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EXECUTIVE SUMMARY 

Managed lanes are currently of significant interest for transportation management in the U.S.  

Resultant reductions in congestion are expected to have potential benefits for transit service 

use. Additionally, since transportation systems contribute substantially to air pollution, 

information on the impacts of managed lanes on air quality and methods to assess those 

impacts are needed.   

In this study, impacts on transit bus performance and air quality were investigated for a case 

study managed lane project. The case study project is the I-95 Express project managed by the 

Florida Department of Transportation through the Miami Urban Partnership Agreement.  It 

involves conversion of a single high-occupancy vehicle (HOV) lane into two high-occupancy / 

toll (HOT) lanes along a corridor of I-95 between Miami and Fort Lauderdale.  

Objectives of this project were to: 

1. assess air quality and temporal trends in air quality prior to the managed lane project,  

2. determine emissions changes due to the managed lane project for select pollutants, and 

3. determine modeled air pollutant concentrations due to the managed lane project. 

Several methods were used to accomplish these objectives.  First, trends in ambient 

concentrations in the study area of select air pollutants that are substantially associated with 

vehicle emissions were investigated through analysis of available monitoring data from 

monitoring reports and the U.S. Environmental Protection Agency air quality database. Traffic 

movement on the case study corridor prior to and after implementation of the HOT lane project 

was simulated in order to study impacts on corridor performance and to determine changes due 

to the managed lane project on traffic parameters that affect emissions.  An established corridor 

micro-simulation modeling package (CORSIM) was used.  Impacts on transit buses were a 

specific focus.  Resultant traffic data were combined with MOBILE6.2 emissions factor 

estimation to calculate changes in emissions of five select pollutants emitted from vehicles: 

carbon monoxide (CO), nitrogen oxides (NOx), coarse particulate matter (PM10), hydrocarbons 

(HCs), and benzene.  Changes in ambient concentrations of select pollutants due to the corridor 

project were estimated using AERMOD dispersion modeling. Finally, factors affecting emissions 

changes were investigated. 

Results indicate the following: 

• Of the pollutants whose monitoring data were studied, only ozone and PM2.5 had measured 

levels near to or slightly exceeding the regulatory standard levels between the years 2000 to 

2009 at some sites in Broward County. Concentrations of pollutants with substantial primary 

emissions (CO, nitrogen dioxide [NO2], and PM10) were observed to be highest at some 
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monitoring sites close to I-95.  Overall, the data indicate reductions over the decade in CO 

and NO2 concentrations, with no clear apparent trend in ozone or particulate matter 

concentrations.  For the toxic pollutants studied (benzene, 1,3-butadiene, and 

acetaldehyde), data are sparse, but lower concentrations of the former two were observed in 

2009 relative to 2000.   

• Improvements were found in the simulated speed performance of the corridor due to the 

HOT lane implementation, particularly for the northbound direction during the afternoon 

peak hours.  Bus travel times, specifically, were reduced by nine minutes, on average, 

during these hours.   

• Emissions results were mixed.  Compared with the baseline (pre-implementation) scenario, 

small increases in CO, NOx, PM10, and benzene emissions were estimated to occur for the 

post-implementation scenario studied. Conversely, small decreases in HC emissions were 

estimated.  Emissions from buses, specifically, were estimated to decrease as a result of 

HOT lane implementation for all pollutants studied.   

• Simulated changes in ambient concentrations of select pollutants (CO, NOx, and benzene) 

due to corridor emissions indicate slightly higher concentrations throughout much of the 

study area for the post-implementation scenario compared with the baseline scenario.  

Decreases at some locations near the northern end of the corridor also were found, due to 

changes in the spatial distribution of emissions.  Estimated differences were largest near the 

corridor, which could be important to populations living nearby.   

• Overall, estimated changes in both emissions and concentrations were small, indicating only 

small expected impacts of the HOT lane project on air quality.   

An analysis of the factors influencing the emissions changes suggests substantial uncertainty in 

the emissions changes resulting from HOT lane implementation.  First, changes in volumes on 

the corridor were found to impact the emissions result. Volumes were estimated to increase 

slightly; however, the actual impact on volumes could not be captured because total volumes 

entering the corridor are inputs to the corridor simulation model.  It is expected that changes in 

input volumes will depend on the comparative performance of the surrounding transportation 

network, which is not represented here.  Second, the impact of speed on emissions factors was 

analyzed.  For the range of speed improvements realized through the HOT lane implementation, 

the MOBILE6.2 emissions factors did not change substantially for the pollutants studied.  

Conversely, the CORSIM emissions factors did (using the default tables).  Use of the CORSIM 

factors would result in emissions improvements for CO and NOx.  These issues suggest 

uncertainty in the emissions and air quality changes expected from the HOT lane 

implementation. Overall, further work is needed to improve 1) estimation of network level 
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impacts of managed lane projects on vehicle volume redistribution, 2) emissions factor 

estimator model representation of speed effects, and 3) tools for effectively translating between 

transportation and air pollution models. Finally, it is important to note that air quality impacts of 

managed lanes projects likely depend on the conditions of the case studied.  Generalizable 

conclusions will require more analyses for other case studies.
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1 INTRODUCTION 

1.1 Background 
The concept of managed lanes in transportation management is currently of significant interest 

around the U.S. due to its potential to mitigate traffic congestion and generate revenue.  The 

concept uses variable pricing of tolls to ensure desired operating speeds of vehicles using 

managed lane facilities.  The resultant reduction of congestion is particularly important to the 

efficiency, visibility, and use of transit services.  Public buses, carpools, and vanpools, which are 

allowed use of managed lanes for waived or reduced fees, can then experience largely 

unimpeded flow.  Increased use of transit options is expected to result from successful 

implementation of managed lane concepts.  Therefore, the National Center for Transit Research 

(NCTR) at the University of South Florida’s Center for Urban Transportation Research has 

targeted analysis of the design and performance of managed lane projects as a focus of study. 

The Florida Department of Transportation (FDOT) recently implemented a managed lane 

project in south Florida through the Miami Urban Partnership Agreement.  This agreement 

includes 21 miles of managed high occupancy/toll (HOT) lanes on the I-95 corridor between 

Miami and Fort Lauderdale.  The federal government also is providing millions of dollars for new 

buses and bus rapid transit (BRT) service on the I-95 corridor.  As the current express buses on 

I-95 can be substantially slowed in congestion, the HOT managed lane project is expected to 

enhance the speed of the BRT service network and lead to increased use of transit on the 

corridor.  

In addition, transportation systems currently are a significant source of air pollutant emissions 

throughout the U.S. (US Environmental Protection Agency 2001).  Transportation infrastructure 

and management projects must now often consider the air quality impacts (National Research 

Council 2004).  However, there is significant controversy over the impacts of transportation 

infrastructure and management projects on emissions and resultant air quality impacts 

(Transportation Research Board 1995; Replogle 1995; Dowling et al. 2005).  Hence, it is 

important to evaluate the potential benefits and costs of transportation projects on air quality. 

The I-95 managed lane project provides an opportunity to evaluate these impacts and develop 

methods for assessment applicable to future projects. 

1.2 Description of the case study managed lane project 
The managed lane project, also known as the “95 Express,” is part of the Interstate 95 (I-95) 

management program managed by FDOT. The project involves converting the single high-
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occupancy vehicle (HOV) lane between Miami and Fort Lauderdale into two HOT lanes. The 

number of the general-purpose lanes will remain the same. Vehicles have the option to choose 

between general-purpose lanes or pay a toll charge to use the HOT lanes. Certain types of high 

occupancy vehicles (registered vanpools, carpools with three or more people, and transit buses 

in Broward and Miami-Dade counties) are allowed to use 

the HOT lanes free of charge. Hybrid vehicles and 

motorcycles are also free of the toll charge. The project is 

aimed at reducing the congestion on I-95 and encouraging 

carpool and transit use (FDOT 2009).  

The project consists of three phases, as shown in Figure 

1.1.  Phase 1A involves the implementation of HOT lanes 

for northbound I-95 between SR-112 and north of the 

Golden Glades Interchange in Miami-Dade County. In 

Phase 1B, the HOT lanes were implemented on the 

southbound lanes of the same section of I-95. Phase 2 will 

extend the HOT lanes further north into Broward County. In 

this report, impacts of Phase 1A and 1B are studied.  

1.3 Objectives and organization of this report 
The overall goals of this research were to contribute to the 

understanding of potential impacts of managed lane 

transportation projects on air quality and on bus transit and 

to improve methods for determination of impacts.  Objective 

1 was to assess baseline air quality and temporal trends 

using available air quality monitoring data. Objective 2 was to 

determine the change in emissions of select pollutants from 

the case-study corridor due to the implementation of the HOT lane project. Objective 3 was to 

assess impacts on air pollutant concentrations due to the implementation of the HOT lane 

project.  A specific sub-focus within these objectives, particularly Objective 2, was to assess 

impacts of the HOT lane project on transit bus service performance and resultant emissions. 

This report is organized around these objectives.  Chapters 2 through 4 provide methods, 

results, and discussion for each objective, respectively.   Chapter 5 provides a final integration 

and discussion of the results from all objectives. 

Figure 1-1. Three phases of  
managed lane project. 
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2 BASELINE AIR QUALITY (OBJECTIVE 1):  METHODS AND FINDINGS 

To characterize the impacts of the I-95 case study project on air quality, metrics of baseline air 

quality in the surrounding Miami-Date and Broward counties prior to the implementation of the 

managed lane project are needed.  Trends in measured concentrations of several air pollutants 

for these counties are discussed. 

2.1 Methods 
Several pollutants were selected as the focus for this work.  Specific pollutants were selected 

based on the criteria that mobile sources contribute substantially to their emissions or ambient 

concentrations.  Pollutants selected for study were ozone (O3), nitrogen dioxide (NO2), carbon 

monoxide (CO), particulate matter (PM), volatile organic compounds (VOCs), benzene, 

acetaldehyde, and 1,3-butadiene. As a measure of combined criteria pollutant air quality, data 

on the Air Quality Index also were studied. 

To determine baseline air quality in the study area, air quality information was compiled from 

two types of data sources − local and state air monitoring reports and federal air quality system 

data.  First, available air monitoring reports of Broward and Miami-Dade counties as well as the 

State of Florida Department of Environmental Protection were collected and the data were 

compiled, beginning with the year 2000.  The agencies, report type, and temporal data 

availability are shown in Table 2-1.  The reports differ in the detail of air quality information 

reported. The state-level and the Miami-Dade County reports each contain summarized 

monitoring data for all criteria pollutants at monitoring sites throughout the respective 

jurisdictions. However, the Broward County report provides only trends of ozone and particulate 

matter with no detailed data. 

Table 2-1.  Air monitoring reports collected, including publishing agencies  
and annual temporal availability since 2000 

Agency Report Availability 

Florida Department of Environmental Protection Annual Air Monitoring Report 
Quick Look Report 

2000-2006 
2000-2009 

Broward County Environmental Protection and 
Growth Management Department 

Environmental Benchmarks 
Report 2000-2008 

Miami-Dade County Department of Environmental 
Resources Management Ambient Air Monitoring Report 2002-2007 

 
Second, raw and summarized monitoring data for January 2000 through June 2009 were 

collected from the U.S. Environmental Protection Agency (USEPA) AirData Summary Report 

database and the USEPA Air Quality System database. Table 2-2 provides a list of air 
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monitoring sites located in Broward and Miami-Dade counties, pollutants monitored at each site, 

and years for which data are available.  Trends in measured pollutant values at each site as well 

as calculated county averages are provided in Section 2.2.  Site locations also were mapped, 

and distances to the I-95 corridor were measured using ArcGIS.  The shortest distance of each 

monitoring site to I-95 is listed in Table 2-2. 

2.2 Results: Measured air pollutant concentrations and trends 

2.2.1 Criteria air pollutants and the Air Quality Index 
For this project, a few criteria pollutants associated with vehicular emissions were selected for 

study: carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), particulate matter less than 

2.5 µm in diameter (PM2.5), and particulate matter less than 10 µm in diameter (PM10).  Criteria 

air pollutants are a set of common air pollutants that can be present at levels harmful to human 

health and welfare and are regulated by National Ambient Air Quality Standards (NAAQS).  The 

standards are threshold levels in air that are considered protective of health and welfare. Hence, 

measured concentrations are expected to be lower than these levels.  The Air Quality Index, 

which combines concentration data from several criteria pollutants into an overall metric, also 

was studied. 

2.2.1.1 Carbon monoxide 
CO is a colorless gas. Health effects occur due to reduction of the oxygen-carrying capacity of 

the blood upon inhalation.  Persons with cardiovascular disease are most susceptible.  The 

current NAAQS levels for carbon monoxide are 35 ppmv (parts per million by volume)1 for the 

one-hour average and 9 ppmv for the eight-hour average.2

Figure 2-1 provides maps of the CO monitoring sites in Broward and Miami-Dade counties.  All 

CO monitoring sites in both counties use a Thermo Electron/Thermo Environmental Instruments 

Model 48 series Gas Filter Correlation Ambient CO Analyzer to monitor CO concentration 

continuously.  Hourly CO concentration data are reported. There are five monitoring sites 

located in Broward County and four sites in Miami-Dade County.  Of these, the S. Univ. Rd and 

N. State Rd sites in Broward County stopped monitoring CO in 2006 and 2004, respectively. 

  Carbon monoxide is emitted directly 

during fuel combustion, leading to high concentrations near roadways and roadway 

intersections. 

                                              
1 ppmv is a unit of measurement that quantifies the number of molecules of the pollutant per million air molecules. 
2 To meet the NAAQS, these levels may not be exceeded more than once per year. 
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Table 2-2.  Air monitoring sites in Broward and Miami-Dade counties, including pollutants monitored, and distance to I-95   
For each pollutant measured at a given site, years for which data are available also are provided. Other refers to VOCs and select air toxics discussed in Section 2.2. 

County Site ID No. Address Abbreviation Distance to I-95 CO NO2 O3 PM10 PM2.5 Other 

Broward 12-011-0010 Lincoln Park Elementary School (NW corner) Lincoln Park 0.1 mi 00-09   00-09   

Broward 12-011-0011 1800 SW 4th Ave, Fort Lauderdale SW 4th Ave 1.4 mi    00-07   

Broward 12-011-0031 12600 West Sample Rd W Sample 9.9 mi  00-09 00-09    

Broward 12-011-0033 3211 College Ave, Vista View Park Vista 10.6 mi   09  09  

Broward 12-011-1002 3205 SW 70th Ave SW 70th Ave 4.3 mi    00-09 00-09 00-09 

Broward 12-011-1201 2900 S. University Dr S Univ 5.1 mi 00-06      

Broward 12-011-2003 1951 NE 48th St NE 48th St 1.6 mi   00-09    

Broward 12-011-2004 851 SW 3 Ave, Pompano Beach SW 3 Ave 0.5 mi 00-09   00-09 00-09 00-08 

Broward 12-011-3002 2701 Plunkett St, Hollywood Plunkett St 0.4 mi 00-09   00-09 00-09 00-08 

Broward 12-011-5001 3701 North State Rd 207 N State Rd 2.6 mi 00-04      

Broward 12-011-5002 11251 Taft S,t Pembroke Pines Taft St 8.2 mi    00-02   

Broward 12-011-5005 4010 Winston Park Blvd Winston 3.3 mi    00-09  00,02-09 

Broward 12-011-6002 1200 NW 72 Ave, Plantation NW 72 Ave 4.6 mi    00-01   

Broward 12-011-7002 301 NE 12th St NE 12th St 0.9 mi    00   

Broward 12-011-8002 7000 N Ocean Dr Ocean Dr 3.5 mi  00-09 00-09    

Miami-Dade 12-086-0020 7100 NW 36th St NW 36th St 6.0 mi    00-03  02-05 

Miami-Dade 12-086-0021 Krome Ave, Thompson Park Krome Ave 14.8 mi   00-03    

Miami-Dade 12-086-0027 Rosenstiel School Rosenstiel 2.9 mi  00-09 00-09    

Miami-Dade 12-086-0029 19590 Old Cutler Rd-Perdue Medical Center Perdue Med 13.5 mi   00-09   02-05 

Miami-Dade 12-086-0030 Everglades NP Everglades 38.8 mi   00-04    

Miami-Dade 12-086-0031 16000 South Dixie Hwy S Dixie Hw 12.1 mi 00-09      

Miami-Dade 12-086-0033 7700 NW 186 St (Palm Springs Fire Station) PF 7.3 mi     05-09  

Miami-Dade 12-086-0034 NW corner of intersection of SW 88 St  & N Kendall Dr SW 88 St 12.7 mi 05-09      

Miami-Dade 12-086-1016 NW 20 St and 12 Ave (Miami Fire Station) MF 0.1 mi    00-09 00-09  

Miami-Dade 12-086-1019 2201 SW 4 St SW 4 St 2.1 mi 00-09      

Miami-Dade 12-086-3001 6400 NW 27th Ave NW 27th Ave 2.3 mi    00-03   

Miami-Dade 12-086-4002 Metro Annex 864 NW 3rd S Annex 0.3 mi 00-09 00-09    02-03 

Miami-Dade 12-086-6001 325 NW 2nd St (Homestead Fire Station) HF 25.6 mil    00-03 00-09  
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Figure 2-1.  Carbon monoxide monitoring sites in (a) Broward and (b) Miami-Dade counties.  
Abbreviated site names are provided in Table 2-2. 

 

The SW 88 St site in Miami-Dade County started monitoring CO in 2005. As shown in Figure 2-

1, three sites in Broward County (SW 3 Ave, Lincoln Park, and Plunkett St) and one site in 

Miami-Dade County (Annex) are located in close proximity to I-95.  Due to their proximity, these 

sites are expected to provide good metrics of the effects of the project on carbon monoxide 

levels. 

Multi-year trends in the highest hourly average and highest eight-hour average CO 

concentrations for both counties are shown in Figure 2-2. As shown in the figure, all of the 

monitored CO concentrations are substantially below the NAAQS.  Measured CO 

concentrations are similar in both counties, with slightly higher values overall in Miami-Dade 

County. In Broward County, the one-hour average values range from 1.4 ppmv at the SW 3 Ave 

site in 2009 to 7.5 ppmv at the Lincoln Park site in 2000. In Miami-Dade County, they range 

from 1.7 ppmv (S Dixie Hw, 2009) to 11.9 ppmv (Annex, 2004). The monitored eight-hour 

average CO concentrations range from 0.8 ppmv (SW 3 Ave site, 2009) to 5.7 ppmv (Lincoln 

Park, 2002) in Broward County and from 1.2 ppmv (S Dixie Hw site, 2007-2008) to 6.4 ppmv 

(Annex, 2004) in Miami-Dade County.  The highest one-hour CO concentration showed an 

apparent declining trend. The county average highest one-hour CO concentration in Broward 

County dropped from 5.14 ppmv in 2000 to 2.1 ppmv in 2009. Miami-Dade County had a higher 

decrease, dropping from 6.23 ppmv in 2000 to 2.45 ppmv in 2009. The largest decrease was 

observed in the SW 3 Ave site in Broward County, for which the concentration dropped from 4.5 
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ppmv in 2000 to 1.4 ppmv in 2009. The highest eight-hour CO concentration in both counties 

also showed a declining trend, with more fluctuations. In Broward County, the county average 

highest eight-hour CO concentration showed a 57 percent decrease, from 3.34 ppmv in 2000 to 

1.43 ppmv in 2009. A similar trend is observed for Miami-Dade County, with a 53 percent 

decrease from 3.86 ppmv in 2000 to 1.83 ppmv in 2009. The largest decrease of the highest 

eight-hour CO concentration was 63 percent, which was observed at the SW 4 St site in Miami-

Dade County. 

 
Figure 2-2.  Multi-year trends of measured carbon monoxide concentrations in (a, c) Broward 
and (b, d) Miami-Dade counties.  The highest one-hour average values are provided in subplots a and b, 
while subplots c and d provide the highest eight-hour average values.  Calculated county average values are 
shown with solid lines. 

2.2.1.2 Nitrogen dioxide 
NO2 is a light brown gas. It may increase airway responsiveness and trigger acute respiratory 

symptoms in susceptible groups.  NO2 also contributes to the formation in the atmosphere of 

near-surface ozone, another criteria pollutant (Denison et al. 2000). The current National 

Ambient Air Quality Standard (NAAQS) levels for NO2 are 0.053 ppmv for the annual 

(arithmetic) average and 100 ppbv (parts per billion by volume) for the maximum one-hour 
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average.3

Figure 2-3 shows a map of the NO2 monitoring sites in both counties.  There are two sites in 

each county.  Thermo Environmental Instruments, Inc., Model 42 series Chemiluminescence 

NO-NO2-NOx Analyzers are used at all NO2 monitoring sites to collect hourly ambient NO2 

concentrations. One of the sites (Annex) in Miami-Dade County is located near to I-95, with the 

others farther away. Sites in closer proximity to the roadway are likely to provide better metrics 

of the effects of roadway projects such as this one on NO2 concentrations. 

  NO2 is formed primarily from nitrogen oxide (NO) emitted during combustion.  

Formation occurs relatively quickly, leading to peak concentration within a short distance of 

roadways.   

 

Figure 2-3.  NO2 monitoring sites in (a) Broward and (b) Miami-Dade counties.   Abbreviated site 
names are provided in Table 2.2. 

  
Trends in annual average and one-hour maximum NO2 concentrations for each county are 

shown in Figure 2-4.  All values are below the NAAQS levels.  The annual NO2 concentration in 

Broward County ranges from 0.005 ppmv (W. Sample, 2008) to 0.01 ppmv (Ocean Dr, 2000) 

and ranges from 0.004 ppmv (Rosenstiel, 2008) to 0.016 ppmv (Annex, 2001) in Miami-Dade 

County.  Annual average values are somewhat consistent from 2000 with a slightly declining 

trend.  In Broward County, the county averaged annual NO2 concentration was 0.0097 ppmv in 

                                              
3 The three-year average of the 98th percentile of daily maximum one-hour average must not exceed this value. 
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2000, and decreased to 0.0061 ppmv in 2009. The county averaged NO2 concentration in 

Miami-Dade County dropped from 0.011 ppmv in 2000 to 0.0067 ppmv in 2009. 

 

 
 

Figure 2-4.  Multi-year trends of measured (a) annual average and (b) highest one-hour 
average NO2 concentrations in Broward and Miami-Dade counties.  Calculated averages of all 
monitor values for each county are shown as solid lines. Note that a few data values were missing in the USEPA 
database; values from the State report were used in these cases. 

 
The highest measured one-hour average NO2 concentration was 0.16 ppmv (Ocean Dr, 2007) 

in Broward County and 0.42 ppmv (Annex, 2004) in Miami-Dade County, while the lowest 

measured one-hour average NO2 concentration was 0.037 ppmv (W Sample, 2009) in Broward 

County and 0.043 ppmv (Annex, 2009) in Miami-Dade County. Substantial fluctuations are seen 

over the years studied, particularly at the Annex monitoring site.  Spikes in concentration are 

seen at this site in both 2000 and 2004.  It is notable that the Annex site in Miami-Dade County 

is in close proximity to I-95.  It also has considerably higher annual average NO2 concentrations 

than the other monitoring sites and high fluctuations in the one-hour values. 

2.2.1.3 Ozone 
Ground-level ozone is the main component of urban smog and is associated with respiratory 

health impacts. Repeated exposure to O3 may also damage the lungs and permanently scar 

lung tissue. The current National Ambient Air Quality Standard (NAAQS) level for ozone is 75 

ppbv for the fourth-highest eight-hour average.4

                                              
4 The three-year average of the fourth-highest daily maximum eight-hour average at any monitor cannot exceed this 
value. 

  However, this standard is currently under 

reconsideration.  There are also continuing obligations under a historical one-hour standard of 
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0.12 ppmv that was officially revoked April 25, 2009.  Ozone (O3) is a secondary pollutant, 

formed in the atmosphere through reaction of nitrogen oxides and volatile organic compounds in 

the presence of sunlight.  Concentrations do not typically peak in close proximity to sources in 

an urban area but are expected to exhibit high levels downwind over a broader area. 

Figure 2-5 shows a map of the ozone monitoring sites active sometime during the period of 

study.  Miami-Dade County has two O3 monitoring sites still in operation (Rosenstiel and Perdue 

Med sites).  The Krome Ave and Everglades sites stopped monitoring for ozone in 2003 and 

2004, respectively.  In Broward County, the Vista site was newly established in 2009.  Sites 

located within five miles of I-95 are the NE 48th St site (1.7 miles) and Ocean Dr site (3.5 miles) 

in Broward County and Rosenstiel site (2.9 miles) in Miami-Dade County.  All monitoring sites 

except for the Everglades site use Thermo Electron/Thermo Environmental Instruments 49 

series Photometric Ambient O3 Analyzer (Method 047) for ozone monitoring.  The Everglades 

site uses a Monitor Labs/Lear Siegler Model 8810 Photometric Ozone Analyzer. Hourly ozone 

concentration data are reported. 

 

 
Figure 2-5.  Ozone monitoring sites in (a) Broward and (b) Miami-Dade counties.  Coordinate 
values for the Vista site were obtained from FDEP (2009). 

 
Multi-year trends in measured concentrations of ozone are shown in Figure 2-6.  In Broward 

County, the fourth highest eight-hour ozone concentration ranged from 0.055 ppmv (Vista, 

2009) to 0.077 ppmv (Ocean Dr, 2006).  The fourth-highest eight-hour ozone concentration in 
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Miami-Dade County ranged from 0.06 ppmv (Everglades, 2002) to 0.084 ppmv (Krome Ave, 

2001).  Some of these values are higher than the NAAQS level.  The highest one-hour ozone 

concentration ranged from 0.071 ppmv (W Sample, 2004 and 2007) to 0.11 ppmv (Ocean Dr, 

2001, 2006 and 2008).  In Miami-Dade County, it ranged from 0.069 ppmv (Everglades, 2002) 

to 0.119 ppmv (Rosenstiel and Perdue Med, 2001). This latter value is very close to the one-

hour NAAQS level (now revoked). Substantial fluctuations also are observed in the data with no 

apparent multi-year trends, although calculated county average concentrations in 2009 were 

lower than those in 2000 for all metrics studied except the highest one-hour average. 

 
Figure 2-6.  Multi-year trends in O3 concentrations in (a, c) Broward and (b, d) Miami-Dade 
counties. Calculated county average values are shown with solid lines. Differences in some data values 
reported in collected sources were found. 

2.2.1.4 Particulate matter 
PM consists of very small solid particles or liquid droplets that are suspended in the air.  

Constituent particles vary greatly in diameter, shape and composition. USEPA categorizes and 

regulates particulate matter by size due to evidence for increased health effects for small-size 

particles. Health outcomes include premature death, hospital and emergency room visits, and 

increased respiratory and cardiovascular symptoms.  The regulated size ranges are PM10 and 
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PM2.5; the subscript refers to the aerodynamic diameter in micrometers of the largest particles in 

the category; PM10 refers to particles with diameters less than 10 µm. Particulate matter is both 

emitted directly from sources and formed in the atmosphere.  Concentrations can be higher 

near sources such as roadways (particularly for PM10), but also typically exhibit widespread 

highs downwind of sources (particularly for PM2.5). 

Figure 2-7 provides a map of PM monitoring sites in the study area during the period studied 

(2000-2009).  In Broward County, 10 monitoring sites have been used, but only six (Lincoln 

Park, SW 70th, SW 3rd Ave, Plunkett St, Winston, Vistas) were active in 2009. Miami-Dade 

County has had five sites, with three active in 2009 (PF, MF, and HF). See Table 2-2 for a listing 

of the period of active monitoring for each site.  

 
Figure 2-7.   PM monitoring sites in (a) Broward and(b) Miami-Dade counties active 
sometime during 2000 – 2009. 

 

Several different methods have been used for PM monitoring in the study area, as shown in 

Table 2-3 and Table 2-4.  This includes federal reference manual filter methods (e.g., methods 

062 and 063 form PM10 and method 118 for PM2.5), co-located monitors used for quality 

assurance, and continuous methods used for obtaining time-resolved data (method 079 for 

PM10 and method 702 for PM2.5). To determine PM2.5 composition, each county also has one 

speciation sampler (method 810).  Reported data from all methods were used in the analyses 

below. 
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2.2.1.4.1 
As the current NAAQS level for PM10 is based on a 24-hour average concentration, Figure 2-8 

provides the multi-year trends in the highest 24-hour average concentrations at monitoring sites 

in both counties.  Values range from 19 to 122 µg/m3
 in Broward County; the lowest value was 

observed at Lincoln Park and Winston in 2009, and the highest values were observed at 

Plunkett St in 2007.  In Miami-Dade County, values ranged from 31 to 64.5 µg/m3; the lowest 

value was observed at MF in 2008, and the highest values were observed at MF and NW 27th 

Ave in 2009 and 2003, respectively. No values exceed the current NAAQS standard of 150 

µg/m3.

PM10 

5

Table 2-3.  Particulate matter monitoring sites in the study area  
and monitoring method 

 Although substantial fluctuations exist, no clear multi-year trend is apparent. A peak in 

PM10 concentrations was observed from 2005 – 2008 at Plunkett St and SW 3rd Ave in Broward 

County, which are near the I-95 roadway. 

County Site ID Abbreviation Monitoring Method Type 
Broward 12-011-0010 Lincoln Park 062 Manual 
Broward 12-011-0011 SW 4th Ave 062 Manual 
Broward 
 12-011-1002 SW 70th Ave N/A Manual-2 

062 Manual 

Broward 12-011-2004 SW 3 Ave 062 Manual 
079 Continuous 

Broward 12-011-3002 Plunkett St 062 Manual 
079 Continuous 

Broward 12-011-5002 Taft St 062 Manual 
Broward 12-011-5005 Winston 062 Manual 
Broward 12-011-6002 NW 72 Ave 062 Manual 
Broward 12-011-7002 NE 12th St 062 Manual 
Miami-Dade 12-086-0020 NW 36th St 063 Manual 

Miami-Dade 12-086-1016 MF 063 Manual-2 
063 Manual 

Miami-Dade 12-086-3001 NW 27th Ave 063 Manual 
Miami-Dade 12-086-6001 HF 063 Manual 
Broward 12-011-0033 Vista 702 Continuous 

Broward 12-011-1002 SW 70th Ave 

118 Manual-2 
118 Manual 
810 Speciation 
702 Continuous 

Broward 12-011-2004 SW 3 Ave 118 Manual 
Broward 12-011-3002 Plunkett St 118 Manual 
Miami-Dade 12-086-0033 PF 118 Manual 

Miami-Dade 12-086-1016 MF 

118 Manual-2 
118 Manual 
702 Continuous 
810 Speciation 

Miami-Dade 12-086-6001 HF 118 Manual 
702 Continuous 

 
 

                                              
5 This threshold may not be exceeded more than once per year on average over three years. 
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Table 2-4.  Explanation of PM monitoring method 

PM Code Category Explanation 

PM10 

062 Reference Wedding & Associates/Thermo Environmental Instruments, 
Inc. Model 600 PM10 Critical Flow High-Volume Sampler 

063 Reference Sierra-Andersen/General Metal Works Model 1200 PM10 
High-Volume Air Sampler System 

079 Equivalent 
Thermo Scientific TEOM® 1400AB PM10 Ambient Particulate 
Monitor or Rupprecht & Patashnick TEOM® Series 1400 and 
Series 1400a PM10 Monitors 

PM2.5 

118 Reference 
Rupprecht & Patashnick Partisol®-Plus Model 2025 
Sequential Air Sampler or Thermo Scientific Partisol-Plus 
2025 Sequential Air Sampler 

702 Non-Reference TEOM Gravimetric PM2.5 Sharp Cut Cyclone (SCC) monitor 
with correction factor 

810 Non-Reference Met-One speciation samplers (SASS) with Teflon filters 

 

 
Figure 2-8.  Maximum 24-hour average PM10 concentrations in (a) Broward and (b) Miami-Dade 
counties. Values at individual monitoring sites are averages of values from multiple monitors at each site.  
County averaged data are shown in solid lines. 
 

2.2.1.4.2 
Measured PM2.5 concentrations are shown in Figure 2-9.  The current NAAQS levels are 15 

µg/m3
 for the annual average concentration

PM2.5 

6 and 35 µg/m3 for the 98th percentile of the 24-hour 

average.7

                                              
6 The three-year average of weighted annual average concentration may not exceed this threshold at any community-
oriented monitoring site. 

  Annual mean measured values ranged from 6.5 µg/m3 (Plunkett St, 2009) to 10.5 

µg/m3 (SW 70th Ave, 2007) in Broward County and from 6.1 µg/m3 (PF, 2009) to 12.8 µg/m3 

(MF, 2006) in Miami-Dade County. None of these values exceeded the NAAQS level and 

concentrations appear to remain relatively constant on average over the decade.  Values of the 

7 The three-year average of the 98th percentile of 24-hour average concentrations may not exceed this threshold at 
each population-oriented monitoring site. 
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98th percentile of the 24-hour average ranged from 10.2 µg/m3 (Plunkett St, 2009) to 37.6 µg/m3 

(SW 70th Ave, 2007) in Broward County and from 11 µg/m3 (PF site, 2009) to 28.7 µg/m3 (MF 

site, 2007) in Miami-Dade County.  A substantial peak in PM2.5 concentrations in Broward 

County was seen in 2007 at all sites, with the highest value exceeding the NAAQS level, but 

concentrations declined subsequently. Due to the fluctuations, there is no clear long-term trend; 

however, calculated county average values were lower in 2009 than 2000. 

 
Figure 2-9. Measured PM2.5 concentrations in (a) Broward and (b) Miami-Dade counties.   
Subplots a and b provide annual mean values at each monitoring site; c and d provide values of the 98th percentile of 
the highest 24-hour average concentration. Calculated county averages are shown as solid lines. 
 

2.2.1.5 Air Quality Index 
The Air Quality Index (AQI) is a calculated metric of air quality that is based on the measured 

values of multiple criteria pollutants (O3, PM, CO, SO2 and NO2).  Its value ranges from 0 to 500, 

with higher values considered more hazardous to health. Table 2-5 provides ranges of AQI 

values and the associated level of health concern. 
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Table 2-5.  Air Quality Index levels and their interpretation 
Air Quality Index 
Levels of Health 

Concern 
Numerical 

Value Meaning 

Good 0-50 Air quality is considered satisfactory, and air pollution 
poses little or no risk. 

Moderate 51-100 

Air quality is acceptable; however, for some pollutants 
there may be a moderate health concern for a very small 
number of people who are unusually sensitive to air 
pollution. 

Unhealthy for 
Sensitive Groups 101-150 Members of sensitive groups may experience health 

effects. The general public is not likely to be affected. 

Unhealthy 151-200 
Everyone may begin to experience health effects; 
members of sensitive groups may experience more 
serious health effects. 

Very Unhealthy 201-300 Health alert: everyone may experience more serious 
health effects. 

Hazardous > 300 Health warnings of emergency conditions. The entire 
population is more likely to be affected. 

*Source: http://www.airnow.gov 
 

Figure 2-10 shows the annual distributions of the daily Air Quality Index for Broward and Miami-

Dade counties over the period of study. The highest daily values, categorized as “Unhealthy,” 

were seen in Broward County (two days in 2007 and one day in 2001).  Overall in Broward 

County, approximately 80-90 percent of days are categorized as “Good,” 10-20 percent are 

categorized as “Moderate,” and a few days in some years are categorized as “Unhealthy for 

Sensitive Groups”.  More days not categorized as “Good” were seen during 2006-2008 than in 

other years.  In Miami-Dade County, a slightly higher number of days (about 85-95%) were 

“Good,” with no “Unhealthy” days observed. There is no apparent multi-year trend. 

 
Figure 2-10.  Annual distributions in the daily Air Quality Index in (a) Broward and (b) Miami-
Dade counties. Values are from the local agency reports, which do not consider SO2 and NO2. AQI data from 
other sources did not provide tabulations over long enough periods for use.  Data from 2001 to June 1, 2009 for 
Broward County and from 2000 to 2008 for Miami-Dade County are reported, based on data availability at the time 
of the analysis. 
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2.2.2 Organic pollutants 
In addition to criteria pollutants, there are many other air pollutants that are emitted from 

vehicles and considered harmful to health.  Available data are discussed on the volatile organic 

compound group and on other select pollutants. 

2.2.2.1 Volatile organic compounds  
VOCs are a variety of gaseous chemicals that are emitted from vehicles, as well as a variety of 

industrial and natural sources.  Exposure to some VOCs may cause adverse health effects 

ranging from minor irritation to serious effects. However, effects vary between constituents of 

the group.  Hence, VOCs are no longer regulated as a group with NAAQS.  Instead, individual 

chemicals are regulated as hazardous air pollutants (also called air toxics), discussed later.  

Nonetheless, VOCs are ozone precursors, i.e., they react with nitrogen oxides in the presence 

of sunlight to form ozone.  Therefore, VOC monitoring occurs in support of the ozone NAAQS. 

As shown in Table 2-6, VOCs are monitored at four stations in Broward County and three 

stations in Miami-Dade County.  However, different compounds were monitored and reported at 

each station, and some compounds were added or removed each year. No group sums were 

found.  Additionally, some of the reported individual compounds are specifically excluded from 

the VOC category in the federal regulations (40 CFR 51.100).  Hence, no further analyses were 

performed with the VOC monitoring data.  Select air toxics associated with mobile sources were 

analyzed instead, as discussed below. 

Table 2-6.  List of VOC monitoring sites and available data period 
County Site ID Abbreviation Data Available 

Broward 12-011-1002 SW 70th Ave 2000-2009 
Broward 12-011-2004 SW 3 Ave 2000-2008 
Broward 12-011-3002 Plunkett St 2000-2008 
Broward 12-011-5005 Winston 2000, 2002-2009 
Miami-Dade 12-086-0020 NW 36th St 2002-2005 
Miami-Dade 12-086-0029 Perdue Med 2002-2005 
Miami-Dade 12-086-4002 Annex 2002-2003 

 

2.2.2.2 Select mobile source air toxics (benzene, acetaldehyde, and 1,3-butadiene) 
Another group of regulated air pollutants are called hazardous air pollutants.  They are not 

regulated using NAAQS, but rather are regulated based on emissions and technology 

requirements.  A subset of this group that is associated with vehicular sources is called mobile 

source air toxics.  Three of these pollutants − benzene, acetaldehyde, and 1,3-butadiene − were 
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selected for analysis here. For these pollutants, the analysis is based on USEPA data, as local 

agencies do not consistently report on these chemicals. 

The monitoring sites in the study area for the selected pollutants are listed in Table 2-7. In 

Miami-Dade County, no data are available after 2006. In both counties, absorption media or 

canisters first capture hazardous air pollutants.  Gas chromatography, followed by mass 

spectrometry or flame ionization detection, are used for separation, identification, and 

quantification. All data are reported as part per billion carbon (ppbc), which was converted to 

ppbv for the individual compounds. 

Table 2-7.  Monitoring sites for the focus pollutants, pollutants monitored  
at each site, and period of data availability 

County Site ID Abbreviation Benzene Acetaldehyde 1,3-Butadiene 
Broward 12-011-1002 SW 70th Ave 00-09 05-07 02-09 
Broward 12-011-2004 SW 3 Ave 00-08 02-03 02-08 
Broward 12-011-3002 Plunkett St 00-08  02-08 
Broward 12-011-5005 Winston 00, 02-09  02-09 
Miami-Dade 12-086-0020 NW 36th St 02-05  02-05 
Miami-Dade 12-086-0029 Perdue Med 02-05  02-05 
Miami-Dade 12-086-4002 Annex  02-03  

 
The first mobile source air toxic studied was benzene.  Benzene is present in both exhaust and 

evaporative emissions from motor vehicles.  Mobile sources account for approximately three-

fourths of outdoor emissions (USEPA 2000).  Benzene is a known carcinogen. Short-term 

exposures to benzene are associated with irritation of the skin, eyes, and upper respiratory 

tract.  Chronic exposures are also associated with disorders in the blood and immune system.  

Figure 2-11 shows the highest measured 24-hour average and annual benzene concentrations 

in Broward and Miami-Dade counties.  In Broward County, 24-hour values ranged from 0.52 

ppbv to 6.3 ppbv (both at the Plunkett site, 2006 and 2003, respectively).  In Miami-Dade 

County, they ranged from 0.58 ppbv (NW 36 Ave, 2005) to 1.3 ppbv (NW 36 Ave, 2002). The 

annual benzene concentration ranged from 0.18 ppbv (Winston, 2006) to 1.6 ppbv (Plunkett, 

2003) in Broward County and 0.26 ppbv (Perdue Med, 2004) to 0.53 ppbv (NW 36 Ave, 2005) in 

Miami-Dade County. Overall, concentrations were lower in the second half of the decade than 

the first half.  
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Figure 2-11.  Measured benzene concentration in Broward and Miami-Dade counties.  Calculated 
averages of all monitoring sites in a county are shown as solid lines. 

Acetaldehyde was the second pollutant studied.  It is emitted as a combustion by-product with 

mobile sources accounting for more than half of inventoried emissions (USEPA, 2000).  Short-

term exposures to acetaldehyde may cause irritation of the skin, eyes and respiratory tract. 

Acetaldehyde is also an animal carcinogen; not enough data are available to classify it as a 

human carcinogen.  Figure 2-12 provides available measured data on acetaldehyde 

concentrations in the study area.  There are few data and values are scattered.  The highest 

values were observed at SW 70th Ave in Broward County in 2006. 

 
Figure 2-12.  Acetaldehyde concentrations in the study area.  
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1,3-Butadiene is also present in motor vehicle exhaust, with mobile source contributions 

accounting for over half of tabulated emissions (USEPA, 2000).  It is classified as a known 

human carcinogen. It also may cause irritation to skin, eyes, and the respiratory tract.  Figure   

2-13 shows measured 1,3-butadiene concentrations in the study area. As for benzene, 1,3-

butadiene was monitored only between 2002 and 2005 in Miami-Dade County.  The 24-hour 

average 1,3-butadiene concentration ranged from 0.05 ppbv (SW 70th Ave, 2009) to 1 ppbv 

(Plunkett, 2003) in Broward County and from 0.2 ppbv (NW 36 Ave and Perdue Med, 2005) to 

0.9 ppbv (Perdue Med, 2003) in Miami-Dade County. The annual values ranged from 0.02 ppbv 

(Winston, 2009) to 0.13 ppbv (Plunkett, 2003) in Broward County and from 0.06 ppbv (Perdue 

Med, 2002) to 0.11 ppbv (NW 36 Ave, 2005) in Miami-Dade County. An overall downward trend 

in concentrations is observed over the decade, with a peak in 2003 and 2004, particularly at the 

Plunkett site. 

 
Figure 2-13.  1,3-butadiene concentration in the study area. 

2.3 Summary of baseline air quality and trends in the study area 
Available ambient air monitoring data from 2000 to June 2009 of several focus pollutants, 

including CO, NO2, PM10 and PM2.5, VOCs, and three mobile source air toxics (benzene, 

acetaldehyde and 1,3-butadiene), were collected and compiled. Of these pollutants, data 

availability for the VOC category as a group was too limited for further analysis.  For each of the 

other pollutants, individual monitoring site values and county average concentrations for multiple 

averaging times, including those relevant to the National Ambient Air Quality Standards 

(NAAQS), were calculated.  Multi-year trends in time were plotted and compared with the 

NAAQS levels. Data on the daily Air Quality Index (AQI) were compiled with the multi-year trend 
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in the annual distribution plotted.  Finally, pollutant monitoring site locations were mapped 

relative to the I-95 project corridor to investigate impacts of roadway proximity. 

Of the pollutants studied, only ozone and PM2.5 had measured levels at some sites in Broward 

County near to or slightly exceeding the NAAQS levels.8

Impacts on concentrations of the proximity of monitoring sites to the I-95 roadway also were 

qualitatively assessed. CO, NO2, and PM10 all have substantial primary (direct) emissions from 

sources and mobile sources contribute a large portion of their emissions amounts.  Hence, 

concentrations often are higher near to sources, particularly large roadways.  Correspondingly, 

the highest measured concentrations of these pollutants were observed at sites in close 

proximity to the I-95 (Annex and Lincoln Park for CO, Annex for NO2, and SW 3 Ave and 

Plunkett for PM10).  These monitoring sites may be useful as indicators of the effects of the 

managed lane project.  Since O3 and PM2.5 have substantial contributions to their concentrations 

from secondary formation (i.e., chemical reactions in the atmosphere of emitted pollutants), the 

local monitoring site location relative to the any source is not expected to be very important.  

Additionally, the data do not show higher concentrations at sites in close proximity to the 

corridor.   

  The other criteria pollutants studied 

(CO, NO2, and PM10) had measured levels substantially lower than the NAAQS levels.  

However, a large fluctuation approaching the standard level during 2006-2008 was present in 

the PM10 measurement data at two sites in Broward County near the I-95.  No ambient standard 

levels are applicable to the mobile source air toxics studied.   

Regarding multi-year trends in air quality, no clear trend (in increasing or decreasing 

concentrations) was seen in the O3, PM2.5, or PM10 measurement data, though county average 

values were lower in 2009 than in 2000 for all averaging times except for the maximum 1-hr 

average ozone concentration.  For CO and NO2, the multi-year trend plots suggest slightly 

decreasing levels in the study area over the decade. For the mobile source air toxics studied, 

measurement data suggest lower concentrations of benzene and 1,3-butadiene in the later half 

of the decade.  Data for acetaldehyde are too sparse to discuss trends. Distributions of the AQI 

suggest that the overall air quality with respect to criteria pollutants is better in Miami-Dade 

County than in Broward County.  Only a few days during the decade in either county were 

categorized as “Unhealthy for Sensitive Groups,” and very few as “Unhealthy” generally (and in 

Broward County alone). 
                                              
8 Note that this does not imply regulatory nonattainment with the NAAQS.  The criteria for nonattainment involve 
specific data requirements, multi-year distribution parameters, and other factors.  Rather, this is a comparison of the 
levels measured with those corresponding to the standard. 
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3 MOBILE SOURCE EMISSIONS (OBJECTIVE 2):  METHODS AND FINDINGS 

As a step toward understanding impacts of the I-95 managed lane project on air quality, it is 

important to determine the change in mobile source emissions of air pollutants due to the 

implementation of the corridor project. To do this, a transportation corridor traffic micro-

simulation model (CORSIM) was selected and applied to simulate corridor traffic flow 

characteristics (traffic volumes and link speeds). Simulations were performed for scenarios 

representing conditions prior to the implementation of the managed lane project and after the 

implementation of Phases 1A and 1B of the project.  Emissions then were calculated using the 

simulated traffic flow characteristics and emissions factors from the USEPA’s MOBILE6.2 

emissions factor model.  Changes in emissions rates resulting from the managed lane project 

were analyzed, with a focus and assessing impacts on bus transit emissions.  The focus 

pollutants for emissions calculations were carbon monoxide, nitrogen oxides, PM10, 

hydrocarbons, and benzene.  Detailed information on these methods and the resultant findings 

are discussed below. 

3.1 Transportation corridor simulation modeling  

This study adopted a Traffic Software Integrated System Corridor-microscopic Simulation 

software package (generally referred as CORSIM).  CORSIM is a traffic simulation model 

developed by the Federal Highway Administration (FHWA) and models traffic movements in 

time, with second-by-second resolution. The model assumes that individual vehicles travel 

based on car-following and lane-changing theories. Based on the car-following theory, a 

follower vehicle will maintain a desired headway between itself and the in-front vehicle, reacting 

to changes in speed of that vehicle. The behavior of the vehicle is dependent on how the car 

that leads it responds to traffic control and other conditions. Thus, the software is capable of 

simultaneously modeling integrated networks using commonly accepted vehicle and driver 

behaviors.  

CORSIM was selected to simulate the operation performance of the HOT lanes and measure 

potential changes relevant to vehicle emissions, as it is considered as the most cost-effective 

option with affordable workloads to build networks.  Additionally, model configurations for the    

I-95 HOT lane implementation were available from FDOT.  It should also be noted that CORSIM 

was recommended by the Committee to Review EPA's Mobile Source Emissions Factor 

(MOBILE) Model (TRB 2000). Additionally, the Minnesota Department of Transportation has 
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applied CORSIM to determine whether the implementation of a managed lane might degrade 

conditions on general-purpose lanes (GPLs).  

3.1.1 CORSIM model setup for I-95 study corridor 

The I-95 express lane project contains three phases − 1A, 1B, and 2. Phase 1A (northbound on 

I-95 from I-395 in downtown Miami to the Golden Glades Interchange) was opened in 

December 2008, and Phase 1B (southbound on I-95 from the Golden Glades Interchange to I-

395 in downtown Miami) was opened in January 2010. The study area is shown in Figure 3-1a, 
including the location of the project on I-95 between I-395 and the Golden Glades Interchange.  

 
 

Figure 3-1.  I-95 study corridor and corresponding CORSIM network. 
 

CORSIM models for the I-95 express lanes project were obtained from FDOT District 6 and 

include a configuration representative of conditions prior to the I-95 express lane project, with 

Study Area 
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one HOV lane and four GPLs, for both the morning and afternoon peak hours (07:00-09:00 and 

15:30-17:30, respectively).  This configuration was used as the pre-implementation baseline 

scenario for this analysis.  A configuration representative of the conditions after Phase 1A and 

Phase 1B for both peak-hour ranges also was available, with two HOT lanes and four GPLs.  

This was adopted as the post-implementation “after” scenario in this analysis.  Other than the 

differences mentioned above, the geometric infrastructure in each configuration is the same. 
Figure 3-1b shows the basic simulation model for the corridor. The HOV lane was coded with 

the same links as the GPLs, and the HOT lanes were coded with separate links.  

CORSIM volume input data were obtained from the Sunguide Transportation Management 

Center (TMC) for the year 2007, before the implementation of HOT lanes. The volume data from 

2008 cannot be used due to construction at the site. Each model contains eight 15-minute 

intervals. Total input volumes and mode-share were kept constant in both scenarios. The split of 

the volumes on the HOT lanes and GPLs was based on the ratio of accurate traffic on two 

segments from the TMC data.  

Regarding buses, the I-95 Express bus (95X) is the only transit service on I-95 between 

downtown Miami and the Golden Glades Interchange. The bus schedules differ for northbound 

and southbound lanes during peak hours (7:00 – 9:00, and 15:30 – 17:30). The bus route and 

schedule was added to the CORSIM models, with volumes shown in Figure 3-2.  Buses use 

only the HOV and HOT lanes, not the GPLs. During morning peak hours, a total of 21 buses 

travel on the northbound lanes and 31 buses travel on the southbound lanes. During the 

afternoon peak hours, 29 buses travel northbound, while six buses travel southbound. 

 
 

Figure 3-2.  Bus volumes for northbound and southbound lanes during each time 
period. 
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3.1.2 CORSIM Calibration 

Calibration and validation form a crucial element of the simulation task.  Because of the 

stochastic nature of traffic, variations between the model and observed data always are 

expected, and the onus is upon the model user to establish the desired reliability level and the 

validation effort required to achieve it. For the baseline scenario, the available model 

configuration and validation were reviewed and adopted. Since the after scenario models were 

built prior to the implementation of the project, additional calibration was needed on these. To 

do this, the research team conducted field data collection by real-time video recording as Phase 

1A construction was being completed. Four video cameras were installed on a vehicle. Two 

cameras on the top monitored the front and back geometry and traffic; another two on each side 

of the vehicle captured the traffic closest to the vehicle.  The collected geometric information 

includes the number of general-purpose lanes and express lanes, locations of sequential 

entrances and exits, and number of lanes on on-ramps and off-ramps. Those segments that 

were still under construction (Phase 1B) could not be included in validation efforts. Results 

confirmed that the after scenario models properly represented the implementation of the I-95 

express lanes project.  

In addition, the Geoffrey E. Havers (GEH) method was used to calibrate the results. The GEH 

method is the criteria to calibrate freeway models in the Traffic Analysis Tools Program of the 

FHWA, which was developed by the Wisconsin Department of Transportation (WDOT 2002; 

FHWA 2004).  For each individual link flow, the acceptable calculated GEH value should be less 

than 5.0. The GEH statistic is computed as: 

GEH = [2(E-V)2/(E+V)]0.5 

 
where E is the model estimated volume and V is the field count volume.  Traffic volume data 

were obtained from detectors of the Sunguide Transportation Management Center for morning 

peak hours and afternoon peak hours at 15-minute intervals. Ten locations, shown in Figure 3-

3, were available when comparing the real detector data and CORSIM models. The GEH 

criteria were calculated for the after scenario model for eight periods in the morning peak hours 

from 07:00 to 09:00 and eight periods in the afternoon peak hours from 15:30 to 17:30. Based 

on the calculated GEH values, 98.75 percent of the segments in the morning and 95 percent of 

the segments in the afternoon meet the accepted calibration target criteria.  
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Figure 3-3.  Phase 1A-NB 1-95 volume validation sites. 

 

3.1.3 Discussion of mode share impacts of managed lane implementation 

This project evaluated the changes in emissions due to converting one HOV lane to two HOT 

lanes on I-95 while four GPLs stayed the same. Since emissions can vary by vehicle type, it is 

important to understand changes of mode-share due to the lane conversion. HOV lanes are 

intended to encourage the use of alternate modes of transportation, such as transit, carpool, 

and vanpool, by providing an exclusive lane with decreased travel times.  However, several 

previous studies have found that HOV lanes in the U.S. are underused due to the poor transit 

services, the scarcity of potential carpool matches, restricted accesses in some regions to high-

occupancy vehicles carrying only two people, and inconvenience related to trip chaining (Kwon 

and Varaiya 2006; Evans 2009; Burris et al. 2009; Burris and Goel 2010). The concept of using 

HOT lanes is to increase the use of HOV lanes and provide the unused capacity of the HOV 

lanes to vehicles with fewer occupants than the HOV threshold. Thus, this capacity also would 

improve performance of the GPLs through displacement of some single occupancy vehicles 

(SOV) to HOT lanes by paying a toll. During recent years, HOT lanes have been considered an 
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option for increasing the operational efficiency of managed lanes over existing HOV lanes.  To 

determine the likelihood of mode share changes due to the study project, current implemented 

managed lane facilities in the U.S were examined.  

Nine HOT/Express Toll facilities have been completed and eight HOT lanes are under 

development as of 2010 in the U.S.  HOT lane implementations and their findings related to the 

change of mode-share are summarized in Table 3-1.  Nine managed lane facilities, commonly 

HOT or Express Toll lanes, have been implemented in six states (California, Colorado, Florida, 

Minnesota, Texas, and Utah).  No significant change in mode-share was found.  This is 

consistent with the information from the “Transportation Emission Guidebook” (Dierkers et al. 

2002). According the guidebook, about a one percent reduction in automobile use was 

estimated based on a case study. Based on the limited impact, mode-share was kept constant 

for both simulation models prior to and after the managed lane implementation. 

 
Table 3-1.  Findings of changes of mode-share due to current HOT implementation 

 

Managed Lane Change of Mode Share  

SR-91 Express 
Lanes, Orange 
County, CA 

• Based on limited bus and commuter rail, it was concluded that 91 express lanes 
did not take patrons from corridor transit service. 

• From 1994 through 1999, the counts of PM peak HOV2 vehicles remained 
essentially unchanged. 

I-15 Express 
Lanes, San 
Diego 

• Switching to or from transit riders was not observed. 
• Very few carpools were broken up by HOT lanes implementation. 

Katy and 
Northwest, 
Houston 

• Based on a state survey, responses showed riders loyal to transit mode. 
• In the evening peak, only 1% of HOT riders are diverted from HOV modes. 

I-394 Express 
Lanes, 
Minneapolis 

• Comparing data from 2004 to 2005, no change was found regarding mode 
changes of previous transit users. 

• No negative effect on carpooling was found due to implementation of MnPASS 
HOT lanes. 

I-25 Express 
Lanes, Denver 

• No conclusions regarding effects on transit use were made since change in 
ridership of concerned routes was very small (<0.5% over a year). 

• Changing rules from HOV to HOT did not have a large impact on most mode 
choices. 

I-15 Express 
Lanes, Salt 
Lake City 

• No information or data available regarding mode-share. 

SR-167 HOT 
Lanes, Seattle • No evidence showed HOT lane impact on transit ridership. 

I-95 Express 
Lanes, Miami 

• Transit mode remained relatively consistent - 3.6% in 2008, 3.5% in 2009. 
• Express Lane has limited impact on private auto users with regard to mode share. 
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3.1.4 CORSIM Results: Managed lane performance 

Each simulation model was repeated 10 times, and the output data were calculated by taking 

the average.  Performance results are discussed, with a focus on impacts on bus transit. 

Average speed results of the pre-implementation (baseline) and post-implementation (after) 

scenarios in the northbound direction are plotted in Figure 3-4. Results from both scenarios 

show that average speeds on the managed lanes (HOV/HOT) were slightly higher than on the 

GPLs. Prior to the HOT lane conversion, the I-95 corridor experienced heavy congestion, with 

speeds as low as 16 mph on the pre-existing GPLs.  Although the average link speeds for both 

the HOV lane and GPLs were around 40 to 50 mph during morning peak hours, they decreased 

to 20 to 30 mph for the afternoon peak hours. After implementation of the HOT lanes, speeds 

increased to 40 to 50 mph. This represents a significant increase of travel speeds on I-95 

northbound during the afternoon peak hours. Therefore, implementation of HOT lanes relieved 

congestion on the I-95 corridor, especially for the peak hours. This result is consistent with the 

previous TMC data. Simulation results also are consistent with the midyear evaluation report on 

the I-95 corridor (FDOT 2009).  

 

 
 

Figure 3-4. Average speeds on managed lanes and GPLs for each time interval  
during afternoon peak hours (15:30-17:30) for northbound lanes only. 

Regarding transit buses, the implementation of HOT lanes relieves congestion and enhances 

bus speeds. An average of nine minutes savings for each bus traveling northbound during the 

afternoon peak hours is seen in model results, shown in Figure 3-5.  However, for the 

southbound direction, only two minutes’ savings are seen for all the buses on HOT lanes as 
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compared to the HOV lane. These results are consistent with the transit evaluation report for 95 

Express (FTA 2009), which found that the express lanes on I-95 have a significant impact on 

the northbound travel times of I-95 Express buses between downtown Miami and the Golden 

Glades interchanges.  

3.2 Emissions estimation 

To estimate emissions changes resulting from the case study project, simulated results of traffic 

parameters from the CORSIM transportation model were input into the MOBILE6.2 emissions 

factor model to obtain emission factors for all vehicles and for buses alone. The generated 

emissions factors were resolved by roadway link, pollutant, month and year. The emissions 

factors then were combined with extrapolated annual traffic data to calculate the annual 

emissions, as discussed below. 

 
 
Figure 3-5.  Time savings for northbound and southbound lanes during  
each 15-minute time interval of morning and afternoon peak hours simulated. 

3.2.1 Emission factors 

MOBILE6.2 was used to calculate emissions factors relevant to the corridor project.  

MOBILE6.2 is an established model for estimating pollutions emitted from on-road vehicles. 

Several pollutants can be addressed by MOBILE6.2, including hydrocarbons (HC), NOx, CO, 

PM, and select hazardous air pollutants. MOBILE6.2 has been widely used by federal, state, 

regional, and local planning agencies and organizations in many applications to evaluate motor 
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Protection Act (NEPA) analysis, transportation planning and conformity analysis, and 

environmental impact analysis.9

To use results from the CORSIM model for the calculation of emission factors using 

MOBILE6.2, some processing of the CORSIM results was required.  This processing included 

mapping of the CORSIM vehicle classes to the MOBILE6.2 classes, as the two models have 

different vehicle classes. The mapping of categories of classes from CORSIM to MOBILE6.2 is 

shown in Table 3-2 (FHWA 2007; EPA 2001). The vehicle distribution percentages for 

comparable categories for the before-and-after scenarios also are listed.  Note that these were 

adjusted to include bus counts.  For example, buses are assumed to travel only in the HOT 

lanes, and not in the GPLs in the after scenario.  Vehicle type distribution data from the 29 

counting sites located on the ramps of I-95 modeling section also were obtained and compared 

with the vehicle distributions used in CORSIM and they were found to be similar.  Distribution 

percentages from CORSIM then were allocated proportionally to the constituent MOBILE6.2 

categories based on the default 2009 vehicle miles traveled (VMT) fraction in MOBILE 6.2 (EPA 

2001; EPA 2004), as shown in Table 3-3.  Also, CORSIM only includes the freeway facility. 

Hence, only freeway facilities were modeled with MOBILE6.2, by using VMT distribution input 

files.  

 

Table 3-2.  Mapping of vehicle class categories between CORSIM and MOBILE6.2 model,  
with vehicle distribution percentages based on CORSIM output 

CORSIM 
class IDs 

CORSIM vehicle  
descriptions 

Corresponding 
MOBILE6.2 

classesa 

Vehicle distribution percentages 

Before 
scenario,
all lanes 

After scenario 

GPLs HOT lanes 

1, 2, 8,9 
Low- and high performance 
passenger cars, carpool and 

individual occupancy 

LDV, LDT1, 
LDT2, LDT3 

LDT4 
95.859% 96.0% 95.5975% 

3 Single-unit truck HDV2B - HDV7 1.2382% 1.24% 1.2348% 

4, 5 Semi-trailer truck with medium 
and full loads HDV8A 2.3965% 2.40% 2.3899% 

6 Double-bottom trailer truck HDV8B 0.3595% 0.36% 0.3585% 
7 Conventional bus HDBS, HDBT 0.1469% 0.00% 0.4192% 

aDescriptions of MOBILE6.2 class identifiers are given in Table 3-2.  GPLs are general-purpose lanes.  
HOT lanes are high-occupancy/toll lanes. 

In addition to vehicle class mapping, processing of speed data also was required. CORSIM 

simulates average speeds for 15-minute time intervals on each roadway link for the four rush 
                                              
9 MOBILE6.2 currently is being replaced for regulatory analysis with the MOVES model. 
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hours of a typical weekday.  To account for the diurnal variations in speed on each link in 

MOBILE6.2, external “Speed VMT” files were created for each link using 14 speed bins.  

Speeds for hours corresponding to the CORSIM simulation were determined by averaging the 

15-minute interval CORSIM link speed output data. Speeds during hours not modeled by 

CORSIM were assumed to be at the speed limit (55 mph).   

Fuel and meteorological parameters used in MOBILE6.2 calculations were extracted from the 

National Mobile Inventory Model County Database (EPA 2005). Monthly varying fuel parameters 

for Miami-Dade County were used. Monthly varying meteorological parameters also were used.  

For 2009, the 20-year (1981-2000) average of hourly temperature and humidity were used due 

to lack of available data for that year at the time of analysis. Default data were used for other 

parameters, including the diesel sale fraction distributions among vehicle types. 

Table 3-3.  MOBILE6.2 vehicle classes and distribution percentages  
used for emissions calculations 

MOBILE6.2 
class ID 

MOBILE6.2 vehicle class 
description 

Default 
2009 

distribution 

Before 
scenario 

distribution 

After scenario 

GP lane 
distribution 

HOT lane 
distribution 

1 LDV Light-Duty Vehicles 
(Passenger Cars) 36.6863% 40.2687% 40.3279% 40.1588% 

2 LDT1 Light-Duty Trucks 1 8.6891% 9.5376% 9.5516% 9.5116% 
3 LDT2 Light-Duty Trucks 2 28.9371% 31.7627% 31.8095% 31.6761% 
4 LDT3 Light-Duty Trucks 3 8.9191% 9.7900% 9.8044% 9.7633% 
5 LDT4 Light-Duty Trucks 4 4.0996% 4.4999% 4.5065% 4.4876% 

6 HDV2B Class 2b  
Heavy-Duty Vehicles 3.8896% 0.7157% 0.7167% 0.7137% 

7 HDV3 Class 3  
Heavy-Duty Vehicles 0.3800% 0.0699% 0.0700% 0.0697% 

8 HDV4 Class 4  
Heavy-Duty Vehicles 0.3200% 0.0589% 0.0590% 0.0587% 

9 HDV5 Class 5  
Heavy-Duty Vehicles 0.2400% 0.0442% 0.0442% 0.0440% 

10 HDV6 Class 6  
Heavy-Duty Vehicles 0.8699% 0.1601% 0.1603% 0.1596% 

11 HDV7 Class 7  
Heavy-Duty Vehicles 1.0299% 0.1895% 0.1898% 0.1890% 

12 HDV8A Class 8a  
Heavy-Duty Vehicles 1.1199% 2.3965% 2.4000% 2.3899% 

13 HDV8B Class 8b  
Heavy-Duty Vehicles 3.9796% 0.3595% 0.3600% 0.3585% 

14 HDBS School Buses 0.2000% 0.0979% 0.0000% 0.2795% 

15 HDBT Transit and  
Urban Buses 0.1000% 0.0490% 0.0000% 0.1397% 

16 MC Motorcycles 0.5399% 0.0000% 0.0000% 0.0000% 
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MOBILE6.2 modeling was performed for the following scenarios: 1) baseline scenario, 2) 

general-purpose lanes for the after scenario, and 3) HOT lanes for the after scenario. Five 

pollutants were included: HC, CO, NOx, PM10, and benzene.  Evaporative emissions other than 

running evaporative emissions were omitted because these activities are not modeled by 

CORSIM. Seven types of particulate emissions were included: exhausted SO4, exhaust lead, 

organic carbon and elemental carbon from diesel vehicle exhaust, total carbon, and brake-wear 

and tire-wear particles. 

Emissions factors output from MOBILE6.2 were resolved by year, month, pollutant, and link.  

Emissions factors for buses alone also were obtained to calculate bus emissions.  Annual 

average emission factors for 2009 are listed in Table 3-4 to Table 3-8.  Note that it is assumed 

that there are no buses traveling on the GPLs in the after scenario. 

3.2.2 Daily and annual traffic estimation 

To estimate annualized emissions, traffic information is needed throughout the day and year.  

Since CORSIM simulates only four rush hours of a typical day, external diurnal and annual 

profiles were applied, as discussed here. 

Diurnal and monthly traffic patterns, shown in Figure 3-6, were derived from 2007 hourly vehicle 

count data obtained from a traffic monitoring site located on I-95 (site ID: 860331) The count site 

is approximately five miles from the north end of the section of I-95 modeled by CORSIM. Data 

for the northbound and southbound lanes were averaged separately to obtain hourly average 

traffic counts for both directions. Average daily total traffic counts for 12 months also were 

calculated.  

 
Figure 3-6.  Diurnal and monthly traffic count distributions for northbound and southbound 
lanes. 
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Table 3-4.  All-vehicle annual average emissions factors (g/mile)  
for the before scenario 

Pollutant 2005 2006 2007 2008 2009 
Benzene 0.0323 0.0287 0.026 0.0228 0.0205 

CO 15.43 13.49 12.6 11.64 10.83 
HC 1.31 1.22 1.15 1.07 0.98 

NOx 1.46 1.33 1.21 1.11 1.01 
PM10 0.0398 0.0377 0.0361 0.0344 0.033 

 
 

Table 3-5.  All-vehicle annual average emission factors (g/mile)  
for after scenario general-purpose lanes 

Pollutant 2005 2006 2007 2008 2009 
Benzene 0.0318 0.0282 0.0256 0.0225 0.0202 

CO 15.65 13.67 12.77 11.8 10.98 
HC 1.27 1.18 1.11 1.03 0.95 

NOx 1.45 1.32 1.2 1.1 1 
PM10 0.0388 0.0369 0.0353 0.0337 0.0324 

 
 

Table 3-6.  All-vehicle annual average emission factors (g/mile)  
for after scenario HOT lanes 

Pollutant 2005 2006 2007 2008 2009 
Benzene 0.0317 0.0281 0.0255 0.0224 0.0201 

CO 15.63 13.65 12.75 11.77 10.95 
HC 1.26 1.17 1.1 1.03 0.95 

NOx 1.5 1.37 1.25 1.14 1.05 
PM10 0.0415 0.0393 0.0374 0.0356 0.0342 

 
 

Table 3-7.  Annual average emissions factors for buses alone  
for the before scenario (g/mile) 

Pollutant 2005 2006 2007 2008 2009 
Benzene 0.0042 0.0036 0.0031 0.0027 0.0024 

CO 3.19 3.01 2.74 2.42 2.14 
HC 0.39 0.34 0.29 0.25 0.22 

NOx 18.75 17.83 16.83 15.69 14.6 
PM10 0.63 0.5 0.4 0.31 0.26 

 
 

Table 3-8.  Annual average emission factors (g/mile) for buses alone  
for after scenario HOT lanes 

Pollutant 2005 2006 2007 2008 2009 
Benzene 0.0039 0.0034 0.0029 0.0025 0.0022 

CO 2.97 2.8 2.56 2.25 1.99 
HC 0.36 0.31 0.27 0.23 0.21 

NOx 18.97 18.04 17.02 15.88 14.77 
PM10 0.63 0.5 0.4 0.31 0.26 
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Hourly traffic count data also were obtained from 12 counting sites located in Miami-Dade 

County.  After excluding missing and poor quality data, the county average diurnal and monthly 

profiles were calculated and compared with the profiles calculated based on data site 860331. 

As shown in Figure 3-7, the diurnal patterns were very similar, but the monthly patterns were 

somewhat different.  Because it is located on I-95, the diurnal and monthly pattern from site 

860331 was considered more representative and was used for further analysis. 

 
Figure 3-7.  Comparison of diurnal and monthly traffic count distributions  
between site 860331 and the Miami-Dade County average. 

A total daily traffic volume for emissions calculations was extrapolated from the CORSIM data 

by dividing the sum of the CORSIM traffic counts by the fraction of the total measured average 

daily count represent by the hours in the model, i.e.:
 

 

where Td is the total daily traffic volume, th is the CORSIM derived traffic count for hour h, and fh 

is the measurement data derived fraction of the total count for hour h.  To obtain monthly 

varying traffic counts, this value was proportionally extrapolated using the monthly distribution 

from the measurement data. 

3.2.3  Emissions  

Daily emissions for each month were calculated by multiplying the MOBILE6.2 emissions factor 

for the corresponding month with the roadway link length and the estimated daily traffic counts.  

Monthly total emissions then were estimated by multiplying the daily emissions for each month 

with number of days in that month. Monthly total emissions were summed together to get annual 

total emissions. For the after scenario, emissions from HOT lanes and GPLs were summed to 

  

 

Td =
thh∑
fhh∑
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obtain the total emissions for the after scenario.  Estimated 2009 annual emissions for the five 

pollutants are shown in Table 3-9. 

Figure 3-8 shows a comparison of the relative annual emissions for the five chosen pollutants 

before and after the HOT lane implementation. As seen in the figure, the HOT lane 

implementation led to increased total emissions for all pollutants considered except HCs, though 

increases were small.  Emissions from buses alone did, however, decrease. 

Table 3-9.  Estimated 2009 annual emissions (tons) 

Pollutants Before scenario 
total 

After scenario 
total 

Before scenario 
buses alone 

After scenario 
buses alone 

CO 6657.19 6892.08 2.12 1.91 
NOx 623.21 640.36 14.27 14.17 
HC 604.07 595.01 0.22 0.2 

Benzene 12.58 12.65 0.0024 0.0021 

PM10 20.28 20.69 0.25 0.24 

 

 
Figure 3-8.  Estimated relative emissions before and after managed lane implementation.  

The before scenario emissions have been set to the reference value of 1 for this comparison. 

3.2.4 Discussion of factors influencing emissions changes 

As seen above, emissions from the corridor for all scenarios increased somewhat for the after 

scenario.  To understand these increases, the parameters influencing emissions were 

investigated and uncertainties are discussed here.   

Two primary constituent parameters can affect estimated emissions: the amount of vehicle 

miles traveled and emissions factors (mass of pollutant per vehicle mile traveled).  If either of 

these parameters increases independently, emissions will increase. Table 3-10 shows the 

change in emissions along with the change in each of the constituent factors.  Annual miles 
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travelled increase by 2 percent, on average.  For CO, NOx, and PM10, the emissions factors 

increase (on average), consistent with the change in emissions.  Conversely, for the HCs the 

emissions factors decrease (on average), counteracting the increase in miles traveled.  For 

benzene, the emission factors decrease is less, leading to smaller overall increases in 

emissions.  

Table 3-10.  Percentage change in 2009 annual emissions and primary parameters  
contributing to emissions for after vs. before scenario 

Pollutant Annual emissions Emissions factorsa Annual miles traveleda 
CO 3.5% 1.2% 

2% 
NOx 2.8% 1.3% 
PM10 2.0% 0.74% 
HCs -1.5% -3.7% 
Benzene 0.54% -1.7% 

aNote that emissions are calculated on a link-by-link basis using disaggregated emissions factors (over 
100,000), volumes, and link lengths.  The values listed here are based on simple averages of individual 
values to demonstrate overall differences.  

3.2.5 Discussion of emissions uncertainties 

It is useful to consider uncertainty in the emissions, as they are functions of the traffic conditions 

that may be impacted by project.  Therefore, uncertainties in emissions factors and vehicle 

miles traveled are discussed here. 

Emissions factors are functions of vehicle speed and vehicle type.  To understand the 

associated uncertainties, emissions factors output from CORSIM’s internal emission factor 

calculator were considered in comparison to MOBILE6.2 emissions factors.  A sensitivity 

analyses also was performed on impacts of speed on emissions factors.   

CORSIM is capable of calculating emissions factors internally for CO, NOx and HCs for each 

link and vehicle class type.  As a comparison to the MOBILE6.2 emissions, CORSIM emission 

factors were produced based on the default emissions factor tables in the model. On average, 

emission factor values output by CORSIM decreased for the after scenario compared with the 

before scenario.  Since this result is the opposite of that found using MOBILE6.2, a comparison 

of the effects of important traffic conditions was performed.  Specifically, sensitivity analyses 

were performed on the effects of speed using both MOBILE6.2 and CORSIM.   

As discussed in Section 3.1.4, travel times on the corridor improved after the implementation of 

the HOT lanes.  Specifically, speeds in the northbound lanes increased from about 20-30 mph 

to 45-50 mph during the afternoon rush hours.  Since emission factors are a function of speed, 

this can impact emissions.  Sensitivity analysis with speed varying in both MOBILE6.2 and 

CORSIM indicate different impacts of speed on the emissions factors for the different models.  



  

  3-16 

In MOBILE6.2, the change in speed had little impact on the emissions factors for CO and NOx, 

as shown in Figure 3-9a, due to the shape of the emission factor curve.  However, for the 

CORSIM emission factors, shown in Figure 3-9b, emission factor values consistently decrease 

as speed increase over the range of speed improvements found here.  This leads to a 

difference in the direction of the emission results.  Since MOBILE6.2 emissions factors have 

been reviewed extensively, it is expected that their dependence on speed is more 

representative.  However, this difference leads to an uncertainty in the emissions results. 

 
Figure 3-9.  Relative emission factors for all vehicles from (a) CORSIM and (b) MOBILE6.2.  
Values are relative to value at 10 mph. 

 
Vehicle type distribution also can affect emission factors. For the MOBILE6.2 estimation, 

average corridor vehicle distributions were used for all vehicles except buses to calculate 

emissions factors. (Buses were allocated only to the HOV and HOT lanes).  In CORSIM, vehicle 

distributions can change temporally in each lane.  If vehicles with higher emissions rates (e.g., 

trucks) are traveling in a manner different from other vehicles (i.e., on poorer-performing lanes) 

such that their speeds are significantly different from other vehicles, this could result in some 

error in emissions factor generation using an average corridor vehicle distribution.  However, 

speed improvements seen in model results did not significantly affect the MOBILE6.2 emissions 

factors; hence, this is not expected to have a big impact. Additionally, although improvements in 

emissions for buses were found here, their contribution to the overall vehicle distribution is small 

enough that changes in their emissions do not have a significant impact on overall emissions 

changes.   

The age of the fleet can affect emissions factors, as newer vehicles often have new 

technologies that reduce emissions.  A large portion of the fleet in the study area consists of 

rental cars, which are replaced relatively quickly.  Additionally, buses in Broward County also 

a b 
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are replaced more quickly than in many areas.  Therefore, emissions estimated using default 

fleet age characteristics may overestimate emissions for the study area (both before and after 

implementation of the managed lanes.)  

In addition to emissions factors, uncertainties in estimated vehicle miles traveled can impact 

emissions.  Although input vehicle volumes to CORSIM were kept constant between the 

baseline scenario and after scenario modeling, CORSIM is a stochastic model. This resulted in 

an increase in the total vehicle count during peak hours for the after scenario by 3.1 percent for 

the northbound direction and 1.9 percent for southbound direction. Increases in link vehicle 

volumes resulted in increases in estimated vehicle miles traveled.  Increased VMT results in 

increased estimated emissions for the after scenario relative to the baseline case.  More 

important, VMT on the corridor may change due to improvements in the corridor speed 

performance, as more vehicles will choose to use the corridor rather than surface streets.  This 

effect could not be considered here, as vehicle volumes entering the corridor are an input 

parameter to corridor models like CORSIM.  A model of the entire surrounding transportation 

network would be required to consider this impact.  However, overall effects on emissions could 

be balanced due to decreases in emissions on other roadways.  

3.3 Summary of emissions calculations and results 

To calculate emissions changes associated with HOT lane implementation, transportation 

corridor micro-simulation modeling and emissions estimation were performed.  CORSIM was 

selected as the transportation model and was used to simulate traffic conditions before the 

implementation of the HOT lane on I-95 (baseline scenario) and after the implementation of 

Phases 1A and 1B of the project (after scenario).  Results of the micro-simulation modeling 

indicate that the average speeds on the corridor were improved and congestion was reduced 

after HOT lane implementation.  With regard to transit, bus travel times were improved. 

Traffic condition and infrastructure data from CORSIM then were used to generate MOBILE6.2 

emissions factors and to calculate emissions changes associated with the HOT lane 

implementation. Total estimated annual emissions of CO, NOx, PM10, and benzene showed 

small increases after the implementation of the HOT lanes, while HCs showed decreases.  CO 

showed the highest percentage increase of 3.5 percent, while HC emissions decreased by 1.5 

percent.  Regarding transit specifically, emissions from buses decreased after the 

implementation of the HOT lane.  The overall increased emissions for criteria pollutants were 

found to be due to modeled increases in corridor vehicle volumes and emissions factors.  
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However, it should be noted that there is significant uncertainty in estimated vehicle volume 

changes. Overall, the magnitude of the emissions changes is small, with substantial uncertainty. 
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4 AIR QUALITY EFFECTS (OBJECTIVE 3): METHODS AND FINDINGS 

To investigate the impacts of the I-95 HOT lane project on air quality, changes in air pollutant 

concentrations due project implementation were estimated.  Specifically, an atmospheric 

dispersion model was selected and used to simulated pollutant concentrations in the study area. 

4.1 Dispersion modeling methods 

4.1.1 Review and selection of dispersion models 
Several atmospheric dispersion modeling systems were reviewed as candidate models for this 

work, including CALINE (3 and 4), CAL3QHC and CAL3QHCR, AERMOD, CALPUFF, and 

HYROAD. Characteristics of each model and previous performance for roadway modeling 

studies are discussed . 

CALINE (3 and 4) are the third and the fourth generation steady-state Gaussian line source 

dispersion models developed by the California Department of Transportation. Both models can 

be used in uncomplicated terrains (Jungers et al. 2006).  CALINE3 was designed to model inert 

pollutant concentrations within 150 meters of a roadway under free-flow conditions.  Idling 

emission at intersections are not represented in the model. Up to 20 roadway links and 20 

receptors can be used into CALINE3 (Benson 1979). CALINE4 extended the modeling distance 

to 500 meters and employed a mixing zone concept to characterize pollutant dispersion very 

close to roadways. Simple modeling options for intersections, street canyons, and parking 

facilities also have been incorporated into CALINE4 (Benson 1989). CALINE4 has the ability to 

model pollutants emitted from vehicle acceleration and deceleration; however, the algorithm 

does no fully represent current vehicle technology (Carr et al. 2007).  CALINE3 and CALINE4 

have been used to model roadway emissions for many years because they are very easy to use 

and have low computational requirements. Previous studies using CALINE (Marmur and 

Mamane 2003; Levitin et al. 2005; Jones et al. 1998) have show good performance, and 

modeling results have been evaluated (Jungers et al. 2006; Benson 1992).  Limitations of 

CALINE 3 and 4 include the limited number of sources and receptors allowed, the small 

allowable size of modeling domain, and source elevation limitation to below 30 feet.  The 

performance of both models is poor under low wind conditions (less than one m/s) (Benson 

1992).  Additionally, as steady-state models, they cannot capture fast varying atmospheric 

patterns. 

CAL3QHC and CAL3QHCR are models based on CALINE3 with an added queuing algorithm at 

signalized intersections. CAL3QHCR additionally includes processing of meteorological data for 
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a whole year, a complete mixing height algorithm, representation of variable traffic, and added 

concentration averaging algorithms (Eckhoff et al. 1995).  Because these models are based on 

CALINE3, they also can be used to model inert pollutant concentration near roadways.  

However, they are also limited in the representation of the height of sources and very low wind 

speed conditions (Eckhoff et al. 1995). Additionally, the traffic delay and capacity data within the 

model are based on 1985 data, which may not be applicable for current conditions (Carr et al. 

2007).  The performance of these models is somewhat mixed in a number of studies.  Some 

studies have obtained favorable results under open area and moderate traffic flow conditions 

(Abdul-Wahab 2004, Kho et al. 2007; Cain and Welch 2004). However, other evaluation studies 

have found the performance to be poor (Chen et al. 2008). 

AERMOD is a steady-state Gaussian plume model developed by the USEPA and the American 

Metrological Society. It was designed to replace the ISCST3 model and is recommended by the 

EPA as a preferred model for dispersion modeling of inert pollutants under short range (up to 50 

km) and steady-state conditions (Jungers et al. 2006). AERMOD has several input data 

processors, including a meteorological data processor (AERMET), a terrain data processor 

(AERMAP), and a surface characteristics processor (AERSURFACE). AERSCREEN, a 

screening version of AERMOD, also is built into the model. In modeling scenarios involving 

terrain interaction and building downwash, BPIPPRIME is also available.  AERMOD has the 

ability to model a combination of point, area, and volume sources under all terrain conditions, 

and it incorporates some state-of-the-science features such as a building wake algorithm 

(PRIME).   An updated planetary boundary layer turbulence parameterization also enables the 

treatment of elevated sources and complex terrain.  AERMOD is considered an accurate 

dispersion model for regulatory purposes (Jungers et al. 2006) and has been used in mobile 

source pollutant dispersion modeling in numerous studies (e.g., Radonjic et al. 2003; Cook et al. 

2008; Wang et al. 2009; Venkatram et al. 2009). Comparison between AERMOD modeling 

results and monitoring results in these studies showed good agreement, generally within a 

factor of 2.  Roadways are represented as area sources in these studies, with the length-to-

width ratio kept below 10 in most studies. Comparison between AERMOD and ISCST3, a widely 

used historical dispersion model, also showed improved performance. However, for long-range 

pollutant transport and non-steady conditions, the CALPUFF model is recommended (Jungers 

et al. 2006).   

CALPUFF is a non-steady state Lagrangian puff model.  Although the model is privately owned 

and maintained, the USEPA recommends using CALPUFF for long-range pollutant transport 
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and non-steady atmosphere patterns. Compared with other models discussed here, CALPUFF 

incorporates many enhanced features, including transport over water, coastal interaction, puff 

splitting, slug (elongated puff) transport, and wind shear effects. Because it is a non-steady 

state model, it is able to handle spatial and temporal varying metrological conditions (Scire et al. 

2000).  CALPUFF also has the ability to model simple chemical reaction mechanisms.  

CALPUFF has many pre- and post- processors, including CALMET, a meteorological pre-

processor that provides hourly three-dimensional wind and temperature fields, and CALPOST, a 

post-processor for analysis of concentration. CALPUFF requires much more input data than the 

other models discussed here. Studies that have used CALPUFF for roadway modeling show 

mixed results.  Modeled concentrations have been found to be within a factor of 2 of the 

monitored concentrations for some studies (Radonjic et al. 2003; Cohen 2004; Song et al. 

2006), while results from other studies are less favorable (Hatzopoulou 2008).  Due to the 

complexity of the model, more evaluation is needed in near field cases (Brode et al. 2008). 

HYROAD is an integrated model that includes a traffic module, an emissions module, and a 

dispersion module.  The dispersion algorithm is based on CALPUFF (Carr et al. 2007). 

HYROAD was designed to predict hourly CO concentrations near intersections (up to 500 

meters), but also can be used for other inert pollutants.   The puff algorithms in HYROAD also 

include several features specifically designed for roadways, such as vehicle-induced flows, 

vehicle wake effects, and enhanced vertical dispersion over roadways.  The traffic module in 

HYROAD is based on NETSIM (a part of the CORSIM model), which simulates individual 

vehicle drive patterns, including accelerations and decelerations. In the emissions module, 

MOBILE5 or MOBILE6 emission factors can be applied.  Emission factors do not account for 

acceleration or deceleration rates, but are based on calculated average speeds on roadway 

links (Carr et al. 2002).  Up to 60 receptors and 50 roadway links can be represented in 

HYROAD (Carr et al. 2002).  According to Carr et al. (2007), HYROAD has shown better 

performance when compared with CAL3QHC.  Limitations include the small spatial extent of the 

dispersion representation (less than 500 meters) and the limited focus on intersections.  

Additionally, HYROAD is a relatively new model, with few evaluation studies.   

The focus of the current study is to investigate impacts of the managed lane project on air 

quality in the case study area.  Therefore, a model capable of representing concentrations over 

a large area is needed.  Several of the models reviewed here, including CALINE 3 and 4, 

CAL3QHC (and R), and HYROAD cannot represent concentrations over the study area domain.  

CALPUFF is a promising model for this type of analysis due to its enhanced features and ability 
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to represent non-steady conditions.  However, it is data and computationally intense, and the 

enhanced features likely are not necessary for understanding average conditions sought here.  

Additionally, it has not been adequately evaluated for near-field conditions.  Therefore, 

AERMOD was chosen for this work due to its wide use and performance in air quality modeling 

of roadway emissions, its capabilities for modeling larger domains, and its lower computational 

and data requirements relative to CALPUFF. 

4.1.2 AERMOD dispersion simulations 
To determine impacts of the I-95 managed lane project on air quality in the study area, 

AERMOD simulations were performed for both the baseline scenario and after scenario cases 

discussed previously. Several types of input data and processing were required.  These include 

calculation of emissions sources, selection and processing of appropriate meteorological data, 

configuration of the receptor grid, and selection of appropriate dispersion parameters. Methods 

used are discussed below. 

Pollutant emissions from the case study I-95 roadway section modeled by CORSIM were 

represented, as shown in Figure 4-1.  The coordinates of all roadway link nodes were obtained 

from the CORSIM configuration and converted to UTM coordinates.  Roadway links were input 

into AERMOD as area sources. Each roadway link was expanded to a rectangle, whose width 

was calculated using the number of lanes times the width of each lane. The length was set as 

the link length. A maximum aspect ratio of 10 was applied to each source (EPA 2004b), with 

links subdivided when necessary. The emission rates of each source for each pollutant modeled 

in the AERMOD simulation were set to vary by season and hour of the day. For each season, 

the daily emissions values discussed in Chapter 3 in the constituent months were averaged to 

obtain the average daily emissions for the season. The daily profile then was used to allocate 

the calculated daily emissions to each hour of the day.  

For meteorological data, five years (2005-2009) of data from the Miami International Airport 

station were used to represent conditions in the study area.  Surface monitoring data on 

temperatures, winds and cloud cover were retrieved from the Integrated Surface Hourly 

Database through the National Climatic Data Center (ftp://ftp.ncdc.noaa.gov/pub/data/noaa).   

Upper air sounding data on pressure, temperature, relative humidity, and upper-level winds 

were collected from NOAA/ESRL Radiosonde Database (http://www.esrl.noaa.gov/raobs/). The 

data were processed by AERMET to produce hourly resolved meteorological fields.  
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Figure 4-1.  Section of I-95 modeled. 

 
Necessary modeling parameters include the initial vertical dispersion parameter and surface 

characteristics.  The initial vertical dispersion parameter was used to account for the initial 

mixing of the pollutants during emissions (EPA 1995), which can be important in situations 

where pollutants are mechanically generated, such as vehicle emissions (EPA 2004). A value of 

2 was used consistent with previous literature (Venkatram et al. 2009).  Surface characteristics 

such as noontime albedo, Bowen ratio, and surface roughness length were used to estimate 

boundary layer turbulence.  The range of the three parameters and the values selected are 

shown in Table 4-1 (EPA 1999; EPA 2004; Paine 1987).  In consideration of the sub tropical 

climate characteristics in Broward and Miami-Dade counties, a summer value of albedo and 

Bowen ratio were applied. 

Table 4-1.  Surface characteristic parameters 
Surface characteristics Range Value used 
Albedo 0.1 (thick forests) - 0.65 (fresh snow) 0.16 (summer) 
Bowen ratio  0.1 (over water) - 10.0 (desert) 1 (summer) 
Surface roughness length  0.01 m (calm water) - 1 m (forest or urban area) 1 (urban) 

 
The receptor grid provides the locations at which concentrations are calculated by AERMOD.  It 

was chosen to cover Broward County and the northern part of Miami-Dade County, as shown in 

Figure 4-2.  To characterize the pollution concentration near I-95, the receptor network was 
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denser near to the roadway and less dense farther away.  Maximum resolution was 100 m and 

minimum resolution was 5 km.  

 
Figure 4-2.  Receptor grid.  Subplot a provides an overview of the receptors in the entire modeling domain,  
and b provides the network near the I-95 project section. 
 
Once pre-processing and parameter selection were complete, AERMOD simulations were 

performed for each of the five years of meteorological data for both baseline and after scenario 

emissions.  Concentrations of nitrogen oxides, carbon monoxide, and benzene were estimated. 

Specifically, the first and second highest one-hour average and eight-hour average 

concentrations, as well as annual average concentrations at each receptor location, were 

calculated and extracted from the model output. Differences between concentrations for the 

baseline and after scenario were also calculated.  Results were interpolated and mapped using 

ArcGIS for analysis. 

4.2  Results: Estimated pollutant concentrations  
Table 4-2 and 4-3 provide a summary of estimated concentration ranges for the baseline and 

after scenarios for each pollutant. All estimated CO concentrations are well below regulatory 

standard levels. No standard level for NOx exists; however, in comparison to the NO2 standard 

level, most modeled levels are low, but the highest modeled one-hour average NOx values are 

of the same magnitude as the NO2 standard level.  It should be noted that the percentage of 
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NOx that is NO2 varies significantly; hence, this comparison does not imply that NO2 levels 

exceed the standard level.  No comparable standard for benzene is available.  An example 

modeled spatial distribution of pollutant concentrations is provided in Figure 4-3.  The highest 

concentrations were found near to I-95 with decreasing concentration as distance to the 

roadway increased. Figure 4-4 provides the trend of domain-averaged concentrations for each 

meteorological year modeled.  Concentrations generally decreased from 2005 to 2008, with 

higher concentrations again in 2009 for all pollutants. Increases in 2009 may be due to the large 

number of low wind speed hours in 2009. 

Table 4-2.  Range in modeled concentration in study area for each pollutant due to emissions from 
focus I-95 section before implementation of HOT lane project 

Pollutant NAAQS levels 
One-hour averagea

 

(µg/m3) 
Eight-hour averagea

 

(µg/m3) 
Annual 
average 
(µg/m3) 1st 2nd 1st 2nd 

CO 10,000 (8-hr) 
40,000 (1-hr) 15 – 6,100 10 – 4,800 3  - 2,100 2 – 1,900 0.04 - 200 

NOx Not applicableb 1.5 - 440 1 - 350 0.3 - 170 0.2 - 160 0.004 - 19 
Benzene Not applicable 0.03 – 9.4 0.03 – 8.1 0.005 – 3.9 0.004 – 3.4 0.00008 – 0.4 
a1st and 2nd refer to highest and second highest values, respectively, at receptor location over the five years of 
meteorological data.  bStandards do exist for NO2.  Assuming standard ambient temperature and pressure, they are 
100 and 188 µg/m3 for annual average and one-hour average, respectively. 
 
 
Table 4-3.  Range in modeled concentration in study area for each pollutant due to emissions from 

focus I-95 section after implementation of Phase 1A and 1B of HOT lane project 

Pollutant NAAQS levels 
One-hour averagea

 

(µg/m3) 
Eight-hour averagea

 

(µg/m3) 
Annual 
average 
(µg/m3) 1st 2nd 1st 2nd 

CO 10,000 (8-hr) 
40,000 (1-hr) 15 - 6200 10 - 4900 3 – 2,100 2 – 2,000 0.05 - 230 

NOx Not applicable 1.5 - 450 1 - 350 0.3 - 168 0.2 - 160 0.004 - 19 
Benzene Not applicable 0.03 – 9.3 0.02 – 7.7 0.005 – 3.7 0.004 – 3.4 0.00008 – 0.4 
a1st and 2nd refer to highest and second highest values, respectively, at receptor location over the five years of 
meteorological data.   
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Figure 4-3.  Modeled pollutant concentrations in study area due to emissions from focus I-
95 section prior to the implementation of HOT lanes project.  Subplots a - c are for CO, d – f are 
for NOx, and g - i are for benzene.  Concentration averaging times plotted are highest one-hour average (a, 
d, g), highest eight-hour average (b, e, h), and annual average (c, f, i) over the five-year meteorological study 
period. 
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Figure 4-4.  Domain average concentrations of the three pollutants from 2005 to 
2009. Concentration shown is for baseline scenario. Due to wide range of concentration values, 
all values have been adjusted relative to values in 2005 to illustrate trend. 

 
As an evaluation, the modeling results of carbon monoxide at the Annex monitoring site, which 

is located in close proximity to I-95, were compared with measured concentrations. The 

comparison is shown in Table 4-4. For the highest one-hour CO concentration, the modeled 

values are close to the measured values. However, the highest eight-hour modeled 

concentrations are substantially less than the measured concentration. These results are 

consistent as short-term averages (such as the one-hour) are expected to respond to high rush 

hour mobile source emissions nearby, leading to close approximation by the model.  However, 

for longer averaging times (such as the eight-hour), the contribution of other sources in the 

county, not modeled here, likely becomes important. Hence, longer-term averages are expected 

to show lower concentrations for the modeled versus measured data.  No evaluation for NOx 

and benzene could be performed due to lack of appropriate monitoring data. 

Table 4-4.  Comparison between modeled and measured highest one-hour CO concentration  
(1st 1h) and highest eight-hour CO concentration (1st 8h) at Annex monitoring site. 

 
2005 (µg/m3) 2006 (µg/m3) 2007 (µg/m3) 2008 (µg/m3) 

Measured Modeled Measured Modeled Measured Modeled Measured Modeled 
1st 1h 725 627 575 581 437 478 322 378 
1st 8h 288 137 230 150 242 99 242 106 

 
To determine impacts on modeled concentrations of the implementation of the HOT lane 

project, concentrations for the after scenario were modeled and compared with baseline 

scenario concentrations.  Absolute differences (after – baseline) averaged over the spatial 
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domain are provided in Table 4-5.  Example difference distributions are shown in Figure 4-5 

through Figure 4-7.  For all CO and NOx for the averaging times studied, modeled domain 

average concentrations increased slightly after the managed lane implementation versus before 

implementation.  For benzene, the sign of the difference in domain average concentrations 

depends on the averaging time considered. Difference plots also indicate that differences are 

positive (higher for the after scenario) throughout most of the study domain.  However, small 

negative differences were observed north of the focus I-95 section for all pollutants.  An analysis 

of the vehicle miles traveled on the corridor indicates that these decreases are due to the spatial 

distribution of VMT.  In the after scenario, the north section of the corridor experienced lower 

traffic volumes (and, hence, lower emissions).  Overall, all difference were very small, 

representing less than 3 percent of the baseline scenario concentrations for all receptors. 

Table 4-5 Domain-averagea differences in modeled pollutant concentrations  
for each pollutant due to implementation of HOT lane project.  

Positive values indicate increases for after scenario, while negative values indicate decreases. 

Pollutant 

Highest 
one-hour average 

(µg/m3)  

Highest  
eight-hour average 

(µg/m3)  
Annual average 

(µg/m3)  
CO 18 4.9 3.1 
NOx 1.1 0.27 0.033 
Benzene 0.0006 -0.0013 0.0001 

aSimple domain average of concentration at all receptors in domain.  Since receptor network is  
denser near roadway, concentrations near roadway carry heavier weight in average. 

 

 
Figure 4-5.  Estimated changes in carbon monoxide concentrations due to implementation of HOT 
lane project.  Plots are interpolated from absolute differences at each receptor site for after scenario vs. baseline 
scenario. Subplot a provides change in highest one-hour average concentration, while subplot b provides change  
in five-year average annual benzene concentration. 
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Figure 4-6.  Estimated change in nitrogen oxides concentrations due to implementation of HOT 
lane project.  Plots are interpolated from absolute differences at each receptor site for after scenario vs. baseline 
scenario. Subplot a provides change in highest one-hour average concentration, while subplot b provides change in  
five-year average annual nitrogen oxides concentration. 
 
 

 
Figure 4-7.  Estimated change in benzene concentrations due to implementation of HOT lane 
project.  Plots are interpolated from absolute differences at each receptor site for after scenario vs. baseline 
scenario. Subplot a provides change in highest one-hour average concentration, while subplot b provides change in  
five-year average annual benzene concentration. 
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4.3 Summary and discussion of air quality results 

The AERMOD Gaussian dispersion model was selected and used to estimate pollutant 

concentrations in the study area due to emissions from the case study I-95 corridor.  

Concentrations of carbon monoxide, nitrogen oxides, and benzene were estimated.  AERMOD 

simulations were performed using emissions for the baseline scenario (before the 

implementation of HOT lanes on the corridor) and for the after scenario (after the 

implementation of Phases 1A and 1B of the HOT lane project).  All modeled concentrations of 

CO were substantially lower than the comparable regulatory standard level.  (No directly 

comparable standard exist for NOx or benzene.)  As expected, concentrations near the 

emissions corridor were substantially higher than farther from the corridor.  On average and 

throughout most of the study spatial domain, higher concentrations of CO and NOx were 

estimated after HOT lane implementation, though the magnitude of the increase is small. 

Although concentrations of benzene also increased slightly in part of the study domain, a large 

area had decreasing concentrations. For all pollutants, concentrations near the north end of the 

corridor decreased due to a change in the spatial distribution of vehicle volumes.  Overall, all 

concentrations differences between the after and baseline scenarios were small. 
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5 INTEGRATED DISCUSSION AND SUMMARY 

5.1 Impact of the I-95 HOT lanes project on bus transit 
Corridor simulation results suggest improvement in corridor speeds after implementation of the 

HOT lanes, particularly in the northbound lanes during the afternoon peak hours.  This reduction 

in congestion led to improved travel times for buses.  It is expected that improved bus travel 

times could improve the perception and use of transit on the corridor. 

5.2 Impacts of the I-95 HOT lanes project on air quality 
The total annual estimated emissions of CO, NOx, PM10, and benzene showed slight increases 

after the implementation of the managed lane project.  Emissions of HCs showed a slight 

decrease. Emissions changes were quite small, with the highest total emissions change for CO 

of 3.5 percent.  For buses alone, total emissions decreased significantly after the 

implementation of the HOT lanes. Further analysis suggests that the link traffic volumes in the 

CORSIM modeling were slightly higher in the after scenario compared to the baseline scenario, 

contributing to the emissions change. Speed improvements on the corridor did not result in 

decreased overall MOBILE6.2 emissions factors.  Emissions factors decreased on average for 

HCs and benzene only.  Uncertainties regarding volume changes associated with HOT lane 

implementation, coupled with the small magnitude of estimated changes in emissions, suggest 

important uncertainties in the overall impacts of the project on emissions. 

Consistent with the emissions results, modeled concentrations of CO and NOx showed slight 

increases after the HOT lane implementation throughout much of the study area.  The benzene 

concentrations results are more mixed.  The highest concentration differences were found close 

to the I-95 corridor for the shortest averaging times.  Concentration to the north of the corridor 

deceased for all pollutant due to changes in the emissions distribution.  Compared to the 

magnitude of the overall concentration values, the change in air quality due to the 

implementation of the management lane project is quite small. 

5.3 Implications for impacts of managed lane projects  
A purpose of managed lane projects is to encourage vehicle sharing and reduce congestion by 

applying access restrictions to certain lanes. Upon successful implementation, increases are 

expected for the average speed on the roadway and the percentage of high occupancy vehicles 

(and transit ridership) in the fleet.  The results here are consistent with increases in roadway 

performance regarding speed, with concomitant improvements in transit bus travel times. 
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Regarding air quality impacts, the increase of average speed on the roadways may lead to the 

reduction of mobile source emissions for some pollutants, but not all of them (USEPA 2002; 

Granell et al. 2004; Tang et al. 2004).  Emissions of benzene, volatile organic compounds and 

particulate matter have shown a negative relationship with increasing average speed. Thus, 

reduction in congestion may lead to emission reduction for these pollutants. The correlations 

between speed and the emissions for other pollutants, such as carbon monoxide, are more 

complicated; the estimated all-vehicle average CO emission rate exhibited a minimum in the 

range of speeds found on the corridor studied here, resulting in increases on either side of that 

minimum.  Regarding vehicle distributions, if vehicle sharing and transit ridership increase 

significantly due to the implementation of the managed lane project, the total VMT could 

decrease and the reduction of mobile source emissions could occur. However, significant mode 

change has not yet been observed substantially in many managed lane projects across the U.S. 

(discussed in Chapter 3); hence, these benefits are still unclear. More work is needed to 

understand mode share impacts. 

5.4 Issues with combining transportation modeling and air pollution methods 
Since transportation models and air quality models were developed out of separate disciplines 

for different purposes, their combination requires translation.  For the purposes of air quality 

modeling, transportation modeling provides traffic information such as vehicle temporal behavior 

(e.g., speeds and vehicle flow rates) and characteristics (vehicle types) necessary for emissions 

estimation. Two issues were identified during the translation between CORSIM and 

MOBILE6.2/AERMOD.  First, vehicle classification methods are different between the 

transportation simulation model and the emission estimation model.  Better mapping of vehicle 

class distributions between models would be helpful for the emission estimation. Additionally, 

the time scales traditionally relevant to each type of study are distinct.  CORSIM simulated 

traffic during rush hours.  This is not sufficient for long-term air quality modeling purposes, which 

requires allocation of this short time scale data to the annual time scale. The extrapolation 

required introduces uncertainties in the emissions and concentration estimation. 

5.5 Final Summary 
The air quality and bus transit performance impacts of a case study managed lane project were 

studied.  The case study project involved the implementation of HOT lanes on a corridor of I-95 

near Miami.  Conditions after Phase 1B of the project were compared to conditions prior to 

project implementation.  Methods from the transportation and air pollution fields were combined 

to investigate impacts. Specifically, air quality monitoring data were collected from multiple 
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agencies to analyze the baseline and temporal trends in air quality in Broward and Miami-Dade 

counties. Using corridor micro-simulation transportation modeling with CORSIM, traffic 

conditions before and after the implementation of the HOT lanes project were simulated.  

Corridor performance, with a particular focus on transit bus speeds and travel time, were 

analyzed.  Using traffic data from the CORSIM simulation results and MOBILE6.2 emission 

factor estimation, emissions of CO, NOx, PM10 HC, and benzene before and after the 

implementation of the HOT lane project were calculated. Dispersion modeling using AERMOD 

was performed for select pollutants to investigate the air quality impact of the managed lane 

project. 

Air quality monitoring data were collected from reports and databases of relevant local to federal 

agencies. Monitoring data from 2000 through June 2009 of O3, NO2, CO, PM2.5 and PM10, 

VOCs, and selected air toxics in Broward and Miami-Dade counties were compiled.  

Concentrations of pollutants other than O3 and PM2.5 were well below the comparable NAAQS 

levels. The highest measured concentrations of the latter two pollutants approached or slightly 

exceeded the standard levels at some monitors.  Over the decade, an apparent decreasing 

trend in concentrations was observed for CO, NO2, benzene, and 1,3-butadiene, while no 

apparent trends were observed for other pollutants.   

Emissions from the study corridor of primary pollutants associated with vehicle sources (CO, 

NOx, PM10, HCs, and benzene) before and after the implementation of the managed lane 

project were calculated. Results of the corridor traffic simulations show improvements in the 

speed performance of the corridor, particularly in the northbound lanes during afternoon peak 

hours. Bus travel times, in particular, were reduced. Comparison of emissions before and after 

implementation of the HOT lane project indicates small increases in total emissions of all 

pollutants studied except HCs after the implementation of the project.  However, differences are 

small with important uncertainties. 

Concentrations of three select pollutants (CO, NOx, and benzene) resulting from corridor 

emission before and after the HOT lane implementation were estimated using AERMOD 

dispersion modeling.  Differences in concentrations were small overall but indicate increases in 

the concentration throughout much of the study domain, with a small area of decreases near the 

north end of the study corridor.  Concentrations and differences were largest near the I-95 

corridor.  Impacts for benzene were more mixed, with a large area of the domain experiencing 

decreased concentrations. Overall, results suggest relatively small impacts of the HOT lane 

project on air quality for this case study. 
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Finally, methods for assessing air quality impacts of managed lane projects were developed and 

demonstrated here.  Although useful and necessary for understanding general trends in air 

quality in the study area, available monitoring data did not clearly show an apparent signature of 

the managed lane project.  In future work, comparative statistical analysis of time series data at 

select monitoring sites may be useful in attributing the trends found here.  Conversely, the 

combination of corridor transportation modeling with air pollution modeling allowed estimation of 

highly-resolved spatial distributions of pollutant concentrations due the managed lane 

implementation.  This approach likely would be useful for additional case studies under varying 

conditions, necessary for generalizability. Important sources of uncertainties in understanding 

and modeling air quality impacts of managed lane projects also were identified.  Specifically, 

improvements in methods are needed for 1) estimation of network level impacts on vehicle 

volume redistribution, 2) emissions factor model representation of speed effects, and 3) tools for 

effectively translating between transportation and air pollution models.  Nonetheless, the results 

found and methods demonstrated provide an important step towards understanding the impacts 

of managed lanes and other corridor-level projects on air quality.
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