedresid = Pedestrian residence

pedrace = Pedestrian Race

pedsex = Pedestrian Sex

pedijsv = Pedestrian Injury Severity

pedcaus] = First Contributing Cause Pedestrian
pedcaus2 = Second Contributing Cause Pedestrian
pedcaus3 = Third contributing Cause Pedestrian
pedact = Pedestrian Action

pedofcgl = First Offense Pedestrian Charges
pedofcg2 = Second Offense Pedestrian Charges
pedofcg3 = Third Offense Pedestrian Charges

Record Type 07 (Property Damage Record)
rectype = Record Type

accnumb = Accident Number

distID = DOT District Number

countylD = DOT County Number

secID = DOT Section Number

subsecID = DOT Subsection Number
milepost = Milepost

propdam = Property Damage Amount

Record Type 09 (RCI Features I)
rectype = Record Type

accnumb = Accident Number
distID = DOT District Number
countyID = DOT County Number
secID = DOT Section Number

162



subsecID = DOT Subsection Number
milepost = Milepost

accesctr =Access Control Type
censuscd = Census Place Code
urbnumb = Urban Area Number
prevland = Prevailing Land use
costentn = Cost Center Number

statexc = Stationing Exceptions (Character)

assocexc =Associated Station (Character)

widshsh = Width Shoulder to Shoulder
thrsurfw = Thru Surface Width
auxlantp = Auxiliary Lane Type
numauxln = Number Auxiliary Lanes
auxIlnw = Auxiliary Lane Width
hwyshtpl = Hwy Shoulder Type
hwyshtp2 = Hwy Shoulder Type Two
hwyshtp3 = Hwy Shoulder Type Three
hwyshw1 = Hwy Shoulder Width
hwyshw2 = Hwy Shoulder Width Two
hwyshw3 = Hwy Shoulder Width Three
medianw = Median Width

mediantp = Median Type

utstrpw = Utility Strip Width

insshtpl = Inside Shoulder Type
insshtp2 = Inside Shoulder Type Two
insshtp3 = Inside Shoulder Type Three
insshw1 = Inside Shoulder Width
insshw2 = Inside Shoulder Width Two
insshw3 = Inside Shoulder Width Three
hordeg = Horizontal Degree Curve
horptint = Horizontal PT Intersection
superelv = Super Elevation

percgrad = Percent of Grade

vertcudf = Vertical Curve Deflect
vertptin = Vertical PT Intersection

Record Type 10 (RCI Features II)
rectype = Record Type

accnumb = Accident Number
distID = DOT District Number
countylD = DOT County Number
secID = DOT Section Number
subsecID = DOT Subsection Number
milepost = Milepost

passdist = Passing Sight Distance
rdconsis = Roadway Consistency
rdalign = Roadway Alignment
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stopdist = Stopping Sight Distance
pavcond = Pavement Condition
pavindex = Pavement Index

pvsurftp = Pavement Surface Type
pavsurfl = Pavement Surface 1 (Character)
pavsurf2 = Pavement Surface 2 (Character)
pvlayerl = Pavement Layer 1
pvlayer2 = Pavement Layer 2

structn = Structure Number
undrpasn = Underpass Number
datspap = Date Speed Approved
datspimp = Date Speed Implemented
maxpstsp = Maximum Posted Speed
minpstsp = Minimum Posted Speed
parkap = Parking Approved

parkimp = Parking Implemented
parklnw = Parking Lane Width
parkrest = Parking Restriction Time
typepark = Type Parking

schsplim = School Speed Limit
tfactor = T Factor

tfacthg = T Factor High

tfactlow = T Factor Low

strpdbwt = Stripes Double White
strpdbyw = Stripes Double Yellow
strpskwb = Stripes Skip Wt Blk

strp skwt = Stripes Skip White

strp skyw = Stripes Skip Yellow

strp sgwt = Stripes Single White
strpsgyw = Stripes Single Yellow

Record Type 11 (RCI Point)

rectype = Record Type

accnumb = Accident Number

distID = DOT District Number
countylD = DOT County Number
secID = DOT Section Number
subsecID = DOT Subsection Number
milepost = Milepost

nodelD = Node ID no City Boundary
reasadj = Reason for Adjustment
lengtadj = Length of Adjustment
unitmeas = Unit of Measurement (Character)
ninsleg = Number of Insect Legs
intercn = Interchange Number
tpinterc = Type of Interchange
rrgradn = National RR Grade Number
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trafcnst = Traffic Count Station
datetnap = Date Turn Approved
datetnim = Date Turn Implemented
limtnrst = Limited Turn Restrict
turnrest = Turning Restriction
ngrndsig = Num Ground signs

signcd]l = STD Sign Code One
signcd2 = STD Sign Code Two
signcd3 = STD Sign Code Three
cfmutcd] = Non Conform MUTCD Onel
cfmutcd2 = Non Conform MUTCD Two2
cfmutcd3 = Non Conform MUTCD Three3
sgillum1 = Sign llumination One
sgillum2 = Sign Illumination Two
sgillum3 = Sign [llumination Three
sgsuporl = Sign Support One
sgsupor2 = Sign Support Two
sgsupor3 = Sign Support Three
varmesgl = Variable Message One
varmesg2 = Variable Message Two
varmesg3 = Variable Message Three
nocounsg = Non Counted Signal
trafsgtp = Traffic Signal Type
wrongway = Wrong Way Detector
pointADT = Point ADT

mainbgmp = Main Beginning MP
mainedmp = Main Ending MP
subsectp = Subsection Type

atencond = Attenuator Condition
atenindt = Attenuator Install Date
atenrpdt = Attenuator Repair Date
atenloc = Attenuator Location

atentp = Attenuator Type

genvehdr = General Vehicle Direction
tpinter = Type of Intersection

Record Type 12 (RCI Total)
rectype = Record Type

accnumb = Accident Number
distID = DOT District Number
countylD = DOT County Number
secID = DOT Section Number
subsecID = DOT Subsection Number
milepost = Milepost

natenua = Number of Attenuators
barwallg = Barrier Wall Length
dbgrlg = Double Guardrail Length

165



miscgrlg = Misc Guardrail Length
stdgrlg = Stand Guardrail Length
nbrgendl = Number Bridge End Delines
ngtdhaz = Number GTD Pst Hzrd Delin
n24ftcrw = Number 24 foot Crosswalks
n36ftcrw = Number 36 foot Crosswalks
n48ftcrw = Number 48 foot Crosswalks
n60ftcrw = Number 60 foot Crosswalks
n72ftcrw = Number 72 foot Crosswalks
nl2ftstb = Number 12 foot Stop Bars
nl8ftstb = Number 18 foot Stop Bars
n24ftstb = Number 24 foot Stop Bars
n36ftstb = Number 36 foot Stop Bars
n48ftstb = Number 48 foot Stop Bars
nraismrk = Number Raised Markings
ncantliv = Number Cantilever Structs
ngrdpost = Number Ground Post
grdpto30 = Ground Post Over 30
grdptu30 = Ground Post Under 30
noverlan = Number of Overlane Structs
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APPENDIX B

PRELIMINARY SELECTED VARIABLES
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NO. VARIABLE DESCRIPTION
1 ACCNUMB ACCIDENT NUMBER
2 DISTID DOT DISTRICT NUMBER
3 COUNTYID DOT COUNTY NUMBER
4  SECID DOT SECTION NUMBER
5 SUBSECID DOT SUBSECTION NUMBER
6  MILEPOST MILEPOST OF ACCIDENT SITE
7  YEAR ACCIDENT YEAR
8 ROADTYPE DOT ROAD TYPE
9 NUMBLANE DOT NUMBER OF LANE
10  SITELOC DOT SITE LOCATION
11 ADT ADT OF MAJOR ROAD
12 RURURB DOT RURAL/URBAN
13 FEDHWY DOT FED HWY SYS
14 TRAVELW DOT TRAVEL WAY
15 ACCSEVER  ACCIDENT SEVERITY
16 CROSSTRF CROSS TRAFFIC
17  CLASSCAT CLASS CATEGORY
18  URBRUR DHSMV RURAL/URBAN
19  SITLOCAT DHSMYV SITE LOCATION
20 HARMEVI FIRST HARMFUL EVENT
21  ROADSURF ROAD SURFACE
22 SHOULDER  SHOULDER TREATMENT TYPE
23  TRAFCTRI FIRST TRAFFIC CONTROL
24 TRAFCHAR  TRAFFIC WAY CHRACTER
25 NUMLANES DHSMV NUMBER OF LANE
26 DIVIDNOT DHSMYV DIVIDED/NOT
27  ROADSYS ROADWAY SYSTEM INDICATOR
28 INJURSEV INJURY SEVERITY
29 DAMAGSEV DAMAGE SEVERITY
30 ALCOHOL ALCOHOL INVOLVED/NOT
31 DAMAGAMT TOTAL DAMAGE AMOUNT
32  VEHDAMAG TOTAL VEHICLE DAMAGE AMOUNT
33 PROPDAM TOTAL PROPERTY DAMAGE
34 TOTFATAL  TOTAL FATALITIES
35 TOTINJUR TOTAL INJURIES
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Preliminary Selected Variables (Continued)

NO. VARIABLE DESCRIPTION
36 LOCATYPE LOCATION TYPE
37 VEHTYPE VVEHICLE TYPE
38 ESTSPEED ESTIMATED SPEED
39  POSTSPED POSTED SPEED
40 POINTIMP POINT OF IMPACT
41 ACCESCTR  ACCESS CONTROL TYPE
42 PREVLAND  PREVAILING LAND USE
43  HWYSHTP1 HIGHWAY SHOULDER TYPE
44 HWYSHWI HIGHWAY SHOULDER WIDTH
45 MEDIANW MEDIAN WIDTH
46 MEDIANTP  MEDIAN TYPE
47  HORPTINT HORIZONTAL PT INTERSECTION
48  SUPERELV SUPER ELEVATION
49  VERTPTIN VERTICAL PT INTERSECTION
50 PASSDIST PASSING DISTANCE
51 RDCONSIS ROAD CONSISTENCY
52  RDALIGN ROADWAY ALIGNMENT
53  STOPDIST STOPPING DISTANCE
54 PAVCOND PAVEMENT CONDITION
55 PAVINDEX PAVEMENT INDEX
56  PVSURFTP PAVEMENT SURFACE TYPE
57  MAXPSTSP  MAXIMUM POSTED SPEED
58  MINPSTSP MINIMUM POSTED SPEED
59  NINSLEG NUMBER OF INTERSECTION LEGS
60 TRAFSGTP TRAFFIC SIGNAL TYPE
61 POINTADT POINT ADT
62 TPINTER TYPE OF INTERSECTION
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APPENDIX C

STATISTICAL MODELING RESULTS
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Total Crashes — Table One

Statistical Modeling
Surrounding Land Use: Urban Location Type: Business Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 294 249 -0.45 -15.30

Divided 15000 to < 30000 3.89  4.06 0.17 4.40

- > 30000 513 6.60 1.47 28.69

v < 15000 224 207  -016  -725
Undivided 15000 to <30000 2.95  3.37 0.42 14.32

é‘ > 30000 390 549 1.59 40.90
3 < 15000 382  3.25 -0.57 -14.96
Divided 15000 to <30000 5.05 5.29 0.24 4.82

< > 30000 6.66 8.61 1.95 29.20

A < 15000 290 270 -0.20 -6.88
Undivided 15000 to <30000 3.83  4.40 0.57 14.77

> 30000 506 7.16 2.10 41.47

< 15000 249 249 0.01 0.35

Divided 15000 to 30000 3.28  4.06 0.78 23.69

<« > 30000 433  6.60 2.27 52.46

v < 15000 189 207  0.19 9.88
Undivided 15000 to <30000 2.49  3.37 0.88 3543

é‘ > 30000 329 549 2.20 66.93

< < 15000 323  3.25 0.02 0.75
" Divided 15000 to <£30000 4.26  5.29 1.03 24.18
<« > 30000 562  8.61 2.98 53.07

A < 15000 245 270 0.25 10.32
Undivided 15000 to £30000 3.24  4.40 1.16 35.97

> 30000 427  17.16 2.89 67.60

Note: Increase = After — Before
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Total Crashes — Table Two

Statistical Modeling
Surrounding Land Use: Urban Location Type: Business Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 348 278 -0.70 -20.04
Divided 15000 to <30000 4.60  4.53 -0.07 -1.45
- > 30000 6.07  7.37 1.30 21.47
v < 15000 264 232 -033  -1245
Undivided 15000 to <30000 3.49  3.77 0.28 791
é* > 30000 461 6.13 1.52 33.00
a < 15000 452  3.63 -0.89 -19.72
Divided 15000 to £30000 5.97 591 -0.06 -1.05
<« > 30000 7.88  9.61 1.73 21.96
A < 15000 343 3.02 -0.42 -12.10
Undivided 15000 to <30000 4.53 491 0.38 8.34
> 30000 599 799 2.01 33.54
< 15000 294 278 -0.16 -5.28
Divided 15000 to 30000 3.88  4.53 0.65 16.75
<« > 30000 512 7.37 2.25 43.91
v < 15000 223 232 008 3.72
Undivided 15000 to <30000 295 3.77 0.82 27.84
é‘ > 30000 3.89  6.13 2.24 57.57
§ < 15000 3.82 3.63 -0.19 -4.90
Divided 15000 to £30000 5.04 591 0.87 17.22
<« > 30000 6.65 9.61 2.96 44.48
" < 15000 200 302 012 413
Undivided 15000 to <30000 3.83  4.91 1.09 28.35
> 30000 505 7.99 2.94 58.20

Note: Increase = After — Before
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Total Crashes — Table Three

Statistical Modeling
Surrounding Land Use: Urban Location Type: Other Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 248  2.10 -0.38 -15.49
Divided 15000 to <30000 3.28  3.41 0.14 4.16
- > 30000 433  5.55 1.23 28.39
v < 15000 189 174 014 747
Undivided 15000 to <30000 2.49  2.84 0.35 14.05
é* > 30000 329 462 1.33 40.58
§ < 15000 322 274 -049  -15.15
Divided 15000 to 30000 4.26  4.45 0.20 4.58
<« > 30000 562 724 1.62 28.90
A < 15000 245 227 -0.17 -7.10
Undivided 15000 to <30000 3.23  3.70 0.47 14.51
> 30000 427  6.02 1.76 41.14
< 15000 2.10  2.10 0.00 0.12
Divided 15000 to £30000 2.77  3.41 0.65 23.40
<« > 30000 3.65 555 1.90 52.10
v < 15000 159 174 0.5 9.63
Undivided 15000 to <30000 2.10 2.84 0.74 35.12
é‘ > 30000 277 462 1.85 66.55
§ < 15000 272 274 0.01 0.52
Divided 15000 to £30000 3.59  4.45 0.86 23.90
<« > 30000 474  7.24 2.50 52.71
n < 15000 207 227 021  10.06
Undivided 15000 to <30000 2.73  3.70 0.97 35.66
> 30000 3.60 6.02 242 67.21

Note: Increase = After — Before
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Total Crashes — Table Four

Statistical Modeling
Surrounding Land Use: Urban Location Type: Other Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 294 234 -0.59 -20.23
Divided 15000 to <30000 3.88  3.81 -0.06 -1.68
- > 30000 512 6.20 1.08 21.19
v < 15000 223 195  -028  -12.65
Undivided 15000 to <30000 2.94  3.17 0.23 7.66
é* > 30000 3.89 5.6 1.27 32.70
a < 15000 3.81  3.05 -0.76 -19.91
Divided 15000 to £30000 5.03  4.97 -0.06 -1.28
< > 30000 6.65 8.09 1.44 21.68
A < 15000 290 254 -0.36 -12.30
Undivided 15000 to <30000 3.82  4.13 0.31 8.09
> 30000 505 6.72 1.68 33.23
< 15000 248 234 -0.14 -5.49
Divided 15000 to £30000 3.27  3.81 0.54 16.49
<« > 30000 432  6.20 1.88 43.58
v < 15000 188 195  0.07 3.48
Undivided 15000 to <30000 248  3.17 0.68 27.55
é‘ > 30000 328 5.16 1.88 57.21
§ < 15000 322 3.05 -0.16 -5.11
Divided 15000 to £30000 4.25  4.97 0.72 16.95
<« > 30000 561  8.09 2.48 44.15
" < 15000 244 254 0.10 3.89
Undivided 15000 to <30000 3.23  4.13 0.91 28.06
> 30000 426 6.72 2.46 57.84

Note: Increase = After — Before
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Total Crashes — Table Five

Statistical Modeling
Surrounding Land Use: Rural Location Type: Business Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 261 227 -0.34 -13.20
Divided 15000 to < 30000 3.45  3.69 0.24 6.98
- > 30000 455  6.00 1.45 31.86
v < 15000 198 189 -0.10  -4.96
Undivided 15000 to <30000 2.62  3.07 0.45 17.14
é* > 30000 346 499 1.53 44 .38
3 < 15000 339 2096 -0.44 -12.86
Divided 15000 to £30000 4.48  4.81 0.33 7.41
<« > 30000 591 7.83 1.92 32.39
A < 15000 258 246 -0.12 -4.58
Undivided 15000 to <30000 3.40  4.00 0.60 17.61
> 30000 449 651 2.02 44.96
< 15000 221 227 0.06 2.83
Divided 15000 to 30000 291  3.69 0.78 26.74
<« > 30000 3.84  6.00 2.16 56.22
v < 15000 167 189 021 1259
Undivided 15000 to <30000 2.21  3.07 0.86 38.78
é‘ > 30000 292 499 2.07 71.05
§ < 15000 2.86 296 0.09 3.24
Divided 15000 to £30000 3.78  4.81 1.03 27.25
<« > 30000 499 7.83 2.84 56.85
A < 15000 2.18 246 0.28 13.04
Undivided 15000 to <30000 2.87  4.00 1.13 39.33
> 30000 379  6.51 2.72 71.74

Note: Increase = After — Before
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Total Crashes — Table Six

Statistical Modeling
Surrounding Land Use: Rural Location Type: Business Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 3.09 253 -0.56 -18.07
Divided 15000 to < 30000 4.08  4.12 0.04 0.98
< > 30000 539  6.70 1.32 24.47
v < 15000 235 211 024 -1029
Undivided 15000 to <30000 3.10  3.43 0.33 10.57
é‘ > 30000 4.09 557 1.48 36.29
§ < 15000 401 330 071  -17.74
Divided 15000 to <30000 5.30  5.37 0.07 1.39
<« > 30000 7.00 8.74 1.75 24.97
A < 15000 3.05 275 -0.30 -9.93
Undivided 15000 to <30000 4.02  4.47 0.44 11.02
> 30000 531 7.27 1.96 36.83
< 15000 261 253 -0.08 -2.94
Divided 15000 to <30000 3.44  4.12 0.68 19.64
<« > 30000 455  6.70 2.16 47.46
v < 15000 198 211 012 6.28
Undivided 15000 to <30000 2.62  3.43 0.81 31.00
é‘ > 30000 345 557 2.12 61.46
§ < 15000 339 330 -0.09 -2.55
Divided 15000 to <30000 4.47  5.37 0.90 20.12
<« > 30000 590 8.74 2.84 48.05
" < 15000 257 275 017 6.71
Undivided 15000 to <30000 3.40  4.47 1.07 31.52
> 30000 448  7.27 2.78 62.11

Note: Increase = After — Before

176



Total Crashes — Table Seven

Statistical Modeling
Surrounding Land Use: Rural Location Type: Other Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 220 191 -0.30 -13.40
Divided 15000 to <30000 291  3.10 0.20 6.74
<« > 30000 3.84 5.05 1.21 31.56
v < 15000 167 159  -0.09  -5.18
Undivided 15000 to <30000 2.21  2.58 0.37 16.87
é‘ > 30000 292 420 1.28 44.05
a < 15000 286 249 -0.37 -13.06
Divided 15000 to <30000 3.78  4.05 0.27 7.17
< > 30000 499  6.59 1.60 32.09
A < 15000 2,17 2.07 -0.10 -4.80
Undivided 15000 to <30000 2.87  3.37 0.50 17.34
> 30000 379 548 1.69 44.63
< 15000 1.86 191 0.05 2.59
Divided 15000 to 30000 2.46  3.10 0.65 26.45
<« > 30000 324 505 1.81 55.86
v < 15000 141 159 017 1233
Undivided 15000 to <30000 1.86  2.58 0.72 38.46
é‘ > 30000 246 4.20 1.74 70.66
§ < 15000 242 249 0.07 3.00
Divided 15000 to <£30000 3.19  4.05 0.86 26.96
<« > 30000 421  6.59 2.38 56.49
" < 15000 183 207 023 1278
Undivided 15000 to <30000 242  3.37 0.94 39.01
> 30000 320 548 2.28 71.34

Note: Increase = After — Before
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Total Crashes — Table Eight

Statistical Modeling
Surrounding Land Use: Rural Location Type: Other Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 261 213 -0.48 -18.26
Divided 15000 to <30000 3.44  3.47 0.03 0.75
- > 30000 454 5.64 1.10 24.18
v < 15000 198 177 021  -10.50
Undivided 15000 to <30000 2.61  2.88 0.27 10.32
é* > 30000 345  4.69 1.24 35.97
3 < 15000 338 278 -0.61 -17.93
Divided 15000 to <£30000 4.47  4.52 0.05 1.16
< > 30000 590 7.35 1.46 24.68
A < 15000 257 231 -0.26 -10.14
Undivided 15000 to <30000 3.39  3.76 0.37 10.76
> 30000 448  6.12 1.64 36.52
< 15000 220 213 -0.07 -3.16
Divided 15000 to <30000 2.90  3.47 0.56 19.36
<« > 30000 383 564 1.81 47.12
v < 15000 167 177 0.10 6.04
Undivided 15000 to <30000 2.21  2.88 0.68 30.70
é‘ > 30000 291 4.69 1.78 61.09
§ < 15000 286  2.78 -0.08 -2.77
Divided 15000 to <30000 3.77  4.52 0.75 19.84
<« > 30000 498  7.35 2.38 47.71
" < 15000 217 231 0.14 6.46
Undivided 15000 to <30000 2.86  3.76 0.89 31.22
> 30000 378  6.12 2.33 61.74

Note: Increase = After — Before
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Angle Crashes — Table One
Statistical Modeling

Surrounding Land Use: Urban Location Type: Business Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.77  0.59 -0.18 -22.96
Divided 15000 to < 30000 0.96  0.80 -0.17 -17.49
<« > 30000 1.21 1.07 -0.14 -11.62
v < 15000 051 050 -001  -1.23
Undivided 15000 to <30000 0.63  0.67 0.04 5.79

> 30000 0.79  0.90 0.11 13.31

< 15000 0.77  0.86 0.08 11.02

Divided 15000 to <£30000 0.96  1.15 0.18 18.91

<« > 30000 1.21 1.54 0.33 27.37
A < 15000 0.51  0.72 0.21 42.33
Undivided 15000 to <30000 0.63  0.97 0.33 52.46

> 30000 0.79  1.30 0.50 63.30

Note: Increase = After — Before
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Angle Crashes — Table Two
Statistical Modeling

Surrounding Land Use: Urban Location Type: Business Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 .15  0.59 -0.55 -48.28
Divided 15000 to < 30000 1.44  0.80 -0.64 -44.61
<« > 30000 1.80  1.07 -0.73 -40.67
v < 15000 0.76 050  -025  -33.69
Undivided 15000 to <30000 0.95  0.67 -0.27 -28.98
> 30000 1.18  0.90 -0.28 -23.93
< 15000 1.15  0.86 -0.29 -25.47
Divided 15000 to <30000 1.44  1.15 -0.29 -20.17
<« > 30000 1.80 1.54 -0.26 -14.50
A < 15000 0.76  0.72 -0.03 -4.45
Undivided 15000 to <30000 0.95  0.97 0.02 2.35

> 30000 1.18  1.30 0.11 9.63

Note: Increase = After — Before
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Angle Crashes — Table Three

Statistical Modeling

Surrounding Land Use: Urban Location Type: Other

Speed: < 45 mph or > 45 mph

Shoulder: Paved

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.77  0.50 -0.27 -35.45
Divided 15000 to <30000 0.96  0.67 -0.30 -30.86
<« > 30000 .21  0.89 -0.31 -25.94
v < 15000 051 042  -009  -17.24
Undivided 15000 to <30000 0.63  0.56 -0.07 -11.35

> 30000 0.79  0.75 -0.04 -5.05

< 15000 0.77  0.72 -0.05 -6.97

Divided 15000 to 30000 0.96  0.96 0.00 -0.36

<« > 30000 1.21 1.29 0.08 6.73
A < 15000 0.51  0.61 0.10 19.27
Undivided 15000 to <30000 0.63  0.81 0.18 27.75

> 30000 0.79  1.09 0.29 36.83

Note: Increase = After — Before
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Angle Crashes — Table Four
Statistical Modeling

Surrounding Land Use: Urban Location Type: Other Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes

Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 1.15  0.50 -0.65 -56.66

Divided 15000 to < 30000 1.44  0.67 -0.77 -53.58

<« > 30000 1.80  0.89 -0.90 -50.28

v < 15000 0.76 042  -034  -44.44

Undivided 15000 to <30000 0.95  0.56 -0.38 -40.49

> 30000 1.18  0.75 -0.43 -36.26

< 15000 1.15  0.72 -0.43 -37.55

Divided 15000 to 30000 1.44  0.96 -0.48 -33.11

<« > 30000 1.80  1.29 -0.51 -28.35

A < 15000 0.76  0.61 -0.15 -19.93

Undivided 15000 to <30000 0.95  0.81 -0.13 -14.24

> 30000 1.18  1.09 -0.10 -8.14

Note: Increase = After — Before
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Angle Crashes — Table Five
Statistical Modeling

Surrounding Land Use: Rural Location Type: Business Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.58  0.59 0.01 222

Divided 15000 to <30000 0.73  0.80 0.07 9.49

<« > 30000 0.91 1.07 0.16 17.28
v < 15000 038 050 012  31.06
Undivided 15000 to <30000 0.48  0.67 0.19 40.38

> 30000 0.60  0.90 0.30 50.37

< 15000 0.58  0.86 0.27 47.31

Divided 15000 to <£30000 0.73  1.15 0.42 57.79

<« > 30000 0.91 1.54 0.63 69.01
A < 15000 0.38  0.72 0.34 88.87
Undivided 15000 to <30000 0.48  0.97 0.49 102.30
> 30000 0.60  1.30 0.70 116.69

Note: Increase = After — Before
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Angle Crashes — Table Six
Statistical Modeling

Surrounding Land Use: Rural Location Type: Business Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.87  0.59 -0.27 -31.37
Divided 15000 to < 30000 1.08  0.80 -0.29 -26.49
<« > 30000 1.35  1.07 -0.29 -21.27
v < 15000 057 050 -007  -12.01
Undivided 15000 to <30000 0.71  0.67 -0.04 -5.76

> 30000 0.89  0.90 0.01 0.94

< 15000 0.87 0.86 -0.01 -1.10

Divided 15000 to <£30000 1.08  1.15 0.06 5.93

<« > 30000 1.35 1.54 0.18 13.46
A < 15000 0.57 0.72 0.15 26.79
Undivided 15000 to <30000 0.71  0.97 0.26 35.81

> 30000 0.89  1.30 0.41 45.47

Note: Increase = After — Before
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Angle Crashes — Table Seven
Statistical Modeling

Surrounding Land Use: Rural Location Type: Other Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.58  0.50 -0.08 -14.34

Divided 15000 to <30000 0.73  0.67 -0.06 -8.25

<« > 30000 091  0.89 -0.02 -1.72
v < 15000 038 042  0.04 9.82
Undivided 15000 to <30000 0.48  0.56 0.08 17.63

> 30000 0.60 0.75 0.16 26.00

< 15000 0.58  0.72 0.14 23.44

Divided 15000 to 30000 0.73  0.96 0.23 32.22

<« > 30000 0.91 1.29 0.38 41.62
A < 15000 0.38  0.61 0.22 58.26
Undivided 15000 to <30000 0.48  0.81 0.33 69.52

> 30000 0.60  1.09 0.49 81.58

Note: Increase = After — Before
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Angle Crashes — Table Eight
Statistical Modeling

Surrounding Land Use: Rural Location Type: Other Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.87  0.50 -0.37 -42.50
Divided 15000 to <30000 1.08  0.67 -0.42 -38.41
<« > 30000 1.35  0.89 -0.46 -34.03
v < 15000 057 042 015  -2627
Undivided 15000 to <30000 0.71  0.56 -0.15 -21.03
> 30000 0.89 0.75 -0.14 -15.41
< 15000 0.87 0.72 -0.15 -17.13
Divided 15000 to 30000 1.08  0.96 -0.12 -11.24

<« > 30000 .35  1.29 -0.07 -4.92

A < 15000 0.57 0.61 0.04 6.25
Undivided 15000 to <30000 0.71  0.81 0.10 13.80

> 30000 0.89 1.09 0.20 21.90

Note: Increase = After — Before
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Left-turn Crashes — Table One

Statistical Modeling
Surrounding Land Use: Rural or Urban Location Type: Business
Shoulder: Paved Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left Turn Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.61  0.59 -0.02 -2.91

Divided 15000 to <30000 0.77  0.71 -0.06 -7.70

< > 30000 097  0.85 -0.12 -12.25
v < 15000 049 035 -0.14  -28.13
Undivided 15000 to <30000 0.62  0.42 -0.20 -31.68

> 30000 0.78  0.51 -0.27 -35.05

< 15000 0.85 0.79 -0.06 -1.57

Divided 15000 to £30000 1.07 0.94 -0.13 -12.13

<« > 30000 .35  1.13 -0.22 -16.46
A < 15000 0.69 047 -0.22 -31.58
Undivided 15000 to <30000 0.86  0.56 -0.30 -34.96

> 30000 1.09 0.67 -0.41 -38.16

Note: Increase = After — Before
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Left-turn Crashes — Table Two

Statistical Modeling
Surrounding Land Use: Rural or Urban Location Type: Business
Shoulder: Other Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left Turn Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 0.79  0.70 -0.08 -10.55
Divided 15000 to <30000 0.99  0.84 -0.15 -14.96
<« > 30000 1.24  1.00 -0.24 -19.16
v < 15000 063 042  -021  -33.79
Undivided 15000 to <30000 0.80  0.50 -0.30 -37.05
> 30000 1.00  0.60 -0.40 -40.16
< 15000 1.09 0.93 -0.16 -14.85
Divided 15000 to <30000 1.37  1.11 -0.26 -19.05
<« > 30000 1.73  1.33 -0.40 -23.04
A < 15000 0.88  0.56 -0.33 -36.97
Undivided 15000 to <30000 1.11  0.66 -0.44 -40.08
> 30000 1.39  0.79 -0.60 -43.03

Note: Increase = After — Before
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Left-turn Crashes — Table Three

Statistical Modeling
Surrounding Land Use: Rural or Urban Location Type: Other
Shoulder: Paved Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left Turn Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 044 047 0.03 6.55

Divided 15000 to <30000 0.56  0.57 0.01 1.29

<« > 30000 0.70  0.68 -0.03 -3.71
v < 15000 036 028  -008  -21.13
Undivided 15000 to <30000 0.45 0.34 -0.11 -25.02
> 30000 0.57 040 -0.16 -28.72

< 15000 0.62 0.63 0.01 1.43

Divided 15000 to 30000 0.78  0.75 -0.03 -3.57

<« > 30000 098  0.90 -0.08 -8.33
A < 15000 0.50 0.37 -0.12 -24.92
Undivided 15000 to <30000 0.63  0.45 -0.18 -28.62
> 30000 0.79  0.53 -0.25 -32.15

Note: Increase = After — Before
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Left-turn Crashes — Table Four

Statistical Modeling
Surrounding Land Use: Rural or Urban Location Type: Other
Shoulder: Other Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left Turn Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.57 0.56 -0.01 -1.84

Divided 15000 to <30000 0.72  0.67 -0.05 -6.69

< > 30000 0.90  0.80 -0.10 -11.29
v < 15000 046 033  -013  -27.34
Undivided 15000 to <30000 0.58  0.40 -0.18 -30.93

> 30000 0.73 048 -0.25 -34.33

< 15000 0.79 0.74 -0.05 -6.56

Divided 15000 to <30000 1.00  0.89 -0.11 -11.17

<« > 30000 1.25 1.06 -0.19 -15.55
A < 15000 0.64 044 -0.20 -30.83
Undivided 15000 to <30000 0.80  0.53 -0.28 -34.24

> 30000 1.01  0.63 -0.38 -37.49

Note: Increase = After — Before
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Rear-end Crashes — Table One
Statistical Modeling

Surrounding Land Use: Rural or Urban Location Type: Business
Shoulder: Paved

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 045  0.69 0.24 52.29

Divided 15000 to < 30000 0.79  1.32 0.53 66.31

<« > 30000 1.38  2.51 1.13 81.63

v < 15000 053 055  0.02 425
Undivided 15000 to <30000 0.93  1.05 0.13 13.85

é‘ > 30000 1.61 201 0.39 24.33
3 < 15000 0.69 0.84 0.15 21.81
Divided 15000 to < 30000 1.21 1.60 0.40 33.03

<« > 30000 2.10  3.06 0.95 45.28

A < 15000 0.81  0.67 -0.13 -16.61
Undivided 15000 to < 30000 1.41 1.28 -0.13 -8.94

> 30000 246 245 -0.01 -0.55
< 15000 0.28  0.60 0.31 110.75
Divided 15000 to <£30000 0.49 1.14 0.64 130.16
<« > 30000 0.86 2.17 1.31 151.36

v < 15000 033 048 015 4427
Undivided 15000 to <30000 0.58  0.91 0.33 57.55

é‘ > 30000 1.01 1.74 0.73 72.06
§ < 15000 043 0.73 0.30 68.57
Divided 15000 to £30000 0.75  1.39 0.63 84.10
<« > 30000 1.31  2.64 1.33 101.05

A < 15000 0.50 0.58 0.08 15.40
Undivided 15000 to <30000 0.88  1.11 0.23 26.02

> 30000 1.54 2.11 0.58 37.63

Note: Increase = After — Before
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Rear-end Crashes — Table Two
Statistical Modeling

Surrounding Land Use: Rural or Urban Location Type: Business
Shoulder: Other

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 045  0.96 0.50 111.13

Divided 15000 to <30000 0.79  1.83 1.03 130.57

<« > 30000 1.38 348 2.10 151.81

v < 15000 053 077 024 4453
Undivided 15000 to <30000 0.93  1.46 0.54 57.84

é‘ > 30000 1.61 2.78 1.17 72.37
lﬁ < 15000 0.69 1.17 0.48 68.88
Divided 15000 to 30000 1.21  2.22 1.02 84.43

<« > 30000 2.10 424 2.13 101.42

A < 15000 0.81 0.93 0.13 15.60
Undivided 15000 to <30000 1.41  1.78 0.37 26.25

> 30000 246  3.39 0.93 37.88

< 15000 028 0.83 0.54 192.18

Divided 15000 to £30000 0.49  1.58 1.08 219.09

<« > 30000 0.86  3.01 2.14 248.48

v < 15000 033 066 033 1000l
Undivided 15000 to <30000 0.58  1.26 0.68 118.43

é* > 30000 1.01 241 1.40 138.55
§ < 15000 043 1.01 0.58 133.71
Divided 15000 to <£30000 0.75 192 1.17 155.23
- > 30000 1.31  3.66 2.35 178.74

A < 15000 0.50 0.81 0.30 59.98
Undivided 15000 to <30000 0.88  1.54 0.66 74.72

> 30000 1.54 293 1.39 90.81

Note: Increase = After — Before
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Rear-end Crashes — Table Three
Statistical Modeling

Surrounding Land Use: Rural or Urban Location Type: Other
Shoulder: Paved

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.35 0.69 0.34 94.90
Divided 15000 to < 30000 0.62  1.32 0.70 112.85
<« > 30000 1.08  2.51 1.43 132.45

v < 15000 041 055 014 3342
Undivided 15000 to <30000 0.72  1.05 0.33 45.70

é‘ > 30000 1.26  2.01 0.75 59.12
lﬁ < 15000 0.54 0.84 0.30 55.89
Divided 15000 to 30000 0.94  1.60 0.66 70.25

<« > 30000 1.64  3.06 1.41 85.93

" < 15000 063 067  0.04 6.72
Undivided 15000 to <30000 1.10  1.28 0.18 16.54

> 30000 1.92 245 0.52 27.28
< 15000 022  0.60 0.38 169.72
Divided 15000 to <£30000 0.39 1.14 0.75 194.56
<« > 30000 0.67 2.17 1.49 221.68

v < 15000 026 048 022  84.63
Undivided 15000 to <30000 0.45 091 0.46 101.64
g* > 30000 0.79 1.74 0.95 120.21
f < 15000 034 073 039 11574
Divided 15000 to <30000 0.59  1.39 0.80 135.61
- > 30000 1.03  2.64 1.61 157.31

A < 15000 0.39  0.58 0.19 47.68
Undivided 15000 to <30000 0.69  1.11 0.42 61.28

> 30000 1.20  2.11 0.91 76.14

Note: Increase = After — Before
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Rear-end Crashes — Table Four
Statistical Modeling

Surrounding Land Use: Rural or Urban Location Type: Other
Shoulder: Other

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.35 0.96 0.60 170.20
Divided 15000 to <30000 0.62  1.83 1.21 195.09
<« > 30000 1.08 348 2.40 222.26
v < 15000 041 077 035 8497
Undivided 15000 to <30000 0.72  1.46 0.74 102.00
é‘ > 30000 1.26  2.78 1.52 120.60
lﬁ < 15000 0.54 1.17 0.63 116.13
Divided 15000 to 30000 0.94  2.22 1.28 136.03
<« > 30000 1.64 424 2.59 157.77
A < 15000 0.63 0.93 0.30 47.95
Undivided 15000 to <30000 1.10  1.78 0.68 61.58
> 30000 1.92  3.39 1.47 76.46
< 15000 022 0.83 0.61 273.93
Divided 15000 to <30000 0.39  1.58 1.19 308.37
- > 30000 0.67 3.01 2.33 345.98
v < 15000 026 066 040 15597
Undivided 15000 to <30000 0.45  1.26 0.81 179.55
é* > 30000 0.79 241 1.62 205.29
§ < 15000 0.34 1.01 0.67 199.10
Divided 15000 to <30000 0.59  1.92 1.33 226.64
- > 30000 1.03  3.66 2.63 256.73
A < 15000 0.39  0.81 0.41 104.75
Undivided 15000 to <30000 0.69  1.54 0.85 123.60
> 30000 1.20 293 1.73 144.20

Note: Increase = After — Before
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Other Crashes — Table One
Statistical Modeling

Surrounding Land Use: Urban Location Type: Business or Other
Shoulder: Paved or Other

Intersection Characteristics Number of Other Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.83  0.55 -0.27 -33.17
Divided 15000 to <30000 1.16  0.93 -0.23 -19.66

<« > 30000 1.62  1.56 -0.06 -3.42
v < 15000 063 055 -008  -12.22

Undivided 15000 to <30000 0.88  0.93 0.05 5.53

é‘ > 30000 1.23  1.56 0.33 26.86
3 < 15000 0.83  0.70 -0.13 -15.13

Divided 15000 to 30000 1.16  1.18 0.02 2.03

<« > 30000 1.62 198 0.37 22.65

n < 15000 063 070 007 1148
Undivided 15000 to <30000 0.88  1.18 0.30 34.02

> 30000 1.23  1.98 0.75 61.11

< 15000 0.54  0.55 0.02 3.38

Divided 15000 to <30000 0.75  0.93 0.18 24.27

<« > 30000 1.05 1.56 0.52 49.39

v < 15000 041 055 015 3578
Undivided 15000 to <30000 0.57 0.93 0.36 63.23

g* > 30000 0.80  1.56 0.77 96.23
§ < 15000 0.54 0.70 0.17 31.28
Divided 15000 to 30000 0.75  1.18 0.43 57.82

- > 30000 1.05 198 0.94 89.72

A < 15000 041  0.70 0.30 72.44
Undivided 15000 to <30000 0.57 1.18 0.61 107.30
> 30000 0.80 1.98 1.19 149.20

Note: Increase = After — Before
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Other Crashes — Table Two
Statistical Modeling

Surrounding Land Use: Rural Location Type: Business or Other
Shoulder: Paved or Other

Intersection Characteristics Number of Other Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.59 041 -0.18 -30.43
Divided 15000 to < 30000 0.82  0.69 -0.13 -16.36

<« > 30000 1.15 1.16 0.01 0.54

v < 15000 045 041  -004  -8.62
Undivided 15000 to <30000 0.63  0.69 0.06 9.86

é‘ > 30000 0.88 1.16 0.28 32.06
3 < 15000 0.59 0.52 -0.07 -11.64

Divided 15000 to £30000 0.82  0.87 0.05 6.22

<« > 30000 1.15 147 0.32 27.69

A < 15000 045 0.52 0.07 16.06
Undivided 15000 to £30000 0.63  0.87 0.25 39.51

> 30000 0.88 147 0.59 67.72

< 15000 0.38 041 0.03 7.62

Divided 15000 to <30000 0.53  0.69 0.16 29.37

<« > 30000 0.74 1.16 0.41 55.52

v < 15000 029 041 012 4135
Undivided 15000 to £30000 0.40  0.69 0.28 69.93
g* > 30000 0.57 1.16 0.59 104.28
§ < 15000 0.38  0.52 0.14 36.67
Divided 15000 to £30000 0.53  0.87 0.34 64.30

- > 30000 0.74 147 0.73 97.51

A < 15000 029 0.52 0.23 79.52
Undivided 15000 to <30000 0.40  0.87 0.47 115.80
> 30000 0.57 147 0.90 159.43

Note: Increase = After — Before
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Total Crashes — Table One
Operational Research Modeling

Surrounding Land Use: Urban Location Type: Business Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 407  3.78 -0.29 -7.04

Divided 15000 to < 30000 4.59  4.90 0.32 6.95

- > 30000 517 6.36 1.19 23.04

v < 15000 273 247 -026 965
Undivided 15000 to <30000 3.08  3.20 0.12 3.95

é* > 30000 347 4.5 0.68 19.60
3 < 15000 555 4.64 -0.91 -16.37
Divided 15000 to 30000 6.25  6.02 -0.24 -3.78

< > 30000 7.05  7.80 0.75 10.70

A < 15000 372 3.02 -0.70 -18.71
Undivided 15000 to <30000 4.19  3.92 -0.27 -6.48

> 30000 473  5.08 0.36 7.60

< 15000 339 378 0.40 11.71

Divided 15000 to <30000 3.82  4.90 1.09 28.52

<« > 30000 430  6.36 2.06 47.87

v < 15000 227 247 019 8.58
Undivided 15000 to <30000 2.56  3.20 0.64 24.93

é‘ > 30000 2.88  4.15 1.26 43.73
§ < 15000 462 4.64 0.02 0.50
Divided 15000 to 30000 5.20  6.02 0.81 15.63

<« > 30000 5.86  7.80 1.94 33.03

A < 15000 3.10 3.02 -0.07 -2.31
Undivided 15000 to <30000 3.49  3.92 0.43 12.39

> 30000 393 5.08 1.15 29.31

Note: Increase = After — Before
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Total Crashes — Table Two
Operational Research Modeling

Surrounding Land Use: Urban Location Type: Business Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 450 422 -0.28 -6.16
Divided 15000 to <30000 5.07  5.47 0.40 7.96
< > 30000 571 7.09 1.38 24.21
v < 15000 301 275 -026  -8.79
Undivided 15000 to £30000 3.40  3.57 0.17 4.94
é* > 30000 3.83 4.62 0.79 20.74
3 < 15000 6.13  5.17 -0.95 -15.58
Divided 15000 to £30000 691  6.71 -0.20 -2.87
< > 30000 7.78  8.70 0.91 11.75
A < 15000 411  3.37 -0.74 -17.94
Undivided 15000 to <30000 4.63  4.37 -0.26 -5.59
> 30000 522 5.67 0.45 8.62
< 15000 374 422 0.48 12.77
Divided 15000 to <30000 4.22  5.47 1.25 29.75
<« > 30000 475  7.09 2.34 49.27
v < 15000 251 275 024 9.62
Undivided 15000 to <30000 2.83  3.57 0.74 26.12
é‘ > 30000 3.19 462 1.44 45.10
< < 15000 510  5.17 0.07 1.46
" Divided 15000 to £30000 5.75  6.71 0.96 16.73
<« > 30000 6.48  8.70 222 34.30
A < 15000 342 337 -0.05 -1.38
Undivided 15000 to <30000 3.85  4.37 0.52 13.46
> 30000 434  5.67 1.33 30.54

Note: Increase = After — Before
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Total Crashes — Table Three
Operational Research Modeling

Surrounding Land Use: Urban Location Type: Other Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 392 3.5 -0.77 -19.70
Divided 15000 to <30000 4.42  4.08 -0.34 -7.62
- > 30000 498 5.29 0.31 6.29
v < 15000 263 205 -058  -21.95
Undivided 15000 to <30000 2.96  2.66 -0.30 -10.20
é* > 30000 334 345 0.11 3.31
§ < 15000 534 386  -148  -27.76
Divided 15000 to <30000 6.02  5.00 -1.02 -16.89
< > 30000 6.79 649 -0.30 -4.38
A < 15000 358 252 -1.07 -29.78
Undivided 15000 to 30000 4.04  3.26 -0.78 -19.21
> 30000 455 4.23 -0.32 -7.06
< 15000 326 3.15 -0.11 -3.50
Divided 15000 to £30000 3.68  4.08 0.41 11.02
<« > 30000 4.14  5.29 1.15 27.73
v < 15000 219 205 -014  -6.20
Undivided 15000 to <30000 2.46  2.66 0.20 791
é‘ > 30000 278 345 0.67 24.15
§ < 15000 445  3.86 -0.59 -13.18
Divided 15000 to 30000 5.01  5.00 -0.01 -0.12
<« > 30000 565 649 0.84 14.91
A < 15000 298 252 -0.47 -15.62
Undivided 15000 to <30000 3.36  3.26 -0.10 -2.91
> 30000 379 423 0.44 11.70

Note: Increase = After — Before
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Total Crashes — Table Four
Operational Research Modeling

Surrounding Land Use: Urban Location Type: Other Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 433 351 -0.82 -18.94
Divided 15000 to <30000 4.88  4.55 -0.33 -6.74
- > 30000 550 590 0.40 7.30
v < 15000 290 229  -062 2121
Undivided 15000 to <30000 3.27 297 -0.31 -9.35
é‘ > 30000 3.69  3.85 0.16 4.29
3 < 15000 590 430 -1.60 -27.07
Divided 15000 to £30000 6.65  5.58 -1.07 -16.10
< > 30000 7.50  7.24 -0.26 -3.47
A < 15000 396 281 -1.15 -29.11
Undivided 15000 to <30000 4.46  3.64 -0.82 -18.45
> 30000 503 472 -0.31 -6.17
< 15000 3.60 3.51 -0.09 -2.58
Divided 15000 to <30000 4.06  4.55 0.49 12.08
<« > 30000 458  5.90 1.32 28.95
v < 15000 242 229 -0.13 -5.31
Undivided 15000 to <30000 2.72 297 0.24 8.94
é‘ > 30000 307 3.85 0.78 25.34
§ < 15000 491 430 -0.61 -12.36
Divided 15000 to £30000 5.53  5.58 0.05 0.83
<« > 30000 6.24 724 1.00 16.01
A < 15000 329 281 -0.49 -14.81
Undivided 15000 to <30000 3.71  3.64 -0.07 -1.99
> 30000 418 472 0.53 12.76

Note: Increase = After — Before
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Total Crashes — Table Five
Operational Research Modeling

Surrounding Land Use: Rural Location Type: Business Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 336  3.26 -0.10 -3.06

Divided 15000 to <30000 3.79  4.23 0.44 11.53

<« > 30000 427 548 1.21 28.31

v < 15000 226 213 -013  -578
Undivided 15000 to <30000 2.54  2.76 0.21 8.41

é* > 30000 2.87  3.57 0.71 24.72

3 < 15000 459  4.00 -0.59 -12.79
Divided 15000 to <30000 5.17  5.19 0.02 0.34

< > 30000 583 6.73 0.90 15.44

A < 15000 3.08 261 -0.47 -15.23
Undivided 15000 to <30000 3.47  3.38 -0.09 -2.47

> 30000 391 438 0.48 12.21

< 15000 2.80 3.26 0.46 16.50

Divided 15000 to £30000 3.16  4.23 1.07 34.03

<« > 30000 356 548 1.93 54.20

v < 15000 188 213 025 1324
Undivided 15000 to <30000 2.12  2.76 0.64 30.28

é‘ > 30000 238  3.57 1.19 49.89
§ < 15000 3.82 4.00 0.18 4.81
Divided 15000 to <30000 4.30  5.19 0.89 20.58

<« > 30000 485 6.73 1.88 38.73

A < 15000 256 261 0.05 1.87
Undivided 15000 to <30000 2.88  3.38 0.50 17.21

> 30000 325 438 1.13 34.85

Note: Increase = After — Before
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Total Crashes — Table Six
Operational Research Modeling

Surrounding Land Use: Rural Location Type: Business Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 372 3.64 -0.08 -2.14
Divided 15000 to < 30000 4.19  4.72 0.53 12.59
<« > 30000 472  6.11 1.39 29.53
v < 15000 249 237 012 -4.88
Undivided 15000 to <30000 2.81  3.07 0.27 9.44
é* > 30000 3.17 399 0.82 2591
3 < 15000 507 446 -0.61 -11.96
Divided 15000 to £30000 5.71  5.78 0.07 1.29
< > 30000 6.44  7.50 1.06 16.54
A < 15000 340 2091 -0.49 -14.42
Undivided 15000 to <30000 3.83  3.77 -0.06 -1.54
> 30000 432  4.89 0.57 13.27
< 15000 3.09 3.64 0.54 17.61
Divided 15000 to 30000 3.48  4.72 1.23 35.31
<« > 30000 393  6.11 2.19 55.67
v < 15000 207 237 030 1431
Undivided 15000 to <30000 2.34  3.07 0.74 31.52
é‘ > 30000 263 399 1.35 51.31
§ < 15000 422 446 0.24 5.80
Divided 15000 to £30000 4.75  5.78 1.03 21.73
<« > 30000 535 750 2.14 40.05
A < 15000 283 2091 0.08 2.84
Undivided 15000 to <30000 3.19  3.77 0.58 18.32
> 30000 359 489 1.30 36.13

Note: Increase = After — Before
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Total Crashes — Table Seven
Operational Research Modeling

Surrounding Land Use: Rural Location Type: Other Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 324 271 -0.53 -16.26
Divided 15000 to < 30000 3.65  3.52 -0.13 -3.66
<« > 30000 411  4.56 0.45 10.84
v < 15000 217 177 -040  -1861
Undivided 15000 to <30000 245  2.29 -0.16 -6.36
é* > 30000 276 297 0.21 7.74
3 < 15000 442 333 -1.09 -24.67
Divided 15000 to 30000 4.98  4.32 -0.66 -13.33
< > 30000 561 559 -0.02 -0.28
A < 15000 296 217 -0.79 -26.77
Undivided 15000 to <30000 3.34  2.81 -0.53 -15.75
> 30000 376  3.64 -0.12 -3.07
< 15000 270 271 0.02 0.63
Divided 15000 to 30000 3.04  3.52 0.48 15.78
<« > 30000 342 456 1.14 33.20
v < 15000 181 177  -004 219
Undivided 15000 to <30000 2.04 2.29 0.26 12.54
é‘ > 30000 230 297 0.68 29.47
§ < 15000 3.68 3.33 -0.35 -9.47
Divided 15000 to £30000 4.14  4.31 0.17 4.16
<« > 30000 4.67  5.60 0.93 19.84
n < 15000 247 217 030 -12.00
Undivided 15000 to <30000 2.78  2.81 0.03 1.24
> 30000 3.13  3.65 0.52 16.48

Note: Increase = After — Before
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Total Crashes — Table Eight
Operational Research Modeling

Surrounding Land Use: Rural Location Type: Other Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 3.58  3.03 -0.55 -15.47
Divided 15000 to < 30000 4.03  3.92 -0.11 -2.74
- > 30000 455 5.09 0.54 11.89
v < 15000 240 197  -043  -17.83
Undivided 15000 to <30000 2.70  2.56 -0.15 -5.47
é* > 30000 3.05 332 0.27 8.76
a < 15000 4.88  3.71 -1.17 -23.95
Divided 15000 to <30000 5.50  4.81 -0.69 -12.50
< > 30000 6.20 6.24 0.04 0.67
A < 15000 327 242 -0.85 -26.08
Undivided 15000 to <30000 3.69  3.14 -0.55 -14.95
> 30000 416  4.07 -0.09 -2.15
< 15000 298  3.03 0.05 1.59
Divided 15000 to 30000 3.36  3.92 0.57 16.88
<« > 30000 378  5.09 1.30 34.47
v < 15000 200 197  -003  -125
Undivided 15000 to <30000 2.25  2.56 0.31 13.61
é‘ > 30000 254 332 0.78 30.70
§ < 15000 406 3.71 -0.35 -8.60
Divided 15000 to <30000 4.58  4.81 0.24 5.15
<« > 30000 516 624 1.08 20.98
" < 15000 272 242 030  -1116
Undivided 15000 to <30000 3.07 3.14 0.07 221
> 30000 346  4.07 0.61 17.59

Note: Increase = After — Before
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Angle Crashes — Table One
Operational Research Modeling

Surrounding Land Use: Urban Location Type: Business Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 1.06  0.72 -0.33 -31.53
Divided 15000 to <30000 1.08  0.90 -0.18 -16.55

<« > 30000 1.11 1.13 0.02 1.70
v < 15000 063 059 003  -553
Undivided 15000 to <30000 0.64 0.74 0.10 15.13

> 30000 0.66  0.92 0.26 40.30
< 15000 1.06 092 -0.14 -13.09

Divided 15000 to <30000 1.08  1.15 0.06 5.92

<« > 30000 1.11 1.43 0.32 29.08
A < 15000 0.63 0.75 0.12 19.90
Undivided 15000 to <30000 0.64 0.94 0.30 46.13

> 30000 0.66 1.17 0.51 78.08

Note: Increase = After — Before
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Angle Crashes — Table Two
Operational Research Modeling

Surrounding Land Use: Urban Location Type: Business Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 1.55 0.72 -0.82 -53.13
Divided 15000 to <30000 1.58  0.90 -0.68 -42.88
<« > 30000 1.62 1.13 -0.49 -30.39
v < 15000 092 059 032  -35.34
Undivided 15000 to <30000 094 0.74 -0.20 -21.20

> 30000 096  0.92 -0.04 -3.97
< 15000 1.55 0.92 -0.63 -40.51
Divided 15000 to 30000 1.58  1.15 -0.44 -27.50
<« > 30000 1.62 143 -0.19 -11.65
A < 15000 092 0.75 -0.16 -17.93
Undivided 15000 to <30000 0.94  0.94 0.00 0.02

> 30000 096  1.17 0.21 21.89

Note: Increase = After — Before
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Angle Crashes — Table Three
Operational Research Modeling

Surrounding Land Use: Urban Location Type: Other Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 1.06  0.57 -0.48 -45.81
Divided 15000 to <30000 1.08  0.72 -0.37 -33.96
<« > 30000 .11 0.89 -0.22 -19.52
v < 15000 063 047 016  -25.24
Undivided 15000 to <30000 0.64  0.59 -0.06 -8.90

> 30000 0.66 0.73 0.07 11.03
< 15000 1.06  0.73 -0.33 -31.22
Divided 15000 to <30000 1.08 091 -0.18 -16.18

<« > 30000 1.11 1.13 0.02 2.15
A < 15000 0.63  0.60 -0.03 -5.12
Undivided 15000 to <30000 0.64 0.74 0.10 15.63

> 30000 0.66 0.93 0.27 40.92

Note: Increase = After — Before
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Angle Crashes — Table Four
Operational Research Modeling

Surrounding Land Use: Urban Location Type: Other Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes

Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 1.55 0.57 -0.97 -62.91

Divided 15000 to <30000 1.58  0.72 -0.87 -54.80

<« > 30000 1.62  0.89 -0.73 -44.92

v < 15000 092 047  -045  -48.83

Undivided 15000 to <30000 0.94  0.59 -0.35 -37.64

> 30000 096 0.73 -0.23 -24.00

< 15000 1.55 0.73 -0.82 -52.93

Divided 15000 to <30000 1.58 091 -0.67 -42.63

<« > 30000 1.62 1.13 -0.49 -30.08

A < 15000 0.92  0.60 -0.32 -35.05

Undivided 15000 to <30000 0.94 0.74 -0.20 -20.85

> 30000 096 0.93 -0.03 -3.54

Note: Increase = After — Before
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Angle Crashes — Table Five
Operational Research Modeling

Surrounding Land Use: Rural Location Type: Business Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 0.85 0.72 -0.13 -14.87

Divided 15000 to <30000 0.87  0.90 0.03 3.74

<« > 30000 0.89 1.13 0.24 26.43
v < 15000 050 059 009 1744
Undivided 15000 to <30000 0.52  0.74 0.22 43.13

> 30000 0.53 0.92 0.39 74.43

< 15000 0.85 0.92 0.07 8.05

Divided 15000 to 30000 0.87  1.15 0.28 31.68

<« > 30000 0.89 143 0.54 60.47
A < 15000 0.50 0.75 0.25 49.06
Undivided 15000 to <30000 0.52  0.94 0.42 81.66
> 30000 0.53 1.17 0.64 121.39

Note: Increase = After — Before
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Angle Crashes — Table Six
Operational Research Modeling

Surrounding Land Use: Rural Location Type: Business Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 1.24  0.72 -0.52 -41.73
Divided 15000 to <30000 1.27  0.90 -0.37 -28.99
<« > 30000 1.30  1.13 -0.18 -13.46
v < 15000 074 059  -0.14  -19.61
Undivided 15000 to <30000 0.75  0.74 -0.02 -2.03

> 30000 0.77  0.92 0.15 19.39
< 15000 1.24 092 -0.32 -26.04

Divided 15000 to <30000 1.27  1.15 -0.13 -9.87

<« > 30000 1.30 143 0.13 9.84
A < 15000 0.74  0.75 0.01 2.03
Undivided 15000 to <30000 0.75  0.94 0.18 24.34

> 30000 0.77  1.17 0.40 51.53

Note: Increase = After — Before
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Angle Crashes — Table Seven
Operational Research Modeling

Surrounding Land Use: Rural Location Type: Other Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 0.85 0.57 -0.28 -32.64
Divided 15000 to <30000 0.87  0.72 -0.16 -17.90

<« > 30000 0.89  0.89 0.00 0.05
v < 15000 050 047  -004  -7.06
Undivided 15000 to <30000 0.52  0.59 0.07 13.26

> 30000 0.53 0.73 0.20 38.03
< 15000 0.85 0.73 -0.12 -14.50

Divided 15000 to <30000 0.87 091 0.04 4.20

<« > 30000 0.89 1.13 0.24 26.99
A < 15000 0.50  0.60 0.09 17.96
Undivided 15000 to <30000 0.52  0.74 0.23 43.76

> 30000 0.53 093 0.40 75.20

Note: Increase = After — Before
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Angle Crashes — Table Eight
Operational Research Modeling

Surrounding Land Use: Rural Location Type: Other Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes

Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 1.24  0.57 -0.67 -53.89

Divided 15000 to <30000 1.27  0.72 -0.56 -43.81

< > 30000 1.30  0.89 -0.41 -31.52

v < 15000 0.74 047  -027  -3639

Undivided 15000 to <30000 0.75  0.59 -0.17 -22.48

> 30000 0.77  0.73 -0.04 -5.52

< 15000 1.24  0.73 -0.52 -41.48

Divided 15000 to 30000 1.27 091 -0.36 -28.68

<« > 30000 1.30 1.13 -0.17 -13.08

A < 15000 0.74  0.60 -0.14 -19.26

Undivided 15000 to <30000 0.75  0.74 -0.01 -1.60

> 30000 0.77  0.93 0.15 19.92

Note: Increase = After — Before
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Left-turn Crashes — Table One
Operational Research Modeling

Surrounding Land Use: Urban or Rural Location Type: Business
Shoulder: Paved Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left-turn Crashes
Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 0.82 0.53 -0.29 -35.46

Divided 15000 to <30000 0.98  0.70 -0.29 -29.18

< > 30000 1.18 091 -0.26 -22.29

v < 15000 055 028  -027  -49.68

Undivided 15000 to <30000 0.66  0.36 -0.29 -44.78

> 30000 0.78 047 -0.31 -39.40

< 15000 1.17  0.73 -0.44 -37.92

Divided 15000 to <30000 1.40  0.95 -0.45 -31.88

<« > 30000 1.67 1.25 -0.42 -25.25

A < 15000 0.78  0.38 -0.40 -51.59

Undivided 15000 to <30000 0.93  0.49 -0.44 -46.88

> 30000 .11 0.65 -0.46 -41.71

Note: Increase = After — Before
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Left-turn Crashes — Table Two
Operational Research Modeling

Surrounding Land Use: Urban or Rural Location Type: Business
Shoulder: Other Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left-turn Crashes

Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 0.94 0.70 -0.24 -25.32

Divided 15000 to <30000 1.12 092 -0.20 -18.05

<« > 30000 1.34  1.20 -0.13 -10.08

v < 15000 062 036 -026  -41.77

Undivided 15000 to <30000 0.75  0.48 -0.27 -36.10

> 30000 0.89 0.62 -0.27 -29.88

< 15000 1.33 096 -0.37 -28.17

Divided 15000 to 30000 1.59  1.25 -0.34 -21.18

<« > 30000 1.90 1.64 -0.26 -13.50

A < 15000 0.89  0.50 -0.39 -43.99

Undivided 15000 to <30000 1.06  0.65 -0.41 -38.54

> 30000 1.27  0.85 -0.41 -32.55

Note: Increase = After — Before
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Left-turn Crashes — Table Three
Operational Research Modeling

Surrounding Land Use: Urban or Rural Location Type: Other
Shoulder: Paved Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left-turn Crashes

Lanes Median ADT (vpd) Before After Increase % Increase

< 15000 0.68 0.49 -0.19 -28.40

Divided 15000 to <30000 0.81  0.64 -0.17 -21.43

<« > 30000 097 0.84 -0.13 -13.78

v < 15000 045 025 020  -44.17

Undivided 15000 to <30000 0.54  0.33 -0.21 -38.73

> 30000 0.65 043 -0.21 -32.77

< 15000 0.97  0.66 -0.30 -31.13

Divided 15000 to <30000 1.15  0.87 -0.28 -24.42

<« > 30000 1.38  1.14 -0.24 -17.07

A < 15000 0.64 0.35 -0.30 -46.29

Undivided 15000 to <30000 0.77 045 -0.32 -41.07

> 30000 092  0.59 -0.32 -35.33

Note: Increase = After — Before
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Left-turn Crashes — Table four
Operational Research Modeling

Surrounding Land Use: Urban or Rural
Shoulder: Other

Location Type: Other

Speed: < 45 mph or > 45 mph

Intersection Characteristics

Number of Left-turn Crashes

Lanes Median ADT (vpd) Before After Increase % Increase
< 15000 0.77  0.64 -0.13 -17.15
Divided 15000 to <30000 0.92  0.84 -0.08 -9.08
<« > 30000 1.10  1.10 0.00 -0.23
v < 15000 051 033 -018  -3539
Undivided 15000 to <30000 0.62  0.44 -0.18 -29.11
> 30000 0.74  0.57 -0.16 -22.21
< 15000 1.10  0.87 -0.22 -20.30
Divided 15000 to 30000 1.31  1.15 -0.16 -12.55
<« > 30000 1.57  1.50 -0.06 -4.03
A < 15000 0.73 045 -0.28 -37.85
Undivided 15000 to <30000 0.87  0.60 -0.28 -31.81
> 30000 1.04 0.78 -0.26 -25.17

Note: Increase = After — Before
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Rear-end Crashes — Table One
Operational Research Modeling

Surrounding Land Use: Urban or Rural Location Type: Business
Shoulder: Paved

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.54 091 0.37 68.00

Divided 15000 to < 30000 0.90 1.44 0.54 60.47

<« > 30000 149 229 0.80 53.28

v < 15000 057 055  -002  -342
Undivided 15000 to <30000 0.94  0.87 -0.07 -7.75

é‘ > 30000 1.57 138 -0.19 -11.88
lﬁ < 15000 0.66 1.03 0.37 55.21
Divided 15000 to <£30000 1.10  1.63 0.53 48.25

<« > 30000 1.83  2.59 0.76 41.60

n < 15000 070 062 007  -10.77
Undivided 15000 to <30000 1.15  0.98 -0.17 -14.77

> 30000 1.92  1.56 -0.36 -18.59

< 15000 0.39 097 0.59 151.65

Divided 15000 to <30000 0.64  1.54 0.90 140.37
<« > 30000 1.06 244 1.38 129.59

v < 15000 041 059 018 4467
Undivided 15000 to <30000 0.67  0.93 0.26 38.19

g* > 30000 .12 148 0.36 31.99
% < 15000 047  1.10 0.63 132.49
Divided 15000 to 30000 0.78  1.74 0.96 122.06

- > 30000 1.30  2.76 1.46 112.11

A < 15000 0.50  0.66 0.17 33.65
Undivided 15000 to <30000 0.82  1.05 0.23 27.66

> 30000 1.37 1.67 0.30 21.94

Note: Increase = After — Before
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Rear-end Crashes — Table Two
Operational Research Modeling

Surrounding Land Use: Urban or Rural Location Type: Business
Shoulder: Other

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.54 1.22 0.68 125.48
Divided 15000 to < 30000 0.90 1.94 1.04 115.37
<« > 30000 149  3.07 1.58 105.72

v < 15000 057 074 017  29.63
Undivided 15000 to <30000 0.94 1.17 0.22 23.82

é‘ > 30000 1.57 1.85 0.29 18.27
3 < 15000 0.66  1.38 0.72 108.31
Divided 15000 to <30000 1.10  2.19 1.09 98.97

<« > 30000 1.83 347 1.64 90.05

A < 15000 0.70  0.83 0.14 19.75
Undivided 15000 to <30000 1.15  1.32 0.17 14.39

> 30000 1.92 210 0.18 9.26
< 15000 0.39 1.30 0.92 237.74
Divided 15000 to <30000 0.64  2.07 1.43 222.60
- > 30000 1.06  3.28 2.22 208.14

v < 15000 041 079 038  94.17
Undivided 15000 to <30000 0.67  1.25 0.58 85.46

g* > 30000 .12 1.98 0.86 77.15
f < 15000 047 147 100 21202
Divided 15000 to 30000 0.78  2.34 1.55 198.03
- > 30000 1.30  3.71 2.40 184.67

A < 15000 0.50 0.89 0.39 79.38
Undivided 15000 to <30000 0.82  1.41 0.59 71.34

> 30000 1.37 224 0.87 63.66

Note: Increase = After — Before
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Rear-end Crashes — Table Three
Operational Research Modeling

Surrounding Land Use: Urban or Rural Location Type: Other
Shoulder: Paved

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.38 091 0.53 137.33
Divided 15000 to < 30000 0.64 1.44 0.81 126.69

<« > 30000 1.06 229 1.23 116.53

v < 15000 040 055 015 3644
Undivided 15000 to <30000 0.67  0.87 0.20 30.32

é‘ > 30000 .11 1.38 0.27 24.48
3 < 15000 047 1.03 0.56 119.26
Divided 15000 to <30000 0.78  1.63 0.85 109.43
<« > 30000 1.29 259 1.29 100.04

A < 15000 049  0.62 0.13 26.05
Undivided 15000 to <30000 0.82  0.98 0.17 20.40

> 30000 1.36  1.56 0.20 15.00
< 15000 027 097 0.70 255.50

Divided 15000 to <£30000 0.45 1.54 1.09 239.56
<« > 30000 0.75 244 1.69 224.34

v < 15000 029 059 030 10437
Undivided 15000 to <30000 0.48  0.93 0.45 95.21

g* > 30000 0.79 148 0.68 86.46
f < 15000 033 110 076 22842
Divided 15000 to <£30000 0.56 1.74 1.19 213.70
<« > 30000 092 276 1.84 199.64

A < 15000 0.35 0.66 0.31 88.81
Undivided 15000 to <30000 0.58  1.05 0.47 80.35

> 30000 097 1.67 0.70 72.26

Note: Increase = After — Before
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Rear-end Crashes — Table Four
Operational Research Modeling

Surrounding Land Use: Urban or Rural Location Type: Other
Shoulder: Other

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.38 1.22 0.84 218.53

Divided 15000 to < 30000 0.64 1.94 1.30 204.25

<« > 30000 1.06  3.07 2.02 190.61

v < 15000 040 074 033  83.12
Undivided 15000 to <30000 0.67  1.17 0.50 74.91

é‘ > 30000 .11 1.85 0.74 67.07
3 < 15000 047 138 0.91 194.27
Divided 15000 to <30000 0.78  2.19 1.41 181.08

<« > 30000 1.29 347 2.18 168.48

A < 15000 049 0.83 0.34 69.17
Undivided 15000 to <30000 0.82  1.32 0.50 61.59

> 30000 1.36  2.10 0.74 54.35
< 15000 027  1.30 1.03 377.12

Divided 15000 to £30000 0.45  2.07 1.61 355.73
- > 30000 0.75 3.28 2.53 335.30
v < 15000 029 079 050  174.29
Undivided 15000 to <30000 0.48  1.25 0.77 162.00
é* > 30000 0.79 198 1.19 150.25
f < 15000 033 147 114  340.78
Divided 15000 to <30000 0.56  2.34 1.78 321.02
- > 30000 092 371 2.79 302.15
A < 15000 0.35 0.89 0.54 153.40
Undivided 15000 to <30000 0.58  1.41 0.83 142.04
> 30000 097 224 1.27 131.19

Note: Increase = After — Before

221



Other Crashes — Table One
Operational Research Modeling

Surrounding Land Use: Urban Location Type: Business or Other
Shoulder: Paved or Other

Intersection Characteristics Number of Other Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.70  0.70 0.00 0.36
Divided 15000 to <30000 1.02  1.01 -0.01 -1.18
<« > 30000 149 145 -0.04 -2.69
v < 15000 065 070  0.06 8.6
Undivided 15000 to <30000 0.94  1.01 0.07 7.02
é‘ > 30000 1.38 145 0.07 5.38
3 < 15000 0.70  0.84 0.14 20.02
Divided 15000 to £30000 1.02  1.21 0.19 18.18
<« > 30000 149 1.73 0.24 16.37
A < 15000 0.65 0.84 0.19 29.97
Undivided 15000 to <30000 0.94  1.21 0.26 27.98
> 30000 1.38  1.73 0.36 26.02
< 15000 0.61 0.70 0.10 16.08
Divided 15000 to £30000 0.88  1.01 0.13 14.30
<« > 30000 1.29 145 0.16 12.55
v < 15000 056 070 014 2571
Undivided 15000 to <30000 0.82  1.01 0.19 23.78
g* > 30000 1.19 145 0.26 21.89
§ < 15000 0.61 0.84 0.24 38.82
Divided 15000 to £30000 0.88  1.21 0.32 36.69
<« > 30000 1.29 1.73 0.45 34.59
A < 15000 0.56 0.84 0.28 50.33
Undivided 15000 to <30000 0.82  1.21 0.39 48.02
> 30000 1.19 1.73 0.54 45.76

Note: Increase = After — Before
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Other Crashes — Table Two
Operational Research Modeling

Surrounding Land Use: Rural Location Type: Business or Other
Shoulder: Paved or Other

Intersection Characteristics Number of Other Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.51  0.50 -0.01 -1.61

Divided 15000 to <30000 0.74  0.71 -0.02 -3.12

<« > 30000 1.08 1.03 -0.05 -4.60

v < 15000 047 050  0.03 6.55
Undivided 15000 to <30000 0.68  0.71 0.03 4.92

é‘ > 30000 099 1.03 0.03 3.31
3 < 15000 0.51  0.60 0.09 17.66
Divided 15000 to 30000 0.74  0.85 0.12 15.86

<« > 30000 1.08 1.23 0.15 14.08
n < 15000 047 060 013 2742
Undivided 15000 to <30000 0.68  0.85 0.17 25.46
> 30000 099 1.23 0.23 23.54
< 15000 0.44  0.50 0.06 13.80
Divided 15000 to <30000 0.64  0.71 0.08 12.06
<« > 30000 093 1.03 0.10 10.34
v < 15000 040 050 009 2324
Undivided 15000 to <30000 0.59  0.71 0.13 21.35
g* > 30000 0.86 1.03 0.17 19.49
§ < 15000 044  0.60 0.16 36.09
Divided 15000 to <30000 0.64  0.85 0.22 34.00

- > 30000 093 1.23 0.30 31.95
A < 15000 0.40  0.60 0.19 47.37
Undivided 15000 to <30000 0.59  0.85 0.27 45.12
> 30000 0.86 1.23 0.37 42.89

Note: Increase = After — Before
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APPENDIX E

COMBINED RESULTS
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Total Crashes — Table One

Combined Results
Surrounding Land Use: Urban Location Type: Business Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 3.51  3.14 -0.37 -10.51
Divided 15000 to <30000 494  4.48 0.24 5.78
< > 30000 5.15 648 1.33 25.85
VI
< 15000 248 227 -0.21 -8.57
Undivided 15000 to <30000 1301 3.29 0.27 9.03
=
) > 30000 368 4.8 114 3087
v
M < 15000 469 3.95 -0.74 -15.79
Divided  15000to <30000 565 565 0.00 0.06
< > 30000 6.86  8.20 1.35 19.69
N
< 15000 331 2.86 -0.45 -13.53
Undivided 15000 to < 30000 4.1 4.16 0.15 3.67
> 30000 489  6.12 1.23 25.11
< 15000 294 3.14 0.20 6.90
Divided 15000 to <30000 355 448 0.93 26.29
< > 30000 432 648 2.17 50.17
VI
< 15000 208 227 0.19 9.17
Undivided 15000 to < 30000 2 53 3.29 0.76 30.11
=
g > 30000 3.09 482 173 56.09
w
X < 15000 3.92  3.95 0.02 0.60
Divided 15000 to < 30000 473 5.65 0.92 19.48
< > 30000 574 8.0 2.46 42.84
N
< 15000 277  2.86 0.09 3.27

Undivided 15000 to < 30000 3 3¢ 4.16 0.80 23.74

> 30000 410  6.12 2.02 49.24

Note: Increase = After — Before
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Total Crashes — Table Two

Combined Results
Surrounding Land Use: Urban Location Type: Business Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 399 350 -0.49 -12.22
Divided 15000 to < 30000 4.83  5.00 0.17 3.49
- > 30000 5890 723 1.34 22.80
v < 15000 283 253 -030  -10.50
Undivided 15000 to <30000 3.44  3.67 0.22 6.44
é* > 30000 422 538 1.16 27.44
3 < 15000 533 440 -0.92 -17.34
Divided 15000 to £30000 6.44  6.31 -0.13 -2.03
<« > 30000 7.83  9.16 1.32 16.89
A < 15000 377  3.20 -0.58 -15.28
Undivided 15000 to <30000 4.58  4.64 0.06 1.30
> 30000 5,60 6.83 1.23 21.93
< 15000 334 350 0.16 4.83
Divided 15000 to 30000 4.05  5.00 0.95 23.52
<« > 30000 494  7.23 2.30 46.49
v < 15000 237 253 0.16 6.84
Undivided 15000 to <30000 2.89  3.67 0.78 27.00
é‘ > 30000 354 538 1.84 51.95
§ < 15000 446 440 -0.06 -1.26
Divided 15000 to £30000 5.39  6.31 0.91 16.96
<« > 30000 6.56  9.16 2.59 39.46
A < 15000 3.16 3.20 0.04 1.15
Undivided 15000 to <30000 3.84  4.64 0.80 20.88
> 30000 470  6.83 2.13 4541

Note: Increase = After — Before
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Total Crashes — Table Three

Combined Results
Surrounding Land Use: Urban Location Type: Other Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 320 262 -0.58 -18.07
Divided 15000 to <30000 3.85  3.75 -0.10 -2.60
<« > 30000 465 542 0.77 16.56
v < 15000 226 190  -036  -15.90
Undivided 15000 to <30000 2.73  2.75 0.02 0.87
é* > 30000 331  4.03 0.72 21.80
3 < 15000 428  3.30 -0.99 -23.01
Divided 15000 to <30000 5.14  4.73 -0.41 -8.00
< > 30000 6.20  6.87 0.66 10.69
A < 15000 3.02 240 -0.62 -20.57
Undivided 15000 to <30000 3.64  3.48 -0.15 -4.22
> 30000 441 513 0.72 16.27
< 15000 268 262 -0.06 -2.08
Divided 15000 to 30000 3.22  3.75 0.53 16.34
<« > 30000 390 542 1.53 39.15
v < 15000 189 190 001 0.47
Undivided 15000 to <30000 2.28  2.75 0.47 20.43
é‘ > 30000 278  4.03 1.26 45.33
§ < 15000 358  3.30 -0.29 -7.98
Divided 15000 to <30000 4.30 4.73 0.43 9.91
<« > 30000 519  6.87 1.67 32.17
A < 15000 252 240 -0.13 -5.10
Undivided 15000 to £30000 3.04  3.48 0.44 14.37
> 30000 3.69 5.13 1.43 38.76

Note: Increase = After — Before
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Total Crashes — Table Four

Combined Results
Surrounding Land Use: Urban Location Type: Other Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 3.63 2093 -0.71 -19.46
Divided 15000 to <30000 4.38  4.18 -0.20 -4.50
- > 30000 531  6.05 0.74 13.99
v < 15000 257 212 045  -17.49
Undivided 15000 to <30000 3.11  3.07 -0.04 -1.29
g* > 30000 379 450 0.71 18.87
§ < 15000 486 368  -1.18 2426
Divided 15000 to £30000 5.84  5.28 -0.57 -9.71
< > 30000 7.07  7.66 0.59 8.35
A < 15000 343 2.67 -0.75 -22.01
Undivided 15000 to <30000 4.14  3.89 -0.26 -6.20
> 30000 504 572 0.68 13.57
< 15000 3.04 293 -0.11 -3.77
Divided 15000 to £30000 3.67 4.18 0.51 14.04
<« > 30000 445  6.05 1.60 36.05
v < 15000 215 212 -003  -146
Undivided 15000 to <30000 2.60  3.07 0.46 17.82
é‘ > 30000 3.17 450 1.33 41.80
§ < 15000 407  3.68 -0.39 -9.49
Divided 15000 to <30000 4.89  5.28 0.38 7.83
<« > 30000 592  7.66 1.74 29.33
n < 15000 287 267 020  -6.84
Undivided 15000 to < 30000 3.47  3.89 0.42 11.98
> 30000 422 572 1.50 35.50

Note: Increase = After — Before
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Total Crashes — Table Five

Combined Results
Surrounding Land Use: Rural Location Type: Business Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 299 276 -0.22 -7.49
Divided 15000 to < 30000 3.62  3.96 0.34 9.36
- > 30000 441 574 1.33 30.14
v < 15000 212 201  -011  -5.40
Undivided 15000 to <30000 2.58 291 0.33 12.84
é* > 30000 3.16 428 1.12 35.47
3 < 15000 399 348 -0.51 -12.82
Divided 15000 to <30000 4.82  5.00 0.17 3.62
<« > 30000 587 7.28 1.41 23.98
A < 15000 283 253 -0.29 -10.38
Undivided 15000 to <30000 3.43  3.69 0.26 7.47
> 30000 420 545 1.25 29.72
< 15000 250 276 0.26 10.47
Divided 15000 to 30000 3.03  3.96 0.93 30.53
<« > 30000 370 574 2.04 55.25
v < 15000 178 201 023 1293
Undivided 15000 to <30000 2.16 291 0.75 34.62
é‘ > 30000 265 428 1.63 61.53
§ < 15000 334 348 0.14 4.13
Divided 15000 to <30000 4.04  5.00 0.96 23.70
<« > 30000 492  7.28 2.36 47.92
n < 15000 237 253 017 7.01
Undivided 15000 to <30000 2.88  3.69 0.81 28.24
> 30000 352 545 1.93 54.71

Note: Increase = After — Before
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Total Crashes — Table Six

Combined Results
Surrounding Land Use: Rural Location Type: Business Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 340  3.08 -0.32 -9.37
Divided 15000 to < 30000 4.13  4.42 0.28 6.86
- > 30000 505 641 1.36 26.83
v < 15000 242 224 -018  -7.50
Undivided 15000 to <30000 2.95  3.25 0.30 10.03
é* > 30000 3.63 478 1.15 31.76
3 < 15000 454  3.88 -0.66 -14.51
Divided 15000 to <30000 5.50  5.58 0.07 1.34
<« > 30000 6.72  8.12 1.41 20.93
A < 15000 322 283 -0.40 -12.30
Undivided 15000 to 30000 3.93  4.12 0.19 4.89
> 30000 481  6.08 1.26 26.27
< 15000 285 3.08 0.23 8.21
Divided 15000 to 30000 3.46  4.42 0.95 27.52
<« > 30000 424 641 2.17 51.26
v < 15000 203 224 021 1039
Undivided 15000 to <30000 2.48  3.25 0.77 31.24
é‘ > 30000 3.04 478 1.74 57.07
§ < 15000 3.80 3.88 0.08 2.08
Divided 15000 to £30000 4.61  5.58 0.97 20.95
<« > 30000 563  8.12 2.49 44.25
A < 15000 270  2.83 0.13 4.68
Undivided 15000 to <30000 3.29  4.12 0.83 25.13
> 30000 4.04 6.08 2.04 50.56

Note: Increase = After — Before
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Total Crashes — Table Seven

Combined Results
Surrounding Land Use: Rural Location Type: Other Shoulder: Paved
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 272 231 -0.41 -15.11
Divided 15000 to <30000 3.28  3.31 0.03 0.95
- > 30000 398 4381 0.83 20.84
v < 15000 192 168 -025  -12.77
Undivided 15000 to <30000 2.33  2.44 0.11 4.66
é* > 30000 2.84 359 0.75 26.39
3 < 15000 3.64 2091 -0.73 -20.10
Divided 15000 to £30000 4.38  4.18 -0.20 -4.49
< > 30000 530  6.09 0.79 14.95
A < 15000 257 212 -0.45 -17.48
Undivided 15000 to <30000 3.10  3.09 -0.01 -0.46
> 30000 377 456 0.79 20.86
< 15000 228 231 0.03 1.43
Divided 15000 to £30000 2.75  3.31 0.56 20.55
<« > 30000 333 4381 1.47 44.22
v < 15000 161 168  0.07 4.18
Undivided 15000 to 30000 1.95 2.44 0.49 24.92
é‘ > 30000 238 359 1.21 50.78
§ < 15000 3.05 2091 -0.14 -4.52
Divided 15000 to £30000 3.67  4.18 0.52 14.08
<« > 30000 444  6.09 1.65 37.21
" < 15000 215 212 003 -143
Undivided 15000 to <30000 2.60  3.09 0.49 18.84
> 30000 3.16 4.56 1.40 44.20

Note: Increase = After — Before
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Total Crashes — Table Eight

Combined Results
Surrounding Land Use: Rural Location Type: Other Shoulder: Other
Intersection Characteristics Total Number of Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 3.09 258 -0.51 -16.64
Divided 15000 to <30000 3.74  3.69 -0.04 -1.13
- > 30000 454  5.36 0.82 18.04
v < 15000 219 187  -032  -1452
Undivided 15000 to <30000 2.66  2.72 0.06 2.29
é‘ > 30000 325 4.00 0.75 23.21
3 < 15000 413 324 -0.89 -21.48
Divided 15000 to <30000 4.98  4.67 -0.32 -6.38
< > 30000 6.05 6.80 0.75 12.38
A < 15000 292 236 -0.56 -19.06
Undivided 15000 to 30000 3.54  3.45 -0.09 -2.63
> 30000 432  5.09 0.77 17.91
< 15000 259 258 -0.01 -0.43
Divided 15000 to 30000 3.13  3.69 0.56 18.03
<« > 30000 381 536 1.56 40.84
v < 15000 183 187 004 2.07
Undivided 15000 to 30000 2.23  2.72 0.49 22.06
é‘ > 30000 272 4.00 1.28 46.94
§ < 15000 346 324 -0.21 -6.20
Divided 15000 to <30000 4.17  4.67 0.49 11.79
<« > 30000 507 6.80 1.73 34.11
A < 15000 245 236 -0.08 -3.35
Undivided 15000 to <30000 2.97  3.45 0.48 16.21
> 30000 3.62  5.09 1.47 40.65

Note: Increase = After — Before
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Angle Crashes — Table One
Combined Results

Surrounding Land Use: Urban Location Type: Business Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 091 0.66 -0.26 -27.92

Divided 15000 to <30000 1.02  0.85 -0.17 -16.99

<« > 30000 1.16  1.10 -0.06 -5.24
v < 15000 057 055 -002  -3.61
Undivided 15000 to <30000 0.64  0.71 0.07 10.49

> 30000 0.73 091 0.19 25.53

< 15000 091  0.89 -0.03 -2.93

Divided 15000 to <£30000 1.02  1.15 0.12 12.03

<« > 30000 1.16 148 0.33 28.19
A < 15000 0.57 0.74 0.17 29.94
Undivided 15000 to <30000 0.64  0.95 0.31 49.27

> 30000 0.73 1.23 0.51 69.99

Note: Increase = After — Before
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Angle Crashes — Table Two
Combined Results

Surrounding Land Use: Urban Location Type: Business Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 1.35  0.66 -0.69 -51.07
Divided 15000 to <30000 1.51  0.85 -0.66 -43.70
<« > 30000 1.71 1.10 -0.61 -35.80
v < 15000 084 055 -029  -34.60
Undivided 15000 to <30000 0.94  0.71 -0.24 -25.10
> 30000 1.07 091 -0.16 -14.99
< 15000 1.35  0.89 -0.46 -34.11
Divided 15000 to < 30000 1.51 1.15 -0.36 -24.01
<« > 30000 1.71 1.48 -0.22 -13.15
A < 15000 0.84 0.74 -0.10 -11.84

Undivided 15000 to <30000 0.94  0.95 0.01 1.18

> 30000 1.07 1.23 0.16 15.12

Note: Increase = After — Before
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Angle Crashes — Table Three
Combined Results

Surrounding Land Use: Urban Location Type: Other Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 091 054 -0.38 -41.45
Divided 15000 to <30000 1.02  0.69 -0.33 -32.50
<« > 30000 1.16  0.89 -0.26 -22.87
v < 15000 057 044  -012  -21.66
Undivided 15000 to <30000 0.64  0.57 -0.06 -10.12

> 30000 0.73  0.74 0.02 2.23
< 15000 091 0.72 -0.19 -21.01

Divided 15000 to <30000 1.02  0.93 -0.09 -8.73

<« > 30000 1.16  1.21 0.05 4.53
A < 15000 0.57  0.60 0.03 5.78
Undivided 15000 to <30000 0.64  0.78 0.14 21.66

> 30000 0.73  1.01 0.28 38.68

Note: Increase = After — Before
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Angle Crashes — Table Four
Combined Results

Surrounding Land Use: Urban Location Type: Other Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes

Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 1.35 0.54 -0.81 -60.25

Divided 15000 to <30000 1.51  0.69 -0.82 -54.22

<« > 30000 1.71  0.89 -0.82 -47.74

v < 15000 084 044  -039  -46.85

Undivided 15000 to 30000 0.94  0.57 -0.37 -39.07

> 30000 1.07  0.74 -0.33 -30.77

< 15000 1.35  0.72 -0.62 -46.38

Divided 15000 to <£30000 1.51  0.93 -0.57 -38.10

<« > 30000 1.71 1.21 -0.50 -29.17

A < 15000 0.84  0.60 -0.24 -28.22

Undivided 15000 to <30000 0.94  0.78 -0.17 -17.54

> 30000 1.07 101 -0.07 -6.08

Note: Increase = After — Before
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Angle Crashes — Table Five
Combined Results

Surrounding Land Use: Rural Location Type: Business Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.72  0.66 -0.06 -7.94

Divided 15000 to <30000 0.80  0.85 0.05 6.36

<« > 30000 090 1.10 0.20 21.81
v < 15000 044 055 010  23.32
Undivided 15000 to <30000 0.50  0.71 0.21 41.81

> 30000 0.56 091 0.35 61.65

< 15000 0.72  0.89 0.17 23.97

Divided 15000 to <30000 0.80  1.15 0.35 43.55

<« > 30000 090 148 0.58 64.78
A < 15000 044 0.74 0.29 66.23
Undivided 15000 to <30000 0.50  0.95 0.46 91.59
> 30000 0.56 1.23 0.67 118.89

Note: Increase = After — Before
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Angle Crashes — Table Six
Combined Results

Surrounding Land Use: Rural Location Type: Business Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 1.05  0.66 -0.40 -37.49
Divided 15000 to <30000 1.18  0.85 -0.33 -27.85
<« > 30000 1.33  1.10 -0.23 -17.44
v < 15000 065 055 011  -16.30
Undivided 15000 to <30000 0.73  0.71 -0.03 -3.84

> 30000 0.83 091 0.08 9.51
< 15000 1.05 0.89 -0.17 -15.81

Divided 15000 to <£30000 1.18  1.15 -0.03 -2.61

<« > 30000 1.33 148 0.16 11.69
A < 15000 0.65 0.74 0.08 12.82
Undivided 15000 to <30000 0.73  0.95 0.22 29.91

> 30000 0.83 1.23 0.40 48.29

Note: Increase = After — Before
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Angle Crashes — Table Seven
Combined Results

Surrounding Land Use: Rural Location Type: Other Shoulder: Paved
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.72  0.54 -0.18 -25.22
Divided 15000 to < 30000 0.80  0.69 -0.11 -13.51

<« > 30000 090 0.89 -0.01 -0.85
v < 15000 044 044  0.00 0.22
Undivided 15000 to <30000 0.50  0.57 0.08 15.36

> 30000 0.56 0.74 0.18 31.64

< 15000 0.72  0.72 0.01 0.89

Divided 15000 to 30000 0.80  0.93 0.14 16.94

<« > 30000 090 1.21 0.31 34.38
A < 15000 044  0.60 0.16 35.33
Undivided 15000 to <30000 0.50  0.78 0.28 56.14

> 30000 0.56 1.01 0.44 78.58

Note: Increase = After — Before
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Angle Crashes — Table Eight
Combined Results

Surrounding Land Use: Rural Location Type: Other Shoulder: Other
Speed: < 45 mph or > 45 mph

Intersection Characteristics Number of Angle Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 1.05 0.54 -0.52 -49.22
Divided 15000 to <30000 1.18  0.69 -0.49 -41.33
<« > 30000 1.33  0.89 -0.44 -32.80
v < 15000 065 044  -021  -31.98
Undivided 15000 to <30000 0.73  0.57 -0.16 -21.77
> 30000 0.83 0.74 -0.09 -10.82
< 15000 1.05 0.72 -0.33 -31.49
Divided 15000 to <30000 1.18 0.93 -0.24 -20.66

<« > 30000 1.33 1.21 -0.12 -8.92
A < 15000 0.65 0.60 -0.05 -8.15
Undivided 15000 to <30000 0.73  0.78 0.04 5.88

> 30000 0.83 1.01 0.17 20.98

Note: Increase = After — Before
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Left-turn Crashes — Table One

Combined Results
Surrounding Land Use: Rural or Urban Location Type: Business
Shoulder: Paved Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left Turn Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 0.72  0.56 -0.15 -21.59
Divided 15000 to < 30000 0.88  0.70 -0.17 -19.75
< > 30000 1.07  0.88 -0.19 -17.75
v < 15000 052 032 -021  -39.48
Undivided 15000 to < 30000 0.64  0.39 -0.25 -38.41
> 30000 0.78  0.49 -0.29 -37.23
< 15000 1.01  0.76 -0.25 -25.14
Divided 15000 to <30000 1.23  0.95 -0.29 -23.31
<« > 30000 1.51 1.19 -0.32 -21.33
A < 15000 0.73 042 -0.31 -42.22
Undivided 15000 to <30000 0.90  0.53 -0.37 -41.15
> 30000 1.10  0.66 -0.44 -39.96

Note: Increase = After — Before
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Left-turn Crashes — Table Two

Combined Results
Surrounding Land Use: Rural or Urban Location Type: Business
Shoulder: Other Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left Turn Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 0.86 0.70 -0.16 -18.59
Divided 15000 to <30000 1.05 0.88 -0.17 -16.61
<« > 30000 1.29  1.10 -0.19 -14.46
v < 15000 063 039 -024 3775
Undivided 15000 to <30000 0.77  0.49 -0.28 -36.60
> 30000 095 0.61 -0.33 -35.32
< 15000 1.21 094 -0.27 -22.16
Divided 15000 to <30000 1.48  1.18 -0.30 -20.19
<« > 30000 1.81 1.49 -0.33 -18.05
A < 15000 0.88 0.53 -0.36 -40.49
Undivided 15000 to <30000 1.08  0.66 -0.43 -39.32
> 30000 1.33  0.82 -0.51 -38.04

Note: Increase = After — Before
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Left-turn Crashes — Table Three

Combined Results
Surrounding Land Use: Rural or Urban Location Type: Other
Shoulder: Paved Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left Turn Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.56 048 -0.08 -14.60

Divided 15000 to < 30000 0.68  0.60 -0.08 -12.17

<« > 30000 0.84 0.76 -0.08 -9.55
v < 15000 041 027 -0.14  -3401
Undivided 15000 to <30000 0.50  0.33 -0.16 -32.50

> 30000 0.61 042 -0.19 -30.88

< 15000 0.79  0.65 -0.15 -18.43

Divided 15000 to <30000 0.96  0.81 -0.15 -16.04

<« > 30000 1.18  1.02 -0.16 -13.44

A < 15000 0.57 0.36 -0.21 -36.97
Undivided 15000 to <30000 0.70  0.45 -0.25 -35.49

> 30000 0.85 0.56 -0.29 -33.86

Note: Increase = After — Before
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Left-turn Crashes — Table Four

Combined Results
Surrounding Land Use: Rural or Urban Location Type: Other
Shoulder: Other Speed: < 45 mph or > 45 mph
Intersection Characteristics Number of Left Turn Crashes
Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.67  0.60 -0.07 -10.65

Divided 15000 to <30000 0.82  0.75 -0.07 -8.04

<« > 30000 1.00  0.95 -0.05 -5.21
v < 15000 049 033 -015  -31.59
Undivided 15000 to <30000 0.60  0.42 -0.18 -29.98

> 30000 0.73  0.52 -0.21 -28.23

< 15000 0.94 0.81 -0.14 -14.54

Divided 15000 to £30000 1.15  1.02 -0.14 -11.95

<« > 30000 1.41 1.28 -0.13 -9.15
A < 15000 0.69 045 -0.24 -34.59
Undivided 15000 to <30000 0.84  0.56 -0.28 -32.98

> 30000 1.03  0.71 -0.32 -31.23

Note: Increase = After — Before
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Rear-end Crashes — Table One
Combined Results

Surrounding Land Use: Rural or Urban Location Type: Business
Shoulder: Paved

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.50  0.80 0.30 60.84

Divided 15000 to < 30000 0.85  1.38 0.53 63.20

<« > 30000 144 240 0.96 66.90

v < 15000 055 055  0.00 0.28

Undivided 15000 to <30000 0.94  0.96 0.03 2.94

é‘ > 30000 1.59 1.69 0.10 6.49
lﬁ < 15000 0.68 0.93 0.26 38.16
Divided 15000 to £30000 1.15  1.62 0.46 40.29

<« > 30000 196 2.82 0.86 43.57

A < 15000 0.75  0.65 -0.10 -13.91
Undivided 15000 to <30000 1.28  1.13 -0.15 -11.56

> 30000 2.19  2.00 -0.18 -8.45
< 15000 0.33 0.78 0.45 134.36
Divided 15000 to <30000 0.57 1.34 0.77 135.93
<« > 30000 096 231 1.34 139.34

v < 15000 037 053 016 4450
Undivided 15000 to <30000 0.63  0.92 0.29 47.14

g* > 30000 1.06  1.61 0.54 51.00
ﬁ < 15000 045 091 0.46 101.97
Divided 15000 to 30000 0.77  1.56 0.80 103.47
<« > 30000 1.31  2.70 1.39 106.56

A < 15000 0.50 0.62 0.12 24.45
Undivided 15000 to <30000 0.85  1.08 0.23 26.82

> 30000 145 1.89 0.44 30.24

Note: Increase = After — Before
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Rear-end Crashes — Table Two
Combined Results

Surrounding Land Use: Rural or Urban Location Type: Business
Shoulder: Other

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.50 1.09 0.59 118.94

Divided 15000 to <30000 0.85  1.88 1.04 122.48

<« > 30000 144 328 1.84 127.86

v < 15000 055 075 020  36.82
Undivided 15000 to <30000 0.94  1.32 0.38 40.66

é‘ > 30000 1.59 232 0.73 45.72
lﬁ < 15000 0.68 1.27 0.60 88.18
Divided 15000 to <30000 1.15  2.21 1.05 91.37

<« > 30000 1.96 3.85 1.89 96.13

A < 15000 0.75 0.88 0.13 17.52
Undivided 15000 to <30000 1.28  1.55 0.27 20.91

> 30000 219 274 0.55 25.34

< 15000 0.33 1.07 0.73 218.48

Divided 15000 to <30000 0.57  1.82 1.26 221.08

- > 30000 096 3.14 2.18 226.20

v < 15000 037 073 036  96.80
Undivided 15000 to <30000 0.63  1.26 0.63 100.70

g* > 30000 1.06  2.19 1.13 106.27
§ < 15000 045 1.24 0.79 174.63
Divided 15000 to <30000 0.77  2.13 1.36 177.07

- > 30000 1.31  3.68 2.38 181.70

A < 15000 0.50 0.85 0.35 69.59
Undivided 15000 to <30000 0.85  1.47 0.62 73.08

> 30000 145 258 1.13 78.02

Note: Increase = After — Before

246



Rear-end Crashes — Table Three
Combined Results

Surrounding Land Use: Rural or Urban Location Type: Other
Shoulder: Paved

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.37  0.80 0.43 116.94

Divided 15000 to <30000 0.63  1.38 0.75 119.87

<« > 30000 1.07 240 1.33 124.57

v < 15000 041 055 014  34.90
Undivided 15000 to <30000 0.70  0.96 0.27 38.32

é‘ > 30000 1.19  1.69 0.51 4291
lﬁ < 15000 0.50 0.93 0.43 85.35
Divided 15000 to 30000 0.86  1.62 0.76 87.98

<« > 30000 147  2.82 1.35 92.14

A < 15000 0.56  0.65 0.09 15.19
Undivided 15000 to <30000 0.96  1.13 0.17 18.19

> 30000 1.64  2.00 0.36 22.19

< 15000 025 0.78 0.54 217.12

Divided 15000 to <30000 0.42 1.34 0.92 218.86

<« > 30000 0.71 2.3l 1.59 223.08

v < 15000 027 053 026  95.00
Undivided 15000 to £30000 0.46  0.92 0.46 98.35

é* > 30000 0.79 1.61 0.82 103.30
ﬁ < 15000 0.34 091 0.58 171.85
Divided 15000 to <30000 0.57  1.56 0.99 173.54

<« > 30000 097 2.0 1.73 177.34

A < 15000 0.37  0.62 0.25 67.06
Undivided 15000 to <30000 0.64  1.08 0.44 70.03

> 30000 1.08 1.89 0.81 74.41

Note: Increase = After — Before
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Rear-end Crashes — Table Four
Combined Results

Surrounding Land Use: Rural or Urban Location Type: Other
Shoulder: Other

Intersection Characteristics Number of Rear-end Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.37  1.09 0.72 195.29
Divided 15000 to < 30000 0.63  1.88 1.25 199.74
<« > 30000 1.07  3.28 221 206.60
v < 15000 041 075 034  84.06
Undivided 15000 to <30000 0.70  1.32 0.62 88.99
é‘ > 30000 1.19 232 1.13 95.55
lﬁ < 15000 0.50 1.27 0.77 152.46
Divided 15000 to £30000 0.86  2.21 1.35 156.42
<« > 30000 147  3.85 2.39 162.48
A < 15000 0.56  0.88 0.32 57.25
Undivided 15000 to <30000 0.96  1.55 0.59 61.58
> 30000 1.64 2.74 1.10 67.30
< 15000 025 1.07 0.82 330.95
Divided 15000 to <30000 0.42  1.82 1.40 333.94
<« > 30000 0.71  3.14 2.43 340.33
v < 15000 027 073 045 16559
Undivided 15000 to <30000 0.46  1.26 0.79 170.55
g* > 30000 0.79  2.19 1.40 177.72
ﬁ < 15000 034 1.24 0.91 269.66
Divided 15000 to <30000 0.57  2.13 1.56 272.48
- > 30000 097  3.68 2.71 278.23
A < 15000 0.37  0.85 0.48 127.67
Undivided 15000 to <30000 0.64  1.47 0.84 132.06
> 30000 1.08  2.58 1.50 138.39

Note: Increase = After — Before
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Other Crashes — Table One
Combined Results

Surrounding Land Use: Urban Location Type: Business or Other
Shoulder: Paved or Other

Intersection Characteristics Number of Other Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase

< 15000 0.76  0.63 -0.14 -17.78

Divided 15000 to <30000 1.09  0.97 -0.12 -10.99

<« > 30000 1.55 1.51 -0.05 -3.07

v < 15000 064 063 -001  -1.62
Undivided 15000 to <30000 091  0.97 0.06 6.30

é‘ > 30000 1.30  1.51 0.20 15.52
lﬁ < 15000 0.76  0.77 0.01 1.00
Divided 15000 to <30000 1.09  1.19 0.10 9.61

<« > 30000 1.55 1.86 0.31 19.64

A < 15000 0.64 0.77 0.13 20.86
Undivided 15000 to 30000 091  1.19 0.28 30.89

> 30000 1.30  1.86 0.56 42.59

< 15000 0.57 0.63 0.06 10.13

Divided 15000 to <30000 0.82  0.97 0.15 18.87

<« > 30000 1.17  1.51 0.34 29.05

v < 15000 048 063 014 2996
Undivided 15000 to £30000 0.69  0.97 0.28 39.99

é‘ > 30000 099 151 0.51 51.69
f < 15000 057 077 020 3529
Divided 15000 to <30000 0.82  1.19 0.38 46.38

<« > 30000 1.17  1.86 0.69 59.29

A < 15000 048  0.77 0.29 59.65
Undivided 15000 to <30000 0.69  1.19 0.50 72.38

> 30000 099 1.86 0.87 87.23

Note: Increase = After — Before
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Other Crashes — Table Two
Combined Results

Surrounding Land Use: Rural Location Type: Business or Other
Shoulder: Paved or Other

Intersection Characteristics Number of Other Crashes
Speed Lanes  Median ADT (vpd) Before After Increase % Increase
< 15000 0.55 045 -0.09 -17.10
Divided 15000 to <30000 0.78  0.70 -0.08 -10.10
<« > 30000 .11 1.09 -0.02 -1.94
v < 15000 046 045 000  -0.87
Undivided 15000 to <30000 0.65  0.70 0.05 7.28
é‘ > 30000 093 1.09 0.16 16.79
3 < 15000 0.55 0.56 0.01 1.91
Divided 15000 to <30000 0.78  0.86 0.08 10.77
<« > 30000 .11 1.35 0.23 21.11
A < 15000 046  0.56 0.10 21.86
Undivided 15000 to <30000 0.65  0.86 0.21 32.19
> 30000 093 1.35 0.41 44.24
< 15000 041 045 0.04 10.92
Divided 15000 to <£30000 0.58  0.70 0.12 19.93
<« > 30000 0.84 1.09 0.25 30.42
v < 15000 035 045 011  30.79
Undivided 15000 to <30000 0.50  0.70 0.20 41.14
g* > 30000 0.71  1.09 0.38 53.19
f < 15000 041  0.56 0.15 36.36
Divided 15000 to <£30000 0.58  0.86 0.28 47.77
<« > 30000 0.84 1.35 0.51 61.09
A < 15000 035 0.56 0.21 60.79
Undivided 15000 to <30000 0.50  0.86 0.37 73.92
> 30000 0.71  1.35 0.64 89.21

Note: Increase = After — Before
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