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EXECUTIVE SUMMARY 

This report describes the development of real-time crash prediction models for the Interstate-4 

corridor in Central Florida area. Crash data for 36.25-mile freeway stretch from the year 1999 

through 2002 has been used to link the crash occurrences with real-time traffic patterns observed 

through loop detector data.  

 

The analysis technique adopted for this phase of the study is with-in stratum matched case-

control logistic regression. The purpose of matched case-control analysis is to explore the effects 

of independent variables of interest on the binary outcome while controlling for other 

confounding variables through the design of the study.  In the context of this research crash or 

non-crash is the binary outcome with traffic parameters being the independent variables. The 

design of the study allows controlling for external factors such as geometric design of the 

freeway, time of the day, day of the week, etc., and hence they are implicitly accounted for them.  

 

Using this technique two types of models, i.e., simple and multivariate, were developed. Prior to 

development of the models some of the data related issues such as data cleaning, determination 

of exact time of the historical crashes, etc. were addressed. Both types of models were evaluated 

based on their classification performance. It was observed that although the simple models have 

the advantage of being tolerant in their data requirements their classification accuracy is poorer 

than that of the final multivariate model. Hence, the simple models were used to deduce spatio-

temporal patterns of the variation in crash risk. As a suggested application for these models their 

output may be used for preliminary assessment of the crash risk. If there is an indication of high 

crash risk then the multivariate model may be employed to explicitly classify the data patterns as 
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leading or not-leading to crash occurrence. A demonstration of this real-time application strategy 

is also provided in the report.  

 

 

 

 



 iii 

TABLE OF CONTENTS 

EXECUTIVE SUMMARY....................................................................................................... I 

TABLE OF CONTENTS....................................................................................................... III 

CHAPTER  1 INTRODUCTION.............................................................................................5 

CHAPTER  2 BACKGROUND ...............................................................................................7 
2.1 Safety Applications of ITS-related Archived Data .......................................................7 

2.1.1 Exploratory Studies.............................................................................................................7 
2.1.2 Studies Establishing Statistical Links ..................................................................................8 
2.1.3 Critical Review .................................................................................................................11 

CHAPTER  3 STUDY AREA AND DATA PREPARATION ..............................................14 
3.1 General......................................................................................................................14 
3.2 Introduction to Study Area.........................................................................................14 
3.3 Crash Data Collection................................................................................................16 
3.4 Estimation of Time of Historical Crashes...................................................................17 

3.4.1 Background ......................................................................................................................17 
3.4.2 Loop Data used to Estimate Time of the Crash..................................................................17 
3.4.3 Impact of Crashes on Traffic Flow....................................................................................18 
3.4.4 Time of the Crash: Estimation and Validation...................................................................20 
3.4.5 Discussion ........................................................................................................................23 

3.5 Loop Data Collection.................................................................................................26 
3.5.1 Data for Matched-Case Control Analysis..........................................................................26 

3.6 Geometric Design Parameters....................................................................................28 
3.7 Weather Information .................................................................................................29 
3.8 Driver Characteristics ................................................................................................29 
3.9 Concluding Remarks .................................................................................................30 

CHAPTER  4 LOGISTIC REGRESSION: SIMPLE AND MULTIVARIATE MODELS.31 
4.1 General......................................................................................................................31 
4.2 Matched Case-Control Logistic Regression: Simple Models......................................32 

4.2.1 Methodology.....................................................................................................................32 
4.2.2 Data Preparation..............................................................................................................33 
4.2.3 Analysis ............................................................................................................................36 
4.2.4 Results and Discussion......................................................................................................38 
4.2.5 Spatio-temporal Variation of Crash Risk...........................................................................45 
4.2.6 Conclusions from the Simple Models.................................................................................50 

4.3 Matched Case-Control Logistic Regression: Multivariate Modeling ..........................51 
4.3.1 Methodology for Modeling and Classification...................................................................51 
4.3.2 Model Building: Data Analysis .........................................................................................53 
4.3.3 Classification Accuracy of the Model ................................................................................56 

4.4 Comparison of Classification Accuracy: Simple vs. Multivariate Models ..................57 
4.5 Concluding Remarks .................................................................................................61 

CHAPTER  5 IMPLEMENTATION PLAN .........................................................................62 
5.1 Simple Models Implementation .................................................................................63 

5.1.1 Procedure and Data Requirement .....................................................................................63 
5.1.2 Simple Models: Illustration...............................................................................................65 



 iv 

5.2 Application of multivariate models ............................................................................72 
5.2.1 Procedure and Data Requirement .....................................................................................72 
5.2.2 Multivariate Model: Illustration........................................................................................73 

5.3 Concluding Remarks .................................................................................................75 

CHAPTER  6 CONCLUSIONS AND FUTURE SCOPE......................................................76 
6.1 Summary and Conclusions ........................................................................................76 
6.2 Future Scope .............................................................................................................77 

APPENDIX .............................................................................................................................81 

REFERENCES .......................................................................................................................84 

 



 5 

CHAPTER  1 

INTRODUCTION 

In recent years the focus of traffic management seems to be shifting from reactive strategies such 

as incident detection to more proactive ones. Growing concern over traffic safety as well as 

increased capability to store and process the data has contributed towards this shift. Reliable 

models that can identify conditions and/or locations of high crash risk based on available real-

time sensor data is the most critical part of these proactive strategies.  

 

This report presents the findings of the first phase of an ongoing research effort to link ITS-

archived data with crash characteristics/occurrences. The study is currently underway at 

University of Central Florida in collaboration with Florida Department of Transportation 

(FDOT). As mentioned in the proposal for this research, safety applications of ITS-related 

archived data have been almost non-existent. There are some related studies which recently 

concluded or are currently in progress at various parts of the world.  However, the advances 

made by this study go beyond the scope of other studies and put state of Florida DOT in the 

forefront of developing real-time crash prediction models. The models developed as part of this 

project use real-time data from a series of loop detectors and assess whether or not a crash is 

likely to occur on instrumented segments of the freeway under consideration. Although further 

research in this regard is still in progress, the following objectives have been achieved in this 

phase: 

1. A detailed database has been created with relevant characteristics of all the crashes that 

occurred from January 1999 through December 2002 on the 36.25-mile instrumented 

corridor of Interstate-4.   
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2. Identify the location and time of occurrence for all crashes and extract the corresponding 

loop detector data from the archived ITS database. Inspect the trends in crash patterns 

over the four year period of analysis.   

 

3. Perform a matched case-control logistic regression analysis in order to identify the spatio-

temporal patterns for the variation of crash risk.  

 

4. Based on this statistical methodology, develop a classification model to differentiate 

between crash prone and normal conditions on the freeway.  

 

5. Demonstrate the online applicability of the methodology for generating the patterns of 

variation in crash risk at freeway segments along with the classification accuracy. 

 

The report is divided into five chapters in addition to the introduction. The next chapter provides 

a thorough and critical review of studies aiming at proactive freeway management systems 

through crash prediction models. The third chapter introduces the study area and describes the 

data preparation efforts. Note that the data preparation work for this study was carried out with 

future scope of research in perspective. Subsequent chapter summarizes the modeling technique 

followed by development of the models. The performance of these models is also evaluated in 

this chapter. Fifth chapter presents the implementation plan for the models developed here. The 

summary, conclusions and future scope of this work have been presented in the last chapter.   
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CHAPTER  2 

BACKGROUND 

2.1 Safety Applications of ITS-related Archived Data 

A stated focus of traffic safety analysis has been on determination of freeway crash patterns. 

There have been a lot of studies establishing links between traffic flow and crash characteristics. 

Most of the research analyzing crashes on freeways have been based on the aggregated and static 

measures of traffic flow variables and have developed frequency type models. Only recently, 

some research aimed at proactive freeway management through analysis of freeway surveillance 

data has gained momentum. This chapter presents a summary and critical review of such studies.  

 

2.1.1 Exploratory Studies 

Hughes and Council (1999) were one of the first authors to explore the relationship between 

freeway safety and peak period operations using loop detector data. They concluded that the 

macroscopic measures, such as AADT (Average Annual Daily Traffic) and even hourly volume, 

in fact, correlate poorly to real time system performance. Their work mostly relied upon the data 

coming from a single milepost location during the peak periods of the day, on which they tried to 

overlay the crash time at that particular location to infer about the changes in system 

performance as it approaches the time of the crash. The changes in the performance were also 

examined from “snapshots” provided by cameras installed on the freeway. 

 

One of their important conclusions was that as “design inconsistency” has been identified as a 

factor of crash causation, future research should also consider whether “traffic flow consistency” 
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as perceived by the driver is an important variable from a human factors standpoint. They also 

expressed a need for determining the exact time of the crash to avoid “cause and effect” fallacy. 

 

2.1.2 Studies Establishing Statistical Links 

Madanat and Liu (1995) came up with an incident likelihood prediction model using loop data as 

input. The focus of their research was to enhance existing incident detection algorithms with 

likelihood of incidents. They actually considered two types of incidents a) crashes and b) 

overheating vehicles. Binary logit was the methodology used for analysis. They concluded that 

merging section, visibility and rain are statistically the most significant factors for crash 

likelihood prediction. However, they acknowledged problems with their data. 

 

Lee et al. (2002) introduced the concept of “crash precursors” and hypothesized that the 

likelihood of crash occurrence is significantly affected by short-term turbulence of traffic flow. 

They came up with factors such as speed variation along the length of the roadway (i.e. 

difference between the speeds upstream and downstream of the crash location) and also across 

the three lanes at the crash location. Another important factor identified by them was traffic 

density at the instance of the crash. A crash prediction model was developed using log-linear 

analysis. According to the authors the log-linear model was chosen for analysis so that the 

exposure can be easily determined, which would have been difficult, if instead a logit model was 

used. In order to test the goodness of fit for the model, Pearson chi-square test was performed. 

The test measured how close the expected frequencies are to the observed frequencies for any 

combination of crash precursors and control factors. At 95 % confidence level the model yielded 

a good fit.  
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In a later study (Lee et al., 2003), they continued their work along the same lines and modified 

the aforementioned model. They incorporated an algorithm to get a better estimate of time of the 

crash and the length of time slice (prior to the crash) duration to be examined. They concluded 

that variation of speed has relatively longer term effect on crash potential rather than density and 

average speed difference between upstream and downstream ends of roadway sections Also they 

found that the average variation of speed difference across adjacent lanes doesn’t have direct 

impact on crashes and hence was eliminated from the model.   

 

Oh et al. (2001) showed that five minutes standard deviation of speed value was the best 

indicator of “disruptive” traffic flow leading to a crash as opposed to “normal” traffic flow. They 

used the Bayesian classifier to categorize the two possible traffic flow conditions. Since 

Bayesian classifier requires probability distribution function for each class, they fitted their crash 

and no-crash speed standard deviation data to non-parametric distribution functions using Kernel 

smoothing techniques.  

 

In one of the more detailed analysis of patterns in crash characteristics as a function of real-time 

traffic flow is done by Golob and Recker (2001, 2002). The methodology used was non-linear 

(nonparametric) canonical correlation analysis (NLCCA) with three sets of variables. The first 

set comprised a seven-category segmentation variable defining lighting and weather conditions; 

the second set was made up of crash characteristics (collision type, location and severity); and 

the third set consisted of real-time traffic flow variables. Since NLCAA requires reducing 

collinearity in the data, principal component analysis (PCA) was performed to identify relatively 
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independent measurements of traffic flow conditions. The results of the PCA are shown in Table 

2-1.  

 

Table 2-1 Interpretation of principal components and variable selection (Golob and 
Recker, 2001) 

 

It was concluded that the collision type is the best-explained characteristic and is related to the 

median speed, and to left-lane and interior lane variations in speed. Moreover the severity of the 

crash tracks the inverse of the traffic volume, and is influenced more by volume than the speed.  

 

While almost all studies have indicated a relationship between crash occurrence and speed 

variability, a recent study by Kockelman and Ma (2004) found no evidence to the fact that 

speeds measured as 30-second time series or their variations trigger crashes. The study was 

conducted for the same area as Golob et al. (2003). Their sample size was limited to 55 severe 

crashes that occurred during January 1998 and with such a small sample their conclusions remain 

suspect.  

Factor Interpretation Represented by 

1 Central tendency of speed Median volume/occupancy interior 
lane 

2 Central tendency of volume Mean volume left lane 

3 Temporal variation in volume—Left and 
interior lanes 

Variation in volume for left lane 

4 Temporal variation in speed—Left and 
interior lanes 

Variation in volume/occupancy 
interior lane 

5 Temporal variation in speed—Right lane Variation in volume/occupancy 
right lane 

6 Temporal variation in volume—Right lane Variation in volume right lane 
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 Our group at University of Central Florida has also been actively involved in research linking 

crash patterns with loop detector data. Various modeling methodologies have been explored e.g., 

Probabilistic Neural Network (Abdel-Aty and Pande, 2004), matched case-control Logistic 

Regression (Abdel-Aty et al. 2004), Multi Layer Perceptron and Radial Basis Function neural 

network architectures (Pande, 2003) and Generalized Estimation Equation (Abdel-Aty and 

Abdalla, 2004). The data for these studies were collected from 13.2-mile central corridor of 

Interstate-4 in Orlando. All these studies made significant contributions towards enriching the 

literature, however, it must be said that there was enough room for improvement.  

 

2.1.3 Critical Review 

It is evident that the idea of exploring the loop data in safety research is still in its preliminary 

stages. Some of the aforementioned studies do promise about their application in future, but they 

have not fully analyzed the “recipe” of crashes. This is besides the fact that the statistical 

analysis in some cases isn’t really sound from a theoretical point of view.  

 

The research going on in Canada (Lee et al. 2002, 2003) has the advantage over the other 

research groups in the sense that their loops are placed very near to each other (38 loops on 10 

km stretch of the freeway), data is more precise (@ 20 seconds) and moreover they have dual 

loop detectors. The analysis they have been doing is based on frequency model and not on a 

model which can be used in real time crash prediction application. Also the way some of the 

variables are calculated from the loop data (e.g. coefficient of variation of speed) doesn’t have 

good statistical basis.  The timeframe that they are using for the crash precursors range from 2 to 

8 minutes, which could not be sufficient for processing and intervention. 
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The Golob and Recker (2001) study has established sound statistical links between 

environmental factors, traffic flow as obtained from the loop data but their findings are limited 

by the fact that the traffic data is obtained from single loop detectors and speed has to be 

estimated using a proportional variable (volume/occupancy).  

 

The classification model developed by Oh et al. (2001) seems to have the most promising online 

application, also demonstrated in their study, but due to the lack of crash data (only 52 crashes) 

their model remains far from being implemented in the field. The only factor used for 

classification is the 5-minute standard deviation of speed, other significant factors such as 

geometry, weather and other traffic flow variables were not considered. It is also to be 

understood that if a crash prediction model has to be useful we need to classify the data much 

ahead of the crash occurrence time and not just 5-minutes prior to the crash so that traffic 

management authorities have some time for analysis, prediction and dissemination of the 

information.  

 

There are certain key issues, which either have been overlooked or proper attention has not been 

given to them.  One of them is the determination of exact time of the historical crashes. Except 

for Lee et al. (2003) all the studies have either relied on the police records or at the most visual 

inspection of the loop data plots.  Even the algorithm developed by Lee et al. (2003) has errors 

associated with shock-wave progression speed. None of the studies except for those conducted at 

UCF have analyzed data from series of loop detectors in order to examine progression of crash 

prone conditions on freeways.  
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Neither of the studies has incorporated driver related characteristics into a crash prediction 

framework. The critical review shows a sufficient scope of improvement in the field of crash 

prediction not only in terms of analysis techniques but in data related issues (e.g., time of crash, 

incorporating driver characteristics, etc.) as well.  In this study we have addressed some of these 

issues such as examination of data from a series of loop detectors, time of the crash estimation 

etc., while for the others an extension to this effort has already been proposed to FDOT and 

should be addressed in the second phase of the project. The data preparation chapter in this 

report reflects that the database has been prepared with the intention of overcoming all the 

limitations of these studies in the next phase of the project.   
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CHAPTER  3 

STUDY AREA AND DATA PREPARATION 

3.1 General 

The final goal of this research is to develop a predictive system for crash occurrence on 

Interstate-4 corridor equipped with underground loop detectors. To achieve this objective we 

need to systematically correlate between the crash characteristics and the loop data (representing 

ambient traffic flow configuration). Moreover it has to be collated with the geometric design of 

the freeway at the location of the crash and the environmental conditions at the time of the crash. 

The system needs to recognize the patterns not leading to crash occurrence as well, hence traffic, 

environmental and geometric conditions corresponding to selected “non-crash” cases or 

“normal” freeway operating conditions must also be a part of the database. Drivers belonging to 

certain groups are known to have high likelihood of being involved in crashes, therefore, a 

measure for driver characteristics should also be included in the database.    

 

The traffic parameters in this study would be measured in terms of time series of 30-seconds 

observed from inductive loop detectors in the vicinity of the crash location for a certain period 

leading up to the crash. It is not difficult to realize the importance of properly fusing the loop 

detector data with crash data and geometric/environmental/driver related factors that might affect 

the probability of crash occurrence. 

 

3.2 Introduction to Study Area 

The study is being conducted on the Interstate-4 (I-4) corridor in Orlando. The corridor is 

considered to be an integral part of Central Florida's transportation system. It carries greater 
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number of people and vehicles than any other transportation facility in the region and serves 

many of the area's primary activity centers. Though originally designed to serve long distance 

travelers, the I-4 corridor now has evolved to one serving many shorter trips. No wonder a 

significant amount of growth in the region is occurring within close proximity to I-4. In recent 

years, congestion on I-4 has extended well beyond normal peak hours and major crashes have 

closed the freeway, subsequently resulting in traffic congestion throughout the Orlando 

metropolitan area. Hence, congestion and delays blended with high crash rates are the major 

transportation problems facing the freeway.  

 

Figure 3-1: I-4 corridor under consideration along with other major roads  

Figure 3-1 shows the instrumented Interstate-4 corridor along with the some major roads on the 

network. The freeway section under consideration is 36.25 miles long and has a total of 69 loop 

detector stations, spaced out at nearly half a mile.  Each of these stations consists of three dual 

loops in each direction and measures average speed, occupancy and volume over 30 seconds 

SR 400 (I-4) 

SR 417 

SR 528 

SR 408 
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period on each of the through travel lane. The loop detector data are continuously transmitted to 

the transportation management center (TMC). The source of crash and geometric characteristics 

data for the freeway is FDOT (Florida Department of Transportation) intranet server.  

 

3.3 Crash Data Collection 

The first step was to collect crash data for the instrumented freeway corridor over a period of 

time. Since the loop detectors are known to suffer from intermittent failures it was likely that 

some of the crashes may not have corresponding loop data available. To ensure that loop data for 

sufficient number of crashes are available to establish reliable links between crash and traffic 

characteristics it was decided to be on the conservative side and collect crash data for a period of 

four years ranging from 1999 through 2002.  

 

There were 3755 crashes reported in all during the four year period (from 1999 through 2002), 

while we expected some of them to have corresponding loop detector data missing, it was 

believed that we will be left with a sample large enough for analysis purposes. However, the 

information extracted for each crash case to create a complete crash database for is shown in 

Table 3-1. 

Table 3-1 The crash characteristics table 

 

Crash 
Number 

Crash 
report 

number 

Direction 
(EB or 
WB)  

Mile 
post 

Date 
of 

crash 

First 
harmful 

event 

Lane 
of 

the 
crash 

Visibility 
on the 

roadway 

Pavement 
Condition 

(Wet, 
slippery 
or dry) 

Number 
of 

fatalities 

Number 
of 

injuries 

1 xx xx xx xx xx Xx xx xx xx xx 

2 xx xx xx xx xx Xx xx xx xx xx 

| | | | | | | | | | | 

3755 xx xx xx xx xx Xx xx xx xx xx 



 17 

The table shown above provides sufficient information about each crash; the field “first harmful 

event” represents type of the crash. All other fields are self explanatory. The “milepost” field of 

the crash characteristics table (Table 3-1) was used to determine the loop detector station nearest 

to location of each crash and was referred to as the station of the crash. As we will see later, not 

all the crash characteristics have been analyzed in this phase of the study. None the less, they 

were made part of the database with future research in perspective.  

 

3.4 Estimation of Time of Historical Crashes 

3.4.1 Background 

Since the pre-crash loop detector data patterns are being linked with crash characteristics, the 

time of historical crashes used for analysis becomes very critical. The reason being that if the 

reported time of the crash is for example, 10 minutes later than the actual time of crash 

occurrence it would lead to a “cause and effect” fallacy as pointed out by Hughes and Council 

(1999). 

 

As mentioned in Chapter 2, this issue has not been thoroughly addressed in the literature. The 

past studies have relied either upon the time obtained from police records or at the most through 

visual inspection of the loop data plots. Also, there are errors associated with assumptions made 

by Lee et al. (2003) which happens to be the only study addressing the issue somewhat in detail.  

 

3.4.2 Loop Data used to Estimate Time of the Crash 

Since the first objective was to estimate the accurate time of the 3755 crashes, the loop detector 

data from the station of the crash, 4 upstream stations and 2 downstream stations were collected 
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for a period of 90 minutes around the reported time (one hour prior and half an hour later) of 

every crash. The period of 90 minutes was chosen to clearly locate the time when the 

shockwaves strike the concerned loop detector stations. The two loop detectors downstream of 

the crash location help to detect the existence of forward recovery shockwave. The most critical 

part of this methodology is to estimate the speed of the backward forming shockwave. Being on 

the conservative side and examining data from four upstream stations helps to detect the time of 

shockwave hit at these stations and ensures that we are able to estimate the speed of the 

shockwave even for the case when one or two stations are not functioning. Note that for 

estimating the time of crashes, the loop data in its raw form as time series of 30-seconds were 

used.  Out of these 3755 crashes 1705 crashes did not have any loop detector data available, i.e., 

none of the seven detectors from which data were sought were functioning on the day of these 

crashes. The remaining crashes had at least partial data available but there was no assurance that 

all three lanes from all seven detectors were reporting data.  

 

The loop detectors are known to suffer from intermittent hardware problems that result in 

unreasonable values of speed, volume and occupancy. Values that include Occupancy>100, 

speed=0 or >100, flow>25, and flow =0 with speed>0, were removed from the raw 30-second 

data. 

 

3.4.3 Impact of Crashes on Traffic Flow 

Crashes are a specific type of incident and generally have more profound impact on freeway 

operation. The effects of a crash on traffic flow patterns develop over time both upstream and 

downstream of the crash. However, the changes in traffic flow characteristics are distinct on loop 
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detectors located upstream and downstream directions. On the upstream direction, a queue is 

observed to form, resulting in significant reduction in speed accompanied by an increase in lane-

occupancy. On the other hand, decrease in lane flow and occupancy is observed downstream. 

The critical aspect for determining the time of crash is the time elapsed in the progression of the 

shockwave from the crash location to the upstream loop detector station. In general this duration 

(i.e. the shockwave speed) and changes observed in the loop data are affected by the severity of 

that crash, the roadway geometry, the presence of on- and off-ramps, the distance between loop 

detector stations, and prevailing traffic flow conditions (Adeli and Karim, 2000). 

  

Figure 3-2: Time-space diagram in the presence of a crash  
(based on Lee et al. 2002)  

 

Time 

Location 

Upstream 

Downstream 

  tc                    td                                    tu 

ωCD 

ωUC

State D 

State C 

State U 

Lc 

Ld 

Lu 
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The impact of a crash under the assumption of a constant shockwave speed may be shown by a 

time-space diagram (Figure 3-2). Ld and Lu represent the location of detector stations downstream 

and upstream of the crash site, respectively.  The time tc, td and tu are time of the crash and time 

of backward forming shockwave arriving at downstream and upstream stations, respectively. It is 

clear from the figure that if the speed of backward forming shockwave is known then the time of 

the crash could be easily estimated. In the Figure 3-2 ωUC and ωCD represent the speeds of 

backward forming and forward recovery shockwaves, respectively. The times of backward 

forming shockwave hitting two adjacent upstream stations may be determined by observing 

when the drops in speed profiles of the two stations occur. The gap between the two arrival times 

is the time that the shockwave takes to travel from first upstream station to the next upstream 

station.  

 

3.4.4 Time of the Crash: Estimation and Validation 

First step in estimating the time of the crash was to estimate the speed of the backward forming 

shockwave resulting from the crash. The difference between times of shockwave arrival at the 

two adjacent stations located immediately upstream of the crash location was used. Since the 

milepost of all loop detectors on I-4 was known accurately, distance between the two detectors 

could be used to get the shockwave speed. Once the shockwave speed is known it is not difficult 

to determine tc, using the milepost of crash location (also known from the FDOT crash database). 

The following equation may be used for the estimation: 

UC

cu
cu

LL
tt

ω
)( −

=−  

All the variables in the above equation have the notation used in Figure 3-2. Due to the 

underlying assumption made here, that shockwave speed remains constant while it hits the first 
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and second stations in the upstream direction, it was mandatory to validate the results. The 

critical issue in the validation was that there is no way to know the actual time of the crash (true 

value) to compare the shockwave model estimates with. The model was validated using the 

traffic simulation package PARAMICS. A small freeway section on Interstate-4 was simulated 

and three traffic flow statistics (speed, volume and density) were obtained from locations 

separated half mile apart on the section just as the loop data is archived for Interstate-4 in real 

time. Crashes were configured to occur at various locations between a set of two detectors (e.g., 

very near to upstream or downstream loop, exactly midway between the loops, etc.). The 

simulation experiment showed that the time of these “artificial” crashes could be accurately 

estimated using the shockwave method under various scenarios.  

 

3.4.4.1 Aggregation across lanes vs. using lane of the crash 

After the methodology was developed and validated as explained above, it could either be 

applied by aggregating the data across three lanes or by using the data from the specific lane on 

which the crash had occurred. Lane of the crash was known from the FDOT crash database. The 

advantage of using the aggregated data was that the time of the crash could be estimated for a 

large sample of crashes, since the data for at least one of the lanes is obviously available for 

more crashes than the data for a specific lane. On the other hand since the algorithm relies on the 

impact of shockwave hitting at successive upstream stations, sometimes the aggregated data 

(averaged over three lanes) might dampen this impact and the drop in speed or rise in occupancy 

may not be significant enough to be detected by the algorithm as a shock-wave hit. Hence, it was 

decided to apply the algorithm for the specific lane of the crash for each case.  
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3.4.4.2 Crashes at Different Locations  

Although results of the above algorithm were validated on the simulation data it was necessary to 

understand some complexities involved before applying it on the real data, for example for the 

crashes which occur on the median it is almost impossible to detect any effect on upstream loop 

detectors. Since even the “rubber neck” effect dies down before being felt at the station 

immediately preceding the crash location. Hence the algorithm was further examined and 

validated by looking at speed and occupancy profiles obtained at stations immediately upstream 

for randomly selected crashes. These crashes were selected from different roadway locations 

(such as the 3 mainstream lanes, median, shoulder, auxiliary lanes) in order to identify the lanes 

from which a clear pattern of sudden drop in the loop detector speed data could be observed.  

 

The visual inspection of profiles of several crashes from aforementioned roadway locations led 

to formulation of following rules: 

• For crashes on Left, Center or Right Main Traffic-stream lanes: Estimate time of the 

crash by applying the existing methodology on the data from the respective lane (i.e., 

lane of the crash). 

• 4th (right most) Traffic lane or Auxiliary Lanes: Use time estimated by applying the 

existing methodology on the data from right most lane (lane 3). 

• Shoulder: No obvious pattern could be observed in the upstream loop data hence it will 

not be appropriate to modify the reported time. 

• Median: No obvious pattern could be observed in the upstream loop data hence it will not 

be appropriate to modify the reported time. 
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The logic behind the formulation of the aforementioned rules may be understood through careful 

inspection of Figure 3-3.  It also helps to visualize the trends observed in the speed patterns from 

the station upstream of three different crash locations. Note that these are the typical speed 

profiles and most of the other crashes on these roadway locations also depicted similar trend. 

Crash on center lane (Figure 3-3(a)) represents crashes on mainstream freeway (lanes equipped 

with loop detectors), while Figure 3-3(b) depicts the speed pattern for crashes on the 4th lane 

(auxiliary lane) on the freeway. Therefore, as could be seen, the impact of a crash occurring on 

this lane could be captured by observing the drop of speed on the adjacent lane (rightmost lane 

equipped with loop detectors). To represent crashes on the shoulder and median, a shoulder crash 

has been chosen, which of course shows no visible drop pattern in speed on any of the lanes 

equipped with loop detectors (Figure 3-3(c)). The time series shown in Figure 3-3 has readings 

obtained from three freeway lanes for a period of 90 minutes (an hour prior and half an hour later 

to the reported time of each crash). Out of these 180 readings, the 120th is the reported time of 

the crash.  

 

After applying this methodology for all the crashes having the desirable lane data available, the 

time of crash was modified accordingly. Due to the unavailability of the specific lane data for the 

required loop stations and time period for all the crash cases, the time of the crash was modified 

for 556 crashes from the years 1999 - 2002.   

 

3.4.5  Discussion 

Although the poor availability of the loop data did not allow us to modify the time of all 

historical crashes, the shock-wave and rule based algorithm could be a valuable addition to the 



 24 

literature. In this study, however, the reported time was used for the remaining crashes, since 

removing them from the database would have resulted in significant loss of information. This is 

justified due to an automated system in place in Florida capturing the exact time when a crash is 

reported. With the wide spread use of the mobile phones the difference between times of 

occurrence and reporting of a crash is usually minimal. This along with the feedback from the 

Florida Highway Patrol officials about accurate reporting of the time of the crash gives reason to 

believe that the reported time is in fact close to actual time of crash occurrence. 
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Speed Profile on a station upstream of crash location for a 
center lane crash 
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Figure 3-3(a): Typical Speed Profile: Crash on Center Lane 
Speed Profile on a station upstream of crash location for an 

auxiliary lane crash 
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Figure 3-3(b) Typical Speed Profile: Crash on an Auxiliary Lane 

Speed Profile on a station upstream of crash location for a shoulder 
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Figure 3-3(c) Typical Speed Profile: Crash on Shoulder 
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3.5 Loop Data Collection 

The most critical part of this study is of course the loop detector data corresponding to crashes. 

As mentioned in the previous section for the four-year period 1705 crashes had no loop detector 

data available at all. Hence, the loop data was to be collected for the remaining 2050 crashes. 

The format of the data collected for analysis largely depends upon the methodology used. Past 

experience of the research group (e.g., Pande, 2003, Abdel-Aty et al. 2003, Abdel-Aty and 

Abdalla, 2003) with data from 7-month period of the year 1999 was very beneficial in this 

regard. Three separate databases consisting of loop detector data have been assembled for this 

study. 

 

3.5.1 Data for Matched-Case Control Analysis 

The matched case-control methodology was identified as an effective tool for modeling the 

binary outcome: crash or non-crash. To compare traffic characteristics (measured during time 

prior to crash occurrence from locations surrounding the crash location) that lead to a crash  with 

corresponding normal traffic conditions that did not lead to a crash, traffic data were extracted in 

a specific matched format.  

 

Loop data were extracted for the day of crash and on all corresponding (non-crash) days to the 

day of every crash. The correspondence here means that, for example, if a crash occurred on 

April 12, 1999 (Monday) 6:00 PM, I-4 Eastbound and the nearest loop detector was at station 30, 

data were extracted from station 30, four loops upstream and two loops downstream of station 30 

for half an hour period prior to the estimated time of the crash for all the Mondays of the year at 

the same time. This matched sample design controls for all the factors affecting crash occurrence 
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such as season, day of week, location on the freeway, etc (thus implicitly accounting for all these 

factors). Hence, this case will have loop data table consisting of the speed, volume and 

occupancy values for all three lanes from the loop stations 26-32 (on eastbound direction) from 

5:30 PM to 6:00 PM for all the Mondays of the year 1999, with one of them being the day of 

crash (crash case). More details of this sampling technique and application of this methodology 

may be found in one of the papers by our research group (Abdel-Aty et al., 2004). The format of 

data tables for this hypothetical crash is shown in Table 3-2.  

Table 3-2 Format of the matched data extracted from the I-4 loop detector database for a 
hypothetical crash case 

Day Station Y Time ELS* ECS* ERS* ELV+ ECV+ ERV+ ELO- ECO- ERO- 
04/05/99 25 0 17:30:00 xxx   xxx   xxx  xxx    xxx    xxx xxx   xxx   xxx 
04/05/99 25 0 17:30:30 xxx   xxx   xxx  xxx    xxx    xxx xxx   xxx   xxx 
04/05/99 | 0 | |        |        | |        |        | |        |        | 
04/05/99 | 0 | |        |        | |        |        | |        |        | 
04/05/99 31 0 18:05:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 
04/05/99 31 0 18:05:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 
04/12/99 25 1 17:30:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 
04/12/99 25 1 17:30:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 
04/12/99 | 1 | |        |        | |        |        | |        |        | 
04/12/99 | 1 | |        |        | |        |        | |        |        | 

04/12/99 31 1 18:05:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

04/12/99 31 1 18:05:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 
04/19/99 25 0 17:30:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 
04/19/99 25 0 17:30:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 
04/19/99 | 0 | |        |        | |        |        | |        |        | 
04/19/99 | 0 | |        |        | |        |        | |        |        | 
04/19/99 31 0 18:05:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 
04/19/99 31 0 18:05:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

| | 0 | |        |        | |        |        | |        |        | 

| | 0 | |        |        | |        |        | |        |        | 
12/27/99 31 0 18:05:00 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 
12/27/99 31 0 18:05:30 xxx   xxx   xxx xxx   xxx   xxx xxx   xxx   xxx 

ELS* Eastbound Left lane Speed  ELV+ Eastbound Left lane Volume ELO- Eastbound Left lane Occupancy 
ECS* Eastbound Center lane Speed ELV+ Eastbound Center lane Volume ELO- Eastbound Center lane Occupancy 
ELS* Eastbound Right lane Speed  ELV+ Eastbound Right lane Volume ELO- Eastbound Right lane Occupancy 
 



 28 

The filed Y in the table above represents whether the data row corresponds to a crash case or to a 

matched non-crash case. Such tables were extracted for all 2050 crashes with some loop data 

available. Note that the number of observations in these tables for different crashes was different 

due to random failures of the loops. Also, the cleaning mechanism explained above for raw 30-

second loop data was again adopted to clean the data.  

 

3.6 Geometric Design Parameters 

Although the main purpose of this study is to establish links between real-time traffic 

characteristics (measured through loop detectors) and crash occurrences, it is extremely 

important to consider geometric characteristics on the freeway with respect to the crash 

characteristics. For example, the traffic characteristics leading to a crash on a curved section 

might be distinct from those leading to crash on a straight section.   To obtain the details of the 

geometric design of I-4 corridor the Roadway Characteristics Editor (RCI) database available on 

FDOT Intranet server was used. Geometric design features were extracted for the location of 

each loop detector station since it was the common link between crash and loop detector 

database. The structure of this database is shown in Table 3-3. Geometric design of the freeway 

might differ from one direction to the other, hence the dataset has 138 (69*2=138) observations. 
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Table 3.3 Geometric design of the freeway at loop detector station locations 

Loop Direction Mile post Radius (ft) # of Lanes 
Median 
type and 

width 

Distance 
to nearest 
upstream 
on ramp 

Distance 
to nearest 
upstream 
off ramp 

Distance 
to nearest 

down 
stream on 

ramp 

Distance 
to nearest 

down 
stream off 

ramp 

2 E xxx xxx xxx   xxx xx       xx xxx xxx xxx xxx 

2 W xxx xxx xxx   xxx xx       xx xxx xxx xxx xxx 

|  | | | |          | | | | | 

71 E xxx xxx xxx   xxx xx       xx xxx xxx xxx xxx 

71 W xxx xxx xxx   xxx xx       xx xxx xxx xxx xxx 

 

3.7 Weather Information 

The effect of wet weather on crash occurrence is well documented (e.g., Xiao et al. 2000). In 

Central Florida where snow is not a concern, rain fall is the most important weather related 

factor affecting visibility as well as the pavement condition. These two parameters are available 

for historical crashes; however, for the non-crash cases there is no direct way to obtain the 

weather information at locations from where loop data has been collected. An effort is currently 

underway by our research group to infer the weather conditions for the non-crash cases using the 

rainfall information provided by five different rain gauge stations located in the surroundings of 

the 36-mile corridor. This issue will be further investigated in the second phase of the project. 

 

3.8 Driver Characteristics 

While crash involvement of drivers belonging to certain age group or gender etc. has been a 

major area of research in traffic safety, these factors have not been incorporated into real-time 

crash prediction models developed so far.  This issue will be further investigated in the second 

phase of the project. 
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3.9 Concluding Remarks 

This Chapter describes the data preparation effort needed for this study and beyond. The data 

have been prepared keeping in mind the future scope of this project. Significant amount of time 

and effort is currently being devoted to collection and assembling of database, so that the data 

issues do not limit the scope of the research. A random non-crash cases, driver characteristics 

etc. are planned to be used in the next phase of this study. In this phase, however, the matched 

case-control data base was used. The with-in stratum analysis technique is particularly attractive 

for modeling purposes since it implicitly accounts for the factors such as freeway geometry. 

However, in order to understand the mechanism of crashes these factors should be explicitly 

accounted for in the model. Therefore, the efforts to incorporate weather and driver population 

composition related factors are currently underway and will be used during modeling stage in the 

next phase of the project.  Determination of the time of historical crashes has been given separate 

attention and a detailed rule-based algorithm is used to modify the reported time. With 4-years 

(possibly five years) of crash and non-crash data, the database being developed here would be by 

far the most comprehensive database created for a real-time crash prediction study. The next 

chapter explores the with-in stratum logistic regression methodology for crash prediction using 

the matched dataset of the format shown in Table 3-2.  
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CHAPTER  4 

LOGISTIC REGRESSION: SIMPLE AND MULTIVARIATE MODELS  

4.1 General 

Freeway crashes occur as a result of complex interaction between human factors, ambient traffic 

and environmental conditions, along with the geometric characteristics of the freeway section.  

This study aims at the identification of traffic characteristics leading to crashes on freeways. 

Traffic conditions measured as coefficient of variation in speed and lane occupancy have been 

found to be significant freeway crash precursors (e.g. Lee et al. 2002, 2003). These authors have 

developed crash prediction models using real-time values of the precursors obtained from 

underground freeway loop detectors located upstream and/or downstream of crash sites.  

 

However, these models do not take into consideration geometric and environmental factors such 

as horizontal curve and season of the year. Furthermore, crash precursors are measured from 

loop detectors in the neighborhood of the crash location at time duration prior to crashes only. 

The accuracy of real-time crash prediction model may be increased if the model utilizes 

information on traffic flow characteristics for both crash and non-crash cases while controlling 

for other external factors (therefore implicitly accounting for factors such as the geometry and 

location). This can be achieved using a within-stratum analysis of a binary outcome variable Y 

(crash or non-crash) as a function of traffic flow variables X1, X2,… Xk from matched crash-non-

crash cases where a matched set (henceforth referred to as stratum) can be formed using crash 

site, time, season, day of the weak, etc., so that the variability due to these factors is controlled. 

In epidemiological studies, this is known as matched case-control study. Each case refers here to 

a crash and control to a non-crash. The steps involved can be described as follows:  
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(i) Select a crash site, and identify loop detector(s) upstream and/or downstream of crash 

location. Measure traffic flow characteristics from these loop detectors at a time period duration 

prior to the crash. Use the same loop detectors and time period, measure traffic flow 

characteristics over m other non-crash days (same day of the weak and season).  The m+1 

observations (one corresponds to crash and m to non-crashes) together form one stratum.  

 

(ii) Repeat step (i) for N randomly selected crash locations to form N strata. 

 

(iii) Perform within-stratum analysis to identify traffic flow variables that are associated with the 

binary outcome (crash/no-crash) variable Y while controlling variability due to all other external 

factors that formed the strata. 

 

4.2 Matched Case-Control Logistic Regression: Simple Models 

4.2.1 Methodology 

The case-control stratum analysis methodology is adopted to identify the relationship between 

the traffic parameters measured through loop detectors and crash occurrences while controlling 

for location (i.e., the geometric characteristics), time of the day, day of the week and season 

(Abdel-Aty et al., 2004). 

  

In a univariate logistic regression setting the function of dependent variables yielding a linear 

function of the independent variables would be the logit transformation. 
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Where π (x) = E (Y|x) is the conditional mean of Y (dummy variable representing crash 

occurrence) given x when the logistic distribution is used. Under the assumption that the logit is 

linear in the continuous covariate x, the equation for the logit would be )(xg = x10 ββ + . It 

follows that the slope coefficient, 1β , gives the change in the log odds for an increase of 1 unit in 

x, i.e. 1β =g (x+1) –g (x) for any value of x. Hazard ratio is defined as the exponential of this 

coefficient, in other words it represents how much more likely (or unlikely) it is for the outcome 

to be present for an increase of “1” unit in x (Agresti, 2002). It implies that the hazard ratio 

significantly different from 1 for a particular parameter is an indicator of strong association of 

that parameter with crash occurrence. The decision regarding significance is made based on the 

p-value, which represents the probability of drawing the sample being tested if the null 

hypothesis were actually true. The null hypothesis is formulated as hazard ratio being equal to 

unity. Therefore, a p-value of less than the threshold (selected as 0.05) would indicate the 

rejection of the null hypothesis and hazard ratio significantly different than unity.  It is also 

noteworthy that a value greater than one signifies that the crash risk increases with an increase in 

the parameter value while a value less than one indicates an increase in the crash risk as the 

parameter value goes down.  

 

4.2.2 Data Preparation 

Procedure for data preparation was explained in the previous chapter (Section 3.5.1), however, 

part of it is being repeated here to maintain continuity. As explained in the previous chapter, for 

matched case-control logistic regression traffic data were extracted for the day of crash and on 

all corresponding (non-crash) days to the day of every crash. The correspondence here means 

that, for example, if a crash occurred on April 12, 1999 (Monday) 6:00 PM, I-4 Eastbound and 
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the nearest loop detector was at station 30, data were extracted from station 30, four loops 

upstream and two loops downstream of station 30 for half an hour period prior to the estimated 

time of the crash for all the Mondays of the same season in that year at the same time. This 

matched sample design controls for all the factors affecting crash occurrence such the location on 

the freeway (thus accounting for the geometric factors). Hence, this case will have loop data 

table consisting of the speed, volume and occupancy values for all three lanes from the loop 

stations 26-32 (on eastbound direction) from 5:30 PM to 6:00 PM for all the Mondays of the year 

1999, with one of them being the day of crash (crash case). Details of this sampling technique 

and application of this methodology may also be found in one of the papers by Abdel-Aty et al. 

(2004).  

 

Since the 30-second data have random noise and is difficult to work with in a modeling 

framework, we combined the 30-second data into two separate levels of 3-minute and 5-minute 

level in order to get averages and standard deviations. Thus for 5-minute aggregation half an 

hour period was divided into 6 time slices. The stations were named as “B” to “H”, with “B” 

being farthest station upstream and so on. It should be noted that “F” is the station closest to the 

location of the crash with “G” and “H” being the stations downstream of the crash location. 

Similarly the 5-minute intervals were also given “IDs” from 1 to 6. The interval between time of 

the crash and 5 minutes prior to the crash was named as slice 1, interval between 5 to 10 minutes 

prior to the crash as slice 2, interval between 10 to 15 minutes prior to the crash as slice 3 and so 

on. Similarly for the 3-minute level, the interval between the time of the crash and 3 minutes 

prior to the crash was named as slice 1, interval between 3 to 6 minutes prior to the crash as slice 

2, and interval between 6 to 9 minutes prior to the crash as slice 3 and so on. For 5-minute level 
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aggregation the arrangement of these time-slices and stations is shown in Figure 4-1. Two 

effects, namely average and standard deviation were initially calculated for speed, volume and 

occupancy during each time slice and from each lane at every station. The original data series 

being at 30-second level, the 3-minute and 5-minute averages (and standard deviations) were 

based on six and ten observations, respectively. Using information about the specific lane where 

the crash occurred from the FDOT database, average and standard deviation for only lane of the 

crash were retained.   

Station B

Station H

Station G

Station F

Station E

Station D

Station C

Distance
Traffic

Direction

Time of the
crash=0

-25 min. -20 min. -15 min. -10 min. - 5 min.-30 min.

Slice 1Slice 6 Slice 5 Slice 4 Slice 3 Slice 2

 
Figure 4-1 Time-space arrangement of all stations and time slices with respect to the crash 

site and the time of the crash    
 

Using data only from the specific lane of the crash reduced the size of the dataset to about 30% 

of the original crash sample due to the fact that data from specific lane of the crash were missing 

quite often. Two more datasets were created, by aggregating the data on the three lanes; hence in 

the aforementioned three-minute and five-minute datasets the lane of the crash averages and 

standard deviations were replaced by values aggregated over three lanes. In these datasets, the 

averages (and standard deviations) at 3-minute and 5-minute level were based on 18 (6*3 lanes) 

and 30 (10*3 lanes) observations, respectively. Therefore, even if at a certain station loop 
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detector from one lane was not reporting data there were observations available to get a measure 

of traffic from that location. This not only increases the sample size of crashes to more than 2000 

crashes but also helps to develop a system for more realistic application scenario since all three 

lanes at a loop detector stations are less likely to be simultaneously unavailable when the model 

is used for real-time prediction.  

4.2.3 Analysis 

For each of the seven loop detectors (B to H) and six time slices (1-6) mentioned above, there are 

values of means (AS, AV, AO) and standard deviations (SS, SV, SO) of speed, volume and 

occupancy, respectively, of all crash and the corresponding non-crash cases. Due to data 

availability, there were different numbers of non-crash cases for each crash. To carry out 

matched case-control analysis we created a symmetric data sets (i.e., each crash case in the 

dataset has the same number of non-crash cases as controls) by randomly selecting five non-

crash cases for each crash in all four datasets. The choice of selecting five as the number of 

corresponding non-crash cases was based on one of our earlier findings (Abdel-Aty et al., 2004) 

which essentially indicated no differences among the results from five different 1: m datasets 

(with 1 crash and m corresponding non-crash with m varying between one to five). In addition to 

the aforementioned datasets we also created a “pseudo” case control dataset in which six random 

non-crash cases in each stratum were selected and one of them was assigned as (pseudo) crash 

while all the real crash cases were dropped. The results from this dataset were analyzed in order 

to delineate the differences between real and “pseudo” case control datasets. Exploratory 

analysis with the original effects (3-minute or 5-minute standard deviations and average of 

speed) showed that the hazard ratio for standard deviation of speed were all greater than unity 

while they were all less than one for the average speeds at stations B-H and time slices 1-6. Thus, 
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the coefficient of variation in speed was a natural choice as a precursor resulting in hazard ratio 

values substantially greater than one. Therefore, we combined mean and standard deviation of 

speed, occupancy and volume into the variables CVS, CVO, CVV (coefficients of variation of 

speed, occupancy and volume, respectively, expressed in percentage as (SS/AS)*100, 

(SO/AO)*100, and (SV/AV)*100). Logarithmic transformation was applied to these coefficients 

of variation due to the skewed nature of their distribution. The preliminary analysis concluded 

that the variables LogCVS, AO and SV had the most significant hazard ratios.  

 

The results of stratified conditional simple (one variable at a time) logistic regression analysis 

were then analyzed for these three variables (LogCVS, AO, SV) at each of the seven loop 

detectors and six time slices to identify time duration(s) and location of loop detector(s) whose 

traffic characteristics are significantly correlated with the binary outcome (crash vs. non-crash). 

This was done by calculating the hazard ratio using proportional hazard regression analysis 

(PHREG of SAS) of each of the 126 (7 stations *6 time slices *3parameters i.e.,  LogCVS, AO, 

SV) single variable models; one model for each of the three variables LogCVS, AO and SV over 

every station B-H and the duration of time slice 1-6. The outcome of these models was the 

hazard ratio value for these variables at various stations and time slices and the p-value for the 

test indicates whether the value is significantly different from one. The hazard ratio is an 

estimate of the expected change in the risk of having a crash. Therefore, if the output hazard ratio 

of a variable is significantly different from one (e.g., 2) then increasing the value of this variable 

by one unit would double the risk of a crash at station F (station of the crash). Note that the terms 

such as hazard ratio and the p-value were defined in the methodology section (Section 4.2.1, 

Page 33). 
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These 126 single variable models were estimated for corresponding hazard ratio values for all 

five datasets including the four real (3-minute and 5-minute aggregation with individual lane of 

the crash/combined lanes) and one “pseudo” matched case-control dataset (combined lane at 3-

minute aggregation having one non-crash in each strata randomly assigned as crash). The 

arrangement used for stations and time slices used here is crucial in terms of generating the 

patterns of crash risk and it’s “propagation” in a time-space framework. The results from these 

datasets are discussed in the following section.  

 

4.2.4 Results and Discussion 

First dataset to be analyzed for hazard ratio was the one aggregated to 3-minute level with 

parameters only from lane of the crash. Table 4-1 shows the results of all the single variable 

models for LogCVS, SV, and AO. The table shows how the hazard ratio for LogCVS and AO 

increases as we approach the Station of the crash (Station F) and time of the crash (Slice 1), 

Although the values of hazard ratio for AO is low (i.e., near to 1.0) but it is still significant (Note 

the chi sq. statistic and p-value). The reason for the low value is that occupancy usually changes 

by 1% quite frequently on freeways and it is more meaningful to represent the increased risk of 

observing a crash resulting from 10% increase in occupancy. This modified risk ratio can be 

obtained by raising hazard ratio to the power 10. For SV the hazard ratios were found to be less 

than one and appeared to be decreasing as the time and station of crash approached in the 

downstream direction. Since it is the value of hazard ratio that is significantly different from one 

(and not necessarily a high value) that makes the variable a better crash precursor, ratio for SV 

indicates that as this parameter becomes smaller at certain freeway locations the crash risk 

apparently increases at locations upstream of these sites. This analysis was based on a small 
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sample size due to missing data from individual lane on which the crash occurred and also the 

determination of these risk ratio values would require the data from each individual lane to be 

available, therefore we next conducted our analysis on 3-minute level data combined over three 

lanes. In the combined lane data, the same trends in hazard ratio are essentially observed in a 

time-space framework.  
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Table 4-1: Hazard ratios for LogCVS, SV and AO for individual lane parameters 
measured at 3-minute level during six different time slices and seven stations  

    LogCVS SV AO 

Station Time 
slice 

Hazard 
Ratio chi-sq. p-

value 
Hazard 
Ratio chi-sq. p-

value 
Hazard 
Ratio chi-sq. p-

value 

B 1 1.716 19.1895 <.0001 0.956 1.6018 0.2057 1.024 17.969 <.0001 

B 2 1.512 10.8127 0.001 0.996 0.0117 0.9139 1.02 14.1926 0.0002 

B 3 1.924 26.1665 <.0001 0.963 1.2512 0.2633 1.02 13.8534 0.0002 

B 4 2.155 36.0467 <.0001 0.957 1.514 0.2185 1.022 16.6653 <.0001 

B 5 1.786 22.5242 <.0001 0.932 4.1029 0.0428 1.023 17.2121 <.0001 

B 6 1.749 18.8261 <.0001 0.92 5.9009 0.0151 1.019 12.3945 0.0004 

                      

C 1 2.41 50.4977 <.0001 0.956 1.6973 0.1926 1.021 17.5138 <.0001 

C 2 2.235 43.462 <.0001 0.962 1.3057 0.2532 1.021 18.4326 <.0001 

C 3 2.103 34.5474 <.0001 0.963 1.1919 0.2749 1.021 18.9807 <.0001 

C 4 2.149 38.0753 <.0001 0.958 1.6183 0.2033 1.023 23.1371 <.0001 

C 5 1.859 25.388 <.0001 0.971 0.7426 0.3888 1.022 18.2844 <.0001 

C 6 2.694 64.2967 <.0001 0.985 0.1984 0.656 1.027 29.0918 <.0001 

                      

D 1 2.489 53.2179 <.0001 0.928 4.5202 0.0335 1.037 48.8821 <.0001 

D 2 2.179 37.8872 <.0001 0.935 3.7976 0.0513 1.034 41.6895 <.0001 

D 3 2.333 43.5329 <.0001 0.958 1.5171 0.2181 1.03 31.9471 <.0001 

D 4 2.199 36.5207 <.0001 0.984 0.2075 0.6487 1.032 34.4802 <.0001 

D 5 1.802 21.2986 <.0001 0.926 5.1727 0.0229 1.027 25.7885 <.0001 

D 6 2.318 42.453 <.0001 0.95 2.1475 0.1428 1.034 39.3768 <.0001 

                      

E 1 2.684 70.8647 <.0001 0.95 2.1628 0.1414 1.035 53.2115 <.0001 

E 2 2.633 62.6352 <.0001 0.89 11.2021 0.0008 1.04 61.6082 <.0001 

E 3 2.627 60.7399 <.0001 0.936 3.7193 0.0538 1.044 68.0471 <.0001 

E 4 2.633 62.146 <.0001 0.898 9.6234 0.0019 1.038 56.3305 <.0001 

E 5 2.141 39.3845 <.0001 0.867 15.7183 <.0001 1.036 49.9789 <.0001 

E 6 1.994 31.6068 <.0001 0.88 12.9029 0.0003 1.036 52.5798 <.0001 

                      

F 1 4.532 177.723 <.0001 0.816 36.0686 <.0001 1.039 66.4986 <.0001 

F 2 3.145 106.751 <.0001 0.874 16.3643 <.0001 1.041 67.4152 <.0001 

F 3 3.989 137.278 <.0001 0.867 17.8128 <.0001 1.042 67.5865 <.0001 

F 4 3.454 118.519 <.0001 0.831 27.6133 <.0001 1.048 86.1573 <.0001 

F 5 3.293 104.619 <.0001 0.882 13.7532 0.0002 1.042 71.0116 <.0001 

F 6 2.819 82.7555 <.0001 0.863 19.648 <.0001 1.042 68.8663 <.0001 

                      

G 1 3.505 114.199 <.0001 0.819 30.8908 <.0001 1.036 52.8328 <.0001 

G 2 3.035 88.463 <.0001 0.81 34.9073 <.0001 1.038 59.2016 <.0001 

G 3 2.972 81.9169 <.0001 0.842 23.3896 <.0001 1.036 51.051 <.0001 

G 4 2.793 74.5892 <.0001 0.885 12.8455 0.0003 1.038 59.6686 <.0001 

G 5 2.572 65.2376 <.0001 0.848 21.3729 <.0001 1.039 58.2009 <.0001 

G 6 2.378 56.5465 <.0001 0.853 20.6301 <.0001 1.041 65.3361 <.0001 

                      

H 1 3.245 88.9293 <.0001 0.875 12.5506 0.0004 1.054 76.2902 <.0001 

H 2 2.719 64.2434 <.0001 0.826 24.9019 <.0001 1.047 64.7683 <.0001 

H 3 2.334 46.6994 <.0001 0.839 22.2001 <.0001 1.05 67.4602 <.0001 

H 4 2.677 59.1609 <.0001 0.83 24.2464 <.0001 1.051 67.8784 <.0001 

H 5 2.475 51.3797 <.0001 0.884 11.215 0.0008 1.053 75.5672 <.0001 

H 6 2.897 66.1671 <.0001 0.842 21.6698 <.0001 1.056 77.1597 <.0001 
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To assess the fact that these results are really depicting an association between traffic flow 

variables and crash occurrence we next analyzed hazard ratios from the “pseudo” crash matched 

dataset. As expected the trends were either non-existent (as was the case with LogCVS and SV 

with values significantly close to one) or they were exactly reversed (as was the case with AO 

with hazard ratio significantly less than one). Table 4-2 contrasts the differences between 3-

minute combined lanes matched and “pseudo” matched dataset results and further indicates 

strong association of these variables with crash occurrences.  

 

With the five minute aggregated datasets again similar trends were observed for hazard ratios 

corresponding to SV and AO while in the case of LogCVS, the hazard ratio and corresponding 

chi-square statistic were magnified depicting stronger association of 5-minute coefficients of 

variation in speed with crash occurrence. In data aggregated to 5-minute level hazard ratios for 

parameters LogCVS and SV corresponding to combined lane data were higher and lower, 

respectively, than their individual-lane counter parts. Table 4-3 shows results from these two 

datasets. The essential difference between the two datasets is that while the combined lane 

dataset accounts for the variation across the lanes wherever possible, the individual lane of the 

crash dataset does not. The magnified difference between unity and both hazard ratios 

(corresponding to LogCVS and SV) in the combined lane data indicates that similar volumes with 

varying speeds across lanes might be a contributing factor for freeway crashes.  Also, note that 

the sample size in case of combined lanes is about four times larger than in the case of individual 

lane. Hence it was decided to use the combined lane data for hazard ratio calculation as well.     
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Table 4-2: Comparison between hazard ratios for two separate with-in stratum analyses 
for combined lane parameters measured at 3-minute level, one with strata of 6 with one 

real crash and other with strata of 6 with one non-crash randomly assigned as crash  

Hazard Ratios Corresponding to 
LogCVS SV AO 

Station 
Time 
slice 

Strata 
with 
Real 

crash 

Strata 
with 

Pseudo 
crash 

Strata 
with 
Real 

crash 

Strata 
with 

Pseudo 
crash 

Strata 
with 
Real 

crash 

Strata 
with 

Pseudo 
crash 

B 1 1.961 0.743 0.918 1.027 1.027 0.961 
B 2 1.875 0.861 0.924 1.001 1.025 0.96 
B 3 1.826 0.744 0.929 1.069 1.025 0.959 
B 4 2.287 0.771 0.944 1.066 1.029 0.965 
B 5 2.04 0.755 0.913 1.074 1.027 0.961 
B 6 1.766 0.682 0.939 1.022 1.025 0.959 
                
C 1 2.66 0.827 0.94 1.045 1.028 0.974 
C 2 2.164 0.845 0.95 1.024 1.028 0.979 
C 3 2.171 0.814 0.907 1.034 1.028 0.976 
C 4 2.208 0.877 0.969 1.058 1.027 0.977 
C 5 1.732 0.723 0.924 1.041 1.02 0.975 
C 6 2.16 0.715 0.956 1.003 1.024 0.973 
                
D 1 2.605 0.763 0.887 0.965 1.037 0.966 
D 2 2.365 0.784 0.886 0.94 1.036 0.963 
D 3 2.387 0.796 0.933 0.944 1.032 0.962 
D 4 2.276 0.71 0.879 0.959 1.032 0.961 
D 5 1.984 0.655 0.894 0.949 1.031 0.963 
D 6 2.195 0.717 0.877 0.949 1.035 0.961 
                
E 1 3.285 0.857 0.879 0.975 1.044 0.969 
E 2 2.795 0.977 0.88 0.977 1.043 0.97 
E 3 2.461 1.048 0.865 0.991 1.043 0.97 
E 4 2.612 0.954 0.856 0.939 1.039 0.97 
E 5 2.073 0.829 0.846 0.937 1.038 0.961 
E 6 2.31 0.896 0.862 0.9 1.033 0.973 
                
F 1 4.529 0.761 0.822 0.995 1.046 0.959 
F 2 3.739 0.86 0.844 0.988 1.045 0.963 
F 3 3.755 0.695 0.842 0.996 1.049 0.957 
F 4 4.037 0.845 0.856 1.022 1.053 0.96 
F 5 3.361 0.715 0.867 0.992 1.048 0.964 
F 6 2.764 0.81 0.865 1.001 1.046 0.962 
                
G 1 3.344 0.795 0.806 1.052 1.041 0.961 
G 2 3.18 0.815 0.851 1.06 1.042 0.964 
G 3 2.647 0.794 0.791 1.02 1.037 0.967 
G 4 2.503 0.872 0.853 1.059 1.043 0.967 
G 5 2.326 0.785 0.825 1.004 1.043 0.966 
G 6 2.507 0.892 0.862 0.976 1.045 0.963 
                
H 1 2.675 0.815 0.846 1.03 1.044 0.959 
H 2 2.721 0.663 0.809 1.012 1.046 0.958 
H 3 2.622 0.711 0.825 1.026 1.044 0.958 
H 4 2.428 0.782 0.823 1.042 1.047 0.959 
H 5 2.598 0.761 0.873 1.022 1.046 0.96 
H 6 2.545 0.75 0.84 1.015 1.048 0.959 
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Table 4-3: Comparison between hazard ratios for two separate with-in stratum analyses, 
one with combined lane parameters, and other with parameters measured from lane of the 

crash both at 5-minute level 
Hazard Ratios Corresponding to 

LogCVS SV AO 

Station 
Time 
slice 

Parameters 

from all 

lanes 

combined 

Parameters 

from Lane 

of the 

crash 

Parameters 

from all 

lanes 

combined 

Parameters 

from Lane 

of the 

crash 

Parameters 

from all 

lanes 

combined 

Parameters 

from Lane 

of the 

crash 

B 1 1.776 1.947 0.902 0.961 1.024 1.031 
B 2 1.805 1.786 0.944 1.017 1.026 1.029 
B 3 2.347 2.519 0.937 1.073 1.027 1.03 
B 4 1.645 1.987 0.907 0.991 1.022 1.023 
B 5 1.688 2.008 0.849 1.044 1.025 1.033 
B 6 1.803 2.366 0.907 1.051 1.021 1.029 
                
C 1 2.301 2.106 0.933 0.921 1.029 1.017 
C 2 2.107 2.218 0.905 1.01 1.03 1.033 
C 3 1.973 2.185 0.927 1.01 1.026 1.026 
C 4 2.369 2.696 0.902 1.034 1.026 1.028 
C 5 2.104 2.389 0.923 0.97 1.029 1.025 
C 6 1.889 2.14 0.899 1.004 1.025 1.027 
                
D 1 2.92 2.14 0.849 0.989 1.035 1.037 
D 2 2.525 1.878 0.944 0.99 1.032 1.03 
D 3 1.973 1.965 0.868 1.039 1.03 1.038 
D 4 2.494 2.376 0.88 0.998 1.033 1.047 
D 5 2.301 1.888 0.856 0.952 1.032 1.036 
D 6 1.972 2.096 0.857 0.982 1.03 1.044 
                
E 1 4.096 3.419 0.898 0.936 1.049 1.042 
E 2 2.909 2.81 0.838 0.851 1.045 1.04 
E 3 2.533 2.624 0.862 1.017 1.04 1.047 
E 4 2.653 3.004 0.88 0.925 1.038 1.046 
E 5 2.273 2.405 0.862 0.929 1.038 1.044 
E 6 2.017 2.691 0.836 0.93 1.037 1.051 
                
F 1 6.216 4.217 0.808 0.849 1.047 1.041 
F 2 4.818 3.94 0.823 0.863 1.046 1.036 
F 3 4.033 4.135 0.871 0.858 1.047 1.036 
F 4 3.185 4.137 0.839 0.897 1.042 1.038 
F 5 3.322 3.699 0.9 0.894 1.043 1.048 
F 6 3.361 3.565 0.86 0.842 1.041 1.032 
                
G 1 4.3 4.38 0.791 0.845 1.048 1.046 
G 2 3.735 3.551 0.779 0.791 1.043 1.048 
G 3 2.783 3.727 0.826 0.859 1.042 1.047 
G 4 2.964 3.646 0.818 0.82 1.044 1.051 
G 5 2.736 3.507 0.816 0.878 1.039 1.041 
G 6 2.434 3.431 0.799 0.846 1.038 1.043 
                
H 1 3.122 3.628 0.803 0.879 1.046 1.061 
H 2 3.244 2.46 0.805 0.833 1.047 1.046 
H 3 2.791 2.288 0.831 0.854 1.049 1.057 
H 4 2.642 3.396 0.807 0.949 1.046 1.058 
H 5 2.152 2.828 0.826 0.854 1.045 1.063 
H 6 2.437 2.862 0.868 0.937 1.043 1.049 
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In short, it can be argued that a higher LogCVS, AO value and lower SV value increases the 

likelihood of crashes. While for LogCVS this trend is observed starting at about 1.5 miles (from 

Station C) upstream of the crash location, it is considerably clear at about ½ mile upstream and 

also downstream.  It is also clear, based on the rise observed in hazard ratios that the 

“ingredients” for a crash starts at about 15 minutes before the crash.  The LogCVS factor 

represents high variation in speed relative to the average speed, and the SV factor represents low 

variation in volume. Lower speed associated with high variance (leading to a high value of 

coefficient of variation) depicts turbulence in traffic that could be explained by frequent 

formation of queues followed by their quick dissipation. The other factor, low value of SV, 

indicates that low variability in volumes is positively correlated with crash occurrences on 

freeways. A possible interpretation of this criterion might be that in case of high variability in 

volume, the density changes and consequently the gaps between vehicles change which alert the 

drivers. On the other hand, in case of low variability in volume, the density and the gap remain 

almost fixed in the traffic stream which causes the drivers to relax thus slowing their reaction 

time. It could also be that low variability of volume might sometimes be associated with queues 

(although low variability can also occur in better level of service with no queues). Also, low 

standard deviation of volume, with all three lanes combined, not only represents very stable 

volume in terms of time but almost same number of vehicles on three lanes as well. This coupled 

with high variation in speed at these locations, might cause drivers to make lane changing 

maneuvers near to the station of the crash in order to maintain their speeds. This will result in 

increased likelihood of conflict between vehicles. In general, however, queue formation and 

shockwaves are a common cause of rear-end crashes on Freeways. 
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Beside these overall trends the results outline the differences between coefficients of 

variation/average measured at varying length of time slices (three and five minutes) as well. The 

five minute time slice would be more effective in the crash prediction as it not only has higher 

and more significant hazard ratio for LogCVS but it also provides more allowance in terms of 

time to analyze data, estimate and possibly reduce the likelihood of crashes. From here on we 

will focus our attention on 5-minute aggregate data with all lanes combined together rather than 

individual lane and/or data aggregated to the 3-minute level. 

 

4.2.5 Spatio-temporal Variation of Crash Risk 

As argued earlier, the analysis from here on is based on the 5-minute averages, standard 

deviations and coefficient of variation. To depict the patterns in the hazard ratio we show the 

contour plots of the ratio for all three variables found significant in a time-space framework. But 

first the type of the crash information available with the FDOT crash database was utilized in 

order to “clean” the 5-minute combined lane dataset by only retaining multi-vehicle crashes. 

Since the traffic conditions are more likely to impact the crashes involving interaction among 

vehicles rather than the single vehicle crashes mostly occurring due to error on the drivers’ part. 

Once this cleaned database was used for analysis it was found that the hazard ratio values were 

further boosted for LogCVS and AO while they further dropped in the case of SV as expected. 

The crash risk for the multi-vehicle crashes corresponding to the observed values of 5-minute 

combined lane LogCVS, AO and SV is shown in Figure 4-2(a), 4-3(a) and 4-4(a), respectively. 

Note that in Figure 4-2(a), and 4-3(a) the dark colored region represents high hazard ratios 

thereby identifying more risk while in Figure 4-4(a) the dark regions of the plot represent low 

hazard ratios (the values corresponding to SV are less than 1) but still signify more risk (of 
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having a crash around Station F) associated with corresponding time slice and location. The 

contour plots for hazard ratios obtained from “pseudo” dataset give an idea about “normal” 

conditions on freeways (See Figures 4-2(b), 4-3(b) and 4-4(b)). These figures are in perfect 

contrast with their counterparts showing hazard ratio for a real matched case control dataset.  It 

provides visual evidence for the contribution of traffic factors toward crash occurrence.  

 

As we can see in all three plots (4-2(a), 4-3(a) and 4-4(a)) region around Station F remains fairly 

dark (i.e., crash prone) for about 20 minute period while upstream and downstream sites (Station 

E and G, respectively) also show high risk for about 15-20 minute period before recording a 

crash. These results are significant since they allow leverage in terms of time to be able to predict 

and avoid an impending crash. It is however important to note that the most clear trend is 

depicted by the plot corresponding to LogCVS, since a stark contrast may be seen between 

location of crash and surrounding locations. Plot (Figure 4-3(a)) corresponding to SV appears 

dark for locations downstream of the crash location which indicates that very stable flow coupled 

with high variation in speed at freeway locations (say Station G) increases odds of having a crash 

upstream (Station F) of that site. However, the trends aren’t as clear about location of the crash 

as they were in the case of LogCVS. It is also to be seen in the context that the hazard ratios for 

LogCVS were more significant than those of SV. 
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              Slice 1             Slice 2                        Slice 3                     Slice 4                       Slice 5                        Slice 6 

Figure 4-2(a): Spatio-temporal pattern of the hazard ratio for LogCVS obtained from 5-
minute combined lane dataset for multi-vehicle crashes 

 
 

 

           Slice 1             Slice 2                     Slice 3                     Slice 4                     Slice 5                     Slice 6  

Figure 4-2(b): Spatio-temporal pattern of the hazard ratio for LogCVS obtained from 
“pseudo” crash case dataset  
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              Slice 1             Slice 2                        Slice 3                     Slice 4                       Slice 5                        Slice 6 
Figure 4-3(a): Spatio-temporal pattern of the modified hazard ratio (increase in crash risk 

when there is ten unit increase in occupancy rather than one) for AO obtained from 5-
minute combined lane dataset for multi-vehicle crashes 

 

 
           Slice 1             Slice 2                     Slice 3                     Slice 4                     Slice 5                     Slice 6  
 

Figure 4-3(b): Spatio-temporal pattern of the modified hazard ratio (increase in crash risk 
when there is ten unit increase in occupancy rather than one) for AO obtained from 

“pseudo” crash dataset 

Station H 
 
 
 

Station G 
 
 
 
 

Station F 
 
 
 

Station E 
 
 
 

Station D 
 
 
 
 

Station C 
 
 
 

Station B 
 

Station H 
 
 
 

Station G 
 
 
 
 

Station F 
 
 
 
 

Station E 
 
 
 

Station D 
 
 
 
 

Station C 
 
 
 
 

Station B 
 



 49 

 

 
              Slice 1             Slice 2                        Slice 3                     Slice 4                       Slice 5                        Slice 6 

Figure 4-4(a) Spatio-temporal pattern of the hazard ratio for SV obtained from 5-minute 
combined lane dataset for multi-vehicle crashes 

 

 
           Slice 1             Slice 2                     Slice 3                     Slice 4                     Slice 5                     Slice 6  

 
Figure 4-4(b): Spatio-temporal pattern of the hazard ratio for SV obtained from “pseudo” 

crash case dataset 
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4.2.6 Conclusions from the Simple Models 

The matched case-control logistic regression was used as a simple analysis technique to detect 

traffic patterns that result in high potential of crashes on freeways. It was found that the 

coefficients of variation in speed measured at 5-minute intervals show slightly better association 

with crash occurrence than those measured at the 3-minute level. Also, combining observations 

from three lanes was concluded to be better than using only data from the lane where the crash 

occurred since it does not only captures across lane variation (or lack of it) in speed (or volume), 

but also allows us to use larger dataset for analysis. It also has an advantage in real-time 

application in case of a loop failure on a certain lane. The results show that even if the first time 

slice (0-5 minutes prior to a crash) is excluded due to practical considerations of the time 

required to act on the information and warn the drivers, it was shown that the crash prone 

conditions in terms of high coefficient of variation in speed, low variation in volume and high 

occupancy are not ephemeral on freeway sections. The hazard ratio values for these variables 

were significantly different from one around the crash location for three to four time slices (i.e., 

the precursors existed for about 15 minutes), that should provide enough time for prediction (and 

prevention) of crashes. Another significant feature of these findings is that they are based on 

accurately estimated time of the crash thereby evading the “cause and effect” fallacy. The results 

from the “Pseudo” matched case control dataset containing six non-crash cases with one of them 

randomly assigned as crash also prove the association between crash occurrence and the traffic 

variables identified here.   Based on these findings we selected 5-minute combined lane dataset 

with only multi-vehicle crashes to develop our final model. The dataset had 1528 strata with each 

stratum consisting of one crash and five corresponding non-crash cases.   
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4.3 Matched Case-Control Logistic Regression: Multivariate Modeling  

4.3.1 Methodology for Modeling and Classification 

The purpose of the matched case-control analysis is to explore the effects of independent 

variables of interest on the binary outcome while controlling for other confounding variables 

through the design of study. In this section this extension of simple logistic regression to 

multivariate problem has been described in the context of the present research problem.  

 

Let’s assume that there are N strata with 1 case and m controls in each stratum. The conditional 

likelihood for the jth stratum is the probability of the observed data given the total number of 

observations and the number of crashes observed in the stratum. The probability of any 

observation in a stratum being a crash may be modeled using the following linear logistic 

regression model: 

 

logit (pj(xij)) = αj + β1 x1ij+ β2 x2ij+………+ βk xkij               (2) 

 

where pj(xij) is the probability that the ith  observation in the jth stratum  is a crash; xij = (x1ij, 

x2ij,……xkij) is the vector of k traffic flow variables x1, x2,……xk; i = 0,  1, 2,…..m; and j = 1, 

2,……N. 

 

Note that the intercept term αj summarizes the effect of control variables (used to form the strata) 

on the crash probability and would be different for different strata. In order to account for the 

stratification in the analysis, a conditional likelihood is constructed. The complex mathematical 

derivation of the relevant likelihood function is omitted here and the reader is referred to Collett 
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(1991) for more details. This conditional likelihood function is independent of the intercept terms 

α1, α2,…….. αN  (Collett, 1991). So the effects of matching variables cannot be estimated and 

Equation 2 cannot be used to estimate crash probabilities. However, the values of the β 

parameters that maximize the conditional likelihood function would also be estimates of β 

coefficients in Equation 2. These estimates are log odds ratios and can be used to approximate 

the relative risk of a crash.   

The log odds ratios can also be used for prediction purposes under this matched crash-non-crash 

analysis. Consider two observation vectors x1j = (x11j, x21j,….., xk1j) and x2j = (x12j, x22j,….., xk2j) 

from the jth strata on the k  traffic flow variables. The log odds ratio of crash occurrence due to 

traffic flow vector x1j relative to vector x2j may be derived from equation 2 and will have the 

following form 

1 1
1 11 12 2 21 22 1 2

2 2

( ) /[1 ( )]
log ( ) ( ) .......... ( )

( ) /[1 ( )]
j j

j j j j k k j k j
j j

p x p x
x x x x x x

p x p x
β β β

⎧ ⎫−⎪ ⎪ = − + − + + −⎨ ⎬− ⎪⎪ ⎭⎩
     (3) 

The right hand side of equation 3 depends only on βj, therefore the estimate for log odds ratio 

may be obtained using estimated β coefficients. One may utilize the above relative log odds ratio 

for predicting crashes by replacing jx2  by the vector of values of the traffic flow variables in the 

jth stratum under normal traffic conditions.   Simple average of all non-crash observations within 

the stratum for each variable may conveniently be used. If jx 2  = ( 12 jx , 22 jx , 32 jx …, 2k jx )  

denotes the vector of mean values of the k variables over non-crash cases within the jth stratum, 

then the log odds of crash relative to non-crash may be approximated by: 

1 1
12 221 11 2 21 1 2

2 2

( ) /[1 ( )]
log ( ) ( ) .......... ( )

( ) /[1 ( )]
j j

j jj j p k j k j
j j

p x p x
x x x x x x

p x p x
β β β

⎧ − ⎫⎪ = − + − + + −⎨ ⎬
−⎪ ⎭⎩

   (4) 
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The above log odds ratio can then be used to predict crashes by establishing a threshold value 

that yields desirable classification accuracy.  

 

4.3.2 Model Building: Data Analysis 

The results from the analysis showed that three parameters, namely, LogCVS, SV and AO are 

most significantly associated with crash occurrence. These three parameters still correspond to 

126 variables (measured from 7 stations during 6 time slices) as potential independent variables 

in the final model. Also, based on the results from the previous section we can discard Station B, 

C and D. Even though hazard ratio from these stations were significantly different from unity 

and also appeared to be different when compared between real and pseudo matched datasets, 

they are less significant than their counterparts belonging to Station E, F,G and H. This meant 

that any model comprising these factors together (From stations B, C, D as well as E, F, G and 

H) would invariably show the factors from way upstream stations as insignificant.  

 

One might suggest that even if that’s the case we should still examine both the full and the 

reduced models and make our decision based on the classification accuracy. This would not be a 

good idea since the modeling procedure requires all variables used in the model to be non-

missing (i.e. complete case analysis) in order to use any observation from the dataset for model 

building. Now it should be understood that seven stations from which data are collected would 

not be simultaneously available at all the time (data limitation due to frequent loop failure). It 

means that some variables will be missing in certain observations. The number of observations 

used for model building can drastically be reduced if a lot of independent variables are used.   
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Also, even though time duration 1 (0-5 minutes) prior to crash exhibits significant hazard ratios 

(See Tables 1, 2 or 3), it is too close to the actual time of the crash and thus practically not useful 

for crash prediction models. This time duration is thus ignored from further considerations.  

 

For each of the remaining time slices, we thus have p = 12 traffic flow variables; LogCVS, SV, 

and AO at each of the four loop detectors E, F, G and H. To identify all significant variables 

from these variables, the binary outcome variable y is now modeled using stratified conditional 

logistic regression method described above in the previous section.  Note that this stratified 

analysis is widely known as matched case-control analysis. SAS Procedure PHREG is used with 

some modification of matched data to fit the proposed conditional logistic regression model. 

 The procedure allows one to identify significant variables using standard automatic search 

techniques: stepwise, forward and backward.  Full description of the three automatic search 

procedures can be found in Hosner and Lemeshow (1989).  The beta coefficients and the hazard 

ratios are obtained for significant variables found under all three-search procedures.   

 

These procedures resulted in three significant variables for time slice 2 (5-10 minutes before 

crash occurrence): LogCVS F2 =log10(CVS) from station F (the station of the crash) and    AOG2 

= AO at station G (the downstream station) and SVG2 = SV at station G (the downstream 

station). All other variables are found to be statistically insignificant. Now similar search 

procedures from subsequent time slices resulted in slightly different models involving variable 

measured during time slice 3, 4 and so on. The decision regarding selection of time slice was 

made based on the classification accuracy achieved from each model. The model developed from 

slice 2 described above was found to be the best in this regard.  
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Thus the final model includes variables LogCVSF2 and AOG2 and SVG2. The details of the final 

predictive model are provided in Table 4. First two variables have positive beta coefficients (and 

hazard ratio greater than 1), which mean that the odds of a crash increase as these variables 

increase while SVG2 had negative beta coefficient implying increasing odds of crash as this 

parameter decreases. This indicates that high variation in speed at a freeway location coupled 

with high occupancy and low variation in volume downstream of this site increases the 

likelihood of having a crash at that location with in next 10 minutes. This structure of the final 

model also conforms to our findings reported earlier. This model is an improvement to the earlier 

model developed with only the 1999 data that was reported earlier to FDOT and published in 

Abdel-Aty et al. (2004). 

 

Table 4-4: Final Model Description 

 

 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
Chi-Square Pr > ChiSq 

Hazard 

Ratio 

LogCVSF2 1 1.21405 0.15548 60.9729 <.0001 3.367 

AOG2 1 0.02466 0.00571 18.6747 <.0001 1.025 

SVG2 1 -0.19124 0.04569 17.5216 <.0001 0.826 
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4.3.3 Classification Accuracy of the Model 

As previously explained in the model building methodology, the odd ratio given by Equation 4 

may be used to classify crash and non-crash cases. For this purpose, it was decided to evaluate 

the model first on the dataset used to develop this model. We first calculated the mean of the 

three variables LogCVSF2, AOG2 and SVG2 of all five non-crashes within each of the 1528 

matched stratum of the dataset. For the jth-matched set, the vector jx2  in Equation 4 may then be 

replaced by the vector of these non-crash means.  The odds ratios for each observation in the data 

set are then calculated in Equation 4 utilizing the beta coefficients from Table 4-4 where the 

vector jx1  is the actual observation in the data set.  An observation is classified as a crash if the 

corresponding odds ratio is greater than 1, and a non-crash if the odds ratio is less than or equal 

to 1. The classification table obtained this way for the 1:5 matched data set is shown in Table 4-

5. It may be observed that more than 62.41% of crashes are identified using this threshold for the 

odd ratio. Note that this threshold (chosen to be equal to one here) may be varied in order to 

achieve desirable classification given the tradeoff between overall classification accuracy (crash 

and non-crash) and crash identification. 

Table 4-5: Classification results from the dataset used to develop the model 

 Predicted  

  0(non-crash) 1(crash) Total 

Frequency = 2719 2441 5160 

Percent  = 43.63 39.17 82.80 
Row Pct = 52.69 47.31  

0(non-
crash) 

Col Pct = 87.09 78.49  
403 669 1072 
6.47 10.73 17.20 
37.59 62.41  

A
ct

ua
l 

1(crash) 

12.91 21.51  
 3122 3110 6232 
 

Total 
50.10 49.90 100.00 
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4.4 Comparison of Classification Accuracy: Simple vs. Multivariate Models 

While the simple models have the advantage due to their data requirement, the decision 

regarding selection of models must be made based on their classification accuracy. Also, the 

classification accuracy for the models needs to be examined by evaluating the performance of the 

models at various threshold values for the odds ratio cut-off.  

 

The methodology to classify patterns using the models is based on the ratio of odds of having a 

crash vs. no crash.  It is used as the classification criterion and is obtained as per equation 4. The 

odds ratio was obtained for every observation of the dataset using coefficients from their 

respective models (i.e., single and multivariate) and then these observations may be classified 

using a threshold value of this odd ratio. The classification accuracy is sensitive to it and hence 

an arbitrary selection of the threshold is not preferable. Cumulative proportions of crashes above 

and non-crashes equal or below a range of these odd ratios were determined and are plotted 

against odd ratios in Figures 4-4 and 4-5 for a one-covariate model (with only LogCVSF2 as 

input) and the multivariate model, respectively.  For convenience, only odd ratio threshold less 

than or equal to 5 are shown on the horizontal axis. Also, of all simple models the classification 

plot is shown for only LogCVSF2 which happens to be the single most significant variable.  
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Figure 4-4 Classification performance of the multivariate model: Cumulative proportion of 
crashes above and non-crash cases below a range of odd-ratio threshold values (Grey 

Curve: Proportion of crashes and Black Curve: Proportion of non-crash cases) 
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Figure 4-5 Classification performance of the simple model with LogCVSF2 as covariate: 
Cumulative proportion of crashes above and non-crash cases below a range of odd-ratio 

threshold values (Grey Curve: Proportion of crashes and Black Curve: Proportion of non-
crash cases) 
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As expected, the cumulative proportion of crash cases decreases as odd ratio increases and the 

cumulative proportion non-crash cases increases as odd ratio increases. The  grey (lighter) curve 

indicates the cumulative proportion of crash cases that are greater than the corresponding  odd 

ratio on the horizontal axis and the black (darker) curve indicates the cumulative proportion of 

non-crash cases less than or equal to the corresponding odd ratio. One may choose a threshold 

value of odd ratio along the horizontal axis and determine the proportions of crashes and non-

crash cases that would be correctly classified by the corresponding model. For example, if odd 

ratio of one is chosen as the cut off point, then about 62% of crashes and 53% of the non-crash 

cases in the dataset would be correctly classified by the multivariate model presented above. The 

crash identification is only 59% when the single covariate model with LogCVSF2 is used for 

classification (with odd ratio cutoff set at 1.0). A multivariate model, therefore, is recommended 

for reliable classification of the patterns.  

 

These graphs are useful in selecting an odd ratio value that would satisfy the requirement of a 

desired accuracy. Note, however, that both (crash and non-crash) classification accuracies cannot 

be increased simultaneously and there is a trade-off involved. Decision for the threshold needs to 

be made carefully by keeping the real-time application in perspective. For example, during a 

free-flow operation period a lower value of odd ratio may be set as threshold so that most of the 

crashes are identified even if that increases the number of “false-alarms” because speed is known 

to be positively associated with the severity of crashes.  

 

Once an appropriate cut-off for odd ratio is determined, the models may be applied to identify 

crash prone locations on the freeway in real-time using the methodology discussed in the next 
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chapter. However, as we shall see later, the online application proposed at this stage would 

mostly be suitable for traffic management authorities and therefore the decision of threshold 

doesn’t seem as critical. The threshold of unity provides reasonable balance between the two 

conflicting attributes (i.e., overall classification and crash identification) and hence is 

recommended as the cut-off value.  

 

 
4.5 Concluding Remarks 

Before implementation of the models (simple or  multivariate) to provide real-time information 

to the drivers many issues will need to be investigated including the means of notifying the 

drivers of the potential of a crash, and the expected reaction of drivers to such warnings. The 

authors believe that the problem of intervening with measures such as variable speed limits or 

warning signs, and thereby reducing the freeway crash potential is a non-trivial one and demands 

further investigation (will be addressed in phase 2). However, the models developed here may 

still be used to classify the patterns in the loop detector data so that the traffic management 

authorities can anticipate impending hazard and can prepare accordingly.  

 

In this chapter the final model was developed based on our findings from Abdel-Aty et al., 2004 

presented earlier at the 83rd annual meeting of the Transportation Research Board (analysis with 

crash data only from year 1999) and the analysis presented in this report. In the next chapter, 

methodology for real-time application of the final model in association with simple models is 

proposed.   
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CHAPTER  5 

IMPLEMENTATION PLAN 

The models described in the previous chapter include the simple (one covariate) models as well 

as the final multivariate model. The classification accuracy of these models was also discussed. 

The implementation strategy for these models is proposed here. The models would help the 

traffic management authorities to identify which locations on the freeway are currently crash 

prone. This information may then be used by the authorities to have the crash mitigation set up 

ready around these freeway locations so that if (and when) a crash does occur, it can be 

immediately responded to. This way its impact on freeway operation can be minimized. This 

would be the first step toward the proactive traffic management system that this research aims to 

develop.  More aggressive intervention strategies such as variable speed limits, flashing warning 

on the VMS (Variable Message Sign) etc. require more focused research efforts and are currently 

being evaluated as part of the next phase of this project. 

 

The two set of models (simple and multivariate, respectively) will be utilized in the two phased 

implementation plan proposed here. The first phase constitutes a preliminary risk assessment 

using the simple models. When some locations appear to have a high likelihood of crash 

occurrence within the next 10-15 (slice 3) minutes based on the results from the simple models; 

data from corresponding stations is subjected to the multivariate model to obtain the final crash 

prediction for these freeway segments. 
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5.1 Simple Models Implementation 

5.1.1 Procedure and Data Requirement 

The single covariate models need information from one loop detector station at a time. It makes 

these models particularly attractive given that few loops often tend to malfunction in practice. 

The output for each of the simple models developed in the previous chapter was the hazard ratio 

for corresponding covariate. According to its definition, the hazard ratio multiplied by the value 

of corresponding covariate would provide the measure of crash risk relative to the situation if the 

value of covariate were zero.   

  

For a real-time application, the instrumented freeway corridor can be divided in to 69 (which is 

the total number of loop detector stations) segments in each direction such that each loop 

detector remains at the center of each section. It is clear that for crashes occurring on any of 

these sections, the corresponding station would be analogous to Station F (station of the crash), 

as defined earlier in the report. The series of 69 loop detectors on the corridor may then be 

divided into sets of five stations as (1-5), (2-6), (3-7) and so on up to (65-69). The sets of five 

detectors are chosen because these stations would correspond to Station D-H (2 upstream 

stations, station closest to the crash and 2 stations downstream, respectively). Note that based on 

the analysis, hazard ratios from station B and station C, the two stations located farthest upstream 

of the station of the crash, were not as critically associated with crash occurrence as those from 

station D to station H. Therefore, the set of loop detectors for the implementation plan consists of 

only five stations as opposed to seven used for the analysis. The values of hazard ratio 

corresponding to LogCVS measured at these five stations (D-H) at all six time slices are shown in 

Table 5-1. Among all possible parameters LogCVS was chosen because the plot depicting spatio-
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temporal variation of crash risk (Figure 4-2) showed stark contrast between station of the crash 

and other locations.  

Table 5-1: Hazard ratios from single covariate models consisting of LogCVS from five 
stations and six time slices 

 

With the hazard ratio for LogCVS from station D to station H (shown in Table 5-1) one can 

observe the change in crash risk on the basis of changes in LogCVS and update it in real-time. 

The update may be done on a continuous basis as soon as new observations come in. For 

example, we first calculate the LogCVS based on available ten most recent observations and then 

after 30-seconds as the latest observation (since loop data is collected every 30 seconds) come in 

they are included in the calculation of LogCVS replacing the foremost observation. The LogCVS 

measured at different stations may be multiplied by the corresponding hazard ratio to obtain the 

measure of crash risk for a period up to thirty minutes by multiplying the corresponding hazard 

ratio with the LogCVS value. In other words, hazard ratio corresponding to Station D would be 

chosen if the station is most upstream of the set of five, Station G if it is the most downstream, 

and, Station F if it is the station belonging to that particular segment and so on. Decision about 

the time slice to be chosen for the hazard ratio value depends upon how much time ahead we 

need the information, i.e. to obtain the crash risk within the next 10-15 minute hazard ratio 

Hazard ratio to asses the crash risk with in next….. 

Hazard ratio 
corresponding 

to  station 

 
0-5 

minutes 
(slice 1) 

 
5-10 

minutes 
(slice 2) 

 
10-15 

minutes 
(slice 3) 

 
15-20 

minutes 
(slice 4) 

 
20-25 

minutes 
(slice 5) 

 
25-30 

minutes 
(slice 6) 

D 3.331 3.132 2.430 3.074 2.735 2.499 

E 4.436 3.335 3.025 3.257 2.664 2.426 

F 7.237 5.580 4.485 3.801 3.654 3.809 

G 4.705 3.899 3.037 3.519 3.209 2.964 

H 3.976 3.635 3.476 3.139 2.623 2.871 
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belonging to slice 3 should be chosen while for next 5-10 minutes slice 2 hazard ratio will be 

used. The measure of crash risk may then be plotted as a contour variable in a time space 

framework similar to the plots for hazard ratio shown in Chapter 4. Based on the changing 

patterns depicted by the continuously updated plots, freeway locations with high crash risk may 

be identified in real-time.  

 

5.1.2 Simple Models: Illustration 

In this section we illustrate how the patterns in the crash risk may be observed through the 

contour plots with historical loop detector data belonging to a crash and a non-crash case. Table 

5-2 shows a sample of LogCVS calculated as a moving average from real-life historical traffic 

speed data from a set of five detectors, starting 15 minutes prior to time of the crash. Note that 

data was collected prior to a real crash that occurred on April 6, 1999 near station 34 (Station of 

the crash was station 34) at 4:35 PM on Eastbound Interstate-4. Note that the formulation for 

LogCVS remains the same as in the modeling phase, the details of which may be found in section 

4.2.2. The detailed snapshot of the data used to get this sample is shown in the Appendix.    
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Table 5-2: Snap shot of 5-minute LogCVS (values updated every 30-seconds) calculated as a 
moving average starting 15 minutes prior to crash occurrence 
 

Date-Time 
 

Station Station of Crash 
 

LogCVS 
| | | | 
| | | | 

4/6/99 4:19:30 PM 32 (D) 34 1.42 

4/6/99 4:20:00 PM 32 (D) 34 1.42 
4/6/99 4:20:30 PM 32 (D) 34 1.45 

| | | | 
| | | | 
| | | | 

4/6/99 4:19:30 PM 33 (E) 34 1.60 
4/6/99 4:20:00 PM 33 (E) 34 1.65 
4/6/99 4:20:30 PM 33 (E) 34 1.67 

| | | | 
| | | | 
| | | | 

4/6/99 4:19:30 PM 34 (F) 34 1.42 
4/6/99 4:20:00 PM 34 (F) 34 1.43 
4/6/99 4:20:30 PM 34 (F) 34 1.52 

| | | | 
| | | | 
| | | | 

4/6/99 4:19:30 PM 35 (G) 34 1.56 
4/6/99 4:20:00 PM 35 (G) 34 1.57 
4/6/99 4:20:30 PM 35 (G) 34 1.59 

| | | | 
| | | | 
| | | | 

4/6/99 4:19:30 PM 36 (H) 34 1.71 
4/6/99 4:20:00 PM 36 (H) 34 1.69 
4/6/99 4:20:30 PM 36 (H) 34 1.74 

| | | | 
| | | | 

 

Table 5-1 depicted the hazard ratios corresponding to station D-H at all six time slices.  In Table 

5-3 (a)-5-3 (c) the process for calculating the values for the contour variables (measure of crash 

risk obtained by multiplying LogCVS values with corresponding hazard ratio) is shown. In the 

first row in Table 5-3 (a), 1.42 which is the LogCVS value obtained at station 32 (corresponds to 

Station D of the analysis) during five minute period of 4:14:30 to 4:19:30 PM is multiplied by 

the hazard ratio for station D at each time slice (1-6) to obtain the measure of crash risks up to 
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next half hour. In the second row 1.42 is replaced by 1.60 which happens to be the value of 

LogCVS from station 33 (i.e., station E) during the last five minute period. Third, forth and fifth 

row of the table are made up by the hazard ratio corresponding to stations F, G and H multiplied 

by the value of LogCVS at these stations. To asses the risk for various future time periods the 

same value of LogCVS is used, however the value of hazard ratio is as per the time slice, e.g., for 

next 10 minutes hazard ratio corresponding to slice 2, for next 15 minutes hazard ratio 

corresponding to slice 3 and so on.    

 

Table 5-3 (b) is generated through a similar procedure, the only difference being that the values 

for LogCVS are now updated as per the most recent speed observations. In table 5-3(c) the value 

of the independent covariate (LogCVS) are further updated with the most recent speed 

observations. It may be noted that in Table 5-3(a) the values of LogCVS are highlighted in 

yellow to associate them with the observations in Table 5-2 from the same point in time (4:19:30 

PM). Similarly, in Table 5-3(b) and Table 5-3(c), the updated values for LogCVS are highlighted 

red and green to associate them with their respective times of observation (4:20:00 and 4:20:30 

PM respectively) in Table 5-2.   
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Table 5-3 (a): The measure for risk of observing a crash in the segment belonging to station 
F with in next 30 minutes at time 4:19:30 PM 

 
Table 5-3 (b): The measure for risk of observing a crash in the segment belonging to station 

F with in next 30 minutes at time 4:20:00 PM 

 
Table 5-3 (c): The measure for risk of observing a crash in the segment belonging to station 

F with in next 30 minutes at time 4:20:30 PM 

 

 

Measure of the crash risk with in next 
Measure of risk 

according to 
LogCVS from 

station  

 
0-5 

minutes 
(slice 1) 

 
5-10 

minutes 
(slice 2) 

 
10-15 

minutes 
(slice 3) 

 
15-20 

minutes 
(slice 4) 

 
20-25 

minutes 
(slice 5) 

 
25-30 

minutes 
(slice 6) 

 (D) 3.331*1.42 3.132*1.42 2.430*1.42 3.074*1.42 2.735*1.42 2.499*1.42 

(E) 4.436*1.60 3.335*1.60 3.025*1.60 3.257*1.60 2.664*1.60 2.426*1.60 

 (F) 7.237*1.42 5.580*1.42 4.485*1.42 3.801*1.42 3.654*1.42 3.809*1.42 

(G) 4.705*1.56 3.899*1.56 3.037*1.56 3.519*1.56 3.209*1.56 2.964*1.56 

 (H) 3.976*1.71 3.635*1.71 3.476*1.71 3.139*1.71 2.623*1.71 2.871*1.71 

Measure of the crash risk with in next 
Measure of 

risk according 
to LogCVS 

from station  

 
0-5 

minutes 
(slice 1) 

 
5-10 

minutes 
(slice 2) 

 
10-15 

minutes 
(slice 3) 

 
15-20 

minutes 
(slice 4) 

 
20-25 

minutes 
(slice 5) 

 
25-30 

minutes 
(slice 6) 

(D) 3.331*1.42 3.132*1.42 2.430*1.42 3.074*1.42 2.735*1.42 2.499*1.42 

(E) 4.436*1.65 3.335*1.65 3.025*1.65 3.257*1.65 2.664*1.65 2.426*1.65 

(F) 7.237*1.43 5.580*1.43 4.485*1.43 3.801*1.43 3.654*1.43 3.809*1.43 

(G) 4.705*1.57 3.899*1.57 3.037*1.57 3.519*1.57 3.209*1.57 2.964*1.57 

(H) 3.976*1.69 3.635*1.69 3.476*1.69 3.139*1.69 2.623*1.69 2.871*1.69 

Measure of the crash risk with in next 
Measure of 

risk according 
to LogCVS 

from station  

 
0-5 

minutes 
(slice 1) 

 
5-10 

minutes 
(slice 2) 

 
10-15 

minutes 
(slice 3) 

 
15-20 

minutes 
(slice 4) 

 
20-25 

minutes 
(slice 5) 

 
25-30 

minutes 
(slice 6) 

 (D) 3.331*1.45 3.132*1.45 2.430*1.45 3.074*1.45 2.735*1.45 2.499*1.45 

(E) 4.436*1.67 3.335*1.67 3.025*1.67 3.257*1.67 2.664*1.67 2.426*1.67 

 (F) 7.237*1.52 5.580*1.52 4.485*1.52 3.801*1.52 3.654*1.52 3.809*1.52 

(G) 4.705*1.59 3.899*1.59 3.037*1.59 3.519*1.59 3.209*1.59 2.964*1.59 

 (H) 3.976*1.74 3.635*1.74 3.476*1.74 3.139*1.74 2.623*1.74 2.871*1.74 
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Three contour plots depicting the variation in crash risk generated from this data are shown in 

Figure 5-1 (a) – (c). It can clearly be seen that the region about station F remains dark indicating 

high risk for a crash occurrence.  It may be noted that the values for contour variable in Figure 5-

1 (a) comes from the corresponding cells of Table 5-3 (a) and the plot is updated into Figure 5-1 

(b) as soon as the new set of readings are recorded after 30 seconds. The values for contour 

variable in the updated plot, Figure 5-1 (b), are given by Table 5-3 (b) which eventually turns 

into Figure 5-3 (c) after 30-seconds taking input from Table 5-3 (c). The updated patterns do not 

differ a lot from their predecessor since most of the observations contributing to calculation of 

LogCVS remain the same and only three observations out of thirty are updated after 30-seconds.  

 

These figures may be contrasted with similar patterns generated for the same time of the day 

prior to a corresponding matched non-crash case (On April 27, 1999 from the same set of 

stations) shown in figure 5-2 (a) – (c). The detailed snapshot of data used to generate these plots 

may also be found in the Appendix.  

 

In a real-time application of the models these measures of risk may be calculated continuously 

and the corresponding plots can be generated using the color scheme depicted on the side of each 

contour plot. It should be noted that the difference between crash and non-crash case is 

highlighted here to illustrate the application, in some other cases; however, the difference may 

not be as clear. If there is a consistent pattern of high risk (depicted by the red (dark) colors) then 

the authorities should to consider it as a warning.  
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       Slice 1                          Slice 2                           Slice 3                         Slice 4                           Slice 5                            Slice 6 
Figure 5-1 (a-c): illustrative pattern of variation in measure for risk of observing a crash in 

the segment belonging to station F updated every 30-second 15 minutes prior to a crash 
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       Slice 1                          Slice 2                           Slice 3                         Slice 4                           Slice 5                            Slice 6 
Figure 5-2 (a-c): Illustrative pattern of variation in measure for risk of observing a crash in 

the segment belonging to station F updated every 30-second for a non-crash scenario 

 
Station H 

 
 
 

Station G 
 
 

Station F 
 
 
 
 

Station E 
 
 
 
 

Station D 
 
 
 

Station H 
 
 
 

Station G 
 
 
 
 

Station F 
 
 
 
 

Station E 
 
 
 
 

Station D 
 

Station H 
 
 
 
 

Station G 
 
 
 
 

Station F 
 
 
 
 
 

Station E 
 
 
 
 

Station D 
 



 72 

The simple models are proposed to be applied before the multivariate model which employs data 

from three stations 5-10 minutes (slice2) prior to crash occurrence. Keeping this in perspective 

an effective online application strategy would be to examine closely the plots in the region where 

the abscissa encompasses slice 3, since the hazard ratio corresponding to slice 3 would give an 

indication for crash occurrence with in next 10-15 minutes. If the sequential patterns appear 

hazardous as is the case with those depicted in Figure 5- 1 (a - c) then the multivariate model can 

be employed to classify the patterns to assess the crash occurrence with in next 5-10 minutes 

(note that the factors appearing in the final model use data from slice 2). The application for the 

multivariate model is described in the following section. 

 

5.2 Application of multivariate models 

5.2.1 Procedure and Data Requirement  

Following the detection of hazardous patterns through the contour plots the multivariate model 

may be applied for classification of patterns into leading or not leading to a crash. As explained 

in the previous chapter, the log odds calculated from the following equation may be used to 

classify the patterns into crash and non-crash cases.  

1 1
1 11 2 21 112 22 2

2 2

( ) /[1 ( )]
log ( ) ( ) .......... ( )

( ) /[1 ( )]
j j

j j p k jj j k j
j j

p x p x
x x x x x x

p x p x
β β β

⎧ − ⎫⎪ = − + − + + −⎨ ⎬
−⎪ ⎭⎩

        (4) 

 

For this purpose, we first calculate the mean for the three covariates included in the final model 

LogCVSF2 and AOG2 and SVG2 on all five non-crashes within each matched set of the 1:5 

matched dataset. For jth-matched set, the vector 2k j
x  in Equation 4 may be replaced by the vector 

of these non-crash means and the most current five-minute data on the three variables for 1k jx  



 73 

can be used to calculate odds ratio for the purpose of identifying a crash. Equation 4 with 

estimated values of the parameters can be rewritten as:  

1 1

2 2

( ) /[1 ( )]
exp(1.21405( 2 .95164) 0.02466( 2 13.26) 0.19124( 2 2.56445))

( ) /[1 ( )]

j j

j j

p x p x
LogCVSF AOG SVG

p x p x

−
= − + − − −

−

⎧ ⎫
⎨ ⎬
⎩ ⎭

    (5) 

The RHS of above equation is the odds ratio and it may be noted that pβ  (model coefficients) in 

equation 4 have been replaced with the parameter estimate for coefficients of LogCVSF2, AOG2, 

and SVG2 from Table 4-4. The averages ( 2k j
x ) have been replaced with the respective means of 

these covariates over non-crash cases in the matched dataset. The values for the three parameters 

obtained from the loop detectors in real-time would be used as independent variables in this 

equation to obtain the odds ratio of having a crash vs. not having a crash. As explained in the 

previous chapter if the resultant odd ratio exceeds unity then the patterns would be classified as 

crash.  

 

These odds ratio may also be updated in a way similar to the contour plots. To update the odds 

ratios after every 30-second period the last set of observations in the 5-minute period may be 

replaced by the data most recently recorded. 

  

5.2.2 Multivariate Model: Illustration 

Table 5-4 shows the historical values for the three covariates included in the final model starting 

ten minutes prior to the same crash which was used to illustrate the application of the simple 

models. These values are calculated on a continuous basis i.e., the averages and standard 

deviations are calculated as a moving average. The procedure to obtain the input parameters 

through the moving average is same as described in the implementation plan for the simple 
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models. In the first row the three input parameters (5-minute average occupancy, 5-minute 

standard deviation of volume and 5-minute coefficient of variation in speed) are obtained using 

the last 10 observations (5 minutes*2 observations every minute) from corresponding stations, in 

the subsequent rows the parameters are updated using the two most recent observations while 

discarding the first of the set of ten observations. The odds ratios are then calculated as per 

equation 5. The odds ratios of having a crash vs. not having a crash near station F for the 

observed values of independent variables are also shown in the table.  

 

It may be seen that at three instances the odds ratio is greater than unity and hence the model 

classifies the data patterns as “crash”. It is expected since it is already known that a crash did 

occur following these data patterns.  

 

Since the final model included the parameters from time slice 2, the odds of crash occurrence 

within next 10 minutes are assessed. Data from station F and G (station of the crash and the one 

immediately following it in the downstream direction) may be collected and updated 

continuously every 30-second as shown in Table 5-4 to obtain the risk for crash occurrence 

within next ten minutes.  
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Table 5-4: The output from the final multivariate model when applied on the historical 
loop data continuously updating every 30-second starting ten minutes prior to the crash 

Date-Time LogCVS 
(Station 34) 
(Station F) 

SV 
(Station 35) 
(Station G) 

AO 
(Station 35) 
(Station G) 

Odds ratio Decision 
for next 

5-10 
minute 

slice  
4/6/99 4:25:00 PM 1.69 2.44 19.97 2.97 Crash 

4/6/99 4:25:30 PM 1.64 2.07 19.77 2.96 Crash 

4/6/99 4:26:00 PM 1.55 2.21 20.07 2.62 Crash 

 

5.3 Concluding Remarks 

This chapter presents a simple approach to implement a two-step methodology to apply the 

models developed in this study. It is shown with the help of illustrative examples that the loop 

data patterns emanating in real-time may be used to assess whether or not a crash is likely to 

occur on certain freeway segments. However, there are some issues which can not be resolved at 

this stage; one of them is the determination of the threshold cut-off value separating crash and 

non-crash cases. The cut-off value will really depend upon the desirable proportions of 

conflicting attributes namely, crash identification and false alarms. We have proposed a universal 

cut-off of unity for odds ratio to separate crashes from non-crashes since these models at this 

stage are proposed to be used only by the traffic management authorities. The application would 

be much more critical in the future while we examine more aggressive intervention strategies 

such as warning the drivers through variable message signs etc., to reduce the potential of crash 

occurrence. Then the possibility of having separate cutoffs under different operation regimes 

(e.g. congested or free flow) or at different locations will also need to be explored. The other 

unresolved issues involve the question of how the model output may be utilized. These issues 

will be part of the next phase and are discussed in the next chapter.  
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CHAPTER  6 

CONCLUSIONS AND FUTURE SCOPE 

6.1 Summary and Conclusions 

The objective of this ambitious and innovative research endeavor was to develop a methodology 

to link ITS-archived data with historical crashes on instrumented I-4 corridor and it has been 

achieved with fair amount of success. The research group has assembled a detailed crash 

database for all crashes that occurred on I-4 in the years 1999-2002 (with a plan for extending it 

to 2003 for the next phase of the project), linking them to the archived loop detector data, and 

also to the geometric characteristics at the crash locations.  It was proved statistically that 

turbulence in traffic conditions before a crash (both time and space) is associated with crash 

occurrence.  This means that we can predict crashes if this turbulence is observed in the future.   

 

The methodology for analysis was case-control logistic regression with a matched study design. 

The matched design of the study accounts for the external factors such as the freeway geometry, 

time of the day and day of the week. A series of crash prediction models were estimated based 

on the statistical link between crash occurrence and the turbulence in the traffic flow observed 

through the loop detectors. The simple models (involving one covariate) were estimated first, 

following the exploratory analysis. Also a multivariate logistic regression model was estimated 

following a step-wise procedure. For the final model, 5-minute average occupancy and 5-minute 

standard deviation of volume observed at the downstream station, during the slice of 5-10 

minutes prior to the crash along with the 5-minute coefficient of variation in speed at the station 

closest to the location of the crash during the same time slice were found to affect the crash 

occurrence most significantly. The final model developed was used to calculate the log-odds 
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ratio of observing a crash vs. not observing a crash. A threshold value for this ratio may then be 

set in order to determine whether the location has to be flagged as a potential “crash location”.  It 

was shown that using 1.0 as the threshold for the log odds ratio, over 62% crash identification 

was achieved from the final model.  

 

It should be noted that even though the simple models did not achieve classification accuracy as 

well as the final model, the advantage of using those models is that they have very tolerant data 

requirements. Besides, it was shown that the results from these models could be used to obtain a 

spatio-temporal variation of the crash risk. A real-time application plan for these models was 

demonstrated in the report. Essentially the plan proposed here states that a preliminary 

assessment of the freeway conditions may be made using the plots generated by simple models 

and then if the conditions appear to be hazardous the data may be subjected to the multivariate 

model for classification. If the classification model identifies patterns from the detectors as crash 

prone then the traffic management authorities can keep their crash mitigation squad on alert so 

that the impacts of crash occurrence may be minimized. Also, if there are some freeway 

segments where the models trigger the warning more often than the other locations, these 

segments may be closely watched through the freeway cameras. This will help recognize any 

problems associated with these locations such as weaving sections, ramps, etc.   

 

6.2  Future Scope 

The first phase of the research summarized in this report points toward much more work that 

needs to be done beyond this phase to incorporate other data elements that are related to traffic 

safety.  
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The existing models crash prediction level is around 62%. This is acceptable since we are only 

capturing the traffic and geometric factors in this current effort. It is very well known from the 

traffic safety literature that the drivers’ characteristics and environmental factors are very 

important to crash occurrence phenomena. Therefore, we don’t envision better prediction 

percentages without accounting for these elements.  A temporal system of models on I-4 to relate 

crashes to ITS-archived data has been proposed as an extension to this study. We envision 

different models for different times of day and possibly day of week. A clear idea about the 

driver population by time of the day and day of the week and freeway location would enhance 

the prediction level.  Different models applied in different situations might be needed to operate 

in a multi model system to achieve the best prediction level. 

 

Our experience from this phase has shown us also that it is not sufficient to know the 

environmental conditions, such as rain, in crash situations (which is the case now), but we need 

also to know the environmental conditions in non-crash situations.  Therefore, we have proposed 

in the extension to the current project to obtain detailed rainfall data from the National Weather 

Services (NWS) as well as other sources for the whole study period.  Not only rain data will be 

needed but rain intensity data might be needed. Light rain might not be correlated with crash 

occurrence, but heavy rain could likely be.  

 

The research group also believes that the overall system of crash prediction will not be as simple 

as initially envisioned, but multiple modeling techniques will have to be used and implemented 

simultaneously in real-time to achieve better prediction levels. The modeling methodology 

would encompass statistical as well as Neural Networks in a hybrid manner to achieve the best 



 79 

prediction level. We expect also that this expanded effort and data will allow us not only to 

identify crashes but also the crash type (harmful event). It is likely that the traffic conditions that 

affect for example a rear-end collision would be different than those affecting a side swipe or 

single vehicle collision and the kind of intervention needed to calm these conditions would be 

different. Another important issue that has to be investigated is whether and to what extent if at 

all false crash alarms will exist.   

 

Finally, the implementation plan proposed in this report adds to the incident detection 

capabilities of traffic management authorities. At the most it can be effective in identifying the 

locations that experience the crash prone conditions more often than the others. However, one 

must understand that more proactive intervention plan such as the variable speed limits, flashing 

warning on the Variable Message Sign etc. demand a more careful analysis which is beyond the 

scope of this phase. In other words, once the system identifying the potential for a crash is 

developed, there would be a plethora of questions that need to be answered regarding how to 

reduce the impending hazard to avoid the crash. Is it by posting messages on the electronic VMS 

signs or by using the Variable Speed Limit approach? What is the message that should be 

displayed, or what is the new speed limit that would be displayed? How would drivers react? 

And how would there reaction or new speed limits affect the potential of the crash. These are 

critical issues that will be investigated to guarantee the success of the on-line crash prediction 

system. Even if there is a perfect system, we cannot assume that it would have the desired effect 

without fully understanding how to convey the warning and how this warning would affect the 

crash potential.  
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The aforementioned issues are discussed in detail in our proposal to the Florida Department of 

Transportation for the extension of this project (phase 2).  These issues logically follow the 

findings presented in this report. It is evident from the fact the proposal for the second phase of 

this project has been accepted by the DOT.  

 

The research effort documented in this report has put UCF and the state of Florida DOT in the 

forefront of developing real-time proactive crash prediction models. Our extensive review of the 

literature shows that very limited work is starting in this area of research, and mostly theoretical 

without solid ideas to implement it.  The research group is of the opinion that while the current 

phase was critical for a clearer understanding of this innovative research problem it will be the 

next phase in which we deliver the final product to achieve the goals of this endeavor.  
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Table A-1: A detailed snapshot of the raw 30-second data 15 minutes prior to a crash from 
a set of five stations 

 

Left Lane Center Lane Right Lane Left Lane Center Lane Right Lane Left Lane Center Lane Right Lane
4/6/99 4:15 PM 32 (D) 34 E Missing 31 39 Missing 14 9 Missing 22 9
4/6/99 4:15 PM 32 (D) 34 E Missing 35 38 Missing 12 12 Missing 21 13
4/6/99 4:16 PM 32 (D) 34 E Missing 37 41 Missing 14 14 Missing 19 16
4/6/99 4:16 PM 32 (D) 34 E Missing 34 45 Missing 14 11 Missing 19 9
4/6/99 4:17 PM 32 (D) 34 E Missing 12 32 Missing 8 15 Missing 42 22
4/6/99 4:17 PM 32 (D) 34 E Missing 25 37 Missing 16 13 Missing 32 16
4/6/99 4:18 PM 32 (D) 34 E Missing 17 35 Missing 13 14 Missing 33 14
4/6/99 4:18 PM 32 (D) 34 E Missing 26 40 Missing 17 12 Missing 30 11
4/6/99 4:19 PM 32 (D) 34 E Missing 26 42 Missing 12 12 Missing 22 12
4/6/99 4:19 PM 32 (D) 34 E Missing 24 36 Missing 11 10 Missing 24 11
4/6/99 4:20 PM 32 (D) 34 E Missing 34 43 Missing 16 6 Missing 19 5
4/6/99 4:20 PM 32 (D) 34 E Missing 25 46 Missing 9 8 Missing 16 7

| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

4/6/99 4:19 PM 33 (E) 34 E 3 12 27 3 10 14 29 24 16
4/6/99 4:20 PM 33 (E) 34 E 4 11 15 7 10 11 48 24 23
4/6/99 4:20 PM 33 (E) 34 E 5 13 14 7 10 13 44 23 30

| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

4/6/99 4:19 PM 34 (F) 34 E 33 32 37 18 15 16 21 18 6
4/6/99 4:20 PM 34 (F) 34 E 23 23 33 14 17 14 25 29 5
4/6/99 4:20 PM 34 (F) 34 E 10 14 12 10 8 9 42 28 3

| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

4/6/99 4:19 PM 35 (G) 34 E 7 20 11 10 13 9 41 23 31
4/6/99 4:20 PM 35 (G) 34 E 19 32 33 13 15 16 26 16 17
4/6/99 4:20 PM 35 (G) 34 E 13 22 19 9 14 11 25 24 20

| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

4/6/99 4:19 PM 36 (H) 34 E 15 20 15 13 14 15 37 30 36
4/6/99 4:20 PM 36 (H) 34 E 28 22 25 14 12 17 15 25 22
4/6/99 4:20 PM 36 (H) 34 E 33 29 32 15 17 11 14 26 11

Occupancy
Date-Time Station Direction

Station of 
Crash

Speed Volume
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Table A-2: A detailed snapshot of the raw 30-second data under normal conditions on 
freeway from a set of five stations 

Left Lane Center Lane Right Lane Left LaneCenter LaneRight Lane Left LaneCenter LaneRight Lane
4/27/99 4:15 PM 32 (D) 34 E Missing 41 47 Missing 9 8 Missing 15 6
4/27/99 4:15 PM 32 (D) 34 E Missing 46 44 Missing 11 7 Missing 13 7
4/27/99 4:16 PM 32 (D) 34 E Missing 47 48 Missing 11 11 Missing 10 10
4/27/99 4:16 PM 32 (D) 34 E Missing 46 45 Missing 15 7 Missing 14 9
4/27/99 4:17 PM 32 (D) 34 E Missing 45 45 Missing 14 7 Missing 13 8
4/27/99 4:17 PM 32 (D) 34 E Missing 42 43 Missing 13 3 Missing 18 3
4/27/99 4:18 PM 32 (D) 34 E Missing 46 48 Missing 14 12 Missing 14 9
4/27/99 4:18 PM 32 (D) 34 E Missing 48 46 Missing 12 6 Missing 10 5
4/27/99 4:19 PM 32 (D) 34 E Missing 45 48 Missing 14 6 Missing 14 5
4/27/99 4:19 PM 32 (D) 34 E Missing 47 49 Missing 12 9 Missing 11 7
4/27/99 4:20 PM 32 (D) 34 E Missing 47 49 Missing 11 9 Missing 10 8
4/27/99 4:20 PM 32 (D) 34 E Missing 44 45 Missing 15 8 Missing 13 8

| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

4/27/99 4:19 PM 33 (E) 34 E 62 57 64 8 12 11 4 6 5
4/27/99 4:20 PM 33 (E) 34 E 60 62 64 7 8 10 3 4 5
4/27/99 4:20 PM 33 (E) 34 E 52 55 63 11 13 18 8 7 8

| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

4/27/99 4:19 PM 34 (F) 34 E 60 55 59 17 18 16 11 13 6
4/27/99 4:20 PM 34 (F) 34 E 59 58 60 9 9 14 6 6 5
4/27/99 4:20 PM 34 (F) 34 E 60 55 62 14 13 19 9 11 7

| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

4/27/99 4:19 PM 35 (G) 34 E 51 57 59 14 15 22 9 10 12
4/27/99 4:20 PM 35 (G) 34 E 48 56 57 15 15 13 10 9 7
4/27/99 4:20 PM 35 (G) 34 E 45 50 57 17 19 14 11 14 7

| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

4/27/99 4:19 PM 36 (H) 34 E 55 53 50 17 14 9 9 14 5
4/27/99 4:20 PM 36 (H) 34 E 40 32 34 13 12 11 10 18 11
4/27/99 4:20 PM 36 (H) 34 E 43 46 41 13 14 9 9 15 7

Station
Station of Crash

Direction
Volume Occupancy

Date-Time
Speed
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