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G.1 Confinement Reinforcement Design Model 

The 2007 AASHTO LRFD Bridge Design Specifications contain prescriptive 

requirements for the quantity and placement of confinement reinforcement located in the bottom 

flange of pretensioned concrete I-girders.  This chapter proposes a rational model that can be 

used to design confinement reinforcement as an alternative to the prescriptive requirements of 

AASHTO LRFD.  The model considers a wide range of conditions and variations, yet is 

intended to be practical enough for use by bridge design engineers.  Variables in the design 

model include:  flange and bearing geometry, strand size and placement, effective prestress 

force, concrete and steel material properties, and the effects of steel bearing plates.  Derivation of 

the model is presented, and the model is compared to experimental results from the published 

literature.   

The proposed design model can be used to calculate the quantity of confinement 

reinforcement required to prevent lateral-splitting failure at ultimate load.  The model is 

formulated to capture the multitude of variables that exist in pretensioned girders, but be 

practical enough for use by bridge designers.   The model does not consider the function of 

confinement reinforcement in controlling cracks during prestress transfer.  This topic, however, 

is covered in section G.2. 

Experimental and analytical work from the previous chapters has shown that confinement 

reinforcement carries transverse tension forces due to prestressing and applied loads.  By 

carrying these forces the confinement reinforcement functions to prevent lateral-splitting failure 

and provides a normal force whereby strand tension forces can be transferred to the concrete 

once strut-and-tie behavior has initiated.  The ultimate strength design model considers both of 

these functions.  Forces generated due to these functions are referred to as the transverse tie force 

(FTT), and the strand anchorage force (FSA).   

Strand anchorage and transverse tie functions of confinement reinforcement are 

analogous to the local zone and general zone reinforcement in post-tensioned (PT) structures.  

Figure 1 shows the manner in which the anchorage zone in a post-tensioned (PT) structure is 

partitioned into local and general zones.  The local zone is a highly stressed region that resides 

immediately under the anchorage device and requires significant confinement reinforcement to 

prevent bursting stresses from causing localized failure.  It is within the local zone that PT forces 
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are transferred to the concrete.  The general zone in a PT structure is the area where PT forces 

are transmitted throughout the member. 

Conceptually the end region of a pretensioned beam can be divided into a local and 

general zone (Figure 1).  General zone size is comparable to that of a PT anchorage and can be 

designed by the same approach as is used for PT anchorage zones.  Pretensioned local zones, 

however, are longer because force transfer occurs gradually throughout the transfer length rather 

than through an anchorage device.  Large, very localized lateral bursting stresses that are present 

immediately under the anchorage in a PT local zone are thus avoided in pretensioned end 

regions.   

In pretensioned local zones the concrete immediately surrounding a prestressing strand is 

subjected to radial stresses from the Hoyer effect, which is illustrated in Figure 2.  The Hoyer 

effect occurs due to Poisson expansion of the strands in the lateral direction when the strands are 

cut at prestress transfer.  The beneficial effect of this expansion is to generate sufficiently large 

frictional forces at the concrete-strand interface to transfer the prestressing force into the 

concrete.  As illustrated in Figure 1 this has been shown to occur in a relatively uniform manner 

over the transfer length. 

Confinement reinforcement is typically placed such that some bars support loads from 

both local and general zones.  Accordingly, confinement force due to the transverse tie is also 

utilized as the force required for strand anchorage.  The proposed design procedure calculates the 

load demand on confinement reinforcement as the larger of the local and general zone loads.  Or 

in other words, the model calculates confinement reinforcement required for the greater of the 

strand anchorage or transverse tie force. 
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Figure 1–Local and general zones 
 

 

Figure 2–Illustration of transverse and frictional forces caused by the Hoyer effect 
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G.1.1 Model Derivation 

G.1.1.1 Transverse Tie Force 

Calculation of the transverse tie force is based on the strut-and-tie models shown in 

Figure 3.  This figure describes transfer of the ultimate reaction (Ru) from the web, through the 

bottom flange and into the bearing pad.  The struts and ties are symmetric about the z (vertical) 

axis.   

 

Figure 3–Transverse tie force strut-and-tie models 
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Compressive force BCZ equals the ultimate reaction and is carried to the support through 

three separate load paths.   Force in each path is assumed to be proportional to the quantity of 

strands associated with that path; strands in the flange are assumed to connect to D nodes and 

strands below the web are assumed to connect to node F.  Thus the vertical (z-direction) 

component of load traveling path C-D-E can be calculated by Equation 1-1: 

௓ܦܥ ൌ ௓ܧܦ ൌ ௓ܧ ൌ ܴ௨ ൬
݊௙

݊௦௧௥௔௡ௗ
൰ 1-1

Where: 

CDZ = 

DEZ =  

EZ =    

Ru=  

nf = 

 

z-component of force in member CD 

z-component of force in member DE 

Reaction at node E 

Factored reaction force 

number of strands in the flange 

Using the strut and tie model shown in Figure 4a the slope of strut CD can be determined 

as follows:  

஼஽݁݌݋݈ܵ ൌ
௙ݐ3

൫ ௙ܾ െ ܾ௪൯
1-2

Where: 

tf  = 

bf  =  

bw =    

 

 

Minimum thickness of bottom flange 

Bottom flange width 

Web width  

 

Cross-sections from AASHTO, FDOT, Nebraska Department of Roads, and Washington 

State Department of Transportation were used to determine Equation 1-2.  If exceptionally 

slender bottom flanges such as that shown in Figure 4b are used, then Equation 1-2 does not 

apply and the angle must be calculated directly. 
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Figure 4–Node layout 
 

Member DE slope can be calculated by Equation 1-3.  When the bearing width is close to 

the flange width (Figure 3a), the slope calculated by Equation 1-3  is positive indicating that x-

component of force in member DE acts in the positive x-direction.  When the bearing width is 

smaller than the flange width (Figure 3b), the slope of member DE is negative, indicating that the 

x-component acts in the negative direction.   

஽ா݁݌݋݈ܵ ൌ
1

൬3.1 ൬ ௕ܹ

௙ܾ
൰ െ 3൰ 1-3

Where: 

Wb  = 

 

 

Width of bearing 

 

The horizontal (x-direction) force components in members CD and DE are calculated by 

Equations 1-4 and 1-5, respectively.  These equations are derived from the vertical (z-direction) 

force component from Equation 1-1 and the slopes from Equations 1-2 and 1-3.   

௑ܦܥ ൌ ܴ௨ ൬
݊௙

݊௦௧௥௔௡ௗ௦
൰ ቆ

൫ ௙ܾ െ ܾ௪൯
௙ݐ3

ቇ 1-4

௑ܧܦ ൌ ܴ௨ ൬
݊௙

݊௦௧௥௔௡ௗ௦
൰ ቆ3.1 ቆ ௕ܹ

௙ܾ
ቇ െ 3ቇ 1-5
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The transverse tie force is equal to the force in member DF, and can be calculated from 

equilibrium in the x-direction at node D:  

௨்்ܨ ൌ ௑ܦܥ െ ௑ܧܦ 1-6

Substituting for CDX and DEX and simplifying, Equation 1-6 can be rewritten as: 

௨்்ܨ ൌ ܴ௨ ൬
݊௙

݊௦௧௥௔௡ௗ௦
൰ ቈ
൫ ௙ܾ െ ܾ௪൯

௙ݐ3
െ 3.1 ቆ ௕ܹ

௙ܾ
ቇ ൅ 3቉ 1-7

G.1.1.2 Strand Anchorage Force 

Strand anchorage force refers to the normal force required to generate strand forces 

through friction.  This force must be resisted by the concrete tensile strength, the confinement 

reinforcement, or both to ensure that the frictional force transfer between strands and concrete is 

maintained.  If the concrete tensile strength and confinement are not sufficient bond is lost and 

the strand slips.   

In addition to friction, force transfer between strands and concrete also occurs due to 

adhesion, mechanical interlock.  Adhesion and mechanical interlock, however, are relatively 

small and are conservatively neglected.  Also, it is thought unlikely that adhesion and mechanical 

interlock are significant at ultimate load after concrete around the strands has cracked. 

At ultimate load it is assumed that internal forces in the end region can be described by 

strut-and-tie modeling as was done in calculating the transverse tie force. Strut-and-tie models 

conservatively neglect concrete tensile strength.  This assumption will also be made in 

calculation of the strand anchorage force.  Concrete around the strands will be assumed to have 

cracked and not be available to provide the normal force required to generate friction at the 

strand-concrete interface.  In calculating the strand anchorage force, it is assumed that all of the 

normal force is supplied by confinement reinforcement.   

Aknoukh (2010) presented a similar friction-based approach for designing confinement 

reinforcement.  The Aknoukh model considered strand anchorage through on a horizontal section 

using a friction coefficient of 1.4.  The proposed method is distinct from Aknoukh because it 

considers anchorage forces on vertical sections through the bottom flange, and because it uses a 

more conservative (and realistic) friction coefficient of 0.4.  The proposed model is also distinct 

in that transverse tie forces are considered. 
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Equilibrium in the direction of the strand length requires that the total frictional force at 

the strand-concrete interface be equal and opposite of the effective prestress in the strand.  The 

normal force required to generate the frictional force is equal to the frictional force divided by 

the friction coefficient at the strand-concrete interface.  Based on this rationale, the normal force 

required to develop the effective prestress in an individual strand can be calculated by Equation 

1-8:  

ேܨ ൌ
௣௦ܣ ௣݂௘

ߤ
1-8

Where: 

FN =   

Aps = 

fpe = 

μ = 

 

Normal force on an individual strand required to develop prestress 

Cross-sectional area of prestressing strands  

Effective prestress 

Coefficient of friction between concrete and strand, taken as 0.4 

Although seven-wire strand does not have a circular cross section, it is believed that this 

simplification does not significantly affect the results of the strand anchorage force model.  The 

same assumption was made by Oh et al (2006) in the development of a strand transfer length 

model.  Using this assumption the Oh model correlated well with experimental data.  The round 

strand assumption is also considered reasonable for the current model derivation.   

Figure 5 illustrates the idealized normal stress acting on a single strand within the transfer 

length.  The normal stress (fN) can be calculated by assuming that the normal force (FN) required 

to prevent strand slip is distributed evenly around the circumference and along the transfer 

length. 

 

Figure 5–Strand anchorage force 
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The geometric properties of the strand can then be used to form equation1-9:  

ே݂ ൌ
ேܨ

݀௣ߨ்ܮ
1-9

Where: 

fN = 

dp =      

 

Normal stress at strand-concrete interface  

Diameter of prestressing strand 

 

Substituting Equation 1-8 into Equation 1-9 into gives: 

ே݂ ൌ
௣௦ܣ ௣݂௘

݀௣ߤߨ்ܮ
1-10

The transverse (x-direction) component of the normal force on an individual strand can 

be calculated using a pressure vessel analogy by multiplying the stress in Equation 1-10 by the 

projected area of the strand over the transfer length:  

ே௫ܨ ൌ ே݂݀௣்ܮ 1-11

Where: 

FNx =      

 

Transverse normal force on an individual strand 

 

Substituting Equation 1-10 into Equation 1-11 and simplifying gives:  

ே௫ܨ ൌ
௉ௌܣ ௣݂௘

ߤߨ
1-12

The total x-direction force along an arbitrary section can be determined from the product 

of the transverse component and the number of strands along the section.  This force is defined 

as the strand anchorage force and is given as: 

ௌ஺ܨ ൌ ே௑݊௖ܨ ൌ
௣௦ܣ ௣݂௘݊௖

ߤߨ
1-13

Where: 

FSA =   

nc =      

 

Strand anchorage force 

Number of strands along critical section 
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Equation 1-13 can be used to calculate the strand anchorage force on any arbitrary 

section.  The maximum strand anchorage force occurs through the section that intersects the 

maximum number of strands. 

G.1.1.3 Quantity and Placement 

Preceding sections have presented equations for calculating the transverse forces resisted 

by confinement reinforcement at ultimate load.  The design force in the confinement 

reinforcement is equal to the greater of the transverse tie or strand anchorage forces: 

஼ோ௨ܨ ൌ maximum ሺܨௌ஺, ௨ሻ்்ܨ 1-14

Where: 

FCRu =        

 

Factored design force in confinement reinforcement  

The reason for using the greater for the transverse tie or strand anchorage forces can be 

understood by considering the forces acting on a node in the bottom flange strut-and-tie model.  

For example, forcing acting on node D in Figure 3 come from struts in the concrete and ties in 

the reinforcement.  In deriving the transverse tie force it was shown that the forces at node D are 

based on equilibrium and geometric properties.  The same forces acting on node D are also the 

forces that generate the strand forces (acting in the y-direction at node D) through friction.  

Additional strand anchorage force is not required.  Thus confinement reinforcement capacity 

need only be the greater of the strand anchorage force or the transverse tie force. 

The quantity of confinement required at ultimate load is equal to the confinement 

reinforcement design load divided by the specified yield stress of the reinforcement:  

஼ோܣ ൌ
ሺܨ஼ோ௨ሻ

௬݂஼ோ
1-15

Where: 

ACR = 

fyCR =   

 

Required area of confinement reinforcement 

Yield stress of confinement reinforcement 

Data from the experimental program demonstrate that steel bearing plates contribute 

confinement to the bottom flange at ultimate load.  To account for this, the proposed design 

model allows the bearing plate to replace up to 50% of the confinement required by Equation 

1-15.  The plate is not allowed to totally replace confinement reinforcement because the 

confining influence of the plate on its own was not enough to prevent lateral-splitting failure in 
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experiments.  Bearing plates should not be considered as confinement reinforcement unless the 

bearing width and the spacing between plate anchorage points are both greater than 75% of the 

flange width.  These requirements ensure that the bearing plate is in tension (Figure 3b), and is 

sufficiently anchored to provided confinement. 

The confining effect of end diaphragms has also been shown to prevent splitting failures 

in experimental tests (Ross et al. 2011).  End diaphragms, however, are not present during 

prestress transfer and therefore do not constitute a replacement for confinement reinforcement.   

Results from the experimental program demonstrate that confinement reinforcement is 

most effective when placed near the end of the girder.  As such, confinement reinforcement 

required by Equation 1-15 should be placed as close to the end of the girder as reasonable, but 

should also be placed over a distance of at least the transfer length.   

G.1.2 Model Comparison with Experimental Results 
In this section the proposed design model is evaluated against experimental data from 41 

unique tests of pretensioned concrete girders reported in the literature (Appendix B, Appendix D, 

Llanos et al. 2009, Morcous et al. 2010, Tadros et al 2010, Deatherage et al 1994).  Figure 6 

compares confinement reinforcement installed in each test girder with the required confinement 

reinforcement calculated using the proposed model (Equation 1-15).  The factored reaction force 

used to calculate the transverse tie force (FTT) was taken as the nominal shear strength.  Provided 

confinement reinforcement, plotted on the vertical axis, was taken as the area of confinement 

reinforcement placed within the transfer length.  If present, the embedded steel bearing plate area 

was allowed to contribute up to 50% of the confinement requirement.  Prestress losses were 

assumed to be 20 percent.   
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Figure 6–Design model compared to nominal strength of experimental girders 
 

Points that fall below the solid line have less confinement than calculated by the model, 

and are predicted to fail due to splitting or lateral-bursting.  The proposed model correctly 

identified all but two of the specimens that failed in lateral-splitting, bearing, or similar modes.  

Splitting and similar failures are denoted by the ‘X’ markers.  The model incorrectly predicted 

failure in eight cases, as denoted by the diamond shaped markers that fall below the solid line.  In 

most cases where the failure mode was not accurately predicted, the provided confinement 

reinforcement was within 1.5 in2 of the calculated requirement, indicating a desirable degree of 

conservatism in the model. 

The point marked “FL Bulb Tee” on Figure 6 shows the greatest level of disagreement 

with the proposed model. This data point represents a Florida Bulb Tee section (Tadros et al. 

2010), which had only 35% of the calculated confinement reinforcement, but still did not fail due 

to lateral-splitting.  Shear reinforcement in this specimen terminated in a hook at the bottom of 

the beam. Hook tails were placed under the strands, were oriented transverse to the axis of the 

beam, and extended to the edge of the bottom flange.  Additional splitting resistance 

demonstrated by the specimen is attributed in-part to the confinement provided by these hook 

tails.  Confining effects from hooks are neglected in the proposed model due to inadequate hook 

development.  The Florida Bulb Tee was supported on a steel plate during testing.  Splitting 

resistance of the specimen is also attributed to frictional force between the girder and plate.  
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Friction force at the bearing is thought to have had a greater impact on the bottom flange 

confinement than the hook tails from the vertical reinforcement. 

The point label “WSDOT” on Figure 6 represents four tests of Washington wide flange 

girders (Tadros et al. 2010); each girder had identical calculated and provided confinement 

reinforcement.  Numerous strands were located in the outer portion of the slender bottom 

flanges.  During prestress transfer, it was observed that splitting cracks formed in the bottom 

flanges.  Although not explicitly identified in the research, photographs of the failed beams 

suggest that lateral-splitting action occurred during testing. 

The ultimate strength design model was also compared to the experimental data pool 

using the maximum shear force.  For each data point, the maximum shear force reported in the 

literature was substituted into the model in lieu of the factored reaction force.  As with the 

comparison at nominal shear capacity, the model also compares well with the maximum 

experimental shear forces (Figure 7).  Points on the figure labeled “FL Bulb Tee” and “PC Bulb 

Tee” did not exhibit splitting failure in spite of having less confinement than calculated by the 

model.  As with the FL Bulb Tee section discussed in Figure 6, the indicated specimens in Figure 

7 were also supported on steel plates during testing.  These plates were not embedded plates and 

were not considered in the model calculations; however they are thought to have provided 

additional splitting resistance to the FL and PC Bulb Tee specimens.  This result indicates that 

the model may be conservative for girders that are supported on rigid surfaces such as steel 

plates or concrete bent caps. 

Figure 8 shows the data set if the external steel bearing plates used in the tests were 

considered to provide confinement similar to embedded steel bearing plates.  The external steel 

bearing plates were only considered if they were wide enough to provide confinement (Figure 

3b).  External steel bearing plates were not considered in specimens that also had embedded 

plates.  Accuracy of the model in categorizing failure model improved when the external bearing 

plates were considered.  All but one of the incorrectly categorized results was within 0.5 in2 of 

the solid black line that denotes the border between failure modes.   
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Figure 7–Design model compared to experimental girders at maximum shear 
 

 

Figure 8–Design model compared to experimental girders at maximum shear (external bearing 
plates considered) 

 

G.1.3 Ultimate Strength Design of Confinement Reinforcement 
The ultimate strength model derived previously can be used for LRFD design using 1-16: 
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஼ோܣ߶ ௬݂஼ோ ൌ ஼ோ௨ܨ 1-16

Where: 

ACR = 

fyCR = 

߶ ൌ 

 

Required area of confinement reinforcement 

Yield stress of confinement reinforcement 

Resistance factor 

The required area of confinement reinforcement is such that the confinement 

reinforcement must provide a design strength greater than the force generated by the strand 

anchorage or the transverse tie.  The resistance factor should be determined using the LRFD 

reliability analysis of the limit states.  In lieu of this it is reasonable to treat this reinforcement the 

same as tension steel in an anchorage zone (߶ = 1.0). 

G.1.4 Summary and Conclusions 
A rational design model was developed for designing confinement reinforcement at 

ultimate strength.  The model considers strand anchorage and transverse tie requirements, which 

are analogous to local and general zone requirements in post-tensioned concrete members.  The 

ultimate strength model was compared to 41 unique tests of pretensioned concrete girders 

reported in the literature.  The model was found to have good agreement with the published test 

results.  The model is recommended for the design of confinement reinforcement and bearing 

plates at ultimate load. 
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G.2 Serviceability Model 

Experimental and analytical research presented in previous Appendices demonstrates that 

transverse tensile stress in the bottom flange of pretensioned I-girders can lead to flange splitting 

cracks during fabrication.  It is believed that the following behaviors contribute to tensile stress 

and flange cracking: 

 Hoyer effect 

 Eccentric prestress forces 

 Self-weight reaction 

 

Flange splitting cracks can reduce the durability of concrete I-girders by allowing 

contaminates to enter the bottom flange and initiate corrosion of prestressing steel or chemical 

attack on the interior concrete.  A serviceability design model is presented in this chapter for 

quantifying bottom flange splitting stress.  The model is derived from a variety of sources 

including the work of other researchers, finite element modeling, and basic mechanics.  Stress 

from the model can be compared to concrete tensile capacity to determine the likelihood of 

bottom flange splitting cracks.  

Experimental and analytical research indicates that the largest transverse tensile stresses 

in the bottom flange occur at the member end.  The majority of flange-splitting cracks in the 

experimental girders were located at or close to the specimen ends.  Accordingly, the 

serviceability model provides equations for calculating the worst-case transverse tensile stress 

occurring at member ends.  Calculated stresses at the member end can be compared to concrete 

tensile strength criteria to evaluate the likelihood of flange splitting cracks.  Possible strength 

criteria are discussed later in this chapter. 

In the final section of this chapter, experimental cracks data are compared to stresses 

calculated from the proposed model.  The model and data are found to have a high degree of 

correlation. 

G.2.1 Causes of Bottom Flange Splitting at Prestress Transfer 
Flange splitting cracks in the bottom flange are caused by transverse splitting stresses that 

occur due to a combination of the Hoyer effect, eccentric prestress forces, and the self-weight 

reaction.  The following sections describe the mechanics associated with of each of these effects.  
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G.2.1.1 Hoyer Effect  

The diameter of a prestressing strand decreases during pretensioning due to the Poisson 

effect (Figure 9a and b).  When tension is released during prestress transfer the strands expand 

towards their original diameter.  Expansion is partially restrained by the surrounding concrete 

resulting in normal stresses and proportional frictional forces at the strand-concrete interface.  

This behavior was named for Ewald Hoyer, the German Engineer who first wrote of radial 

expansion of prestressing strands (Hoyer 1939). 

Expansion of prestressing strands is greatest at the edge of the concrete where strand 

tension is zero after prestress transfer (Figure 9d).  At locations beyond the transfer length the 

strand expansion is negligible because strand tension is nearly the same before and after release.  

Change in radial expansion is approximately linear between the concrete edge and the end of the 

transfer length (Oh et al. 2006).  Consequently, radial and annular stresses in the concrete also 

vary linearly along the transfer length.   

Variable expansion of the strands leads to a wedge-like shape after prestress transfer.  

This shape creates mechanical bond between strand and concrete.  Additional bond improvement 

comes from the radial stresses at the interface, which allow the generation of frictional forces.  

Wedge action and frictional forces are thus beneficial consequences of the Hoyer effect because 

they enable the transfer of prestress forces.  The Hoyer effect can also have detrimental 

consequences on the behavior and capacity of pretensioned girders.  Concrete surrounding 

strands cracks when stresses due in-part to the Hoyer effect exceed concrete tensile capacity.  
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Figure 9–Hoyer effect A) strand before stressing, B) strand after prestressing, C) concrete cast 
around strand, and D) stresses and forces after transfer 

 

G.2.1.2 Eccentric Prestress Forces 

Tension forms in the bottom flange as prestressing forces from the outer strands are 

transferred to the concrete (Figure 10).  This tension forms in response to the eccentricity 
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between prestressing forces from outer strands and the equal and opposite resultant force in the 

member.  Tension is partially relieved as inner strands are released.  This process has been 

demonstrated experimentally and analytically in previous chapters and is dependent on the strand 

bond pattern and strand cutting pattern.  Tension stress due to eccentric prestress forces is 

referred to as “peeling” stress because they act to peel the outer portion of the bottom flange 

away from the web. Strands in the experimental program and in analytical models were cut from 

the outside-in.  This detensioning pattern is assumed in the equations derived in this chapter.   

 

 

Figure 10–Flange tension due to outer strands 
 

G.2.1.3 Self-Weight Reaction 

Girders camber upward during prestress transfer after the prestressing moment exceeds 

the self-weight moment (Figure 11).  After cambering, girders are supported by reactions at each 

end.  Tensile stresses form in the bottom flange above the reaction points due to the flange 

bending illustrated in Figure 12.  

Previous FE analyses show that self-weight reactions produce tensile and compressive 

transverse stresses in the FIB bottom flange (See Appendix F).  Analysis also demonstrate that 

self-weight reaction stresses are small relative to peeling stresses, and that average stress on 

sections through the outer flange is near zero or slightly compressive.  Because of this, self-
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weight reaction stresses on sections through the outer portion of the FIB bottom flange are 

conservatively neglected in the proposed serviceability model.  This assumption may not be 

reasonable for other cross-sections and for long-span FIB girders. 

 

 

Figure 11–Camber due to prestress force 
 

  

 

Figure 12–Self-weight reaction effects 
 

G.2.2 Transverse Splitting Stress Model Derivation 
Experimental results indicate that vertical splitting cracks can occur at multiple locations 

in the bottom flange (Figure 13).  The proposed model focuses on splitting cracks through the 
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outer portion of the flange.  Bottom flange splitting cracks below the web are not considered 

because they are associated with extreme strand bond patterns that are not permitted in FDOT 

production girders.  Splitting cracks below the web were observed in the experimental program, 

but only in specimens with bonding patterns that placed fully bonded strands in the outer flange 

and shielded strands below the web.   

An outside-in cut pattern is commonly used in FDOT production girders.  As such, the 

serviceability model assumes an outside-in cut pattern.  This pattern was used in construction of 

the experimental girders, as well as the FE models used to develop the serviceability model.  The 

model does not apply to girders with other cut patterns.   

Two critical conditions are considered in the design model: 

 Maximum Peeling.  Previous experimental and analytical research show that the 

maximum peeling stress along a given section occurs when only the outboard 

(closer to the outside edge) strands are cut (Figure 14).  This condition is referred 

to as the “maximum peeling” condition. 

 Combined. This condition occurs when strands along a given section are cut and 

Hoyer stresses are superimposed with peeling stress.  It is referred to as the 

“combined” condition.   

The model does not consider stress conditions when inboard (closer to the centerline) 

strands have been cut. Previous analytical work shows that cutting of inboard strands reduces 

peeling stresses on a given section. 

 

 

Figure 13–Flange splitting in experimental girder.   
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Figure 14–Strand cutting conditions 
 

G.2.2.1 Hoyer Stress 

Hoyer stress is calculated using a model developed by Oh et al. (2006).  The Oh model is 

based on equilibrium, material constitutive properties, and strain compatibility.  It assumes radial 

expansion of a steel cylinder surrounded by concrete (Figure 15).  Equation 2-1 is for calculating 

radial stress at the steel-concrete interface.  Figure 16 shows the radial stress distribution 

calculated from Equation 2-1 for a strand in the experimental girders.  As described by the Hoyer 

effect, radial stress is greatest at the member end and reduces to near zero at the end of the 

transfer length. 
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Figure 15–Strand physical analog (based on Oh et al. 2006) 
 

 

Figure 16–Calculated radial stress (p) distribution (based on Oh et al. 2006) 
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2-1

Where: 
p  =  
ro =  
p = 
fpz =  

 
Radial stress at strand-concrete interface  
Strand radius before pretensioning  
Strand Poisson ratio  
Axial stress in strand 
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Ep =  
rj = 
c = 
fcz = 
Ec =  
c =  

Strand Elastic Modulus 
Strand radius immediately after pretensioning 
Concrete Poisson ratio 
Concrete stress in direction parallel to strand 
Concrete Elastic Modulus 
Concrete cover distance 

 

The equation above assumes linear-elastic behavior.  Recognizing the possibility of 

concrete cracks forming near the strand, the Oh model also includes features to calculate the 

average stress in cracked concrete.  Applying these features results in stresses that are smaller 

than those calculated by assuming linear-elastic behavior.  Cracking features in the Oh model are 

neglected in the current model development.  This approach allows superposition of Hoyer 

stresses with stresses derived from linear-elastic finite element modeling. 

Stress calculated by Equation 2-1 is not sensitive to concrete cover (c) distance for cover 

values greater than approximately 10 times the strand diameter (Figure 17).  By assuming that 

the cover distance is large relative to the strand diameter, the term ሺݎ௝
ଶ ൅ ܿଶሻ ሺݎ௝

ଶ െ ܿଶሻൗ  in the 

denominator of Equation 2-1 approaches negative one, and Equation 11-1 can be simplified to: 

 

݌ ൌ
଴൫1ݎ െ ௣ߥ ௣݂௭ ⁄௣ܧ ൯ െ ௝ሺ1ݎ െ ௖ߥ ௖݂௭ ⁄௖ܧ ሻ

൫1 െ ௣൯ߥ ଴ݎ ⁄௣ܧ ൅ ሺߥ௖ ൅ 1ሻݎ௝ ⁄௖ܧ
2-2
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Figure 17–Effect of cover distance on calculated radial stress (p) 
 

Assuming large concrete cover distance is conservative and results in slightly higher 

calculated stresses.  For typical strand diameters and minimum cover dimensions, this 

assumption increases the calculated stress by less than 2%.  

The serviceability model considers stresses at the girder end.  At this location, strand 

expansion and the associated Hoyer stresses are at their maximum.  Axial stress in the strand (fpz 

= 0) and concrete (fcz = 0) are equal to zero at the member end, which reduces Equation 2-2 to:  

 

௘ௗ௚௘݌ ൌ
଴ݎ െ ௝ݎ

൫1 െ ௣൯ߥ ଴ݎ ⁄௣ܧ ൅ ሺߥ௖ ൅ 1ሻݎ௝ ⁄௖ܧ 2-3

Where: 
pedge  =  

         

 
Radial stress at strand-concrete interface at end of member  

Concrete circumferential stresses are a function of the interfacial stress, strand size, 

concrete cover, and distance from the strand.  Oh et al. provide the following equation for 

calculating circumferential stresses:  

 

ሻݎఏሺߪ ൌ
െ݌	ሺ1 ܿଶ⁄ ൅ 1 ⁄ଶݎ ሻ
ሺ1 ܿଶ⁄ ൅ 1 ܴଶ⁄ ሻ

2-4

Where: 
  = 

r = 
R =  

 
Radial stress at strand-concrete interface at end of member 
Ordinate in the radial direction  
Radius of prestressing strand 

 
Figure 18 shows the concrete stress distribution calculated by Equations 2-3 and 2-4 for a 

single strand in the experimental girders.  Values used to calculate the stress distribution are 

listed in Table 1.  The maximum concrete stress is 7.35ksi and occurs adjacent to the strand.  

Stress decreases rapidly with increasing distance from the strand.  At locations 2in. from the 

strand-concrete interface the stress is less than 0.125ksi.  
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Figure 18–Concrete stress distribution due to Hoyer effect 
 

Table 1–Strand and concrete properties of experimental girders 

Concrete Elastic Modulus 4700 ksi 
Concrete Poisson Ratio 0.2 
Strand Elastic Modulus 29,000 ksi 
Strand Poisson Ratio 0.3 

Strand radius prior to jacking 0.3 in. 
Strand radius after jacking 0.2994 in. 

 

Large Hoyer stress adjacent to strand can cause local damage and cracking in the 

concrete.  If tension through the flange is sufficient, then the localized cracking may propagate 

and form a crack through the entire flange.  For this reason it is important to check the average 

stress due to the Hoyer effect through the flange thickness.   

Rather than calculating average stress from the stress distribution described by Equation 

2-4, average stress in the model is calculated indirectly using the interfacial stress.  This is done 

to simplify the design model for design purposes and to avoid integration of concrete stress such 

as shown in Figure 18.  Average stress calculated indirectly from the interfacial stress is the same 

as average stress calculated by integrating Equation 2-4. 

Applying equilibrium to an idealized strand, the interface stress must equal the internal 

stress in the strand (Figure 19a).  Equilibrium can also be applied along a section cut through the 

strand and concrete (Figure 19b) to show that the resultant force acting on the strand is equal and 

opposite the concrete force.  This equilibrium condition is described by Equation 2-5.  
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Σܨ௫ ൌ 0 ൌ െ݀݌௕݀௬ ൅	 ௛݂௦൫݄௙ െ ݀௕൯݀௬ 2-5

Where: 
db = 
dy = 
fhs = 
hf =  

 
Strand diameter 
Differential length in y direction 
Average Hoyer stress on the section from a single strand 
Thickness of flange at section under consideration 

 
Rearranging Equation 2-5, average stress due to the Hoyer Effect can be described as: 

 

௛݂௦ ൌ
௕݀	݌

൫݄௙ െ ݀௕൯
	

2-6

 

 

Figure 19–Stresses at plane cut through strand and concrete 
 

The average Hoyer stress on a given line is a function of the quantity of strands on that 

line.  For sections with multiple strands the average stress can be calculated by multiplying the 

stress from Equation 2-6 by the number of strands.  Both shielded and bonded strands along a 

section displace the area of concrete that carries Hoyer stresses.  The denominator in Equation 

2-7 is adjusted to account for displaced concrete due to all strands:  
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௛݂ ൌ
݊௦	݌	݀௕

൫݄௙ െ ݊௦௧ ݀௕൯
2-7

Where: 
fh = 
ns = 
nst =  

 
Average stress on the section due to Hoyer Effect 
Quantity of fully bonded strands on section under consideration  
Quantity of all strands on section under consideration 

 
The serviceability model considers stress at the end of the member.  At this location the 

interfacial stress between the strand and the concrete can be calculated using Equation 2-3.  

Substituting Equation 2-3 into Equation 2-7 results in Equation 2-8 for calculating the average 

Hoyer stress on a line through the bottom flange at the member end: 

௛݂ ൌ
݊௦	݀௕

൫݄௙ െ ݊௦௧݀௕൯
ቈ

଴ݎ െ ௝ݎ
൫1 െ ௣൯ߥ ଴ݎ ⁄௣ܧ ൅ ሺߥ௖ ൅ 1ሻݎ௝ ⁄௖ܧ

቉ 2-8

G.2.2.2 Peeling Stress 

Peeling stress calculations are based on the free body diagram shown in Figure 20.   This 

diagram is a simplified illustration of forces acting on the outer portion on a bottom flange 

during prestress transfer.  Prestressing forces from the eccentric outer strands (Fpos) create a 

moment about the Z-axis.  Moment equilibrium is maintained by x-direction tensile stresses in 

the concrete acting on the Y-Z cut plane.  This equilibrium condition is described in equation 

2-9: 

Σܯ௓ ൌ 0 ൌ ௣ݔ௣௢௦ܨ	 െ ௧௢௦݈௬ܨ 2-9

Where: 
Fpos = 

xp = 
Ftos = 

ly = 
     

 
Prestressing force from strands outboard of cut plane 
Distance from cut plane to centroid of prestressing force 
Transverse tension force acting on cut plane due to eccentric prestressing  
Internal moment arm in y-direction 
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Figure 20–Bottom flange free body diagram 
 

 

Rearranging Equation 2-9 results in the following equation for the transverse tension 

force due to the eccentric strands:  

௧௢௦ܨ ൌ 	
௣ݔ௣௢௦ܨ
݈௬

2-10

Transverse tensile force in Equation 2-10 is the resultant of peeling stress in the concrete 

at the member end, which is assumed to have a triangular tensile stress distribution.  Peeling 

stress is assumed to be largest at the member end and zero at a distance ltos from the end (Figure 

20).  Previous FE modeling shows that a triangular stress distribution and a value of 10in. for ltos 

are reasonable assumptions cross-sections with outer strands cut (See Appendix F).  The 

following equation of equilibrium ensures that the resultant force from the assumed peeling 

stress distribution is equal the transverse tensile force:  

௧௢௦ܨ ൌ 	
௣ݔ௣௢௦ܨ
݈௬

ൌ 	
1
2 ௧݂௢௦݈௧௢௦݄௙ 2-11

Where: 
ftos = 
ltos= 

 
Peeling stress 
Length of the assumed tensile stress distribution 
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hf =  Thickness of the flange at the section under consideration 
 

Equation 2-11 can be rearranged to solve for the peeling stress at the member end: 

 

௧݂௢௦ ൌ 	
௣ݔ௣௢௦ܨ2
݈௬݈௧௢௦݄௙

2-12

 

Strands along a given section displace the concrete area that carries peeling stress.  The 

denominator in Equation 2-12 must be adjusted to account for the area displaced by shielded and 

bonded strands.   Doing so results in: 

௧݂௢௦ ൌ 	
௣ݔ௣௢௦ܨ2

݈௬݈௧௢௦൫݄௙ െ ݊௦௧݀௕൯
2-13

The term ly in Equation 2-13 is the length of the internal moment arm in the y-direction.  

The value of ly varies according to the quantity of cut strands, shape of the cross-section, and 

location within a given cross-section.  Equation 2-14 and 2-15 are empirical equations for 

calculating ly in FIB girders. These equations were found to give values of ly -and consequently 

of Ftos- that are in agreement with previous FE results.   

݈௬ଵ ൌ 36
ඥ݄௙

ݔ√
 2-14

݈௬ଶ ൌ 53
݄௙
ݔ

2-15

Where: 
ly1 = 
ly2 = 
hf = 
x=  

 
Internal moment arm in the y-direction for maximum peeling condition 
Internal moment arm in the y-direction for combined condition 
Thickness (z-dimension) of the flange at the section under consideration 
x-ordinate of the section under consideration 

 
Transverse forces calculated using Equation 2-13 and Equation 2-14 or Equation 2-15 are 

compared with previous FE results (see appendix F) in Table 2 and Table 3.  Results are 

compared for the MID and EDGE sections (Figure 21), for the ‘design’ strand bond pattern used 

in the FIB-54 experimental program. Values from the model equations are within 1% of FE 

results for all but the combined condition at the MID section, for which the model is 7% 



BDK75 977-05 Page 532 

conservative.  Consistency between the model and FE results indicates that Equations 2-14 and 

2-15 are acceptable approximations for calculating ly in FIB girders.   

 

Table 2–Model vs. FE for maximum peeling stress condition 

Section hf (in.) x (in.) ly1 (in.) Ftos Model 
(kip) 

Ftos FE 
(kip) 

Model / FE 

EDGE 10.5 12 46.4 11.4 11.3 1.01 
MID 12.9 8 85.5 20.6 20.3 1.01 

 

Table 3–Model vs. FE for combined stress condition 

Section hf (in.) x (in.) ly2 (in.) Ftos Model 
(kip) 

Ftos FE 
(kip) 

Model / FE 

EDGE 10.5 12 33.7 15.7 15.9 0.99 
MID 12.9 8 45.7 38.5 36.1 1.07 

 

 

Figure 21–Analysis locations for determining Ftos 
 

Equations 2-14 and 2-15 are empirically derived for FIB girders and are assumed 

reasonable for any girder with a similar flange aspect ratio.  Different equations are needed for 

calculating ly in girders with relatively stocky flanges, such as AASHTO girders.   Equations 

2-16 and 2-17 are for use with relatively stocky girders.  These equations are empirically derived 

by comparison with previous FE results.  Figure 22 shows the FE mesh, strand locations, and 

bottom flange sections used for the comparison.  See appendix F for additional information on 
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the FE modeling.  Transverse forces calculated using Equation 2-13 and Equations 2-16 or 2-17 

are compared with FE results in Table 4 and Table 5.  At the FLANGE section, the design model 

results in transverse forces that are within 1% of the FE results.  The model is more conservative 

at the WEB section, resulting in values that are 7% to 9% larger than the FE model.  Based on 

these favorable comparisons, Equations 2-16 and 2-17 are considered acceptable approximations 

for calculating ly in AASHTO girders and other girders with stocky flanges. 

݈௬ଵ ൌ 19
݄௙
ݔ

2-16

݈௬ଶ ൌ 1.85
݄௙
ଶ

ݔ

2-17

 

 

 

Figure 22–AASHTO girder FE model and analysis locations 
 

Table 4–Model vs. FE for maximum peeling stress condition 

Section hf (in.) x (in.) ly1 (in.) Ftos Model 
(kip) 

Ftos FE 
(kip) 

Model / FE 

WEB 17 4 80.8 12.4 11.4 1.09 
FLANGE 12 8 28.5 5.0 5.9 1.00 
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Table 5–Model vs. FE for combined stress condition 

Section hf (in.) x (in.) ly2 (in.) Ftos Model 
(kip) 

Ftos FE 
(kip) 

Model / FE 

WEB 17 4 133.7 7.5 7.0 1.07 
FLANGE 12 8 33.3 5.0 5.0 1.00 

 

Substituting ly1 and ly2 in into Equation 2-13 results in Equations 2-18 and 2-19. These 

equations are calibrated for sections through the outer portion of the bottom flange in FIB 

girders.  They should not be used in conjunction with other girder shapes, or at sections in the 

FIB bottom flange that are below the web. 

௧݂௢௦ଵ ൌ 	
௣ݔ௣௢௦ܨ2

݈௬ଵ݈௧௢௦൫݄௙ െ ݊௦௧݀௕൯

2-18

௧݂௢௦ଶ ൌ 	
௣ݔ௣௢௦ܨ2

݈௬ଶ݈௧௢௦൫݄௙ െ ݊௦௧݀௕൯

2-19

G.2.2.3 Self-Weight Reaction Stress 

Analytical modeling has shown that self-weight reaction stress at the end surface of FIB 

girders can be neglected at locations in the outer portion of the bottom flange.  As such, the self-

weight reaction stress (fsw) in the serviceability model is assumed to be zero.  This assumption 

may not be reasonable for all cross-sections. 

G.2.2.4 Superposition of Stresses 

Horizontal spitting stress is defined as the superposition of Hoyer, peeling, and self-

weight reaction stresses:  

௛݂௦௣ ൌ 	 ௛݂ 	൅ 	 ௧݂௢௦ ൅ ௦݂௪
2-20

Where: 
fhsp= 

fh= 
ftos= 
fsw=  

 
Horizontal splitting stress 
Average Hoyer effect stress 
Peeling stress 
Self-weight reaction stress 

 
As previously discussed, stress due to self-weight reaction is negligible at the end face of 

the FIB bottom flange.  Self-weight reaction is included in Equation 2-20  only as a reminder that 

self-weight effects may be critical in some long-span girders and in girders with other cross-

sections.  For FIB girders, Equation 2-20 can be reduced to: 
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௛݂௦௣ ൌ 	 ௛݂ 	൅ ௧݂௢௦
2-21

Two critical conditions have been discussed for horizontal splitting stresses.  The 

maximum peeling condition occurs when only the strands outboard of a section are cut.  Strands 

at the section in question are not yet cut in the maximum peeling condition and Hoyer stress on 

the section is assumed to be zero.  The combined condition occurs when strands on a section 

have been cut and peeling stress is superimposed with Hoyer stress.  The maximum horizontal 

splitting stress on a given section is the greater of the stress from the maximum peeling or 

combined conditions:  

௛݂௦௣ଵ ൌ ௧݂௢௦ଵ
2-22

௛݂௦௣ଶ ൌ 	 ௛݂ 	൅ ௧݂௢௦ଶ
2-23

Where: 
fhsp1= 
fhsp2= 

 
Horizontal splitting stress for maximum peeling condition 
Horizontal splitting stress for combined condition 

 
In FIB girders transverse splitting stresses is checked for the five outermost columns of 

strands (Figure 23). Stresses are checked at strand locations because Hoyer stresses are greatest 

near prestressing strands, and because splitting cracks in the experimental program were 

observed to intersect strands.  Stress is checked at each of the five locations for both of the 

critical stress conditions.  Maximum stress from these locations and conditions is compared to 

concrete tensile strength criterion, which is discussed later. 
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Figure 23–Analysis sections for FIB bottom flange 
 

G.2.3 Stress Calculations for Experimental Girders 
In this section the serviceability model is used to compute stresses at the end of specimen 

WN (Figure 24).  The end of specimen WN had two fully bonded strands placed at the outside of 

the flange.  All other strands in the outer flange were shielded.    

Hoyer stresses were calculated using Equation 2-8 and are summarized in Table 6.  The 

value of interfacial pressure (p) listed in Table 6 was calculated using Equation 2-3 and the 

values from Table 1. The calculated Hoyer stress is zero for all but section A.  This is because 

the model assumes that Hoyer stresses from shielded strands are negligible. 

 

 

Figure 24–Strand bond and shielding pattern specimen WN 
 

Table 6–Hoyer stresses end of specimen WN 

Section ns p (ksi) db (in.) nst hf (in.) fh (ksi) 
A 2 7.36 0.6 2 8.5 1.21 
B 0 7.36 0.6 2 8.5 0 

C (EDGE) 0 7.36 0.6 3 8.5 0 
D 0 7.36 0.6 3 8.5 0 

E (MID) 0 7.36 0.6 3 8.5 0 
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  Peeling stresses were calculated using Equations 2-18 and 2-19 and are summarized in 

Table 7.  Peeling stresses at section B require additional discussion.  The maximum peeling 

condition is intended to have the maximum peeling stress, however, it has a lower peeling stress 

than the combined condition at section B.  This is because empirical equations for the internal 

moment arm resulted in a shorter arm, and consequently at larger peeling stress, for the 

combined condition.  This limitation of the model only affects section B and is of little concern.  

As shown later in the chapter, splitting stress at section B does not govern in any of the stress 

calculations for the experimental specimens.  Also, this limitation makes the model is 

conservative at section B because it superimposes the larger peeling stress with the Hoyer stress.      

Horizontal splitting stresses were calculated using Equations 2-22 and 2-23 and the 

stresses from Table 6 and Table 7.  Results are presented graphically in Figure 25.  The 

maximum calculated splitting stress at the end of WN occurs at section A during the combined 

condition.  Because no peeling stress occurred at section A, the entire calculated splitting stress 

is due to the Hoyer effect.  Splitting stresses at the other sections in WN are smaller than at 

section A because Hoyer stress from the shielded strands is assumed to be negligible.  Calculated 

splitting stresses at sections B through E are solely due to peeling stresses caused by the bonded 

strands at section A. 

 

Table 7–Peeling stresses at end of specimen WN 

Section Fpos 
(kip) 

xp 

(in.) 
x  

(in.) 
hf (in.) nst db 

(in.) 
ly1 

(in.) 
ly2 

(in.) 
ftos1 

(ksi) 
ftos2 
(ksi) 

A NA NA 16 8.5 2 0.6 NA NA 0 0 
B 88 2 14 9.5 2 0.6 43.7 36.0 0.097 0.118

C (EDGE) 88 4 12 10.4 3 0.6 38.7 45.9 0.212 0.178
D 88 6 10 11.6 3 0.6 33.4 61.5 0.322 0.175

E (MID) 88 8 8 13.2 3 0.6 28.0 87.5 0.441 0.141
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Figure 25–Transverse (x-x) splitting stress at end of specimen WN 
 

The same procedures used above for WN were also used calculate transverse splitting 

stresses for each specimen in the FIB-54 and FIB-63 experimental programs.  The serviceability 

model was derived for calculating stresses at the end of pretensioned I-girders.  To test the 

applicability of the model to other locations, it was also used to estimate stress in specimens WN, 

WB, and SL where shielding terminated.   

The maximum transverse splitting stress for each specimen and location are listed in 

Table 8, along with the governing section, governing stress condition, and flange splitting crack 

data.  When stresses were calculated at two locations on the same specimen, crack data were 

assigned to the location where the cracks were observed in the physical girder.  For example, no 

splitting cracks were observed at the end of specimen WN and the table lists zero for the crack 

length and area.  Splitting cracks were observed 10 ft away from the end of WN, and the table 

lists the length and area of those cracks in the row labeled “WN (10 ft.)”. 
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Table 8–Transverse splitting stresses and splitting crack data 

Specimen Max transverse 
splitting stress 

(ksi) 

Section Critical 
Condition 

Length of flange 
splitting cracks 

(in.) 

Area of flange 
splitting cracks 

(in2) 
HC 1.29 C Combined 0 0 
HU 1.29 C Combined 40 0.112 
VC 1.29 C Combined 0 0 
VU 1.29 C Combined 41 0.087 

WN (10 ft.) 1.63 C Combined 32 0.05 
WB (10 ft.) 1.63 C Combined 99 0.292 
WN (end) 1.21 A Combined 0 0 
WB (end) 1.21 A Combined 0 0 

FN 1.73 D Combined 190 0.469 
FB 1.73 D Combined 115 0.295 
DC 1.29 C Combined 104 0.239 
DM 1.29 C Combined 41.5 0.112 
PT 1.81 C Combined 142 0.316 
LB 1.81 C Combined 183 0.429 
CN 1.81 C Combined 175 0.368 
SL 1.25 C Combined 73 0.144 

SL (5 ft.) 0.99 D Combined 0 0 
 

Table 8 shows that the combined stress condition governs for each specimen and 

location.  For the combined condition Hoyer stress accounted for 85% of the splitting stress, on 

average.  The remaining 15% (on average) was from peeling stress.  This result indicates the 

significance that the Hoyer effect has on flange splitting cracks. 

Section C has the governing (maximum) stress in 12 of 17 specimens and locations.  

Experimental observations support this result.  Flange splitting cracks were more likely to be 

observed at section C than at any other location in the experimental program.  The governing 

stress from the model never occurs at sections B or E.  This result supports the previous 

statement that model limitations at section B do not impact overall results. 

G.2.4 Model Comparison with Experimental Crack Data 
Stresses calculated using the serviceability model correlate well with crack data from the 

experimental girders (Table 8 and Figure 26).  This can be seen from the linear curve in Figure 

26 that is fit to the stress and crack data from the specimen ends.  The line has an R2 value of 

0.85, indicating a high degree of correlation between calculated stresses and experimental crack 

lengths.  When stress and crack data away from the ends (WN, WB, and SL) are included, 
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correlation drops to 0.73.  This suggests that the model is more accurate for calculating stress at 

member ends than at sections away from the end.  Additional data are required, however, to 

quantify the degree to which the model can reasonably be applied to locations away from the 

member end. 

A high degree of correlation is also observed when the calculated stresses are compared 

to the area of the flange splitting cracks in the experimental girders (Figure 27).  Considering the 

random nature of cracking in concrete this level of correlation suggests that the model does an 

excellent job of capturing the physical phenomenon which cause bottom flange splitting cracks.  

 

 

Figure 26–Calculated transverse splitting stress vs. experimental crack length 
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Figure 27–Calculated transverse splitting stress vs. experimental crack area 
 

It is common in prestressed concrete design to compare concrete tensile stress to the 

square root of the compressive strength.  Dashed vertical lines in Figure 26 and Figure 27 

indicate 1.20ksi which is equal to 0.47ඥ݂′௖௜ (for f’ci in ksi).  This value is approximately equal to 

the x-intercept of the linear curves fit to the data.  The x-intercept corresponds to the stress below 

which flange cracking are unlikely according to the sample data.  All but one of the specimens 

and locations in the sample have stresses higher than this value.  The lone location below this 

value, SL (5ft.), did not have flange splitting cracks in the experimental girder.  A more 

conservative stress limit, and one that is already used in other circumstances by AASHTO 

LRFD, is 0.24ඥ݂′௖௜.  This is approximately half of the limit indicated by the experimental data.  

Additional data are required to calibrate the reliability associated with different splitting stress 

criteria.  Nevertheless, available data suggest that the proposed model is an adequate tool for 

calculating transverse splitting stress in the bottom flange of FIB girders. 

G.2.5 Summary and Conclusions 
A model was derived for calculating transverse splitting stresses in the bottom flange of 

concrete I-girders.  The model considers contributions to splitting stress from the Hoyer effect 
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and from the horizontal eccentricity of strands in the outer flange.  Stresses due to these effects 

are referred to as Hoyer stresses and peeling stresses, respectively.  Self-weight also contributes 

to transverse splitting stress, however effects of self-weight are considered negligible in the outer 

flange.  The work of Oh et al (2006) was utilized to derive an equation for Hoyer stress.  An 

equation for peeling stress was derived using FE modeling and basic mechanics.  The equation 

for peeling stress also contains empirical relationships that were derived by comparison with FE 

analyses.   

The model was compared to crack data from the experimental girders and was found to 

have a high degree of correlation with said data.  An R2 value of 0.80 was obtained for linear 

trend line that was fit to the calculated and experimental data.  Analysis indicates that flange 

splitting cracks are likely when the calculated splitting stress exceeds 0.45ඥ݂′௖௜ (for f’ci in ksi).  

A lower threshold stress is recommended for controlling flange splitting cracks.  One possible 

threshold is 0.24ඥ݂′௖௜, which is currently used by AASHTO LRFD to limit concrete tensile 

stresses in situations similar to the FIB bottom flange. 


