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"The opinions, findings, and conclusions expressed in this publication are those of the authors 
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EXECUTIVE SUMMARY 

This report describes the development of real-time crash prediction models for the Interstate-4 

corridor in Central Florida area. Crash data for 36.25-mile freeway stretch from the year 1999 

through 2002 has been used to link the crash occurrences with real-time traffic patterns observed 

through loop detector data.  

 

This project has been supplemental to the completed project BC-355 #8 and the ongoing project 

BD-550 #5. Therefore much of the work overlaps between this project and the other two. The 

main contributions of this project could be summarized in the following four areas: 

• Investigating the factors from loop detector data that are significantly associated with crash 

risk 

• Investigating the possibility of using real-time weather information as part of the real-time 

crash prediction system on I-4 

• Identifying the geometric elements of the freeway that could be used in this system 

• Exploring and initial analysis of the ITS strategies that could be used to improve the safety 

situation on I-4 in real-time, namely at this stage was variable speed limits (VSL) 

 

The analysis showed that the coefficient of variation in speed, average occupancy and the 

standard deviation of volume in the 5 – 10 minutes before crash occurrence are the most 

significant variables that could lead to crashes on the freeway. 
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We have obtained detailed rain fall data from 5 weather stations in Central Florida and 

developed a rain index based on the archived rain data to investigate whether real-time rain data 

would be needed for implementation.  

 

Investigating the geometric elements that are related to crash occurrence and could be used with 

association with real-time traffic conditions from loop detector data, indicated that the locations 

of the ramps are significant. 

 

Finally, VSL were investigated using the micro simulation model (Paramics). This investigation 

showed that VSL can be used to reduce the crash risk in real-time. However, the analysis showed 

that this is most effective only in moderate-to-high-speed conditions. Also, we have noticed the 

possibility that the crash risk would relocate (migrate) to other locations other than the location 

that we intend to treat. The strategy to use VSL for real-time safety application is still in its 

infancy and would require more investigation. 
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CHAPTER  1 

STUDY AREA AND DATA PREPARATION 

1.1 General 

The final goal of this research is to develop a predictive system (excluding driver and vehicle 

characteristics) for crash occurrence on 36.25-mile Interstate-4 corridor equipped with 

underground loop detectors. To achieve this objective we need to systematically correlate 

between the crash characteristics and the loop data (representing ambient traffic flow 

configuration). Moreover it has to be collated with the geometric design of the freeway at the 

location of the crash and the environmental conditions at the time of the crash. The system needs 

to recognize the patterns not leading to crash occurrence as well, hence traffic, environmental 

and geometric conditions corresponding to selected “non-crash” cases or “normal” freeway 

operating conditions must also be a part of the database.  

 

The traffic parameters in this study would be measured in terms of time series of 30-seconds 

observed from inductive loop detectors in the vicinity of the crash location for a certain period 

leading up to the crash. It is not difficult to realize the importance of properly fusing the loop 

detector data with crash data and geometric/environmental/driver related factors that might affect 

the probability of crash occurrence. 

 

This section provides a brief overview of the data that has been collected as part of this project. 

For more details, the reader is referred to the final report of the previous project (Abdel-Aty et 

al., 2004). 
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1.2 Introduction to Study Area 

The study is being conducted on the Interstate-4 (I-4) corridor in Orlando. The corridor is 

considered to be an integral part of Central Florida’s transportation system. It carries greater 

number of people and vehicles than any other transportation facility in the region and serves 

many of the area’s primary activity centers. Though originally designed to serve long distance 

travelers, the I-4 corridor now has evolved to one serving many shorter trips. No wonder a 

significant amount of growth in the region is occurring within close proximity to I-4. In recent 

years, congestion on I-4 has extended well beyond normal peak hours and major crashes have 

closed the freeway, subsequently resulting in traffic congestion throughout the Orlando 

metropolitan area. Hence, congestion and delays blended with high crash rates are the major 

transportation problems facing the freeway.  

 

 

Figure 1-1: I-4 corridor under consideration along with other major roads  

SR 400 (I-4)

SR 417

SR 528

SR 408



 3

Figure 1-1 shows the instrumented Interstate-4 corridor along with the some major roads on the 

network. The freeway section under consideration is 36.25 miles long and has a total of 69 loop 

detector stations, spaced out at nearly half a mile.  Each of these stations consists of three dual 

loops in each direction and measures average speed, occupancy and volume over 30 seconds 

period on each of the through travel lane. The loop detector data are continuously transmitted to 

the regional traffic management center (RTMC). The source of crash and geometric 

characteristics data for the freeway is FDOT (Florida Department of Transportation) intranet 

server.  

 

1.3 Crash Data Collection 

The first step was to collect crash data for the instrumented freeway corridor over a period of 

time. Since the loop detectors are known to suffer from intermittent failures it was likely that 

some of the crashes may not have corresponding loop data available. To ensure that loop data for 

sufficient number of crashes are available to establish reliable links between crash and traffic 

characteristics it was decided to be on the conservative side and collect crash data for a period of 

four years ranging from 1999 through 2002.  

 

There were 3755 crashes reported in all during the four year period (from 1999 through 2002), 

while we expected some of them to have corresponding loop detector data missing, it was 

believed that we will be left with a sample large enough for analysis purposes. The information 

extracted for each crash case to create a complete crash database for is shown in Table 1-1. 
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Table 1-1 The crash characteristics table 

 

The table shown above provides sufficient information about each crash; the field “first harmful 

event” represents type of the crash (e.g., rear-end collision, sideswipe collision or vehicle hitting 

the guard rail). All other fields are self explanatory. The “milepost” field of the crash 

characteristics table (Table 1-2) was used to determine the loop detector station nearest to 

location of each crash and was referred to as the station of the crash. In this phase of the project 

not all available crash characteristics have been analyzed. None the less, they were made part of 

the database with future research in perspective.  

 

1.4 Loop Data Collection 

The most critical part of this study is of course the loop detector data corresponding to crashes. 

As mentioned in the previous section for the four-year period 1705 crashes had no loop detector 

data available at all. Hence, the loop data was to be collected for the remaining 2050 crashes. 

The format of the data collected for analysis largely depends upon the methodology used. Past 

experience of the research group (e.g., Pande, 2003, Abdel-Aty et al. 2003, Abdel-Aty and 

Abdalla, 2003) with data from 7-month period of the year 1999 was very beneficial in this 

regard. Three separate databases consisting of loop detector data have been assembled for this 

study. 

Crash 
Number 

Crash 
report 

number 

Direction 
(EB or 
WB)  

Mile 
post 

Date 
of 

crash 

First 
harmful 

event 

Lane 
of 

the 
crash 

Visibility 
on the 

roadway 

Pavement 
Condition 

(Wet, 
slippery 
or dry) 

Number 
of 

fatalities 

Number 
of 

injuries 

1 xx xx xx xx xx xx xx xx xx xx 

2 xx xx xx xx xx xx xx xx xx xx 

| | | | | | | | | | | 

3755 xx xx xx xx xx xx xx xx xx xx 
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1.4.1 Data for Matched-Case Control Analysis 

The matched case-control methodology was identified as an effective tool for modeling the 

binary outcome: crash or non-crash. To compare traffic characteristics (measured during time 

prior to crash occurrence from locations surrounding the crash location) that lead to a crash  with 

corresponding normal traffic conditions that did not lead to a crash, traffic data were extracted in 

a specific matched format.  

 

Loop data were extracted for the day of crash and on all corresponding (non-crash) days to the 

day of every crash. The correspondence here means that, for example, if a crash occurred on 

April 12, 1999 (Monday) 6:00 PM, I-4 Eastbound and the nearest loop detector was at station 30, 

data were extracted from station 30, four loops upstream and two loops downstream of station 30 

for half an hour period prior to the estimated time of the crash for all the Mondays of the year at 

the same time. This matched sample design controls for all the factors affecting crash occurrence 

such as season, day of week, location on the freeway, etc (thus implicitly accounting for all these 

factors). Hence, this case will have loop data table consisting of the speed, volume and 

occupancy values for all three lanes from the loop stations 26-32 (on eastbound direction) from 

5:30 PM to 6:00 PM for all the Mondays of the year 1999, with one of them being the day of 

crash (crash case). More details of this sampling technique and application of this methodology 

may be found in one of the papers by our research group (Abdel-Aty et al., 2004). The format of 

data tables for this hypothetical crash is shown in Table 1-3.  
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Table 1-2 Format of the matched data extracted from the I-4 loop detector database for a 
hypothetical crash case 

Day Station Y Time ELS* ECS* ERS* ELV+ ECV+ ERV+ ELO- ECO- ERO- 

04/05/99 27 0 17:30:00 xxx   xxx   xxx  xxx    xxx    xxx xxx   xxx   xxx 

04/05/99 27 0 17:30:30 xxx   xxx   xxx  xxx    xxx    xxx xxx   xxx   xxx 

04/05/99 | 0 | |        |        | |        |        | |        |        | 

04/05/99 | 0 | |        |        | |        |        | |        |        | 

04/05/99 33 0 18:05:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

04/05/99 33 0 18:05:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

04/12/99 27 1 17:30:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

04/12/99 27 1 17:30:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

04/12/99 | 1 | |        |        | |        |        | |        |        | 

04/12/99 | 1 | |        |        | |        |        | |        |        | 

04/12/99 33 1 18:05:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

04/12/99 33 1 18:05:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

04/19/99 27 0 17:30:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

04/19/99 27 0 17:30:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

04/19/99 | 0 | |        |        | |        |        | |        |        | 

04/19/99 | 0 | |        |        | |        |        | |        |        | 

04/19/99 33 0 18:05:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

04/19/99 33 0 18:05:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

| | 0 | |        |        | |        |        | |        |        | 

| | 0 | |        |        | |        |        | |        |        | 

12/27/99 33 0 18:05:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

12/27/99 33 0 18:05:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 
ELS* Eastbound Left lane Speed  ELV+ Eastbound Left lane Volume       ELO- Eastbound Left lane Occupancy 
ECS* Eastbound Center lane Speed        ELV+ Eastbound Center lane Volume   ELO- Eastbound Center lane Occupancy 
ELS* Eastbound Right lane Speed  ELV+ Eastbound Right lane Volume      ELO- Eastbound Right lane Occupancy 

 
 
 
The filed Y in the table above represents whether the data row corresponds to a crash case or to a 

matched non-crash case. Such tables were extracted for all 2050 crashes with some loop data 

available. Note that the number of observations in these tables for different crashes was different 
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due to random failures of the loops. Also, the cleaning mechanism explained above for raw 30-

second loop data was again adopted to clean the data.  

 

1.5 Geometric Design Parameters 

Although the main purpose of this study is to establish links between real-time traffic 

characteristics (measured through loop detectors) and crash occurrences, it is extremely 

important to consider geometric characteristics on the freeway with respect to the crash 

characteristics. For example, the traffic characteristics leading to a crash on a curved section 

might be distinct from those leading to crash on a straight section.   To obtain the details of the 

geometric design of I-4 corridor the Roadway Characteristics Inventory (RCI) database available 

on FDOT Intranet server was used. Geometric design features were extracted for the location of 

each loop detector station since it was the common link between crash and loop detector 

database. The structure of this database is shown in Table 1-3. Geometric design of the freeway 

might differ from one direction to the other, hence the dataset has 138 (69*2=138) observations. 

 

Table 1-3 Geometric design of the freeway at loop detector station locations 

Loop Direction Mile post Radius (ft) Number 
of Lanes 

Median 
type and 
width (ft)

 

Distance 
to nearest 
upstream 
on ramp 
(miles) 

Distance 
to nearest 
upstream 
off ramp 
(miles) 

Distance 
to nearest 

down 
stream on 

ramp 
(miles) 

Distance 
to nearest 

down 
stream off 

ramp 
(miles) 

2 E xxx xxx xxx   xxx xx       xx xxx xxx xxx xxx 

2 W xxx xxx xxx   xxx xx       xx xxx xxx xxx xxx 

|  | | | |          | | | | | 

71 E xxx xxx xxx   xxx xx       xx xxx xxx xxx xxx 

71 W xxx xxx xxx   xxx xx       xx xxx xxx xxx xxx 
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1.6 Weather Information 

The effect of wet weather on crash occurrence is well documented (e.g., Xiao et al. 2000). In 

Central Florida where snow is not a concern, rain fall is the most important weather related 

factor affecting visibility as well as the pavement condition. These two parameters are available 

for historical crashes; however, for the non-crash cases there is no direct way to obtain the 

weather information at locations from where loop data has been collected. We have developed a 

methodology to infer the weather conditions for the non-crash cases using the rainfall 

information provided by five different rain gauge stations located in the surroundings of the 36-

mile corridor.  
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CHAPTER  2 

SIGNIFICANT TRAFFIC FACTORS FROM LOOP DETECTORS 

For matched case-control logistic regression, traffic data were extracted for the day of crash and 

on all corresponding (non-crash) days to the day of every crash. The correspondence here means 

that, for example, if a crash occurred on April 12, 1999 (Monday) 6:00 PM, I-4 Eastbound and 

the nearest loop detector was at station 30, data were extracted from station 30, four loops 

upstream and two loops downstream of station 30 for half an hour period prior to the estimated 

time of the crash for all the Mondays of the same season in that year at the same time. This 

matched sample design controls for all the factors affecting crash occurrence such the location on 

the freeway (thus accounting for the geometric factors). Hence, this case will have loop data 

table consisting of the speed, volume and occupancy values for all three lanes from the loop 

stations 26-32 (on eastbound direction) from 5:30 PM to 6:00 PM for all the Mondays of the year 

1999, with one of them being the day of crash (crash case). Details of this sampling technique 

and application of this methodology may also be found in one of the papers by Abdel-Aty et al. 

(2004).  

 

Since the 30-second data have random noise and is difficult to work with in a modeling 

framework, we combined the 30-second data into two separate levels of 3-minute and 5-minute 

level in order to get averages and standard deviations. Thus for 5-minute aggregation half an 

hour period was divided into 6 time slices. The stations were named as “B” to “H”, with “B” 

being farthest station upstream and so on. It should be noted that “F” is the station closest to the 

location of the crash with “G” and “H” being the stations downstream of the crash location. 

Similarly the 5-minute intervals were also given “IDs” from 1 to 6. The interval between time of 



 10

the crash and 5 minutes prior to the crash was named as slice 1, interval between 5 to 10 minutes 

prior to the crash as slice 2, interval between 10 to 15 minutes prior to the crash as slice 3 and so 

on. For 5-minute level aggregation the arrangement of these time-slices and stations is shown in 

Figure 2.1. Similarly for the 3-minute level, the interval between the time of the crash and 3 

minutes prior to the crash was named as slice 1, interval between 3 to 6 minutes prior to the crash 

as slice 2, and interval between 6 to 9 minutes prior to the crash as slice 3 and so on. Two effects, 

namely average and standard deviation were initially calculated for speed, volume and 

occupancy during each time slice and from each lane at every station. The original data series 

being at 30-second level, the 3-minute and 5-minute averages (and standard deviations) were 

based on six and ten observations, respectively. Using information about the specific lane where 

the crash occurred from the FDOT database, average and standard deviation for only lane of the 

crash were retained.   

S ta t io n  B

S ta t io n  H

S ta t io n  G

S ta t io n  F

S ta t io n  E

S ta t io n  D

S ta t io n  C

D is ta n c e
T r a f f ic

D ir e c t io n

-2 5  m in . -2 0  m in . -1 5  m in . -1 0  m in . -  5  m in . T im e  o f  th e
c r a s h = 0

S l ic e  1S l ic e  6 S l ic e  5 S l ic e  4 S l ic e  3 S l ic e  2

-  3 0  m in .

T im e  a n d  L o c a t io n
o f  th e  c r a s h

 

Figure 2-1: Time-space arrangement of all stations and time slices with respect to the crash 
site and the time of the crash 
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Using data only from specific lane of the crash reduced the size of the dataset to about 30% of 

the original crash sample due to the fact that data from specific lane of the crash were missing 

quite often. Two more datasets were created, by aggregating the data on the three lanes; hence in 

the aforementioned three-minute and five-minute datasets the lane of the crash averages and 

standard deviations were replaced by values aggregated over three lanes. In these datasets, the 

averages (and standard deviations) at 3-minute and 5-minute level were based on 18 (6*3 lanes) 

and 30 (10*3 lanes) observations, respectively. Therefore, even if at a certain station loop 

detector from one lane was not reporting data there were observations available to get a measure 

of traffic from that location. This not only increases the sample size of crashes to more than 2000 

crashes but also helps to develop a system for more realistic application scenario since all three 

lanes at a loop detector stations are less likely to be simultaneously unavailable while the model 

is used for real-time prediction. 

  

2.1 Analysis 

For each of the seven loop detectors (B to H) and six time slices (1-6) mentioned above, there are 

values of means (AS, AV, AO) and standard deviations (SS, SV, SO) of speed, volume and 

occupancy, respectively, of all crash and the corresponding non-crash cases. Due to data 

availability, there were different numbers of non-crash cases for each crash. To carry out 

matched case-control analysis we created a symmetric data sets (i.e., each crash case in the 

dataset has the same number of non-crash cases as controls) by randomly selecting five non-

crash cases for each crash in all four datasets. The choice of selecting five as the number of 

corresponding non-crash cases was based on one of our earlier findings (Abdel-Aty et al., 2004) 

which essentially indicated no differences among the results from five different 1: m datasets 
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(with 1 crash and m corresponding non-crash with m varying between one to five). In addition to 

the aforementioned datasets we also created a “pseudo” case control dataset in which six random 

non-crash cases in each stratum were selected and one of them was assigned as (pseudo) crash 

while all the real crash cases were dropped. The results from this dataset were analyzed in order 

to delineate the differences between real and “pseudo” case control datasets. Exploratory 

analysis with the original effects (3-minute or 5-minute standard deviations and average of 

speed) showed that the hazard ratio for standard deviation of speed were all greater than unity 

while they were all less than one for the average speeds at stations B-H and time slices 1-6. Thus, 

the coefficient of variation in speed was a natural choice as a precursor resulting in hazard ratio 

values substantially greater than one. Therefore, we combined mean and standard deviation of 

speed, occupancy and volume into the variables CVS, CVO, CVV (coefficients of variation of 

speed occupancy and volume, respectively, expressed in percentage as (SS/AS)*100, 

(SO/AO)*100, and (SV/AV)*100). Logarithmic transformation was applied to these coefficients 

of variation due to skewed nature of their distribution. The preliminary analysis concluded that 

the variables LogCVS, AO and SV had the most significant hazard ratios.  

 

The results of stratified conditional simple (one variable at a time) logistic regression analysis 

were then analyzed for these three variables (LogCVS, AO, SV) at each of the seven loop 

detectors and six time slices to identify time duration(s) and location of loop detector(s) whose 

traffic characteristics are significantly correlated with the binary outcome (crash vs. non-crash). 

This was done by calculating the hazard ratio using proportional hazard regression analysis 

(PHREG of SAS) of each of the 126 (7 stations *6 time slices *3 parameters i.e.,  LogCVS, AO, 

SV) single variable models; one model for each of the three variables LogCVS, AO and SV over 
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every station B-H and the duration of time slice 1-6. The outcome of these models was the 

hazard ratio value for these variables at various stations and time slices. The hazard ratio is an 

estimate of the expected change in the risk of having a crash. Therefore, if the output hazard ratio 

of a variable is significantly different from one (e.g., 2) then increasing the value of this variable 

by one unit would double the risk of a crash at station F (station of the crash). The decision 

regarding significance is made based on the p-value, which represents the probability of 

drawing the sample being tested if the null hypothesis were actually true. The null 

hypothesis is formulated as hazard ratio being equal to unity. Therefore, a p-value of 

less than the threshold (selected as 0.05) would indicate the rejection of the null 

hypothesis and hazard ratio significantly different than unity. 

 

These 126 single variable models were estimated for corresponding hazard ratio values for all 

five datasets including the four real (3-minute and 5-minute aggregation with individual lane of 

the crash/combined lanes) and one “pseudo” matched case-control dataset (combined lane at 3-

minute aggregation having one non-crash in each strata randomly assigned as crash). The 

arrangement used for stations and time slices used here is crucial in terms of generating the 

patterns of crash risk and it’s “propagation” in a time-space framework. The results from these 

datasets are discussed in the following section.  

 

2.2 Results and Discussion 

First dataset to be analyzed for hazard ratio was the one aggregated to 3-minute level with 

parameters only from lane of the crash. The results show how the hazard ratio for LogCVS and 

AO increases as we approach the Station of the crash (Station F) and time of the crash (Slice 1), 
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Although the values of hazard ratio for AO is low (i.e., near to 1.0) but it is still significant (Note 

the chi sq. statistic and p-value). The reason for the low value is that occupancy usually changes 

by 1% quite frequently on freeways and it is more meaningful to represent the increased risk of 

observing a crash resulting from 10% increase in occupancy. This modified risk ratio can be 

obtained by raising hazard ratio to the power 10. For SV the hazard ratios were found to be less 

than one and appeared to be decreasing as the time and station of crash approached in the 

downstream direction. Since it is the value of hazard ratio that is significantly different from one 

(and not necessarily a high value) that makes the variable a better crash precursor, ratio for SV 

indicates that as this parameter becomes smaller at certain freeway locations the crash risk 

apparently increases at locations upstream of these sites.  

 

This analysis was based on a very small sample size due to missing data from individual lane on 

which the crash occurred and also the determination of these risk ratio values would require the 

data from each individual lane to be available, therefore we next conducted our analysis on 3-

minute level data combined over three lanes. In combined lane data, the same trends in hazard 

ratio are essentially observed in a time-space framework, although we observed that the values 

part a little more from unity. 

 

To assess the fact that these results are really depicting an association between traffic flow 

variables and crash occurrence we next analyzed hazard ratios from the “pseudo” crash matched 

dataset. As expected the trends were either non-existent (as was the case with LogCVS and SV 

with values significantly close to one) or they were exactly reversed (as was the case with AO 

with hazard ratio significantly less than one).  
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With the five minute aggregated datasets again similar trends were observed for hazard ratios 

corresponding to SV and AO while in the case of LogCVS, the hazard ratio and corresponding 

chi-square statistic were magnified depicting stronger association of 5-minute coefficients of 

variation in speed with crash occurrence. In data aggregated to 5-minute level hazard ratios for 

parameters LogCVS and SV corresponding to combined lane data were higher and lower, 

respectively, than their individual-lane counter parts. The essential difference between the two 

datasets is that while the combined lane dataset accounts for the variation across the lanes 

wherever possible, the individual lane of the crash dataset does not. The magnified difference 

between unity and both hazard ratios (corresponding to LogCVS and SV) in the combined lane 

data indicates that similar volumes with varying speeds across lanes might be a contributing 

factor for freeway crashes.  Also, note that the sample size in case of combined lanes is about 

four times larger than in the case of individual lane. Hence it was decided to use the combined 

lane data for hazard ratio calculation as well.     

 
In short, it can be suggested that a higher LogCVS, AO value and lower SV value increases the 

likelihood of crashes. While for LogCVS this trend is observed starting at about 1.5 miles (from 

Station C) upstream of the crash location, it is considerably clear at about ½ mile upstream and 

also downstream.  It is also clear, based on the rise observed in hazard ratios that the 

“ingredients” for a crash starts about 15 minutes before the crash.  The LogCVS factor represents 

high variation in speed relative to the average speed, and the SV factor represents low variation 

in volume. Lower speed associated with high variance (leading to a high value of coefficient of 

variation) depicts turbulence in traffic that could be explained by frequent formation of queues 

followed by their quick dissipation. The other factor, low value of SV, indicates that low 
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variability in volumes is positively correlated with crash occurrences on freeways. A possible 

interpretation of this criterion might be that in case of high variability in volume, the density 

changes and consequently the gaps between vehicles change which alert the drivers. On the other 

hand, in case of low variability in volume, the density and the gap remain almost fixed in the 

traffic stream which causes the drivers to relax thus slowing their reaction time. It could also be 

that low variability of volume might sometimes be associated with queues (although low 

variability can also occur in better level of service with no queues). Also, low standard deviation 

of volume, with all three lanes combined, not only represents very stable volume in terms of time 

but almost same number of vehicles on three lanes as well. This coupled with high variation in 

speed at these locations, might cause drivers to make lane changing maneuvers near to the station 

of the crash in order to maintain their speeds. This will result in increased likelihood of conflict 

between vehicles. In general, however, queue formation and shockwaves are a common cause of 

rear-end crashes on Freeways. 

 

Beside these overall trends the results outline the differences between coefficients of 

variation/average measured at varying length of time slices (three and five minutes) as well. The 

five minute time slice would be more effective in the crash prediction as it not only has higher 

and more significant hazard ratio for LogCVS but it also provides more allowance in terms of 

time to analyze data, estimate and possibly reduce the likelihood of crashes. From here on we 

will focus our attention on 5-minute aggregate data with all lanes combined together rather than 

individual lane and/or data aggregated to the 3-minute level. 
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2.3 Spatio-temporal Variation of Crash Risk 

As described earlier, the analysis from here on is based on the 5-minute averages, standard 

deviations and coefficient of variation. To depict the patterns in the hazard ratio we show the 

contour plots of the ratio for all three variables found significant in a time-space framework. But 

first the type of the crash information available with the FDOT crash database was utilized in 

order to “clean” the 5-minute combined lane dataset by only retaining multi-vehicle crashes. 

Since the traffic conditions are more likely to impact the crashes involving interaction among 

vehicles rather than the single vehicle crashes mostly occurring due to error on the drivers’ part. 

Once this cleaned database was used for analysis it was found that the hazard ratio values were 

further boosted for LogCVS and AO while they further dropped in the case of SV as expected. 

The crash risk for the multi-vehicle crashes corresponding to the observed values of 5-minute 

combined lane LogCVS, AO and SV is shown in Figure 2.1(a), 2.2(a) and 2.3(a), respectively. 

Note that in Figure 2.1(a), and 2.2(a) the dark colored region represents high hazard ratios 

thereby identifying more risk while in Figure 2.3(a) the dark regions of the plot represent low 

hazard ratios (the values corresponding to SV are less than 1) but still signify more risk (of 

having a crash around Station F) associated with corresponding time slice and location. The 

contour plots for hazard ratios obtained from “pseudo” dataset give an idea about “normal” 

conditions on freeways (See Figures 2.1(b), 2.2(b) and 2.3(b)). These figures are in perfect 

contrast with their counterparts showing hazard ratio for a real matched case control dataset.  It 

provides visual evidence for the contribution of traffic factors toward crash occurrence.  

 

As we can see in all three plots (2.1(a), 2.2(a) and 2.3(a)) region around Station F remains fairly 

dark (i.e., crash prone) for about 20 minute period while upstream and downstream sites (Station 
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E and G, respectively) also show high risk for about 15-20 minute period before recording a 

crash. These results are significant since they allow leverage in terms of time to be able to predict 

and avoid an impending crash. It is however important to note that the most clear trend is 

depicted by the plot corresponding to LogCVS, since a stark contrast may be seen between 

location of crash and surrounding locations. Plot (Figure 2.3(a)) corresponding to SV appears 

dark for locations downstream of the crash location which indicates that very stable flow coupled 

with high variation in speed at freeway locations (say Station G) increases odds of having a crash 

upstream (Station F) of that site. However, the trends aren’t as clear about location of the crash 

as they were in the case of LogCVS. It is also to be seen in the context that the hazard ratios for 

LogCVS were more significant than those of SV. 

 
 
 
 

 

              Slice 1             Slice 2                        Slice 3                     Slice 4                       Slice 5                        Slice 6 

Figure 2.1(a): Spatio-temporal pattern of the hazard ratio for LogCVS obtained from 5-
minute combined lane dataset for multi-vehicle crashes 
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           Slice 1             Slice 2                     Slice 3                     Slice 4                     Slice 5                     Slice 6  

Figure 2.1(b): Spatio-temporal pattern of the hazard ratio for LogCVS obtained from 
“pseudo” crash case dataset 
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Figure 2.2(a): Spatio-temporal pattern of the modified hazard ratio (increase in crash risk 
when there is ten unit increase in occupancy rather than one) for AO obtained from 5-

minute combined lane dataset for multi-vehicle crashes 

  

                Slice 1             Slice 2                     Slice 3                     Slice 4                      Slice 5                     Slice 6 

       Figure 2(b): Spatio-temporal pattern of the modified hazard ratio (increase in crash 
risk when there is ten unit increase in occupancy rather than one) for AO obtained from 

“pseudo” crash dataset 
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Figure 2.3(a) Spatio-temporal pattern of the hazard ratio for SV obtained from 5-minute 
combined lane dataset for multi-vehicle crashes 
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        Slice 1       Slice 2                      Slice 3                       Slice 4                      Slice 5                       Slice 6 

Figure 3(b): Spatio-temporal pattern of the hazard ratio for SV obtained from “pseudo” 
crash case dataset 

 

2.4 Section Summary 

The matched case-control logistic regression was used as a simple analysis technique to detect 

traffic patterns that result in high potential of crashes on freeways. It was found that the 

coefficients of variation in speed measured at 5-minute intervals show slightly better association 

with crash occurrence than those measured at the 3-minute level. Also, combining observations 

from three lanes was concluded to be better than using only data from the lane where the crash 

occurred since it not only captures across lane variation (or lack of it) in speed (or volume), but 

also allows us to use larger dataset for analysis. It also has an advantage in real-time application 

in case of a loop failure on a certain lane. The results show that even if the first time slice (0-5 

minutes prior to a crash) is excluded due to practical considerations of the time required to act on 

the information and warn the drivers, it was shown that the crash prone conditions in terms of 
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high coefficient of variation in speed, low variation in volume and high occupancy are not 

ephemeral on freeway sections. The hazard ratio values for these variables were significantly 

different from one around the crash location for three to four time slices (i.e., the precursors 

existed for about 15 minutes), that should provide enough time for prediction (and prevention) of 

crashes. Another significant feature of these findings is that they are based on accurately 

estimated time of the crash thereby evading the “cause and effect” fallacy. The results from the 

“Pseudo” matched case control dataset containing six non-crash cases with one of them 

randomly assigned as crash also prove the association between crash occurrence and the traffic 

variables identified here.   Based on these findings we selected 5-minute combined lane dataset 

with only multi-vehicle crashes to develop our final model. The dataset had 1528 strata with each 

stratum consisting of one crash and five corresponding non-crash cases.   
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CHAPTER  3 

REAL-TIME WEATHER INFORMATION 

Since among the objective of this study is to identify the traffic and weather related factors (e.g., 

pavement conditions, visibility etc.) that affect the probability of crash occurrence, we were also 

interested in non crash situations (i.e., the traffic and rain conditions that do not lead to crashes).  

The crash police report identifies the weather condition when a crash occurs, however 

identifying the weather condition in the more than 47,000 non crash cases is also needed. 

 

Along the I-4 corridor there are no weather monitoring stations, which can provide the exact 

rainfall information at a desired time and location. Alternatively, as mentioned above, the Florida 

crash database provides the exact weather condition at the time of only crashes on I-4. There is a 

need to identify rainfall information at a particular time and location on I-4 other than the time of 

crash occurrences. 

 

The information on rainfall at the time of crash occurrence obtained from Florida crash database 

is provided in Table 3.1. Out of 1964 crash cases that happened during 1999 through 2001, 217 

of them occurred during rain, which adds up to 11 percent of the total number of crashes. This is 

a significant percentage of crash occurrences during rain situation which explain the need to 

account for the rainfall condition for crash and non-crash cases which in turn helps to identify the 

effect of rainfall on crash occurrence. 
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Table 3.1: Number of crashes that occurred during rain in 1999 – 2001 on I-4 

Rainfall occurrence during the crash cases 

Rain Situation Frequency Percent 
Cumulative 

Frequency 

No Rain 1747 88.95 1747 

Rain 217 11.05 1964 

 

 

Various agencies were contacted to obtain rainfall information. The main aim was to obtain 

rainfall information for I-4 at a desired time and location. Among the agencies contacted, Florida 

Automated Weather Network’s (FAWN) and National Oceanic and Atmospheric Administration 

(NOAA) provided the rainfall data. FAWN website provided 15 minute data for two sites on the 

western side of Orlando.  The sites are in Apopka and Avalon.  NOAA provided access to their 

database that consisted of hourly rainfall totals. The hourly rainfall information for the weather 

stations located at Orlando International Airport, Executive Airport and Sanford Airport were 

obtained from NOAA. 

 

In summary, rain data for five weather stations surrounding I-4 was successfully obtained. Two 

of them are located on the western side of I-4 and they provided 15 minute rainfall information 

from 1999 through 2002. The other three stations located on the Eastern side of I-4 provided 

hourly rainfall data from 1999 through 2002.  A map showing the locations of the five weather 

stations surrounding I-4 is provided in Figure 3.1. 
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Figure 3.1: Map showing locations of the five weather stations surrounding Interstate 4 in 
Central Florida 

 

 

3.1 Weather Model 

3.1.1 Methodology and Data Preparation 

As a result of not having rainfall information on I-4, logistic regression technique was used to fit 

a model to the data (crash cases) which uses the rainfall condition available for the crash cases as 

the response variable and the rainfall data at the same time of crash from the five weather 

stations situated on both sides of the I-4 corridor as the independent variables. The model 

developed with the crash cases, was then applied to a new data set (non-crash cases) to obtain the 

weather condition.  

 

I-4 
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The goal of logistic regression is to identify the best fitting model that describes the relationship 

between a binary dependent variable (in general y=0 and y=1) and a set of independent variables. 

The dependent variable in the case of logistic regression is the probability (P) that the resulting 

outcome is equal to 1. So the model can be expressed as 

 

Y = Logit (P) = Ln {Pi / 1 – Pi} = β0 + βiXi, i = 1,………,n for a set of n independent variables. 

 

So Pi can be written as  

Pi = exp(β0 + βiXi) / 1 + exp(β0 + βiXi) 

 

Where the logit is the log (to base e) of the odds that the dependent variable is 1, β0 is the model 

constant and the βi are the parameter estimates for the explanatory variables. 

 

In this study the weather information provided by the Florida Crash Database is taken as the 

binary dependent variable and the rainfall information from the five weather stations surrounding 

I-4 are the independent or explanatory variables.  

 

3.1.2 Dependent Variable 

In the study area, a total of 1964 crashs were taken from the Crash Database for the years 1999 

through 2001. Out of the three years, data from 1999 and 2000 (1296 crash cases) was used to 

calibrate the model and the year 2001 (668 crash cases) was used to evaluate the model. For each 

of the crash cases, the time, date and location of the crash and the weather condition are 

obtained. The study area has 69 dual loop detectors installed on a 36.25-mile stretch numbered 
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from 2 to 71. For each crash case, the nearest loop station is identified as the crash location 

(station F). A sample of the information prepared as explained in above paragraph is provided in 

Table 3.2. The response variable with y = 1, when it rained and y = 0, otherwise. The time, date 

and location of the crashes are used in preparing the independent variables. 

 

Table 3.2: Sample weather information extracted from the crash database 

Serial 
No Time of Crash 

Loop Detector 
Station Nearest 

to the Crash 
Location 

(Station of the 
Crash) 

Date of Crash Weather condition 

1 9:02:00 47 4/1/1999 CLEAR 

2 8:50:00 49 4/1/1999 CLEAR 

3 0:10:00 43 4/1/1999 CLEAR 

4 16:45:00 42 4/1/1999 CLOUDY 

5 14:45:00 34 4/1/1999 CLOUDY 

6 17:15:00 59 4/2/1999 CLEAR 

7 16:48:00 69 4/2/1999 CLEAR 

8 15:30:00 11 4/6/1999 CLEAR 

9 15:47:00 30 4/28/1999 RAIN 

10 19:07:00 36 4/28/1999 RAIN 

 

 

3.1.3 Independent Variables 

For each crash case, rainfall information from each of the five weather stations is entered as the 

independent variables in the model at the same time as that of the crash occurrence. To relate the 

response variable with the independent variables in space also, an order for the independent 
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variables is obtained based on the distance between a particular I-4 crash station and a weather 

station. Table 3.3 provides a sample of independent variables entered in the model. 

 

Table 3.3: Sample information with dependent and independent variables used in the 
model 

Time station Date Weather Rain_1* Rain_2* Rain_3* Rain_4* Rain_5*

6:15:00 43 10/15/2001 0 0 0 0 0 0 

15:36:00 37 10/19/2001 1 0 0 0 0 0.01 

12:39:00 49 10/19/2001 0 0.0001 0 0.0001 0.01 0 

16:35:00 26 10/19/2001 0 0 0 0 0 0.02 

14:10:00 60 10/19/2001 1 0 0.0001 0.17 0.0001 0 

23:29:00 20 10/19/2001 0 0 0 0 0 0 

17:15:00 9 10/19/2001 0 0 0 0 0 0 

12:30:00 42 10/19/2001 0 0.0001 0.0001 0 0.01 0 

16:03:00 26 10/19/2001 0 0 0 0 0 0.02 

15:18:00 33 10/19/2001 0 0 0 0 0 0.01 

18:20:00 4 10/21/2001 1 0.02 0.05 0.01 0 0.01 

18:41:00 53 10/21/2001 1 0.01 0 0.01 0.05 0 

3:58:00 10 10/22/2001 1 0 0.03 0 0 0 

19:13:00 53 10/22/2001 0 0 0 0 0 0 

* The units for rain_1 through rain_5 are inches/hour 

 

• In Table 3.3, weather is the response variable with outcome of “1” when raining and “0” 

when not raining, and rain_1 – rain_5 are the independent variables with hourly rainfall 

information. Rain_1 contains the rain information at the nearest weather station from the 

corresponding crash station at the time and date of the crash. Rain_2 contains rain 
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information at the second nearest weather station and so on. For example, the first 

independent variable for the crash that happened on 10/21/2001 at time 18:20:00 and at 

station 4 has 0.02 inches of rainfall and is the nearest weather station from crash station 4. 

Therefore, rain_1 to rain_5 are dynamic factors and change from one station to another 

on I-4 depending on its proximity to the weather stations. Therefore, the geographical co-

ordinates for all the 69 I-4 stations and the five weather stations were obtained. Based on 

these co-ordinates, the distance between any I-4 station and each of the weather stations 

is obtained. A table is prepared which provides information on the order in which the 

weather stations are situated from each crash station based on distance. The nearest 

weather station is placed first, the second nearest second and so on. Tables were prepared 

for each of the five weather stations separately for each year (1999 – 2001), consisting of 

rainfall information. A sample of rain values at the Avalon station for the year 1999 is 

provided in Table 4.  
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Table 3.4: Sample Rainfall Information at the Avalon Weather Station 

Time Rainfall (inches/hour) 

1/1/1999 10:00 0 

1/1/1999 10:15 0.1 

1/1/1999 10:30 0 

1/1/1999 10:45 0.02 

1/1/1999 11:00 0 

1/1/1999 11:15 0 

1/1/1999 11:30 0 

1/1/1999 11:45 0 

1/1/1999 12:00 0 

1/1/1999 12:15 1.05 

1/1/1999 12:30 0.08 

1/1/1999 12:45 0.02 

1/1/1999 13:00 0 

1/1/1999 13:15 0 

 

Using the information in Tables 3.2 and 3.4, the rain values are entered in Table 3.3 using a 

program developed in Visual Basic. For example, let us take a crash that happened on 

10/21/2001 at time 18:20:00 and at station 4. We first retrieve the order of the weather stations 

located from the crash station 4. So the nearest weather station from station 4 is Avalon. Then we 

go the Avalon weather station table with rainfall values for 2001 and take the rain value for 20th 

October at time 18:20:00 and put this value in Table 3.3 for the rain_1.  
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3.1.4 Model Development 

Once the response and independent variables are obtained, the next step would be to apply the 

logistic regression model. As stated earlier, the data from 1999 and 2000 which had 1296 crash 

cases was used to build the model. But it is probable that if it rains in one of the weather stations, 

it might also rain in the other stations, thereby making variables rain_1 - rain_5 correlated and 

violating the assumption of independence, which in turn reduces the efficiency of the model with 

erroneous parameter estimates. A chi-square test was conducted to check the independence of 

these variables. The results of this test shows that at a 95% confidence level, the test statistic and 

the p-value are provided 84.326 and 0.000, respectively. Since, the null hypothesis was rejected, 

the variables cannot be considered as independent. 

                         

To deal with the issue of non-independence, i.e., an approach to remove the redundancy in these 

variables, “principal component analysis” technique was applied to the variables before the 

regression analysis. Principal component analysis (PCA) involves a mathematical procedure that 

transforms a number of (possibly) correlated variables into a (smaller) number of uncorrelated 

variables called principal components. The first principal component accounts for as much of the 

variability in the data as possible, and each succeeding component accounts for as much of the 

remaining variability as possible. The mathematical technique used in PCA is called Eigen 

analysis: we solve for the eigenvalues and eigenvectors of a square symmetric matrix with sums 

of squares and cross products, which in general called as the covariance matrix. The eigenvector 

associated with the largest eigenvalue has the same direction as the first principal component. 

The eigenvector associated with the second largest eigenvalue determines the direction of the 

second principal component. The sum of the eigenvalues equals the trace of the covariance 

matrix and the total information provided by the original variables can be expressed as this trace. 
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So essentially by looking at each of eigen values, the percentage information provided by each of 

the principal components can be obtained.  

 

In order to decide upon the number of principal components that are to be used as input 

(independent variables) to the logistic regression model, three rules are applied: 1) 80% rule: The 

minimum number of principal components to be used in the model has to retain at least 80% of 

the total information, 2) Average Eigen Value rule: All those principal components whose Eigen 

values are lesser than the average are to be excluded, and 3) Scree plot: It is the plot of Eigen 

values Vs the number the Eigen values. Exclude those principal components on the flat part of 

the curve, i.e., scree plot and retain those on the steep part.  

 

The results of the PCA procedure are provided in Table 3.5 and 3.6, and Figure 3.3. Table 3.5 

presents the covariance matrix of the independent variables from which the eigen values and 

eigen vectors are calculated. Table 3.6 provides the eigen values of the covariance matrix. Using 

these results, the number of principal components to be retained is determined. For rule 1, in 

Table 3.6, the shaded part under “cumulative” is around 90%. So 4 principal components are 

able retain at least 80% of the information. For rule 2, in Table 3.6, the average of Eigen values 

is 0.00830027 and only 2 Eigen values exceed this value. Thus two principal components have to 

be retained. For rule 3, looking at Figure 3.2 and retaining the eigen values on the steep part of 

the curve, four principal components can be retained. Since, two out of three rules say that four 

principal components can be retained, therefore, the first four principal components are used as 

the independent variables in the logistic regression model. 
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Table 3.5: Principal Component Analysis  

Covariance Matrix 

  rain_1 rain_2 rain_3 Rain_4 rain_5

rain_1 Rain_1 0.00494 0.0011 0.00075 0.00065 0.00076 

rain_2 Rain_2 0.0011 0.01091 0.00062 0.0005 0.001 

rain_3 Rain_3 0.00075 0.00062 0.0141 0.00125 0.00158 

rain_4 Rain_4 0.00065 0.0005 0.00125 0.00715 0.0005 

rain_5 Rain_5 0.00076 0.001 0.00158 0.0005 0.00441 

 

Total Variance 0.0415 

 

 

Table 3.6: Eigenvalues from Principal Component Analysis 

Eigenvalues of the Covariance Matrix 

 

Total = 0.04150134 Average = 0.00830027 

  Eigenvalue Difference Proportion Cumulative

1 0.01492 0.00389 0.3595 0.3595 

2 0.01102 0.00405 0.2656 0.6251 

3 0.00698 0.00217 0.1681 0.7932 

4 0.00481 0.00103 0.1158 0.909 

5 0.00378   0.091 1 
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Scree Plot of Eigenvalues 
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Figure 3.2: Scree Plot from Principal Component Analysis 

 

 

With the four retained principal components of the variables rain_1 through rain_5, a simple 

logistic regression model was estimated. The parameter estimates of the four principal 

components used in the model are provided in Table 3.7. The model fit statistics of the logistic 

regression model as the Akaike Criterion value (AIC: the lower the better) and the log-likelihood 

value. The AIC value can be used to see if the regression technique chosen, works for the 

variables used. The low AIC value under the “intercept and covariates” heading, when compared 

with value under “covariates only” heading, proves the fact that logistic regression model is 
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indeed a good fit for the variables. The same conclusion can be drawn from the log-likelihood 

values with a log-likelihood ratio test. The four principal components are significant at 95% 

confidence level. Also it can be seen that the first principal component is highly significant 

which confirms the fact that it contains a large portion of the total information. The model can be 

expressed as: 

 

Probability that the outcome =1, i.e., it rained or “rain index”= e (-2.1444 + 3.3260*Principal component 1 

+ 1.2645* Principal component 2 + 1.5221* Principal component 3 + 2.3441* Principal component 4) / 1 + e (-2.1444 + 

3.3260*Principal component 1 + 1.2645* Principal component 2 + 1.5221* Principal component 3 + 2.3441* Principal 

component 4) 

This model provides the probability of rainfall at a given time and location on I-4. 

Table 3.7: Logistic Regression Model Results 

Parameter 
Degree 

of 
Freedom 

Estimate Standard Error 

P-value for the Test 
of Significance of 

the Parameter 
Estimate 

Intercept 1 -2.1444 0.0925 <.0001 
Principal 

component 1 1 3.3260 0.5910 <.0001 

Principal 
component 2 1 1.2645 0.5834 0.0302 

Principal 
component 3 1 1.5221 0.7354 0.0385 

Principal 
component 4 1 2.3441 1.0342 0.0234 

 

Criterion Intercept Only Intercept and Covariates 

AIC 910.324 864.188 

-2 Log Likelihood 908.324 854.188 
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3.1.5 Rain Model Evaluation 

As noted before, the year 2001 data was used to evaluate the model. The SAS “score” procedure 

was used for the purpose. This data set has 668 crash cases and is referred to as “validation data 

set”. In model evaluation; the estimates from the model built with the data from 1999 & 2000 are 

applied to the validation data set to get the probability of rainfall. This probability is referred to 

here as “rain index” value. To know the prediction accuracy of the model which is applied to the 

validation data set, a cut-off was set above the 75th percentile (0.0985602) of the rain index 

values. The crash cases which have rain index values greater than 0.0985602 are assumed to 

have occurred during rain, i.e., predicted outcome. The Quantiles for the rain index values is 

provided in Table 3.8.  The overall prediction accuracy for the model is 88.02%. The prediction 

accuracy for the cases with “rain” is 77.78% and the prediction accuracy for the cases with “no 

rain” is 89.26%.  Since, the overall prediction accuracy of the model is high, therefore the model 

can be used for obtaining the rain index values for a desired time, date and station on the 36.25-

mile stretch of Interstate 4 in central Florida for the non-crash cases. The logistic regression 

model was applied to the database to obtain the rain index values for 2035 crash (where loop 

detector data were also available) and 47612 random non-crash cases. 
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Table 3.8: Quantiles for the rain index values 

Quantiles 

Quantile Estimate 

100% Max 0.9849514 

99% 0.5901525 

95% 0.1470778 

90% 0.1032220 

75% Q3 0.0985602 

50% Median 0.0985602 

25% Q1 0.0985602 

10% 0.0985602 

5% 0.0985446 

1% 0.0910038 

0% Min 0.0187801 

 

3.2 Crash Prediction Model 

Initial analysis showed that three parameters, namely, LogCVS (standard deviation/mean speed), 

SV (standard deviation of volume) and AO (average occupancy) are most significantly associated 

with crash occurrence. These three parameters still correspond to 126 variables (measured from 7 

stations during 6 time slices) as potential independent variables in the final model. Also, based 

on preliminary results we can discard Station B, C and D (since they are less significant than 

traffic measurements from Station E, F, G and H). This meant that any model comprising these 
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factors together (From stations B, C, D as well as E, F, G and H) would invariably show the 

factors from way upstream stations as insignificant.  

 

Also, even though time duration 1 (0-5 minutes) prior to crash exhibits significant hazard ratios, 

it is too close to the actual time of the crash and thus practically not useful for crash prediction 

models. This time duration is thus ignored from further considerations.  

 

For each of the remaining time slices, we thus have 12 traffic flow variables; LogCVS, SV, and 

AO at each of the four loop detectors E, F, G and H. Using the logistic regression technique,  

three significant variables for time slice 2 (5-10 minutes before crash occurrence): LogCVS F2 

=log10(CVS) from station F (the station of the crash) and    AOG2 = AO at station G (the 

downstream station) and SVG2 = SV at station G (the downstream station), were retained in the 

model. All other variables are found to be statistically insignificant. Thus the final model 

includes variables LogCVSF2 and AOG2 and SVG2. The details of the final predictive model are 

provided in Table 3.9. First two variables have positive beta coefficients, which mean that the 

likelihood of a crash increase as these variables increase while SVG2 had negative beta 

coefficient implying decreasing likelihood of crash as this parameter decreases. This indicates 

that high variation in speed at a freeway location coupled with high occupancy and low variation 

in volume downstream of this site increases the likelihood of having a crash at that location with 

in next 10 minutes.  

 

To simplify the process, the rain index values were directly used in the safety model, instead of 

setting a cut-off value and then determining how many cases occurred during rain. The ‘rain 
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index’, a measure for the probability of having rain, was defined on Page 38. This can be 

justified because the rain index values are continuous and indicate the probability of rainfall at a 

particular location. Also setting a cut-off value may force some cases to have a “rain” situation 

when it is actually a “no-rain” case and vice-versa. This might undermine the actual effect of 

rainfall in the safety analysis. The rain index does also indicate a measure of intensity of rain 

which might show a visibility problem in addition to slippery pavement situation. Table 3.10 

depicts the coefficient estimates when the Rain Index is entered in the model.  

 

Table 3.9: Parameter estimates of the crash prediction model without the “Rain Index” 

Parameter Estimate Standard Error Pr  > ChiSq 

Intercept -3.4388 0.1308 <.0001 

AOG2 0.00964 0.00307 0.0017 

SVG2 -0.1299 0.025 <.0001 

LOGCVSF2 0.5366 0.0979 <.0001 

AIC 11994.87 

-2LogL 11986.87 

Pearson Chi-square 35906.0802 
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Table 3.10: Parameter estimates of the crash prediction model with the “Rain Index” 

      Parameter Estimate Standard Error Pr > ChiSq 

Intercept -3.5853 0.1344 <.0001 

AOG2 0.00891 0.00308 0.0038 

SVG2 -0.1284 0.025 <.0001 

LOGCVSF2 0.5333 0.0979 <.0001 

Rain Index 1.3924 0.267 <.0001 

AIC 11951.37 

-2Log Likelihood 11941.37 

Pearson Chi-square 35679.7239 

 

 

When comparing the AIC values of two models, the model with the lower AIC value is chosen 

over the other model. In this case the model with the “Rain Index” variable has an AIC of 

11951.37 which is lower than the AIC value of 11994.87 for the model without it.  Also, the 

Log-likelihood ratio test indicates that the model that includes the Rain Index is better (G = -

11941.37 – (-11986.87) = 45.5).  The lower Pearson Chi-square of the model with the rain index 

also indicates a better statistical fit. 

 

Receiver operating characteristic curve which is widely known as the ROC curve, originated 

from signal detection theory, shows how the receiver operates the existence of signal in the 

presence of noise. It plots the probability of detecting true signal and the false signal for an entire 
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range of possible cut-off points. The area under the ROC curve, ranging from zero to one, 

provides a measure of the model’s ability to differentiate between those cases which are crashes 

versus those which are not. The higher the value for the area under the ROC curve, better the 

prediction accuracy. SAS reports four measures of association between the predicted 

probabilities and observed responses. The measures lie between 0 and 1, with large values 

suggesting a strong association. These associations are provided in Table 3.11 for the model 

without and with “Rain Index”. 

  

Although the associations are not of interest in the analysis, the measure of association “C” is 

actually the area under ROC curve. Looking at Tables 3.11, the higher “C” value for the model 

with “Rain Index” indicates better prediction accuracy for this model. It may be observed, 

however, that the difference in the “C” values for the two models is only 0.009. Marginal 

difference in performance measures for the two models indicates that even the best efforts to 

account for rain fall information do not significantly improve the performance of the crash 

‘prediction’ model. Possible reason for that could be that the parameters (speed, volume and 

occupancy) measured at loop detectors are able to capture the impact of the wet weather on the 

traffic characteristics and as it pertains to crash occurrence.   
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Table 3.11: Measures of association between the predicted probabilities and observed responses 
for the models 

 Without Rain Index With Rain Index 

Somers' D 0.163 0.178 

Gamma 0.173 0.189 

Tau-a 0.013 0.014 

C 0.581 0.589 

 

3.3 Section Summary 

The developed rainfall index has a positive impact on the probability of crashes. The final model 

developed could be used to calculate the probability of observing a crash vs. not. A threshold 

value for this probability may then be set in order to determine whether the location has to be 

flagged as a potential “crash location”.  On-line traffic and rainfall data could be used for real-

time crash prediction.  However, our contacts with researchers at the University of North Florida 

who are conducting a research project sponsored by the I-Florida program at district 5 to use the 

real-time GIS analysis to study the impact of rainfall rates on highways in north east Florida, 

revealed that the last rain station on I-4 would be around the St Johns’ river bridge which is 

outside our study area in Central Florida. This might make the use of real-time weather 

information in a real-time crash prediction framework unrealistic, at least in the current scenario. 

Moreover, it was noticed that the difference in the classification performance of the models with 

and without the rain index (the measure developed here to represent the weather conditions on 

the freeway) was marginal. Therefore, while model(s) that include the rain index, derived in this 

study, could be used once weather stations are available to record (and report) the real-time 
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rainfall information for the study corridor, we do not expect significant improvement in 

classification performance of the models.  
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CHAPTER  4 

STUDYING THE GEOMETRIC ELEMENTS 

Geometric and roadway factors considered for all the 138 loop detector stations in both 

directions include; radius of the freeway section, median type, median width, pavement 

condition, pavement surface type, pavement roughness index, and the presence of off or on-

ramps within the influence area of each crash station. The influence area of a crash station or 

loop station was taken as the sum of half the distances between that loop and the loops on each 

side. Graphical description of the influence segment for a loop detector station (for instance, 

station 6) is provided in Figure 4.1. 

 

Figure 4.1 also provides a visual representation of the instrumented Interstate 4 with installed 

dual loop detectors in the East and West directions. Other factors such as the shoulder width, 

shoulder type, etc was not considered as there was no variability in these factors along the study 

section of I-4.  

 

As indicated previously, loop detector data were available for the years 1999 through 2002. It 

would be practically infeasible to take speeds and volumes for the entire year to represent the 

traffic characteristics of a crash station. So a typical month in the year 2002 was chosen for that 

purpose, the latest among the years during which the data was collected. In this year, all 

Tuesdays, Wednesdays and Thursdays in the month of February were chosen to get the desired 

traffic factors. To remove the abnormal traffic pattern caused by the crashes that have occurred 

during these days, loop detector data one hour before and one hour after the crash occurrence 

was discarded. Now loop data for the remaining time during all these days was combined at 
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every crash station. The raw data obtained from the loop detector stations was for 30 second 

intervals. Since, 30 second data is a short interval data and due to the possibility that no visible 

traffic pattern can be captured during this interval, loop data was aggregated to 5, 10, and 15 

minute intervals. Data was aggregated to a maximum of 15 minute interval to keep the 

aggregation level as microscopic as possible.  

 

 

Figure 4.1: Influence segment for each loop detector station 

 

Station 4 Station 5 Station 6 Station 7 

W-R 
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W-L 
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Volumes at 30 second level for each crash station were taken for the period specified in the 

aforementioned paragraph, and aggregate fifteen minute volumes were calculated. The maximum 

of these aggregate fifteen minute volumes at each crash station was taken as the peak fifteen 

minute volume for that station. This was considered as the peak volume at each crash station. 

Fifteen minute peak volumes were considered to capture the effect of actual peaking condition 

on crash occurrence. It is important to note that the peak fifteen minute volumes were not taken 

specifically for the morning or evening peak periods, and the whole day was considered for both 

directions.   

 

The following factors were considered for the study, which used the loop data as explained in the 

above paragraphs.  

 

4.1.1.1.1 Average speed 

 The raw data from the loop detectors is obtained for an interval of 30 seconds. This data was 

aggregated to 5, 10, and 15 minute intervals, and average speed across all the lanes were taken to 

represent a particular crash station. Since traffic factors (speed and volume factors) in one lane 

are correlated with the factors in the other lanes, the average across all the lanes was calculated. 

The 75th percentile of average speed values at every station is taken as the variable for 

consideration in the models. There can always be a question on how to decide what percentile 

would actually represent a particular traffic factor at a crash station. The most logical explanation 

could be as follows: If we take the 50th percentile, we might actually under represent the traffic at 

the station, since there is 50th percentile vehicle population (not always true) exceeding the value 

considered. If we take 90th percentile, we might over represent the traffic, since the vehicles do 
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not travel at such high speeds always. To statistically prove this fact, all the three percentiles 

were tried and it was found that there was no significant difference among the three percentiles. 

Hence, based on the above discussion it was decided to use the 75th percentile in the analysis. 

 

4.1.1.1.2 Standard deviation of speed and volume 

 Raw data was aggregated for 5, 10, and 15 minute intervals and standard deviation of speeds 

and volumes was taken. As in the case of average speed, standard deviation was also taken 

across all lanes in one direction. The 75th percentile of standard deviation values at every station 

is taken as the variable for consideration in the model. 

 

4.1.1.1.3 Coefficient of Variation of speed and volume 

 Coefficient of variation can be seen as a measure of deviation of the selected variable from its 

mean. It is defined as: 

Coefficient of variation = Standard deviation/ expected mean 

Standard deviation and average speed and volume for 5, 10 and 15 minute intervals were used to 

obtain the coefficient of variation for these factors. Again 75th percentile of these values was 

used in the models (the 75th percentile value taken here is after calculating the coefficient of 

variation first, and then obtaining its 75th percentile).  

 

4.2 Seemingly Unrelated (SUR) Negative Binomial Modeling Approach 

The crash frequency models in the study were developed using negative binomial regression, due 

to the fact that Poisson regression cannot account for the over-dispersion in the data. Then 

seemingly unrelated negative binomial models were developed for different crash categories 
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using traffic, roadway and geometric characteristics. The Negative Binomial model has the 

following form: 

 

iλ = EXP ( β Xi + iε ) 

 

Where iλ is the expected number of crashes per period at location i, Xi is the vector of 

explanatory variables, β is the vector of estimable parameters, and EXP ( iε ) is a gamma 

distributed error term with mean 1 and variance 2α . The addition of this error term allows the 

variance to differ from the mean in the following way: 

 

2[ ] [ ][1 [ ]] [ ] { [ ]}i i i i iVAR y E y E y E y E yα α= + = +  

 

Where [ ]iVAR y  is the variance and [ ]iE y  is the mean of the model distribution 

Every model is associated with an error term which can be related to many factors. In case of 

models developed in road safety field, two types of error terms are correlated: omitted variables 

and measurement errors. Omitted variables may be unintentionally or intentionally excluded 

mainly due to data unavailability. Also it is impractical to assume that each and every variable 

affecting crashes to be included in crash models. Measurement errors are the most common 

components of error terms since there always exists unreliability in the measurement of 

variables. For instance, inaccurate computation of AADT or any other traffic variable is a 

measurement error. SUR models come into the picture when we deal with a system of equations 

where error terms are correlated across the equations. The effects of omitted variables are carried 

to the error terms of each model. When estimating various crash types (for example multiple or 
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single vehicle crashes), it is likely that error terms (mostly the omitted variables) across these 

two models will be correlated. Unlike simultaneous models, seemingly unrelated regression 

deals with a set of equations not because they interact, but because the error terms are related. 

Let us assume that the effect of omitted variables is represented by the termφ , and is consigned 

to the new combined error term χ , as shown in the following equations. 

 

( )i i i iExpλ β ε φ= + +           

( )i i iExpλ β χ= +          

 

It was assumed that the original error term ε  is not related to the existing variables and includes 

general random error terms like measurement errors.  

 

Two decisive factors were used to keep different variables in the models: 1) A p-value less than 

0.1 for the coefficient of estimated variable corresponding to 90% confidence level, and 2) the 

magnitude and sign of the coefficient of estimated variable is in agreement with the expected or 

theoretical sign for these factors. For the best model selection between two models, Akaike 

Information Criteria (AIC) was applied. The best model is decided by the lowest value of AIC. 

AIC for a model is defined as: 

 

AIC = -2 Log (L) + 2K  

Where 

Log (L) is the log likelihood of the estimated model and   

K is the number of estimated parameters.  
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4.2.1 Development of SUR Models using aML Software 

aML Software was used which had the capability to solve the seemingly unrelated negative 

binomial models. aML uses the iterative process, Gauss-Newton likelihood maximization 

algorithm to obtain the model convergence. More about this algorithm can be found in the user’s 

guide and manual of aML software (Lillard and Panis, 2003). The approach used to solve the 

SUR models in aML needs some explanation (Lillard and Panis, 2003). Negative binomial 

models, in plain form, do not feature an explicit residual. That doesn't mean that there is no 

stochasticity; the model is parameterized as a probability statement, and the residual is implicit in 

deviations from the predicted probabilities. To capture the correlation of disturbance terms 

across sets of equations in SUR modeling, an explicit residual term has to be added in individual 

models. Thus, there is both an implicit and an explicit residual in the individual negative 

binomial models.  Precise identification of both these residuals can be facilitated by making 

available two or more outcomes per observation. Essentially multiple outcomes contain 

information about the extent to which a particular observation is different from other 

observations, so that the explicit residual is identified.  So the crash data which was initially 

combined for four years at each crash station was divided based on year at each station. This 

would make observations for each of the four years with the same crash station highly correlated. 

But during modeling the records for a particular crash station for 1999, 2000, 2001, and 2002 are 

all part of the same group and given the same identification number. Unobserved factors could 

also be related to both dependent variables (e.g., peak and off peak or single and multiple crash 

frequency). In aML while modeling interrelated equations, the correlation will be strongly 

identified once you tie all records pertaining to a particular crash station together via a common 
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identification number. In the process of seemingly unrelated negative binomial (SUNB) 

estimation, the aML software provides dispersion factors, standard deviation, and correlation 

coefficient for disturbance terms. The present analysis deals with SUNB estimation of two 

models at a time, and so the correlation matrix for the disturbance terms, has the following form: 

 

Correlation matrix: 
1

1
R

ρ
ρ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Where ρ  is the correlation coefficient for the error terms, and defined as {[COVARIANCE (U1, 

U2)]/ [ 1σ 2σ ]}. U1 is the error term representation for the 1st model and U2 for the 2nd model. 1σ  

and 2σ  are the standard deviation values for the first and second model, respectively. The 

present study represents 1σ  and 2σ , as SIGMA_U1 and SIGMA_U2, ρ  as RHO_U1U2, for the 

disturbances terms U1 and U2.   

 

4.3 Model Estimation and Results 

As mentioned in the previous section, there are five main crash categories, based on the type of 

crash, availability of daylight, severity of crash, peak condition, and pavement condition (dry or 

wet). Before proceeding with the estimation of SUNB models, models for each of the sub-

categories in each main category are estimated. The estimation results of the individual models 

were used to obtain the starting values for SUNB models. The individual models are described 

first followed by the description of simultaneous models.  

 

Table 4.1 provides an explanation of the various variables included in model development. In 

Table 4.1, AVGS, STDS, CVS, STDV, and CVV are traffic factors obtained from raw 30 second 
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loop detector data. These variables were taken representing the whole day in case of 

multiple/single vehicle, dry/wet pavement, and injury/PDO crash models. In case of peak and 

off-peak period, daytime and dark hour crash models, all the microscopic traffic factors were 

taken separately for peak and off-peak periods, and day and dark hours, and not considered for 

the whole day. All these variables have been tried for 5, 10 and 15 minute aggregated intervals.  

 

On the whole there are five different main categories. Each main category has two different sub 

categories. Thus, there are ten different individual models. Each of these ten models is presented 

in the following sub-sections. Before going into the specifics of individual models, details of the 

steps to arrive at existing models are to be discussed. For all the models, a comparison between 

AADT and VMT was made based on AIC values. In all the models, AADT was found to be 

significant. So AADT was included in the subsequent model estimation. As was the intent of the 

study, the use of microscopic or disaggregate traffic measures was evaluated. For this purpose, 

AADT and PEAKFIFT variables were compared keeping all other variables the same. Here 

AADT indicates a macroscopic variable while PEAKFIFT indicates a microscopic variable. In 

the present analysis, PEAKFIFT was not found to be significant, but AADT was found to be 

significant in most cases. Although PEAKFIFT was found not to significantly affect the crash 

occurrence, other microscopic traffic factors, e.g., average speed, standard deviation of 

speed/volume, and coefficient of variation of speed/volume, were found to notably influence the 

crash occurrence at the 90% confidence level. These statistical measures corresponding to a 

single factor, (for instance vehicle speed which was tried for 5, 10, and 15 minute aggregation 

levels) as expected will be highly correlated when used simultaneously in the model estimation. 

Hence, these factors were used separately in the models and the best among various models was 

selected based on the lowest AIC value.          
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Table 4.1: Code Sheet for all the variables used in the Model 

Variable Type Code Explanation of  
variables 

Frequency of crashes at each loop 
detector station for different crash 
categories 

Response FREQ  

Radius Category Qualitative RADCAT > 3000 ft – 0 
<=3000 ft – 1 

Number of lanes Quantitative LANES  

Median Type Qualitative MTYPCAT Without barrier – 0 
With barrier – 1 

Median Width Quantitative MEDWID  

Pavement Condition Quantitative PAVCOND 
3 – 5 scale. With 5 
being very good and 3 
being fair. 

Pavement Surface Type Category Qualitative PSURCAT 0 – Asphalt 
1 – Concrete 

 
Pavement Roughness Index 

 
Quantitative 

 
PRI 

40 – 78. It is the 
calibrated roughness 
measurement to the 
nearest inch per mile. 

Off-ramp(s) presence within the 
influence area of the loop detector Qualitative OFFRCAT 0 – absent 

1 – present 

On-ramp(s) presence within the 
influence area of the loop detector Qualitative ONRCAT 0 – absent 

1 – present 

Annual Daily Traffic Volumes Quantitative AADT  

Peak Fifteen minute volumes Quantitative PEAKFIFT  

75% percentile of Average Speed Quantitative AVGS  

75% percentile of Standard 
Deviation of Speed Quantitative STDS  

75% percentile of Coefficient of 
Variation of Speed Quantitative CVS  

75% percentile of Standard 
Deviation of Volume Quantitative STDV  

75% percentile of Coefficient of 
Variation of Volume Quantitative CVV  
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4.3.1 Category 1 

Based on the type of crash, there are two sub-categories, multiple and single vehicle crashes. A 

SUNB model was estimated for this category. Two left-hand side (dependent) variables were 

considered: frequency of multiple and single vehicle crashes. The right-hand side (independent) 

variables consisted of traffic, roadway and geometric factors.  

 

4.3.1.1.1 Individual Multiple Vehicle Crash Model 

Before arriving at the final model, two models were attempted, one with AADT and another with 

PEAKFIFT keeping all other variables same. PEAKFIFT was not found to be significant in the 

model. Hence the model with AADT was chosen as the final individual multiple vehicle crash 

model. As for other traffic variables extracted from loop detector data, 5, 10, and 15 minute 

aggregations were tried. And for each aggregation, standard deviation of volume and speed, or 

coefficient of variation of volume and speed were used separately to avoid the correlation among 

these measures. The multiple vehicle crash model was selected based on the criteria illustrated in 

modeling approach section, where different decisive factors were explained. It has a log-

likelihood value of -1252.372. The estimation results are provided in Table 4.2. 

 

4.3.1.1.2 Individual Single Vehicle Crash Model 

As explained in multiple crash model estimation, before arriving at the final model, two models 

were tried, one with AADT and another with PEAKFIFT keeping all other variables same. 

Neither PEAKFIFT nor AADT was found to be significant in the model. Also there were no 

significant microscopic traffic variables. It has a log-likelihood value of -708.321. The 

estimation results are provided in Table 4.3. 
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Table4.2: Estimation results for individual multiple vehicle crash model 
Parameter Estimate Standard Error 

CONSTANT -0.21278 1.02616 

RADCAT 0.342407 0.194975 

MTYCAT -0.43596 0.172878 

PSURCAT 0.747703 0.227456 

OFFRCAT 0.424278 0.122057 

ONRCAT 0.447878 0.125682 

AADT 0.265633 0.086238 

ALPHA 1 0.157812 0.030254 

Log Likelihood: -1252.372             No. of observations: 552 

 

Table 4.3: Estimation results for individual single vehicle crash model 
Parameter Estimate Standard Error 

CONSTANT 0.496707 1.059095 

RADCAT 0.293304 0.201705 

MTPYCAT -0.30851 0.1753 

OFFRCAT 0.494572 0.131351 

ONRCAT 0.224393 0.126161 

ALPHA 2 0.154817 0.086474 

Log Likelihood: -708.321             No. of observations: 552 

 

4.3.1.1.3 Seemingly Unrelated Negative Binomial Model for Multiple and Single Vehicle 

Crashes 

As mentioned previously, SUNB estimation was performed for multiple and single vehicle 

models. Dispersion parameters (ALPHA 1 and ALPHA 2), standard deviation for disturbance 
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terms (SIGMA_U1 and SIGMA_U2), and correlation coefficient (RHO_U1U2) were evaluated. 

The estimation results are provided in Table 4.4. 

 

As shown in Table 4.4-c, the correlation between the disturbance terms is relatively high with a 

value of 0.75. This implies that the omitted variables are allocated across disturbances for 

multiple and single vehicle crashes. Therefore, the use of the SUNB model estimation is justified 

and facilitated in efficient parameter estimates. SIGMA_U1, SIGMA_U2 and RHO_U1U2 are 

part of the correlation matrix estimated for the SUNB model.  

 

Table 4.4-a: SUNB model estimation results for multiple vehicle crash model 
Parameter Estimate Standard Error 

CONSTANT -0.23624 1.036856 

RADCAT 0.331074 0.192185 

MTYPCAT -0.41066 0.170384 

PSURCAT 0.782405 0.247369 

OFFRCAT 0.404423 0.128966 

ONRCAT 0.431569 0.122117 

AADT 0.264062 0.093646 

ALPHA 1 0.158552 0.029867 

Log Likelihood: -1951.216                No. of observations: 552 
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Table 4.4-b: SUNB model estimation results for single vehicle crash model 
Parameter Estimate Standard Error 

CONSTANT 0.526154 1.064154 

RADCAT 0.298596 0.199444 

MTYPCAT -0.32581 0.176071 

OFFRCAT 0.477845 0.132039 

ONRCAT 0.228205 0.125955 

ALPHA 2 0.156048 0.085439 

Log Likelihood: -1951.216             No. of observations: 552 

Table 4.4-c: Model estimation results contd. 
Parameter Estimate Standard Error 

SIGMA_U1 0.571609 0.052894 

SIGMA_U2 0.402274 0.077594 

RHO-U1U2 0.748625 0.13375 

 

 

4.3.2 Category 2 

This category comprises two sub categories, of which one has peak period crashes and the other 

has off-peak period crashes. A SUNB model was estimated for this category. Two left-hand side 

(dependent) variables were considered: frequency of peak and off-peak period crashes. The 

right-hand side (independent) variables consisted of traffic, roadway and geometric factors. The 

correlation between the error terms for the SUNB model was very high (very close to 1), and 

caused difficulty in estimating peak and off-peak period crashes simultaneously. An attempt was 

made to estimate the simultaneous equations by setting the correlation to unity produced slightly 
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improved standard errors.  The separate negative binomial models showed the significance of 

roadway curvature, pavement surface type, off and on ramps, AADT and the 15 minutes 

coefficient of variation of speed, on the frequency of peak period crashes. Roadway curvature, 

median type, pavement surface type, off and on ramps and AADT were significant in the off-

peak model.  While AADT is significant in both models, a microscopic variable representing the 

variation in speed at the 15 minutes level was also significant in the peak period crash model. 

 

4.3.3 Category 3 

This category also comprises two sub categories, dry pavement and wet pavement crashes. A 

SUNB model was estimated for this category. Two left-hand side (dependent) variables were 

considered: frequency of dry and wet pavement crashes. The right-hand side (independent) 

variables consisted of traffic, roadway and geometric factors. The correlation between the error 

terms for these two models was very high (very close to 1), and therefore caused difficulty in 

estimating dry and wet pavement crashes simultaneously.  The separate models showed the 

significance of roadway curvature, median type, pavement surface type, off and on ramps and 

AADT in the frequency of dry crashes. Only curvature, on and off ramps and AADT were found 

significant in the wet pavement crash model. 

 

4.3.4 Category 4 

Based on availability of daylight, there are two sub-categories, daylight and dark hour crashes. A 

SUNB model was estimated for this category. Two left-hand side (dependent) variables were 

considered: the frequency of daylight and dark hour crashes. The microscopic traffic factors 

included in these models were obtained separately for daylight and dark hours. For instance CVS 
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for day hour crash model was taken only during the day time with sun light availability. For the 

purpose of obtaining these microscopic traffic parameters, daylight was considered from 5:30 

A.M. to 7:00 P.M. during summer and 6:30 A.M. to 5:30 P.M. during winter.  

 

The individual daytime crash model had a log-likelihood value of -1211.34. The estimation 

results are provided in Table 4.5. The individual dark hour crash model had a log-likelihood 

value of -859.649. The estimation results are provided in Table 4.6. 

 

Table 4.5: Estimation results for individual day time crash model 
Parameter Estimate Standard Error 

CONSTANT 0.223723 1.434843 

RADCAT 0.3781 0.230821 

MTYPCAT -0.33195 0.193563 

PSURCAT 0.881797 0.340125 

OFFRCAT 0.390121 0.164871 

ONRCAT 0.432593 0.15517 

AADT 0.125771 0.153611 

CVS_15 0.414549 0.259527 

ALPHA 1 0.15796 0.03657 

Log Likelihood: -1211.34             No. of observations: 552 

 

 



 60

 

 

 

Table 4.6: Estimation results for individual dark hour crash model 
Parameter Estimate Standard Error 

CONSTANT 0.199007 0.904107 

RADCAT 0.376247 0.168859 

MTYPCAT -0.44595 0.158141 

PSURCAT 0.205027 0.215089 

OFFRCAT 0.485975 0.114783 

ONRCAT 0.294935 0.109333 

AADT 0.207726 0.07536 

ALPHA 2 0.098216 0.053079 

Log Likelihood: -859.649             No. of observations: 552 

 

4.3.4.1.1 Seemingly Unrelated Negative Binomial Model for Daylight and Dark Hour Crashes 

As mentioned previously, SUNB estimation was performed for daylight and dark hour crash 

models. Dispersion parameters (ALPHA 1 and ALPHA 2), standard deviation for disturbance 

terms (SIGMA_U1 and SIGMA_U2), and correlation coefficient (RHO_U1U2) were evaluated. 

The estimation results are provided in Table 4.7. As shown in Table 4.7-c, the correlation 

between the disturbance terms is substantially high with a value of 0.95. This entails that the 

omitted variables are shared across the model disturbances for day and dark hour crashes. 

Therefore the use of SUNB estimation is warranted and assisted in efficient parameter estimates. 

SIGMA_U1, SIGMA_U2 and RHO_U1U2 are part of the correlation matrix estimated for the 

SUNB model. Through the estimation of SUNB models, the errors were minimized and the 

reliability of the models was increased which is shown by smaller standard errors. A comparison 
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of standard errors between individual models and SUNB models would help in understanding the 

efficiency gained. This comparison table is provided in Table 4.8. As observed from Tables 4.8 a 

and b, most of the parameter coefficients in the SUNB models have smaller standard errors. 

 

4.3.5 Category 5 

This category includes two sub categories, PDO and injury crashes. A SUNB model was 

estimated for this category. Two left-hand side (dependent) variables were considered: PDO and 

injury crashes. The correlation between the error terms for these two models was very high (very 

close to 1), and therefore caused difficulty in estimating PDO and injury crashes simultaneously. 

The separate negative binomial models depicted that roadway curvature, pavement type, AADT 

and on and off ramps significantly influence the frequency of both PDO and injury crashes. In 

addition, the median type affected only the frequency of PDO crashes. 

Table 4.7-a: SUNB model estimation results for day time crash model 
Parameter Estimate Standard Error 

CONSTANT 0.445938 1.040764 

RADCAT 0.274204 0.176907 

MTYPCAT -0.37914 0.160429 

PSURCAT 1.065064 0.229792 

OFFRCAT 0.379462 0.115442 

ONRCAT 0.540367 0.132584 

AADT 0.126856 0.073355 

CVS_15 0.438534 0.251081 

ALPHA 1 0.15 0.033303 

Log Likelihood: -2113.48             No. of observations: 552 
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Table 4.7-b: SUNB model estimation results for dark hour crash model 
Parameter Estimate Standard Error 

CONSTANT 0.498033 0.884796 

RADCAT 0.352927 0.155771 

MTYPCAT -0.45057 0.148744 

PSURCAT 0.354589 0.205383 

OFFRCAT 0.467791 0.108309 

ONRCAT 0.406194 0.112068 

AADT 0.177486 0.068655 

ALPHA 2 0.09618 0.052127 

Log Likelihood: -2113.48             No. of observations: 552 

Table 4.7-c: SUNB model estimation results contd. 
Parameter Estimate Standard Error 

SIGMA_U1 0.597484 0.053107 

SIGMA_U2 0.395009 0.059129 

RHO_U1U2 0.950000 0.105333 

 

Table 4.8-a: Comparison of standard errors for day time crash model 
Parameter Std error for individual model Std error for SUNB model 

RADCAT 0.230821 0.176907 

MTYPCAT 0.193563 0.160429 

PSURCAT 0.340125 0.229792 

OFFRCAT 0.164871 0.115442 

ONRCAT 0.15517 0.132584 

AADT 0.153611 0.073355 

CVS_15 0.259527 0.251081 

 

 



 63

Table 4.8-b: Comparison of errors for dark hour crash model 
Parameter Std error for individual model Std error for SUNB model 

RADCAT 0.168859 0.155771 

MTYPCAT 0.158141 0.148744 

PSURCAT 0.215089 0.205383 

OFFRCAT 0.114783 0.108309 

ONRCAT 0.109333 0.112068 

AADT 0.07536 0.068655 

 

4.3.5.1.1 Measurement of Goodness-of-fit 

There seems to be no universally accepted goodness of fit for seemingly unrelated negative 

binomial models. There are two alternative methods, for estimating the goodness-of-fit of SUNB 

models. There are 1) 2
pR  statistic, and 2) 2G  statistic.  

 

2
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In the above equations iλ  is the expected number of crashes for a particular observation iy , as 

defined by the model. For instance, the expected number of crashes in multiple vehicle crash 

model can be shown as: 

 

( -0 .2 1 2 7 8 + 0 .3 4 2 4 0 7 * R A D C A T -0 .4 3 5 9 6 * M T Y P C A T
+ 0 .7 4 7 7 0 3 * P S U R C A T + 0 .4 2 4 2 7 8 * O F F R C A T + 0 .4 4 7 8 7 8 * O N R C A T
+ 0 .2 6 5 6 3 3 * A A D T )

i E X Pλ =
 

 

2G and 2
pR  are calculated separately for the individual models first, and then for the SUNB 

models. 2
pR  statistic was computed for all the individual and SUNB models. The values were 

very close and thus making it difficult to differentiate between individual and SUNB models. So 

the other statistic 2G  was used to identify the model with the better goodness-of-fit. Table 4.9 

provides the details of the 2G statistic for various individual and SUNB models for the five 

categories. 

 

Based on the smallest values of 2G , the following conclusions can be drawn: 

• Both multiple and single vehicle crash models were improved by SUNB estimation 

• Both peak and off-peak period crash models were improved by SUNB estimation 

• Peak period crash model improved substantially, while there was little improvement in 

the off-peak period crash model 

• There was no improvement in both daytime and dark hour crash models with SUNB 

estimation 



 65

Even though goodness-of-fit statistics do not show improvement in all models with SUNB 

estimation, a good explanation behind estimation of SUNB models arrives from the significant 

correlation coefficient between the error terms arising from the omitted variables. For instance, 

in category 4, both the daytime and dark hour crash models did not improve upon SUNB 

estimation. Nevertheless these models have small standard errors and the correlation coefficient 

was substantially high.  

 

Table 4.9: Goodness-of-fit statistics for different crash categories 
GOODNESS-OF-FIT TABLE 

  Individual Model G-square Statistic SUNB Model G-square Statistic 

          

Category 1 Multiple Vehicle 3264.45 Multiple Vehicle 3123.83 

  Single Vehicle 3168.36 Single Vehicle 3143.04 

         

Category 2 Peak Period 7359.85 Peak Period 3175.8 

  Off-peak Period 1134.36 Off-peak Period 1128.95 

         

Category 4 Daytime 3257.90 Daytime 5826.67 

  Dark Hour 4217.21 Dark Hour 5388.35 

 

 

4.4 Section Summary 

This research investigated a technique to address the problem of correlation between the error 

terms, when the crashes are divided into different logical categories (e.g., single and multiple 

vehicle crashes), while modeling crash frequencies. The results showed that accounting for the 

correlation factor between error terms is imperative while modeling crash frequencies for 
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different crash categories. This resulted in better models in terms of improved parameter 

estimates and better goodness-of-fit of the models, while allowing for more accurate 

identification of factors related to the different crash categories. 

 

The first models, included multiple and single vehicle crashes, had a significant correlation 

coefficient which lead to the main justification of estimating SUNB models for this category. 

Also the goodness-of-fit of both multiple and single vehicle crash models was improved. The 

significant factors in the multiple vehicle crash model were roadway curvature, median type, 

pavement surface type and presence of on-ramps/off-ramps and AADT. In the case of the single 

vehicle crash model, the significant factors were roadway curvature, median type, and presence 

of on-ramps/off-ramps. Therefore, the common factors influencing both multiple and single 

vehicle crashes were road curvature, median type, and presence of on-ramps/off-ramps. 

However, the effect of off-ramps was more profound compared to the on-ramps in the single 

vehicle model, as could be observed by the value of parameter coefficient. In the multiple 

vehicle model both were comparable. The results indicated that an increase in AADT caused 

more multiple vehicle crashes, while AADT had no effect on single vehicle crashes. This can be 

justified because the increase in volume increases the probability of interaction among vehicles, 

which is generally related to more multiple vehicle crashes. Single vehicle crashes on the other 

hand are believed to occur because of speeding, which is more of a driver related factor.  

 

Modeling simultaneously the frequency of peak and off-peak period crashes improved the 

goodness-of-fit for the SUNB peak period crash model when compared to the individual model. 

The goodness-of-fit for the off-peak period crash model also increased. The significant factors in 
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peak period crash model were road curvature, pavement surface type, presence of on-ramps/off-

ramps, AADT, and coefficient of variation in speed during peak period aggregated for 15 minute 

interval. In the case of off-peak period crash model, the significant factors were road curvature, 

median type, pavement surface type, presence of on-ramps/off-ramps and AADT. Therefore, the 

common factors influencing both these crashes were road curvature, pavement surface type, 

presence of on-ramps/off-ramps, and AADT. Median type was found to affect only off-peak 

period crashes, while the coefficient of variation in speed is found to affect only peak period 

crashes. We observe higher coefficient of “variation in speeds” during “peak periods” where 

vehicles travel at low speeds, which is the cause of crash occurrence. 

 

SUNB was used to model the daytime and dark hour crash frequencies. The significant factors in 

the day time crash model were road curvature, median type, pavement surface type and presence 

of on-ramps/off-ramps, AADT, and coefficient of variation in speed aggregated for 15 minute 

interval. In the case of dark hour crash model, the significant factors were road curvature, median 

type, pavement surface type, presence of on-ramps/off-ramps and AADT. Thus, the common 

factors influencing both these crashes were road curvature, median type, pavement surface type, 

presence of on-ramps/off-ramps, and AADT. Coefficient of “variation in speed” was found to 

affect only “daytime crashes”, which is reasonable. During daytime peak traffic conditions 

occur, causing higher coefficient of variation in speed, which in turn causes crashes. 

 

To summarize, radius (i.e., horizontal curvature of the roadway) category, presence of on-ramps, 

and presence of off-ramps appeared in all the models. AADT was also found to influence all the 

crash categories except for single vehicle crashes. This could indicate that AADT is still an 
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acceptable measure of traffic volume. Median type appeared in all models except for wet 

pavement and injury crash models. A reasonable explanation can be put forth as follows: 

medians without barrier as explained in Souleyrette et al., resulted in more crashes, injury 

crashes might be strongly associated with other factors so that median type is not significant in 

such crashes. Pavement surface type was found significant in all models except for single and 

wet pavement crash models. Coefficient of variation in speed was found to influence only peak 

and daytime crash models. These conditions, i.e. peak and daytime traffic conditions, cause 

higher coefficient of variation in speeds which result in more crash occurrences.  CVS was the 

only microscopic factor that was significant in these models although other microscopic factors 

were significant in the preliminary analysis. 

 

Using the crash frequency models developed in this work, and using specific traffic volume 

values from archived loop detectors, the risk at each section of the freeway could be evaluated.  

Different scenarios could be adopted based on typical traffic volume counts by time of day, day 

of week, season, etc. Higher risk locations on the freeway might change by time and day based 

on the specific traffic volume.  This could help traffic management centers draw a detailed 

picture of the risk on the freeway, and therefore allocate the response and resources.  A possible 

extension to this work is the possibility that similar models could be implemented real-time to 

indicate an increase in the risk level at different locations of urban freeways as a function of 

changing traffic volumes given the roadway characteristics of each location. Future work could 

attempt to add more independent variables in the models to avoid the difficulties in estimating 

SUNB models with high correlation between the error terms.  
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CHAPTER  5 

USING VARIABLE SPEED LIMITS FOR REAL-TIME SAFETY 

IMPROVEMENT 

This research evaluates Intelligent Transportation System (ITS) implementation through 

Variable Speed Limits (VSL) strategies to improve the safety of a freeway once a relatively high 

potential of a crash is detected.  VSL are ITS devices, commonly used to calm traffic in an 

attempt to relieve congestion and enhance throughput.  A different aspect of VSL can be realized 

in the improvement of traffic safety. Through the use of multiple microscopic traffic simulations, 

best practices can be determined, and a final recommendation of VSL strategies with a safety 

perspective can be made. 

 

5.1 Application of VSL 

Variable speed limits are used to increase average headways and reduce variances in speed 

(Borrough, 1997, Ha et al., 2003, Pilli-Sivola, 2004).  However, less variability of speed leads to 

fewer short headways, and lower mean speeds according to Ha et al. (2003). This translates into 

fewer crashes (Smulder 1990).  A study in Finland by Rämä (1999) shows that VSL lead to 

lower speeds and less variability.  Borrough (1997) found that the use of VSL and strong 

enforcement (video cameras) greatly reduced the number of crashes (28% over 18 months).  The 

effect was attributed to not only a smoothing of traffic conditions through longer following 

distances, but also through reducing the number of lane changes during congestion (Borrough, 

1997). 
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 Lee et al. (2004) used VSL to try and reduce crash potentials.  Lee et al. (2004) only simulated a 

one mile long stretch that included just one ramp, and placed Variable Message Sign (VMS) just 

upstream of a particular location of interest. They attempted few scenarios and did not address all 

the factors that are related to VSL application. In this study, a 20 mile stretch is simulated.  The 

larger network allows more flexibility in the implementation of VSL.  Rather than having just 

two locations that effect traffic speeds, up to 12 miles are investigated via 24 VSL test cases with 

both upstream and downstream introduction of VSL. Also speed limits are decreased, increased, 

or simultaneously decreased and increased (up and down stream, respectively) to investigate all 

possible cases. This introduces a more dynamic approach for implementation taking into 

consideration all the possible scenarios extending significantly over Lee et al. (2004) where they 

investigated either increasing or decreasing speeds in order to improve safety. 

 

5.2 Micro Simulation 

When studying VSL, microsimulation appears to be an ideally suited tool to evaluate ITS 

technologies especially like VSL (Lee et al., 2004).  Generally, data is collected using loops 

(Placer, 2001; Sisiopiku, 2001; Senn, 2004; Borrough, 1997; Portaankorva, 2002).  or speed 

radars (Sisiopiku, 2001, Pilli-Sivola, 2000, Peltola, 1997) and field studies are undertaken to test 

strategies. In the transportation simulation field there is a general agreement that microscopic 

simulation, i.e. a computational resolution down to the level of individual travelers, is now a 

viable alternative and may be the only answer to a wide variety of problems. 

 

Simulation has some desirable qualities that make it useful.  First, it is cheaper than field-testing 

in most cases.  The upfront cost of software and hardware does not compare to the cost of 
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outfitting a road network, or the loss in confidence of the driving public on an always-changing 

driving environment.  Second, impossible scenarios maybe carried out.  Third, time can be sped 

up to yield future results now.  The effect of a change many months away can be determined in 

few hours.  Fourth, safety issues can be safely tested without the potential of harming any 

drivers.  

 

For Variable Message Signs which are closely related to VSL, the simulated technology in this 

instance, only two software packages are compatible.  The AIMSUN 2 software has VMS 

capability as does PARAMICS (Boxill and Yu, 2000).  While either would look to be a perfect 

choice PARAMICS was chosen due to its scalability and proven background on freeways and 

urban roads. Furthermore, PARAMICS was preferred over CORSIM since it has advantages in 

implementing ITS applications (e.g., variable speed limits and ramp metering) through its 

Application Programming Interface (API). 

 

5.3 Safety Measure 

Abdel-Aty et al., (2005), Lee et al., (2003) and Pande et al., (2005) developed statistical models 

to get a measure of real-time crash potential. Lee et al. (2004) applied the model from one of 

their previous studies (Lee et al., 2003) to a small simulated freeway network (1 mile) to measure 

the crash risk before and after the application of certain VSL strategies  

 

The model developed by Abdel-Aty et al. (2005) is used to assess crash likelihood for the 

simulated network used in this study.  The modes were developed for the same segment of 

Interstate-4 being simulated here, making them the most appropriate choice.  Also, real-time 
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crash "prediction" models were separately developed for a moderate-to-high-speed and low-

speed traffic speed regime and the threshold for separating the two regimes was set at 37.5 mph 

based on visual examination of traffic speed distributions.  Above this speed, a moderate-to-

high-speed model, which takes average occupancy and flow as input, is used.  Below this speed, 

a low-speed model, involving average volume, occupancy, and coefficient of variation in speed 

variation as inputs, is used.  These models may be used to assess the crash potential at any given 

location in real-time using loop detector data. Since the input parameters to these models were 

measured 5-15 minute before the crash; there would be time to introduce strategies at 

locations experiencing crash prone conditions before they culminate into a crash.  The moderate-

to-high and low-speed models are shown in Equations 5.1 and 5.2, respectively (Abdel-Aty et 

al., 2005). 

 

AVE3 05932AVG2 0.10055     
SVH2 0.22878LogAOH3 1.14584LogAOF2 -0.93423_

+
−−+=LikelihoodCrash

     (5.1) 

 
LogAOF2: Log of average occupancy at the station of interest 5 to 10 minutes before the time 
of interest 
LogAOH3: Log of average occupancy one mile downstream of the station of interest 10 to 15 
minutes before the time of interest 
SVH2: The standard deviation of volume one mile downstream of the station of interest 5 to 10 
minutes before the time of interest 
AVG2: The average volume half mile downstream of the station of interest 5 to 10 minutes 
before the time of interest 
AVE3: The average volume half mile upstream of the station of interest 10 to 15 minutes 
before the time of interest 

 
 

20.43603SVF-AOH30.97766Log           
LogAOE2 1.33966 LogCVSF3 0.88842 LogCVSF2 2.64827_ +++=LikelihoodCrash

   (5.2) 

LOGCVSF2: The log of the standard deviation of speed divided by the average speed at the 
station of interest 5 to 10 minutes before the time of interest 
LOGCVSF3: The log of the standard deviation of speed divided by the average speed at the 
station of interest 10 to 15 minutes before the time of interest 
LogAOE2: Log of average occupancy half a mile upstream of the station of interest 5 to 10 
minutes before the time of interest 
LogAOH3: Log of average occupancy one mile downstream of the station of interest 10 to 15 
minutes before the time of interest 
SVH2: The standard deviation of volume one mile downstream of the station of interest 5 to 10 
minutes before the time of interest 
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The models shown above would provide a measure that may be used to evaluate the impact of 

our application experiments on the safety situation of the freeway. This measure is specific for 

every location and a decrease in this measure signifies a decrease in the risk of crash and vice-

versa. It should be noted, however that it can only be used to compare crash risk at the same 

station before and after implementing certain strategies. In other words, based on this measure 

we can not infer for example, whether station 33 is at higher risk than station 34 or 37; though 

we can find out, for example, if the crash risk at station 33 has been reduced after application of 

a particular VSL strategy.   

 

5.4 Study Corridor 

Interstate 4 (I-4) is the main arterial for the Orlando metropolitan area. It has spurred 

development along its path to both the north and south of downtown Orlando.  Data from dual 

loop detectors of I-4 are simulated in this study by replicating the loading conditions, geometric 

features, and loop locations. Loops collect data on average vehicle counts, average speed, and 

lane detector occupancy, across three lanes on I-4 in each direction every 30 seconds at 69 

stations spaced every half a mile for about a 36-mile stretch. Over the next several years, many 

Florida Department of Transportation projects plan to expand the number of lanes in an effort to 

boost capacity of the roadway.  In addition, Variable Speed Limits are scheduled to be added to 

the roadway to promote better management of the stretch. 

 

The section of I-4 under study runs from just south of downtown Orlando north into the 

surrounding suburban cities. It spans Loop Detector Stations 1 to 69 from South to North. The 

section has 17 interchanges with 59 ramps, curves with radii varying from 1910 to 85,944 ft, and 
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speed limits from 50 mph to 65 mph.  The roadway maintains a consistent elevation throughout 

its length. 

 

Of the twenty mile section three different locations: station 33, station 47, and station 61 are 

investigated for VSL implementation.  The three locations represent different geometric features 

and traffic conditions.   

• Station 33 is investigated in the east bound direction in the high volume test case (i.e., 

low speed or congested situation).  It has a high number of crashes (around 90 crashes 

over 4 years) and is located in the downtown area.   

• Station 61 is investigated in the westbound direction in the low loading test case (i.e., 

high speed or non congested situation).  It is located well outside of downtown on the 

north side of Orlando and has a relatively high number of crashes for areas outside of 

downtown, but compared to the downtown area the number of crashes is low.   

• Station 47 in the westbound direction is used to investigate the low loading case (also 

high speed). It is just north of downtown and has a high number of crashes (55 

crashes over 4 years) amongst stations in westbound direction.  

 All three stations are located near or on curves and near ramps.      

 

5.5 Calibration and Verification 

The literature shows many techniques and values that have been used to calibrate PARAMICS.  

In studies by Bertini et al. (2002), Abdulhai et al. (2002), Trapp (2002), and Stewart (2001), the 

multiple factors used to calibrate their networks are laid out.  Each mentions the use of flow and 

travel time, which across literature appear to be the factors of choice.  However, only Bertini et 
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al. (2002) showed the calibration values used in simulating their network, and mentioned 

adjusting two parameters, neither of which directly affects queuing behavior.  Abdulhai et al. 

(2002) mentioned that they calibrated for vehicle bunching, which based on their description is 

excessive queuing, by decreasing the memory speed, furthering the idea that queuing behavior is 

an important factor to consider. 

 

Cheu et al. (2002) and Bertini et al. (2002) noted that in PARAMICS the mean target headway 

and mean driver’s reaction time need to be calibrated based on the area’s drivers for accurate 

flow characteristics, but did not reveal the values they used.  Gardes et al. (2002), Abdulhai 

(2002), and Lee et al. (2001) stated their values for mean headway and driver reaction as 1 and 

0.6 second, 1.65 and 0.42 second, and 0.615 and 0.415 second, respectively.  Other factors 

involved in calibrating PARAMICS are the time step, aggressiveness, and minimum gap values 

(Abdulhai et al., 2002, Cheu et al., 2002). 

 

Initially, the mean target headway and mean driver’s reaction time are changed to values found 

in the literature.  The values along with the corresponding errors are shown in Table 1.  The 

errors are determined by comparing mainline counts on the simulated network to mainline counts 

on the roadway. It is important to stress that these counts are used as a starting point for 

verification. The error values are not of a concern since they are based on Average Daily Traffic, 

which is an aggregate measure of traffic flow that is used with the K-factor to obtain a traffic 

volume value at the peak period. 
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Table 5.1: Core variable specification and their resulting error percentages 

Run Number Headway Reaction Time Queue distance Queue speed Error Rate 

1 1.00 sec 0.60 sec 35.41 ft 4.470 mph 17.14 

2 1.65 sec 0.42 sec 35.41 ft 4.470 mph 20.5 

3 0.61 sec 0.42 sec 35.41 ft 4.470 mph 14.54 

4 0.50 sec 0.50 sec 35.41 ft 4.470 mph 14.36 

 

After calibration showed that headway and reaction time of 0.5 seconds and 0.5 seconds have the 

lowest error rate, speeds were inspected, revealing a reoccurring backward shockwave at one on-

ramp.  A strong backward shockwave at the head of the queue is expected when a crash is 

cleared or some other type of bottleneck is removed from a system; but when the bottleneck does 

not move and persists over the entire simulation, this type of shockwave is not expected.  To 

correct the simulation, the driver behavior characteristics in the simulation environment were 

changed. These changes included varying the Mean Target Headway that the drivers maintain 

and Mean Reaction Time of the drivers to determine their effect on the development of shock-

waves. 

 

PARAMICS runs were inspected with different values of core parameters: target headway, mean 

reaction time, queuing speed, and queuing distance.  Behavior characteristics, aggressiveness and 

awareness, were also tested, but no effect was seen from changing their values.  Each runs’ effect 

on vehicle behavior was qualitatively compared by the modeler to determine an approximate 

value for each parameter.   
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By inspecting the resulting speeds when the core numbers are close to the approximate values, it 

is possible to determine if the detector is experiencing no congestion, mild congestion, or heavy 

congestion.  Comparing the results to where congestion is expected, the best core numbers were 

determined.  The congestion location standard is determined by field. Note that speed variation 

and queue formation are the most important factors in the equations used to capture the crash 

potential (Abdel-Aty’s et al., 2005). Therefore, it is important to achieve realistic speeds and 

queuing behavior, which in turn explains why speed profiles and the nature of the queues were 

seen as crucial to the objectives of this simulation study.   

 

The values that produced the best result were mean headway of 1.0 second, a mean reaction time 

of 0.42 seconds, a queuing speed of 8 mph and a queuing distance of 9 ft.  The values for mean 

reaction time and mean headway most closely resemble Lee et al’s (2001) values of 0.42 and 

0.62 second, respectively.  The mean headway is shorter for Lee et al. (2001) because the study 

used the software’s default queue distance and queue speed.  Through the multiple rounds of 

verification, the queue distance and the mean headway appeared to interact when the headway 

was small, so a different headway from that of Lee et al.(2001) could be justified due to the 

different queue distance.  Headways of 1.0 second are the default offered by PARAMICS and is 

supported by Gardes et al. (2002). 

 

5.6 Test Cases 

Five minutes moving averages of speed at each station were determined based on two loading 

conditions: a peak loading and an off-peak loading.  The vast majority of detectors during the 

peak loading were found to be in a low-speed condition, while the vast majority of detectors 
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during the off-peak loading were found to be in a moderate-to-high-speed condition, as the 

condition determined according to those defined by Abdel-Aty et al. (2005).  As a result a 

detector from the peak loading was chosen to be used for low-speed testing and a detector from 

the off-peak loading was chosen to be used for high-speed testing.   

 

Extensive testing with both speed regimes was attempted.  It was concluded that VSL does not 

affect the crash likelihood at low speed regimes. This is intuitive, since the freeway is congested, 

and therefore the speed is already low, and increasing the speed limit would have no effect.  An 

example comparing the crash likelihood, calculated by Equation 2, for station 33 East-bound is 

shown in Figure 5.1 
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Figure 5.1:  Station 33 crash potential for the base case and VSL test case under the low-
speed traffic regime with matched seeds 

.   

Figure 5.1 shows that there is almost no difference between the base case (no VSL) and the test 
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case (introducing VSL). Multiple scenarios over 20 different but matched seed values were 

introduced and no effect was noticed. Therefore moderate-to-high speed regime (i.e., average 

speed above 37.5 mph) was focused upon thereon. 

 

5.7 High Speed Test Case 

For the moderate-to-high-speed test case a complex scenario that involves lowering and raising 

the speed limit was used.  Figure 5.2 depicts the terms that were used in the moderate-to-high-

speed case.  Notice that distances can be listed as either number of miles or number of detectors 

plus the direction.  For example, 1 mile upstream of detector 47 or 2 detectors upstream of 

detector 47 would be specifying the same location.   

 

Distance

Detector #

Speed Limit 55 m

Downstream Raising Gap Upstream Lowering

55 mph 40 mph 40 mph 40 mph

49 50 51

55 mph 65 mph 65 mph 65 mph 55 mph 55 mph 55 mph

2.0 m

40 41 42 43 44 45 46 47 48

0.0 mi 0.5 mi 1.0 mi 1.5 mi

WESTBOUND FLOW

3.5 mi 3.0 mi 2.5 mi 2.0 mi 1.5 mi 1.0 mi 0.5 mi

 

Figure 5.2: Sample scenario for a westbound roadway with detector 47 as the detector of 
interest. 

 

The moderate-to-high-speed implementation of VSL is unique in that it applies both upstream 

and downstream changes, rather than only upstream or only downstream (which were also 

attempted).  Along with this, the implementation strategy involved raising or lowering speed 

limits, instead of only lowering speed limits.  Careful Crash Risk analysis (Abdel-Aty et al., 

2004; 2005) showed an increase in the potential of crashes on freeways when queues start 
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forming. Queuing causes backward shockwaves while speeds were still high upstream. 

Therefore, the idea behind downstream increase of speed limits comes from the paradigm that 

there is a group of cars approaching an existing queue.  With this in mind, it is logical to attempt 

to slow cars upstream to keep them from hitting the queue and raise the speed limit downstream 

to help the queue dissipation.  A typical speed profile of this approach is depicted in Figure 5.3.   
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Figure 5.3: A sample speed limit profile across space. 

 

5.8 Design of Experiment 

A three-hour simulation, with a 15-minute initialization period, was used to evaluate VSL 

effectiveness around detector 47 in the westbound direction.  In order to see the effect of crash 

potential changing over time, speed limits were changed 30 minutes into the simulation and were 
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maintained for only 30 minutes.  After that time the speed limits were changed back to their base 

value. 

 

Speed limits were changed using multiple links files that were accessed at different 

predetermined times.  The speed control setting, used via programmer function used by Lee et al. 

(2004), was compared to the multiple links files method and similar results were seen, validating 

the use of the method. 

 

A full factorial experiment was attempted, but because a suitable measure of effectiveness could 

not be determined, an alternative stepwise approach was used akin to Forward Sequential 

Selection.    

 

The High Speed Test case served as the starting point of the experiment.  Four separate steps 

were conducted with the best case scenario from the previous set of scenarios being used as the 

input for the next test.  Figure 5.4 gives the layout of the tests and which are referenced in Tables 

5.2, 5.3, 5.4, and 5.5, respectively. 
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Figure 5.4: Steps followed to evaluate the effect of using VSL in the high-speed case. 
 

In Step 1, the objective was to find the Best strategy of Speed Limit Patterns. The purpose is 

three fold. 

• To find out if simultaneously lowering speeds upstream of station of study and raising 

them downstream of station of study is better than just lowering speeds upstream of 

station of study or just raising them downstream of station of study. The location of 

the change refers to whether the change is going to take place in the 5.5 miles 

downstream of the detector, or for the same stretch downstream plus an additional 4 

miles upstream 
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• To find if gradually changing speed limits in space is better than changing them 

abruptly. Gradual implementation involves making the first half a mile either a 5 mph 

change or a ten mph change based on whether the total change is 10 mph or 15 mph.  

In other words for a 15 mph change, speed limit would be lowered by 15 mph from a 

location 3.5 miles upstream, but from 4.0 miles to 3.5 miles the speed limit would be 

lowered 10 mph only.  In the abrupt case all 4 miles would be lowered 15 mph.  The 

amount of the change is limited to a 10 mph or 15 mph change.  In either case both 

upstream and downstream changes would be made in the same amount. 

• To find if a 10mph change is better than a 15mph change is speed limits. 

 

The combination of these factors gives rise to 3 x 2 x 2= 12 cases which are summarized in 

Table 5.2 (the variables in the different scenarios are spatial implementation rate, change 

amount, and location of the change). 
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Table 5.2: Different scenarios based on changing speed limit patterns(Step 1) 

 Pattern of Change Amount of Speed Change Location of  Change 

Case 1 Abrupt 10 mph Up and Downstream 

Case 2 Abrupt 15 mph Up and Downstream 

Case 3 Gradual 10 mph Up and Downstream 

Case 4 Gradual 15 mph Up and Downstream 

Case 5 Gradual 10 mph Downstream 

Case 6 Gradual 15 mph Downstream 

Case 7 Abrupt 10mph Downstream 

Case 8 Abrupt 15mph Downstream 

Case 9 Gradual 10mph Upstream 

Case 10 Gradual 15mph Upstream 

Case 11 Abrupt 10mph Upstream 

Case 12 Abrupt 15mph Upstream 

 

The last 6 cases were not showing any significant effect and are hence not depicted in the 

analysis process. All the cases in Step 1 were implemented on the test case and the Best Case 

Scenario was identified. Figure 5.5 shows the Crash risks for the first six cases in Table 5.2 and 

the Base case scenario. 
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Figure 5.5: Crash potentials at Station 47 for the Pattern Scenarios. 

 

The first set of scenarios tested compared the effect of changing speed limits by different values 

across one time period, as shown in Table 5.2.  Figure 5.5 shows that the abrupt cases 

outperform the gradual cases and that 15 mph differences outperform 10 mph differences.  Also, 

upstream decreases in speed increase the effectiveness of the VSL, especially at the beginning 

and ending periods of the change, making Case 2 the best case. 

 

Step 2 is used to identify the optimal spatial location of changing speed limit signs.  In this test, 

the best case from Step 1, viz. Case 2 is used and the location of the change in speed limit is 

altered to evaluate its effect.  Table 5.3 shows the 3 x 3 = 9 possible cases where we can see Case 

1 is the same as Case 2 of Step 1. 
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Table 5.3: Different scenarios based on changing distance for speed limit change (Step 2) 

 Upstream Reducing Distance* Downstream Increasing Distance* 

Case 1 4 mi 5.5 mi 

Case 2 6 mi 5.5 mi 

Case 3 2 mi 5.5 mi 

Case 4 4 mi 4 mi 

Case 5 6 mi 4 mi 

Case 6 2 mi 4 mi 

Case 7 4 mi 2 mi 

Case 8 6 mi 2 mi 

Case 9 2 mi 2 mi 

*-From the station under consideration 

 

The results showed that all of the distance cases are approximately equally effective in reducing 

the crash potential at Station 47.  Case 9, which has the shortest downstream and upstream 

lengths, 2 miles each, is therefore chosen as it affects the minimum length of the freeway.   

 

Step 3 tests the temporal implementation strategy of the VSL on the best case scenario from Step 

2 i.e. Case 9.  The first case that is considered is the abrupt change from the standard speed limits 

to the new speed limits.  The other cases involve changing the speed limit stepwise from the 

normal speed limit to the crash prevention speed limit.  The step size varies by the time period 

between changes and the value of the speed.  The speed limits can be stepped either every five 

minutes or every 10 minutes and the speed change be 5 mph or 10 mph.  As with the Step 2, if 
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the scenario from the earlier tests makes one or more of the cases irrelevant, then the case will be 

disregarded.  See Table 5.4 for the scenarios that were possible and which had not been rejected 

in the previous steps. 

 

Table 5.4: Different scenarios based on changing speed limits over time (Step 3) 

 Time Step for Change Speed Step for Change 

Number of Time 

Steps 

Case 1 Abrupt( Immediate) 15mph 0 

Case 2 5 min 5mph 2 

Case 3 10 min 5mph 2 

Case 4 5 min 10 mph 1 

Case 5 10 min 10 mph 1 

Case 6 5 min 5 mph 1 

 

As shown in Figure 5.6, all of the cases reduce crash potential quickly and efficiently at the 

detector of interest.  Case 3, which has 10 minutes between changes and 5 mph steps, is selected 

as the best case as it shows the largest reduction in crash potential. 
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  Figure 5.6: Crash potentials at Station 47 for the rate of changing speed limits scenarios. 

 

Step 4 tests the best case from the previous step for the ideal gap distance that needs to be 

provided between the Station of Interest and the Downstream Location where the Speed limits 

can be raised again.  In this Step it is assumed that in order to affect the high density traffic, the 

front of the high density needs to run faster than the back, thereby increasing the distance that the 

vehicles occupy, lowering their density.  To test this, four values of the gap are tested.  See Table 

5.5 for the scenarios. 
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Table 5.5: Different scenarios based on changing the gap (Step 4) 

 Gap Distance 

Case 1 0 mi 

Case 2 1 mi 

Case 3 2 mi 

Case 4 3 mi 

 

 

Figure 5.7 shows the crash potential for these four cases and the Base Case Scenario. It clearly 

shows that Case 1, the zero gap case, is the best case.  In fact, Case 1 is the only case where the 

VSL have an effect.  
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Figure 5.7: Crash potentials at the detector of interest, Station 47, for the gap scenarios. 

 

5.9 Summary of the Safety effect of VSL 

Various cases for the moderate-to-high-speed scenario have determined the best scenario for 

implementing VSL.  In the first round of tests, the pattern of variable speed limit was tested.  The 

rate of change in speed limit over space was either abrupt or gradual and the maximum speed 

change was either 15 mph or 10 mph.  The results showed that an abrupt change of 15 mph 

produced the best result (although the 10 mph change was also effective). 

 

In the second round of scenarios, the length upstream and downstream of the detector of interest 

was tested.  The different lengths for both the upstream and downstream changes were 2 miles, 4 

miles, and 5.5 miles.  The results showed that a distance of 2 miles upstream and 2 miles 

downstream were adequate. 
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In the third round of scenarios, the rate of implementation of speed limits over time was tested.  

Changes in speed limit of 5 mph and 10 mph were tested along with time between changes of 5 

minutes and 10 minutes.  The results showed that a change of 5 mph every 10 minutes produced 

the best results. In the final test, the effect of gap distance on crash potential was tested.  Gap 

distance of zero miles, 1 mile, 2 miles, and 3 miles were tested.  The results showed that a gap of 

0 miles produced the best results. 

 

The best case is, therefore, an abrupt 15 mph change in speed limit both decreasing 2 miles 

upstream and increasing 2 miles downstream, implemented in 5 mph increments every 10 

minutes.  The change in crash potential can be seen in Figure 5.8. 
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Figure 5.8: Crash potentials at the detector of interest for Best Case and Base Case 
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Since, the results from simulation need to be verified using a number of different random seeds, 

19 such matched cases were run for the base case and the best case scenario. 

 

After running nineteen matched cases of a base scenario and a best-case scenario the results are 

analyzed using a t-test.  The half width is determined by multiplying the t-value by the standard 

deviation divided by the square root of the number of observations (19 in this case).  For the 

differences that are significant the percent change of each are calculated.  The percent change is 

the difference between the best case and the base case (less their half width) normalized by the 

base case value.  The significant result can be realized for station 47 which shows a decrease in 

Crash likelihood of 122%. 

 

5.10 Travel Time Analysis  

Initially, 20 replications of the base case and the VSL implemented cases were run.  The travel 

time for the entire network, from 16:30 to 17:30, was then calculated for each of the 40 runs.  

Eventually 140 runs (70 each) were conducted for the base and best implementation scenario, 

and the 95% confidence interval of the 70 differences is calculated.  The effect is concluded by 

determining if the confidence intervals overlap. A paired t-test was performed for the 70 

observations.  

 

Because the scenarios have a matched seed number, a paired t-test can be used to build a 95% 

confidence interval for the different runs.  Table 5.6 shows the travel time for the corridor in 70 

simulation runs for the base case (no VSL) and the best scenario (using VSL).  Table 6 shows 

that there is a significant consistent reduction in travel time, because the t-test reveals a 
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significant negative value of travel time in the system, due to the implementation of VSL.  This 

indicates that by changing the speed limits in the manner outlined above we did not only achieve 

a reduction in the crash potential but also achieved an improvement in the efficiency of the 

freeway. The t-test proved a significant reduction in the total travel time of the best case 

compared to that of the base case (t-stat = 14.81, df = 69, p < 0.0001). The mean difference was 

found to be 189.89 min. 
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Table 5.6: Travel time saving (minutes) 

Base 
Scenario 

Best 
Scenario 

Difference (Best 
Case-BaseCase) 

Base 
Scenario 

Best 
Scenario 

Difference 
(Best Case-
BaseCase) 

36776.3 36655 -121.3 36603.5 36456.5 -147 
36868.9 36754.5 -114.4 36712.5 36563 -149.5 
36510.6 36526.3 15.7 36759.9 36577.1 -182.8 
36632.9 36529.3 -103.6 36696.4 36616.8 -79.6 
36775.7 36763.6 -12.1 36712.6 36510.2 -202.4 
36718.4 36563 -155.4 36814 36703.7 -110.3 
36823.4 36644.9 -178.5 36892.2 36756.5 -135.7 
36683.6 36456.4 -227.2 36856.1 36637.5 -218.6 
36789.9 36612.5 -177.4 36959.4 36711.4 -248 
36838.6 36628.1 -210.5 36701.5 36513.8 -187.7 
36954.3 36618.8 -335.5 36757.6 36583.1 -174.5 
36943 36487.8 -455.2 36834.7 36615.3 -219.4 

36733.1 36598.8 -134.3 36837.3 36687.3 -150 
36844.5 36645.4 -199.1 36749.2 36652.4 -96.8 
36810.1 36743 -67.1 36854.9 36510.9 -344 
36799.5 36720 -79.5 36814 36703.7 -110.3 
36626.4 36444.7 -181.7 36892.2 36756.5 -135.7 
36818.2 36795.3 -22.9 36856.1 36637.5 -218.6 
36733.7 36551.4 -182.3 36959.4 36711.4 -248 
36886.8 36419.8 -467 36701.5 36513.8 -187.7 
36590.2 36406.5 -183.7 36757.6 36583.1 -174.5 
36763.5 36534.7 -228.8 36834.7 36615.3 -219.4 
36951.2 36689.4 -261.8 36837.3 36687.3 -150 
36719.8 36642.7 -77.1 36749.2 36652.4 -96.8 
36715.3 36444.4 -270.9 36854.9 36510.9 -344 
36807.6 36529.6 -278 36714.7 36707.3 -7.4 
36682.2 36526.9 -155.3 36760.5 36573.1 -187.4 
36748.3 36526.8 -221.5 36884.7 36699.5 -185.2 
36635.9 36468.8 -167.1 36799.5 36783.1 -16.4 
36776.8 36612.7 -164.1 36678.8 36533.7 -145.1 
36835.6 36673.2 -162.4 36785 36530.8 -254.2 
36685.1 36591.5 -93.6 36695.5 36457.7 -237.8 
36845.1 36649.3 -195.8 36819.6 36425.5 -394.1 
36660.6 36503 -157.6 36799.7 36441.8 -357.9 
36884.8 36475.7 -409.1 37099.7 36561.9 -537.8 
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5.11 Section Summary 

The objective of this research was to use Micro simulation to explore an ITS strategy for 

improving safety on Interstate 4 (I-4), specifically by using variable speed limits (VSL).  

Through the implementation of variable speed limits on I-4, via simulation, a best case for 

improving safety was determined.  Multiple scenarios with characteristic trends in them were 

used to generate general “rules,” or best practices, that result in an optimal safe condition.  To 

measure the crash risk separate models were used for low-speed and moderate-to-high-speed 

traffic conditions. To achieve these traffic regimes in the simulation environment different 

loading conditions may be used. These loading conditions are associated with the number of 

vehicles released into the network by the simulation program. Low loading (to simulate 

moderate-to-high-speed conditions) and high loading (to simulate low-speed conditions) were 

considered in this study. 

 

The objective of reducing the risk is successfully achieved for the moderate-to-high-speed case.  

Through four rounds of testing a final best model was obtained.  As a result, this best practice 

determination for existing VSL can be thought of in a new light.  Instead of just using VSL 

before or during periods of high congestion, VSL can be thought of as applicable during off-peak 

periods as well.  Instead of aiming to reduce congestion only, the VSL can be used to effectively 

reduce the hazard at certain locations.  This study also concluded that by using VSL in off-peak 

conditions, travel time is positively affected.  When implementing VSL, the recommendations of 

this study are as follows: 

• Gradually introduce speed changes in time (5 mph every 10 minutes) 

• Abruptly introduce speed changes in space (No gap distance) 
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• Use upstream reductions in speed and downstream increases in speed 

• Changes speed limit by large values (15 mph), although a 10 mph change is also 

effective. 

• Short upstream and downstream distances are sufficient (2 miles each)  

While the low-speed case analysis did not show clear improvement, it indicated that VSL would 

not be advised during congested periods (i.e., peak periods).  Different ITS strategies could be 

effective during congested periods. Based on our experience in analyzing the safety of I-4 

(Abdel-Aty et al, 2004; 2005) and based on preliminary simulations, we suggest the use of ramp 

metering, specifically the ramp just downstream of the location where high crash potential is 

observed. Also, Borough’s (1997) work suggests that lane changing behavior is an important 

factor in high congestion situations; therefore, lane changing restrictions might be an important 

factor that needs further exploration. The conclusion of this study provides direction towards 

finding the best strategies for using Variable Speed Limits as measures to improve freeway 

safety. A successful field deployment based upon these guidelines would open the possibility of 

creating and testing numerous strategies using simulations. 
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CHAPTER  6 

CONCLUSIONS 

This project investigated key elements that are related to developing a system of real-time crash 

prediction and mitigation on I-4. The significant traffic parameters collected by loop detector 

data, the possible effect of real-time weather data, and the freeway geometric elements were all 

investigated. Variable speed limits were investigated as ITS systems that can positively improve 

the safety situation on the freeway in real-time.  

 

The analysis showed that the coefficient of variation is speed, average occupancy and the 

standard deviation of volume in the 5 – 10 minutes before crash occurrence are the most 

significant variables that could lead to crashes on the freeway. 

 

We have obtained detailed rain fall data from 5 weather stations in Central Florida and 

developed a rain index based on the archived rain data to investigate whether real-time rain data 

would be needed for implementation. The analysis showed marginal benefit in using real-time 

rain data in addition to real-time traffic data to predict traffic crashes. The only constraint is the 

availability of weather stations in close proximity to I-4 that would provide real-time rain data in 

the future application. 

 

Investigating the geometric elements that are related with crash occurrence and could be used 

with association with real-time traffic conditions from loop detector data, indicated that the 

locations of the ramps are significant. 
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Finally, VSL were investigated using the micro simulation model (Paramics). This investigation 

showed that VSL can be used to reduce the crash risk in real-time. However, the analysis showed 

that this is most effective only in moderate-to-high-speed conditions. Also, we have noticed the 

possibility that the crash risk would relocate (migrate) to their locations other than the location 

that we intend to treat. The strategy to use VSL for real-time safety application is still in its 

infancy and would require more investigation. 
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