
THERMAL INTEGRITY TESTING OF DRILLED
SHAFTS - FINAL REPORT

Principal Investigators:
Gray Mullins, Ph.D., P.E. and Stan Kranc, Ph.D., P.E.

Graduate Researchers:
Kevin Johnson, Michael Stokes, and Danny Winters

Prepared for:

MAY 2007
FDOT GRANT #BD544-20

75-80

70-75

65-70

60-65

55-60

50-55

45-50

40-45

35-40

30-35

25-30

A

B

2
4

6

CSL Logging Tubes

Thermal Logging Tubes

1

35

1

35

Cross-Section A
Top Anomaly

Cross-Section B
Bottom Anomaly

Steel Logging Tubes

PVC Logging Tubes

Known Anomaly

C

D

C

D

C DCross-Section C-D

Te
m

pe
ra

tu
re

 (d
eg

 C
)

i

DISCLAIMER

The opinions, findings and conclusions expressed in this publication are those of the authors
and not necessarily those of the State of Florida Department of Transportation.

ii

CONVERSION FACTORS, US CUSTOMARY TO METRIC UNITS

Multiply by to obtain

inch 25.4 mm

foot 0.3048 meter

square inches 645 square mm

cubic yard 0.765 cubic meter

pound (lb) 4.448 Newtons

kip (1000 lb) 4.448 kiloNewton (kN)

Newton 0.2248 pound

kip/ft 14.59 kN/meter

pound/in 0.0069 MPa2

kip/in 6.895 MPa2

MPa 0.145 ksi

kip-ft 1.356 kN-m

kip-in 0.113 kN-m

kN-m .7375 kip-ft

iii

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipients Catalog No.

4. Title and Subtitle

Thermal Integrity Testing of Drilled Shafts
5. Report Data

May 2007

6. Performing Organization Code

7. Author(s)

Gray Mullins, Kevin Johnson, and Danny Winters
8. Performing Organization Report No.

9. Performing Organization Name and Address

University of South Florida
4202 E. Fowler Ave., ENB 118
Tampa, FL 33620

10. W ork Unit No. (TRAIS)

11. Contract or Grant No.

BD544-20

12. Sponsoring Agency Name and Address

Florida Department of Transportation
605 Suwannee Street
Tallahassee, FL 32399

13. Type of Report and Period Covered

Final Report
10/31/2004 - 01/31/07

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

17. Key W ord

Non-destructive Integrity Testing,
Thermal Integrity Testing, Drilled
Shafts, Anomalies

18. Distribution Statement

No Restrictions

19. Security Classif. (of this report)

Unclassified.
20. Security Classif. (of this page)

Unclassified.
21. No. of Pages 22. Price

Form DOT F 1700.7 (8-72) Reproduction of complete page authorized

iv

THIS PAGE IS INTENTIONALLY BLANK

v

PREFACE

This research project was awarded to the University of South Florida, Tampa by the Florida
Department of Transportation. Mr. Michael Bergin was the Project Manager. It is a
pleasure to acknowledge his contribution to this study.

Likewise, the principal investigator is indebted to following companies and their associates
for the interaction they afforded: R.W. Harris Engineering, Foundation & Geotechncial
Engineering, LLC, and Rudy LTD. Therein, the opportunity to interact with prime
contractors and provide access to sites was made possible by: Christopher Harris and Ron
W. Harris; Christopher Lewis and Andrew Goulish; and Rudy, respectively.

Special thanks are extended to the College of Engineering’s Machine Shop staff of Mr. Bob
Smith, Mr. James Christopher, and Mr. Tom Gage for their unending support. The
assistance of graduate researchers (not in any order) Mr. Byron Anderson, Mr. Greg Deese,
Mr. Michael Stokes, and Mr. Julio Aguilar are duly recognized.

vi

THIS PAGE IS INTENTIONALLY BLANK

vii

EXECUTIVE SUMMARY

Drilled shaft foundations have historically been plagued with construction related defects
(i.e., soil inclusions or poor concrete cover) that most often go undetected due to the blind
construction techniques necessary. These defects can affect the quality of the bond interface
between the shaft concrete and the insitu geomaterial as well as the durability of the
reinforcement. This project investigated the merits of a new easy-to-use method of assuring
shaft integrity via infrared thermal detection methods that can assess the presence or absence
of intact concrete both outside and inside the shaft reinforcement cage. The objectives
included (1) field temperature measurements of mass concrete structures with specific
interest in drilled shafts and (2) numerical modeling to verify the anticipated temperature
response within a drilled shaft or mass concrete structure.

Both small scale and full scale shafts were constructed and monitored during the
curing/hydration phase. The temperature measurements obtained were used to verify the
presence of anomalies while also obtaining temperature dissipation information to the
surrounding materials. These case studies were used to calibrate a 3-D thermal modeling
software developed expressly for mass concrete conditions with emphasis on drilled shaft
integrity evaluation. Further evaluation of these sites along with case studies from larger
diameter shafts showed that mass concrete conditions could be experienced by shafts even
when small in diameter.

Using the new thermal modeling software, the physical dimension of the test shafts as well
as the location of known anomalies were inputted and signal matched against the measured
temperature traces. The good correlation obtained showed that forward modeling shafts
could be used to predict the size and location of anomalies. Inverse modeling algorithms
were also developed with encouraging results.

Finally, prospective construction techniques using voided shafts were conceived, modeled,
and evaluated for feasibility. Initial results indicate that benefits could be derived from both
mass concrete temperature control and reduction in concrete volume/usage.

viii

THIS PAGE IS INTENTIONALLY BLANK

ix

TABLE OF CONTENTS

LIST OF TABLES . xii

LIST OF FIGURES . xiii

1. INTRODUCTION . 1
1.1 Background . 1
1.2 Report Organization . 3

2. NON-DESTRUCTIVE TESTING FOR DRILLED SHAFTS 5
2.1 The Present State of Drilled Shaft Integrity Testing 5

2.1.1 Cross Hole Sonic Logging . 5
2.1.2 Crosshole Tomography . 10
2.1.3 Sonic Echo Test . 11
2.1.4 Impulse Response Test . 16
2.1.5 Gamma-Gamma Testing . 18
2.1.6 Concreteoscopy . 19
2.1.7 Parallel Seismic Integrity Testing . 20
2.1.8 Thermal Integrity Testing . 22

2.2 Development of the Thermal Integrity Testing Device 23

3. THERMAL TESTING MODEL . 33
3.1 Algorithm Development . 33

3.1.1 Numerical Modeling . 33
3.1.2 Scheduled Residual Relaxation . 36
3.1.3 Model Testing . 37

3.2 User Guide . 38
3.2.1 Editors . 39

3.3 Visual Post Processor . 42

4. FIELD TESTING AND MODELING RESULTS . 49
4.1 Site I: Ringling Causeway Bridge . 49

4.1.1 Instrumentation and Results . 49
4.1.2 Modeled Results . 49

4.2 Site II: USF Test Site . 52
4.2.1 Construction & Instrumentation . 52
4.2.2 Thermal Testing and Results . 52

4.3 Site III: R.W. Harris Test Site . 61
4.3.1 Construction & Instrumentation . 61
4.3.2 Quality Assurance Testing . 61
4.3.3 Quality Assurance Testing Results . 62
4.3.5 Thermal Modeling . 62

4.4 Site IV: University of Florida Test Site . 81
4.4.1 Construction & Instrumentation . 81
4.4.2 Thermal Testing and Results . 81

x

5. CONCLUSIONS AND RECOMMENDATIONS . 87
5.1 General Conclusions . 87

5.1.1 Ringling Causeway Bridge Test Data . 87
5.1.2 University of South Florida Test Site . 87
5.1.3 R.W. Harris Test Site . 88
5.1.4 University of Florida Test Site . 88

5.2 Recommendations . 88

REFERENCES . 91

APPENDICES . 95
A.1 Visual Basic Code for Project Forms . 97

A.1.1 frmMain.frm . 97
A.1.2 frmTemp.frm . 103
A.1.3 frmSource.frm . 106
A.1.4 frmRun.frm . 108
A.1.5 frmRecs.frm . 113
A.1.6 frmConds.frm . 114
A.1.7 frmsectiongeom.frm . 116
A.1.8 frmsubmodel.frm . 125
A.1.9 frmMaterials.frm . 134
A.1.10 frmFillform.frm . 138

A.2 Visual Basic Code for Project Modules . 138
A.2.1 module1e.bas . 138

A.3 Visual Basic Code for Project Class Modules . 140
A.3.1 CBoundarytype.cls . 140
A.3.2 CComposite.cls . 141
A.3.3 Cdataseries.cls . 142
A.3.4 Cexec.cls . 142
A.3.5 Cgeom.cls . 148
A.3.6 Cmodel.cls . 151
A.3.7 CsdgDatum.cls . 151
A.3.8 Csounding.cls . 153
A.3.9 Csourcehest.cls . 154
A.3.10 Cstartup.cls . 155
A.3.11 Csubmodel.cls . 157

B.1 Ringling Causeway Bridge. 161
B.2 University of South Florida Test Site Thermal Results. 162
C.1 R.W. Harris Test Site Thermal Results. 170
D.1 University of Florida Test Site Thermal Results. 195

xi

LIST OF TABLES

Table 2-1. P-Wave Velocity in Different Media . 6
Table 2-2. Alabama’s Minimum Number of CSL Tubes per Shaft (ADOT, 2001) 7
Table 2-3. Approximate Time Window for Acquiring Optimal CSL Data 7
Table 2-4. Compression Wave Velocity in Concrete . 13
Table 2-5. List of thermal anomaly types and descriptions. 23

Table 3-1. Comparison of Gauss-Seidel iterations and scheduled relaxation iterations using
2- and 4-term sequences. 37

Table 4-1. Testing Matrix for the USF Test Site . 52

xii

THIS PAGE IS INTENTIONALLY BLANK

xiii

LIST OF FIGURES

Figure 1-1. Mass concrete determinations for shafts based on vol/area ratio (Structures
Design Guidelines 3.9). 2

Figure 2-1. A Velocity Tomogram of a Drilled Shaft on a Highway Bridge showing an
anomalous zone between 31 and 33 feet . 27
Figure 2-2. Typical Response Curve for SIT (after Baker, 1993) 27
Figure 2-3. Typical Mobility Plot for IRT (after Baker, 1993) 28
Figure 2-4. Results of a Gamma Gamma Test Indicates Necked Shaft 28
Figure 2-5 Initial test results from probe with single infrared sensor. 29
Figure 2-6 Generation I integrated circuit board wiring configuration. 30
Figure 2-7 Generation I thermal integrity system with four orthogonal infrared sensors.

. 30
Figure 2-8. Generation I system components. 31
Figure 2-9. Generation II probe and down-hole electronics. 31
Figure 2-10. Generation III probe and down-hole electronics. 32

Figure 3-1. The comparison of SR-modeled and Theis solution temperature distributions for
a constant, continuous heat pulse of 72hr, as a function of radial distance from the
z-axis. The two times shown are 48hr and 92hr. 43

Figure 3-2. The comparison of SR-modeled and Theis modeled temperature distributions
from the decay of short duration 10hr constant-valued heat pulse, as a function of
radial distance from the z-axis. 43

Figure 3-3. Software model main menu screen. 44
Figure 3-4. Standard materials editor screen. 44
Figure 3-5. Section geometry editor screen. 45
Figure 3-6. Soil-saturated granular section fill example. 45
Figure 3-7. 4ft diameter concrete section fill. 46
Figure 3-8. Sub-model geometry color selection chart. 46
Figure 3-9. Sub model editor screen. 47
Figure 3-10. Integrated model screen. 47
Figure 3-11. Program control screen. 48

Figure 4-1. Ringling Causeway Bridge thermocouple data. 50
Figure 4-2. Modeled peak temperature for various shaft sizes. 50
Figure 4-3. Modeled differential temperature for various shaft sizes. 51
Figure 4-4. Measured and modeled temperatures at the core and surface for the Ringling

shaft. 51
Figure 4-5. Construction of the four USF test shafts. 54
Figure 4-6. USF test shafts. 55
Figure 4-7. Anomaly placement inside the sonotubes. 55
Figure 4-8. USF concrete mix design. 56
Figure 4-9. Installation of thermocouples. 57
Figure 4-10. Infrared thermal testing. 58

xiv

Figure 4-11. Thermocouple data for three test shafts. 58
Figure 4-12. Infrared thermal readings over time. 59
Figure 4-13. Thermocouple data annotated to show time readings. 59
Figure 4-14. Generation III system thermal scan with anomalies after 14 hours. 60
Figure 4-15. Test shaft cone penetration test sounding. 64
Figure 4-16. Installation of monitoring tubes away from test shaft. 64
Figure 4-17. Test site layout. 65
Figure 4-18. Drilling of test shaft. 65
Figure 4-19. Reinforcement cage placement. 66
Figure 4-20. Concrete placement and temporary casing removal. 66
Figure 4-21. Concrete mix design. 67
Figure 4-22. Sand bag anomalies being tied to the reinforcement cage. 68
Figure 4-23. Thermocouple installation and thermocouple data 68
Figure 4-24. CSL testing on the R.W. Harris test shaft. 69
Figure 4-25. PIT testing on the R.W. Harris test shaft. 69
Figure 4-26. Infrared thermal integrity testing. 70
Figure 4-27. Thermocouple data for the R.W. Harris shaft. 70
Figure 4-28. CSL test results for the 3 steel tubes. 71
Figure 4-29. PIT test result. 71
Figure 4-30. Typical temperature traces at various time steps. 72
Figure 4-31. R.W. Harris shaft, Generation II system, tube 1 reading all directions. . . . 73
Figure 4-32. R.W. Harris shaft, Generation III system, tube 1 reading all directions. . . 74
Figure 4-33. R.W. Harris shaft, Generation II system, tube 3 reading all directions. . . . 75
Figure 4-34. R.W. Harris shaft, Generation III system, tube 3 reading all directions. . . 76
Figure 4-35. R.W. Harris shaft, Generation II system, tube 5 reading all directions. . . . 77
Figure 4-36. R.W. Harris shaft, Generation III system, tube 5 reading all directions. . . 78
Figure 4-37. Slice view of thermal modeled R.W. Harris shaft. 79
Figure 4-38. Modeled and measured 12 hour temperature readings around tube 1. 80
Figure 4-39. UF test shaft layout. 82
Figure 4-40. Installation and monitoring of thermocouples. 82
Figure 4-41. Optim Megadac data acquisition system for infrared thermal devices. . . . 83
Figure 4-42. (a) Tripod and depth encoder and (b) Generation III system with second

generation wheel assembly. 83
Figure 4-43. UF thermocouple data. 84
Figure 4-44. UF thermal data for tube 1 (all directions) after 38 hours. 84
Figure 4-45. UF thermal data for tube 2 (all directions) after 38 hours. 85
Figure 4-46. UF thermal data for tube 3 (all directions) after 38 hours. 85
Figure 4-47. UF thermal data for tube 4 (all directions) after 38 hours. 86

Figure B-1. Ringling Causeway Bridge Concrete Mix Design. 161
Figure B-1. USF Test Site: Generation II system; Shaft 1 time traces. 162
Figure B-2. USF Test Site: Generation II system; TS1 all directions at 24th hour. . . . 162
Figure B-3. USF Test Site: Generation II system; Shaft 2 time traces. 163
Figure B-4. USF Test Site: Generation II system; TS2 all directions at 24th hour. . . . 163
Figure B-5. USF Test Site: Generation II system; Shaft 3 time traces. 164

xv

Figure B-6. USF Test Site: Generation II system; TS3 all directions at 24th hour. . . . 164
Figure B-7. USF Test Site: Generation II system; Shaft 4 time traces. 165
Figure B-8. USF Test Site: Generation II system; TS4 all directions at 24th hour. . . . 165
Figure B-9. USF Test Site: Generation III system; Shaft 1 time traces. 166
Figure B-10. USF Test Site: Generation III system; TS1 all directions at 24th hour.

. 166
Figure B-11. USF Test Site: Generation III system; Shaft 2 time traces. 167
Figure B-12. USF Test Site: Generation III system; TS2 all directions at 24th hour.

. 167
Figure B-13. USF Test Site: Generation III system; Shaft 3 time traces. 168
Figure B-14. USF Test Site: Generation III system; TS3 all directions at 24th hour.

. 168
Figure B-15. USF Test Site: Generation III system; Shaft 4 time traces. 169
Figure B-16. USF Test Site: Generation III system; TS4 all directions at 24th hour.

. 169

Figure C-1. R.W. Harris Test Site: Generation II Probe, Tube 1 Inward. 170
Figure C-2. R.W. Harris Test Site: Generation II Probe, Tube l Outward. 170
Figure C-3. R. W. Harris Test Site: Generation II Probe, Tube 1 Radial. 171
Figure C-4. R. W. Harris Test Site: Generation II Probe, Tube 1 Radial. 171
Figure C-5. R. W. Harris Test Site: Generation II Probe, Tube 1 All Directions. 172
Figure C-6. .R. W. Harris Test Site: Generation II Probe, Tube 3 Radial. 172
Figure C-7. .R. W. Harris Test Site: Generation II Probe, Tube 3 Radial. 173
Figure C-8. R. W. Harris Test Site: Generation II Probe, Tube 3 Inward. 173
Figure C-9. R. W. Harris Test Site: Generation II Probe, Tube 3 Outward. 174
Figure C-10. R. W. Harris Test Site: Generation II Probe, Tube 3 All Directions. . . . 174
Figure C-11. R. W. Harris Test Site: Generation II Probe, Tube 5 Inward. 175
Figure C-12. R. W. Harris Test Site: Generation II Probe, Tube 5 Outward. 175
Figure C-13. R. W. Harris Test Site: Generation II Probe, Tube 5 Radial. 176
Figure C-14. R. W. Harris Test Site: Generation II Probe, Tube 5 Radial. 176
Figure C-15. R. W. Harris Test Site: Generation II Probe, Tube 5 All Directions. . . . 177
Figure C-16. R. W. Harris Test Site: Generation II Probe, Tube MP1 Inward. 177
Figure C-17. R. W. Harris Test Site: Generation II Probe, Tube MP1 Radial. 178
Figure C-18. R. W. Harris Test Site: Generation II Probe, Tube MP1 Outward. 178
Figure C-19. R. W. Harris Test Site: Generation II Probe, Tube MP1 Radial. 179
Figure C-20. R. W. Harris Test Site: Generation II Probe, Tube MP1 All Directions.

. 179
Figure C-21. R. W. Harris Test Site: Generation II Probe, Tube MP6 Inward. 180
Figure C-22. R. W. Harris Test Site: Generation II Probe, Tube MP6 Radial. 180
Figure C-23. R. W. Harris Test Site: Generation II Probe, Tube MP6 Outward. 181
Figure C-24. R. W. Harris Test Site: Generation II Probe, Tube MP6 Radial. 181
Figure C-25. R. W. Harris Test Site: Generation II Probe, Tube MP6 All Directions.

. 182
Figure C-26. R. W. Harris Test Site: Generation II Probe, Tube MP8 Inward. 182
Figure C-27. R. W. Harris Test Site: Generation II Probe, Tube MP8 Radial. 183

xvi

Figure C-28. R. W. Harris Test Site: Generation II Probe, Tube MP8 Outward. 183
Figure C-29. R. W. Harris Test Site: Generation II Probe, Tube MP8 Radial. 184
Figure C-30. R. W. Harris Test Site: Generation II Probe, Tube MP8 All Directions.

. 184
Figure C-31. R. W. Harris Test Site: Generation III Probe, Tube I Radial. 185
Figure C-32. R. W. Harris Test Site: Generation III Probe, Tube I Inward. 185
Figure C-33. R. W. Harris Test Site: Generation III Probe, Tube I Radial. 186
Figure C-34. R. W. Harris Test Site: Generation III Probe, Tube I Outward. 186
Figure C-35. R. W. Harris Test Site: Generation III Probe, Tube I All Directions. . . . 187
Figure C-36. R. W. Harris Test Site: Generation III Probe, Tube 3 Radial. 187
Figure C-37. R. W. Harris Test Site: Generation III Probe, Tube 3 Inward. 188
Figure C-38. R. W. Harris Test Site: Generation III Probe, Tube 3 Outward. 188
Figure C-39. R. W. Harris Test Site: Generation III Probe, Tube 3 Radial. 189
Figure C-40. R. W. Harris Test Site: Generation III Probe, Tube 3 All Directions. . . 189
Figure C-41. R. W. Harris Test Site: Generation III Probe, Tube 5 Radial. 190
Figure C-42. R. W. Harris Test Site: Generation III Probe, Tube 5 Inward. 190
Figure C-43. R. W. Harris Test Site: Generation III Probe, Tube 5 Radial. 191
Figure C-44. R. W. Harris Test Site: Generation III Probe, Tube 5 Outward. 191
Figure C-45. R. W. Harris Test Site: Generation III Probe, Tube 5 All Directions. . . 192
Figure C-46. R. W. Harris Test Site: Generation III Probe, Tube MP1 Inward. 192
Figure C-47. R. W. Harris Test Site: Generation III Probe, Tube MP1 Radial. 193
Figure C-48. R. W. Harris Test Site: Generation III Probe, Tube MP1 Outward. 193
Figure C-49. R. W. Harris Test Site: Generation III Probe, Tube MP1 Radial. 194
Figure C-50. R. W. Harris Test Site: Generation III Probe, Tube MP1 All Directions.

. 194

Figure D-1. UF Test Site: Generation II Probe, Tube 1 Inward. 195
Figure D-2. UF Test Site: Generation II Probe, Tube 1 Outward. 195
Figure D-3. UF Test Site: Generation II Probe, Tube 1 Radial. 196
Figure D-4. UF Test Site: Generation II Probe, Tube 1 Radial. 196
Figure D-5. UF Test Site: Generation II Probe, Tube 1 All Directions. 197
Figure D-6. UF Test Site: Generation II Probe, Tube 2 Inward. 197
Figure D-7. UF Test Site: Generation II Probe, Tube 2 Radial. 198
Figure D-8. UF Test Site: Generation II Probe, Tube 2 Radial. 198
Figure D-9. UF Test Site: Generation II Probe, Tube 2 Outward. 199
Figure D-10. UF Test Site: Generation II Probe, Tube 2 All Directions. 199
Figure D-11. UF Test Site: Generation II Probe, Tube 3 Inward. 200
Figure D-12. UF Test Site: Generation II Probe, Tube 3 Radial. 200
Figure D-13. UF Test Site: Generation II Probe, Tube 3 Radial. 201
Figure D-14. UF Test Site: Generation II Probe, Tube 3 Outward. 201
Figure D-15. UF Test Site: Generation II Probe, Tube 3 All Directions. 202
Figure D-16. UF Test Site: Generation II Probe, Tube 4 Inward. 202
Figure D-17. UF Test Site: Generation II Probe, Tube 4 Outward. 203
Figure D-18. UF Test Site: Generation II Probe, Tube 4 Radial. 203
Figure D-19. UF Test Site: Generation II Probe, Tube 4 Radial. 204

xvii

Figure D-20. UF Test Site: Generation II Probe, Tube 4 All Directions. 204
Figure D-21. UF Test Site: Generation III Probe, Tube 1 Inward. 205
Figure D-22. UF Test Site: Generation III Probe, Tube 1 Outward. 205
Figure D-23. UF Test Site: Generation III Probe, Tube 1 Radial. 206
Figure D-24. UF Test Site: Generation III Probe, Tube 1 Radial. 206
Figure D-25. UF Test Site: Generation III Probe, Tube 1 All Directions. 207
Figure D-26. UF Test Site: Generation III Probe, Tube 2 Inward. 207
Figure D-27. UF Test Site: Generation III Probe, Tube 2 Outward. 208
Figure D-28. UF Test Site: Generation III Probe, Tube 2 Radial. 208
Figure D-29. UF Test Site: Generation III Probe, Tube 2 Radial. 209
Figure D-30. UF Test Site: Generation III Probe, Tube 2 All Directions. 209
Figure D-31. UF Test Site: Generation III Probe, Tube 3 Inward. 210
Figure D-32. UF Test Site: Generation III Probe, Tube 3 Outward. 210
Figure D-33. UF Test Site: Generation III Probe, Tube 3 Radial. 211
Figure D-34. UF Test Site: Generation III Probe, Tube 3 Radial. 211
Figure D-35. UF Test Site: Generation III Probe, Tube 3 All Directions. 212
Figure D-36. UF Test Site: Generation III Probe, Tube 4 Inward. 212
Figure D-37. UF Test Site: Generation III Probe, Tube 4 Outward. 213
Figure D-38. UF Test Site: Generation III Probe, Tube 4 Radial. 213
Figure D-39. UF Test Site: Generation III Probe, Tube 4 Radial. 214
Figure D-40. UF Test Site: Generation III Probe, Tube 4 All Directions. 214

xviii

THIS PAGE IS INTENTIONALLY BLANK

1

1. INTRODUCTION

Drilled shafts are large-diameter cast-in-place concrete structures that can develop enormous
axial and lateral capacity and consequently are the foundation of choice for many large
bridges subject to extreme event loads such as vessel collisions. Many drilled shafts are
constructed in the State of Florida using the slurry method as a means to stabilize the
excavation. This means that both excavation and concreting are blind processes which
increases the chances of unwittingly producing defects in the shaft. This project investigates
how the heat generation from curing concrete can be used to scan a constructed shaft for
defects. Further, thorough understanding of this phenomenon lends itself to evaluating
massive concrete structures that may be seriously compromised by detrimental extremes in
the internal temperature.

1.1 Background

Current state-of-the-art methods for evaluating the integrity of drilled shaft concrete have
been shown to be ineffective in providing a full picture of the actual state of the concrete.
Some methods are better at evaluating the core of the shaft, whereas others can best detect
problems more proximal to logging/access tubes. Ideally, but not practical, a combination
of today’s test technologies could perhaps identify all forms of anomalous formations. As
this would not be a reasonable solution, it is therefore desirable to review other non-
destructive methods of better ascertaining the integrity of a drilled shaft. One such method
makes use of the heat of hydration of curing concrete and temperature measurements within
the shaft from access tubes to assess whether or not anomalies have been formed. Prior to
the advent of this approach this heat was considered an undesired side effect which has been
long recognized for its potentially harmful consequences.

Numerous case studies have documented the effects of hydrating cement in massive concrete
structures. The most famous of which is perhaps the Hoover Dam project constructed during
the depression from 1932 to 1935 where over 4 million cubic meters of concrete were used.
At that time it was understood that staged construction and internal cooling systems would
be required to help control elevated temperatures. Therein, the primary concern was concrete
cracking from differential temperature. Without these considerations, temperature dissipation
was estimated to take over 100 years and temperature-induced cracking would have severely
compromised its structural integrity and its ability to prevent fluid ingress (DOI, 2004).

With regards to drilled shafts, these foundation elements have been constructed without
considering mass concrete effects and the possible long-term implications of the concrete
integrity. Such considerations address the extremely high internal temperatures that can be
generated during the concrete hydration/curing phase. This can be detrimental to the shaft
durability and/or integrity in two ways: (1) short-term differential temperature-induced

2

stresses that crack the concrete and (2) long-term degradation via prolonged excessively high
temperatures while curing.

Mass concrete is generally considered to be any concrete element that develops differential
temperatures between the innermost core and the outer surface that in turn can develop
tension cracks. Some state DOTs have defined geometric guidelines that identify potential
mass concrete conditions as well as limits on the differential temperature experienced. For
instance, the Florida DOT designated any concrete element with minimum dimension
exceeding 0.91m (3ft) and a volume to surface area ratio greater than 0.3m3/m2 (1 ft3/ft2) will
require precautionary measures to control temperature-induced cracking (FDOT, 2006). The
same specifications set the maximum differential temperature to be 20oC (35oF) to control
the potential for cracking. For drilled shafts, however, any element with diameter greater
than 1.83m (6ft) is considered a mass concrete element despite the relatively high volume
to area ratio. Figure 1-1 shows, based on the volume to surface area ratio, that drilled shafts
greater than 4ft in diameter are candidates for mass concrete concerns.

The latter of the two integrity issues, i.e., excess high temperature, is presently under
investigation at a number of institutions. When curing concrete temperature exceeds safe
limits on the order of 65oC (150oF), the concrete may not cure correctly and can ultimately
degrade via latent expansive reactions termed delayed ettringite formation (DEF). This
reaction may lay dormant for several years before occurring; or the expansion may not occur
as it depends on numerous variables involving the concrete constituent properties and
environment. Concrete mixes with low pozzolans have lower threshold temperatures
whereas higher pozzolan content concretes may not exhibit adverse effects up to 85oC

0

1

2

0 10 20 30 40 50 60 70 80

Shaft Length (ft)

V
ol

um
e

- A
re

a
R

at
io

 (f
t)

8

7

6

5

4

3

Shaft
Diameter (ft)

Mass
Concrete

Volume / Area Threshold

Figure 1-1. Mass concrete determinations for shafts based on vol/area
ratio (Structures Design Guidelines 3.9).

3

(185oF). At present, a definitive upper temperature limit is not available (Whitfield, 2006).
What is known is that staying below 65oC appears to prevent temperature-related long-term
detrimental effects. Further, preventing temperature differentials and the associated
microcracking and fluid ingress are important to warding off DEF (Collepardi, 2003) and
sulfate attack (Stark and Bollman, 1998).

Understanding the parameters that affect the temperature rise in curing concrete has two-fold
benefits for the State: (1) the ability to better predict the occurrence of mass concrete
conditions in all concrete structures, and (2) using this temperature generation and its
diffusion to the surround environment to predict normal drilled shaft internal temperature
distributions. Comparison of the latter to measured temperature profiles can be used to
isolate the presence of unwanted inclusions in the concrete (usually cool spots). This report
outlines lab and field measurement programs, the development of 3-D thermal software, and
the comparison of modeled results with measured values.

1.2 Report Organization

Chapter 2. Chapter 2 will introduce the original problem as outlined in the USF proposal
submitted to the FDOT. Following this, the findings of a comprehensive review of literature
on topics dealing with quality assurance testing as well as the development of the thermal
integrity testing device will be presented.

Chapter 3. The development of the forward thermal modeling software capable of predicting
the heat generation in concrete with various boundary conditions is discussed in Chapter 3.

Chapter 4. Three sites were tested using the thermal integrity testing method developed.
Those sites involved laboratory and full-scaled shafts with various boundary conditions. The
instrumentation, construction, and testing of these shafts are presented in detail. The thermal
testing results of each of the projects including model performance are also presented.

Chapter 5. Conclusions from the research findings as well as recommendations for a new
non-destructive testing are discussed in Chapter 5.

Appendices. Due to the enormous amount of data collected and valuable incidental
information, an extensive set of appendices have been included for completeness. These
include software code, lab, and field data sets.

4

THIS PAGE IS INTENTIONALLY BLANK

5

2. NON-DESTRUCTIVE TESTING FOR DRILLED SHAFTS

The genesis of this project is two-fold stemming from both the need to ascertain the integrity
of drilled shafts constructed in a blind-hole and the inability of the state-of-the-art methods
to detect anomalous conditions.

2.1 The Present State of Drilled Shaft Integrity Testing

Superstructure elements such as bridge girders are easily inspected during manufacturing,
shipping, and installation, which provides a level of confidence that is reflected in the
associated resistance factors. However, substructure elements, such as drilled concrete shaft
foundations, do not have the same level of certainty associated with their inspection due to
the often blind-hole nature of wet or slurry excavation and concreting. Therefore, several
methods have been developed in an effort to determine the integrity of a completed drilled
shaft. The most widely accepted methods are described herein along with a synopsis of the
underlying physical principals or science upon which these tests are founded. A discussion
of each test and their pros and cons is also presented. At present, no one method is capable
of delivering all the information often sought.

The following subsections will investigate the current state of integrity testing. These
methods can be categorized as either destructive or nondestructive and include: concrete
coring, seismic echo, impulse response, cross-hole sonic logging, and density testing by
downhole gamma-gamma logging.

2.1.1 Cross Hole Sonic Logging

Cross Hole Sonic Logging (CSL) is arguably the most widely accepted and used integrity
testing method. CSL evaluates the uniformity and continuity of concrete by recording the
time and computing the velocity of signals from an emitter to a receiver whereby each is
inserted into the pile in preset tubes or pipes (Lew et al., 2002). In fact, Alabama
Department of Transportation’s Specifications for Drilled Shaft Construction, Section 506
states in 506.10(a)1, states that “the nondestructive testing method called Crosshole Sonic
Logging (CSL) shall be used on all production and trial drilled shafts (a) when constructed
with the placement of concrete under water or through slurry, (b) when required by special
note on the plans, (c) when full length temporary casing is used to prevent water from
entering the shaft, or (d) when determined to be necessary by the Engineer (ADOT, 2001).”
In short, whenever there is a high probability of the existence of drilled shaft inclusions or
a problem, Alabama requires CSL testing be performed. Alabama does not recognize or
accept any other testing methods in their state specifications.

6

The State of California Department of Transportation Engineering Service Center Division
of Structures, California Foundation Manual and New York State Department of
Transportation’s Drilled Shaft Inspector’s Guidelines, have similar requirements as Alabama
but also allow the use of several different testing methods included in this chapter.

The primary reason that CSL is so widely accepted is because it is an accurate, cost-
effective, and nondestructive means of investigating the integrity of concrete in drilled shaft
foundations (Branagan & Associates, Inc, 2002). Furthermore, CSL determines the
integrity and homogeneity of concrete in a deep foundation and identifies voids or soil
intrusions within the structure.

The CSL test includes placing a signal generator in one access tube and a signal receiver in
another access tube. The basic theory of the CSL test is that the arrival time of the
compression wave signal from the generator to the receiver has a direct correlation to the
density of the concrete. The ultrasonic compression-wave (or p-wave) arrival time from a
signal source in one tube is measured to a receiver in another tube. The test is normally run
from the bottom to the top with both the receiver and the generator at the same vertical
elevation. Knowing the tube separation distance, the p-wave velocity is calculated for each
depth. The results are plotted as velocity with respect to depth (2002).

P-wave velocities for sound concrete free of defects are typically around 3,700 m/sec
(12,000 ft/sec). Decreases in sonic-velocity from the local velocity average, accompanied
by decreases in signal energy, indicate a departure from uniform concrete quality. Soil
intrusion, poor concrete mix quality, voids, or other non-cemented intrusive materials can
cause a decrease in p-wave velocity (2002). Table 2-1 indicates the p-wave velocity in
different media.

Table 2-1. P-Wave Velocity in Different Media
Material Velocity (ft/sec) Velocity (km/sec)

Sound Concrete 12,000 3.7

Water 4,800 1.5

Air 1,100 0.3

The equipment set up for the CSL test includes placing either steel or PVC access tubes
around the perimeter of the reinforcement cage. The number of tubes to be installed will
depend on the diameter of the shaft and requirements of the state drilled shaft construction
specifications where the shaft is being installed. The general guide, however, is to install
one access tube per foot of shaft diameter (or one tube per 0.25 to 0.30 meters of shaft
diameter) (2002). Alabama requires that 1.5 inch to 2.0 inch (40 mm to 50 mm) inside
diameter schedule 40 steel pipe be used in quantities specified in Table 2-2 below.

7

Table 2-2. Alabama’s Minimum Number of CSL Tubes per Shaft (ADOT, 2001)

Shaft Diameter, D Minimum # Of Tubes

D# 4.5 feet {1372 mm} 4
4.5 feet {1372 mm} < D # 5.5 feet {1676 mm} 5
5.5 feet {1676 mm} < D # 6.5 feet {1981 mm} 6
6.5 feet {1981 mm} < D # 7.5 feet {2286 mm} 7
7.5 feet {2286 mm} < D # 8.5 feet {2591 mm} 8
8.5 feet {2591 mm} < D # 9.0 feet {2743 mm} 9
9.0 feet {2743 mm} < D # 10.0 feet {3048 mm} 10

10.0 feet {3048 mm} < D # 11.0 feet {3353 mm} 11
11.0 feet {3353 mm} < D # 12.0 feet {3658 mm} 12

Whether steel or PVC access tubes are used, the tubes must have end caps and couplers that
are watertight. The tube inside diameter must allow for the top-to-bottom free and
unobstructed passage probes having dimensions of 1.41 inches diameter and 4 inches in
length. Prior to CSL testing, tubes should have removable caps at the surface to prevent
foreign material which could obstruct the tube (Branagan & Associates, Inc, 2002). The
access tubes are filled with potable water prior to testing. The water provides a medium
through which the p-wave signal can be transmitted and received inside the access tube.

Another consideration for assuring the accuracy and reliability of the test is de-bonding. De-
bonding occurs when the concrete loses bond with the surface of the access tube. This loss
of bonding means that an air space has developed between the surface of the pipe and the
concrete. This space will produce false and attenuated signals. To help curb this problem,
the tube surface shall be clean and free from contamination and the test should be completed
with the specified time after concrete placement. Shrinkage of concrete increases with time
and is a major cause of de-bonding. PVC tubes cost less than steel but tend to de-bond more
rapidly from concrete than do steel tubes. Therefore, when PVC tubes are used they shall
be roughened by abrasion prior to installation (2002). Table 2-3 indicates the approximate
time window for acquiring optimal CSL data.

Table 2-3. Approximate Time Window for Acquiring Optimal CSL Data
Tube Composition Tube ID (inches) Time Window

Schedule 40
Black Steel

1.5 to 2.0 24 hours up to 45 days

Schedule 40
PVC

1.5 to 2.0 24 hours up to 10 days

The Installation of access tubes shall in general terms follow the following procedures
(Branagan & Associates, Inc, 2002 and ALDOT, 2001):

(1) Consult with the project engineer and project specifications to verify: the
type of tubes to be used; the quantity to be installed per shaft; required tube

8

dimensions; and the method of tube installation. For example, Alabama’s
specifications require that “the tubes shall be installed in each shaft in a
regular, symmetric pattern such that each tube is equally spaced from the
others around the perimeter of the cage. The Contractor shall submit to the
testing organization his selection of tube size, along with his proposed
method to install the tubes, prior to construction.”

(2) Watertight caps shall be placed on the bottom and the top of the tubes. In
addition, any couples used to make full-length tubes shall be watertight. Butt
welding of steel tube couplings and the use of tape to wrap pipes is not
permitted. In addition, if PVC pipe is used, couplers shall be threaded or
glued.

(3) Access tubes shall be attached to the interior of the reinforcing cage with
wire ties at regular intervals along the length of the shaft, for example every
three feet. Tubes shall be secured as to maintain vertical and parallel
alignment during cage lifting, lowering and concrete placement. Tubes that
are not vertical and parallel can adversely affect the outcome of a CSL test.
In addition, care shall be taken during reinforcement installation operations
in the drilled shaft hole not to damage the tubes.

(4) In order to include the toe of the shaft in the testing, the access tubes shall be
installed such their bottom is close to the bottom of drilled shaft. Generally,
tubes are placed within six inches of the toe of the shaft. Tubes are also
extended two to three feet above what will be the top of the concrete shaft.

(5) The tubes must be filled with clean water as soon as possible after the
reinforcement cage is set; in no case shall the tubes remain dry for more than
one hour after concrete placement. The addition of the water to the tubes
helps prevent the tubes from de-bonding. The tubes shall be capped or
plugged immediately after being filled with water to prevent debris from
entering into the tubes.

(6) Alabama’s Specifications require, “The pipe caps or plugs shall not be
removed until the concrete in the shaft has set. Care shall be exercised in the
removal of caps or plugs from the pipes after installation so as not to apply
excess torque, hammering, or other stresses which could break the bond
between the tubes and the concrete.”

(7) Normally, after the CSL test is completed, the access holes are evacuated and
filled with an approved grout mix.

When determining how soon after concrete placement a CSL test can be completed,
consideration must be given to how much the concrete has cured. In no case shall a test be

9

considered accurate if completed within twenty-four hours after concrete placement. This
time may need to be extended for larger diameter shafts or if mix designs that retard concrete
setting are used (2002). In the interest of correcting any problems found in a timely manner
and before the concrete is fully cured, the shaft should be tested as soon as possible after it
has adequately cured.

The industry leader in manufacturing CSL equipment is Olson Engineering of Wheat Ridge,
Colorado. The instrumentation provided for a CSL test from Olson Engineering typically
consists of the following components (2002):

(1) A depth wheel/counter cabling system that is used to measure the vertical
elevation of the CSL probes during the CSL Test.

(2) 35-kHz hydrophone source and receiver probes with a diameter of 1.41
inches and a length of 4 inches.

(3) A synchronized triggering system that starts recording data at the same time
that the source is excited.

(4) A microprocessor-based computer system that has the capability to display
individual records, perform analog to digital conversion, record data, data
manipulation, and data output.

(5) As an option, a 12-volt DC battery power source may be incorporated into
the system to allow for remote use of the system.

The procedure for completing a CSL test includes the following (2002):

(1) The top and bottom elevations for the shaft being tested, or the shaft length,
are recorded. The concrete placement date is recorded along with any other
pertinent data regarding unusual observations or events that occurred during
construction of the concrete shaft.

(2) A sketch of the shaft under consideration is made and the access tubes are
assigned a reference number. This reference number is recorded on the
sketch along with a precise distance measurement between all of the tube
pairs and the tube stick-ups above the concrete surface. Since the theory
behind the CSL test is based on the p-wave arrival time, exact determination
of the distance between tube pairs is necessary to accurately analyze a test.

(3) A tripod with the depth wheel is set up over top of the foundation to be
tested and cabling is spooled from the computer, over the depth wheel, to
each of the source and receiver probes. The cabling along with a cable from

10

the depth wheel runs back to the microprocessor based data acquisition unit.
These cables provide both excitation and signal return for the hydrophone,
receiver, and depth encoder.

(4) Standard CSL tests are run with both the source and receiver probes in the
same horizontal plane. Therefore, the test is started by lowering the probes
to the full depth of the tubes being tested. After the slack is removed from
the cables attached to the probes, the cables are simultaneously hand pulled
over the depth wheel to steadily bring the probes to the surface. CSL
acoustic travel time measurements are made at depth intervals of 0.2 feet or
less from the bottom to the top.

(5) Well trained personnel are able to field analyze the measured data as well as
the derived sonic velocities in terms of completeness and accuracy to
determine the validity of the test. Final determination of whether a suspect
shaft contains an anomaly or not should only be made after additional data
reduction and evaluation is completed. This additional work is not
ordinarily completed in a field environment.

The data from a CSL test is typically presented to the client in the form of a written report
which in addition to general descriptive information, includes the following specific
information. Results are based on transit times and signal strength between each tube pair
tested and should include:

(1) Interpretation of velocity profile logs with regard to the integrity of the
concrete.

(2) Identification of the depth interval and tube pair that includes a sonic

anomaly.

(3) Profiles of the initial acoustic pulse arrival time versus depth and pulse
energy / amplitude versus depth (2002).

If it is determined, from CSL testing that a drilled shaft contains an anomaly, several
methods may be used to try and isolate the location of the anomaly. Ultimately, however,
the drilled shaft will likely need to be cored to determine whether or not the shaft is
acceptable.

2.1.2 Crosshole Tomography

Several variations of the CSL test have been developed using the same instrumentation as
the CSL. These tests are typically employed after CSL has determined the high probability
of an anomaly in a given area and are applied to improve location accuracy and to further
characterize the feature. The additional information is utilized to reduce the uncertainty in

11

coring and remediating the defective area (2002). One of the most popular of these
variations is Crosshole Tomography.

A Crosshole Tomography test is performed by leaving the receiver in a fixed position and
raising the hydrophone while the hydrophone is producing sonic pulses. As in the CSL test,
the arrival times from the hydrophone to the receiver are recorded. This procedure produces
ray-paths that allows for three dimensional modeling of the suspect shaft. Figure 2-1 shows
a velocity tomogram of a drilled shaft intended for a highway bridge. The anomalous zone
is the slow-velocity area which lies in between 31 and 33 feet below the top of the concrete
near tube one. Note that the center of the shaft is sound (Olson, 2003).

2.1.3 Sonic Echo Test

Sonic Echo Tests (SET), or Sonic Integrity Tests (SIT), are probably the most un-intrusive
and economical of any of the integrity tests and do not require any access holes in the drilled
shaft. The SET is based on stress wave theory and is part of a family of tests referred to as
surface reflection methods.

In surface reflection tests, a stress wave is introduced into the structure by a hammer impact.
The hammer generates stress waves which causes physical distortion to the media in which
the impact occurred. Four types of waves of concern are generated in the medium due to the
impact (Finno & Prommer, 1994):

(1) Compression waves which are also referred to as primary, “bar”, or
longitudinal waves,

(2) Shear waves which are also referred to as secondary or transverse waves,

(3) Surface waves or Rayleigh waves, and

(4) Stonely waves or tube wave.

The basis behind integrity tests that are developed from stress wave theory is: the time that
it takes for a compressive stress wave to be generated at the surface, reflected off of the toe,
and return to the surface is based on the velocity of the wave and the length of the shaft.
Any variation from the expected arrival time may be indicative of a problem.

The compression wave is the primary concern for SET and is the fastest wave traveling
13,100 ft/s (4,000 m/s) in solid high quality concrete. The compression wave causes the
material being tested to alternate compressive and tensile stresses by the wave (Blitz, 1971).
At the point of the hammer impact, a compression zone is produced which results in the
formation of a compressive stress wave. The compression wave travels down the shaft at

12

c ca velocity (v) with a force (F). Shaft impedance (Z) is a ratio of v and F. It is also a
function of the elastic modules (E), cross-sectional area (A), and compression wave velocity

c(v) of the shaft (Finno & Prommer, 1994).

A change in the cross-sectional area of the drilled shaft and/or a change in the density of the
medium (concrete) will cause a change in impedance. Part of the stress wave reflects back
up the shaft whenever the wave encounters a change in impedance. The remainder of the
stress wave continues down the length of the shaft. A compression or negative wave is
reflected back up the shaft whenever an increase in cross-section or density occurs. A tensile
or positive wave is reflected back up the shaft with a reduction in cross-sectional area or
concrete density. In the absence of changes in impendence, the stress wave travels until it
is reflected off of the pile toe (1994).

Figure 2-2 shows a typical response curve obtained from an SET (SIT). The initial impact
at the top of the pile is visible and the distance to the toe is observed by noting the return
reflection of this wave. Any early reflections would indicate some type of increase in the
impedance of the material to stress wave propagation. This can be a break in the shaft, a
change in soil stiffness, or a significant change in cross section of the shaft. Additionally,
the polarity of the reflected wave with respect to the original impact can often be an indicator
of the type of anomaly encountered. In general, when the reflected wave is of the same
polarity (algebraic sign) as the impact wave, this indicates an increase in cross section or a
decrease in impedance. If the polarity of the reflection is opposite that of the original
impact, a higher impedance is being encountered, such as would be caused by a necked
region of the shaft.

Part of the impact energy is radiated into the soil (Paquet, 1968). Attenuation of the stress
waves are continually occurring as they travel down the shaft as a function of the concrete
quality, soil conditions surrounding the shaft, and the shaft cross-sectional area. Stress wave
attenuation will be greater for shafts placed in stiff soil than for those placed in loose soil.
In addition, wave attenuation will be less for shafts with larger cross-sectional areas than for
those with smaller cross-sectional areas. “In general, scattering of the signal occurs due to
changes in the material the wave is propagating through, especially at boundaries where
there are abrupt changes in the impedance between two materials” (Finno & Prommer,
1994).

The Sonic Echo Test was first used in Holland in the 1970’s as a means to provide quality
for control driven precast concrete piles. As stated above, if the shaft contains irregularities
in the concrete, such as cracks, a change in cross sectional area, or poor concrete quality,
reflections will occur which indicate the presence of an irregularity. Therein, discontinuities
can be severe enough to prevent the stress wave from reaching the toe altogether (1994).

Test equipment for the SET includes a hammer with a triggering device combined with a
vertical geophone attached to a laptop or portable computer. Geophones are low frequency
transducers that can measure frequencies below 2 kHz. As an alternate, accelerometers may

13

be used in lieu of the geophone. However, since the accelerometer measures acceleration,
additional signal processing must be performed to obtain velocity. The laptop typically
contains a data acquisition card in combination with a signal conditioning unit.

In order to perform a SET, two areas on the top of the concrete shaft being tested are cleaned
and ground to a smooth surface. One area is cleaned close to the center of the shaft. This
location is the impact point for the hammer. The second location shall be near the perimeter,
but within the rebar cage. The geophone is fixed to the concrete surface with a coupling
agent. Next, the shaft is struck with the hammer at the area close to the center. Once the
hammer impacts the top of the shaft, the portable computer is triggered and records the
response of the top of the shaft via the geophone or the accelerometer. Background noise
can be eliminated by performing the test several times and comparing and averaging the
results (1994).

The results of the SET indicating a sound shaft show compression wave reflection planes at
the concrete-soil interface at the toe and the concrete-air interface at the top. Defects in the
shaft will also cause the waves to reflect. The waves will continue to reflect back and forth
between the reflection points until full attenuation has occurred. The depth of the reflector
is determined by the following equation:

bwhere, z is the depth to the reflector (either a defect or the toe of the shaft), V is the
longitudinal wave velocity in concrete, and Dt is the travel time of the reflected wave. Since

the velocity of the compression wave varies with concrete quality, it is preferable to

b determine V based on concrete samples that are representative of the in-situ concrete in the
drilled shaft. As a less accurate method it is reasonable to use the values indicated in Table
2-6, though these values differ from source to source. Therefore, the values indicated are
based on ultrasonic pulse velocity measurements represented by an infinite concrete medium
as reported by Hearneet al., al. (1981). These values are reduced 5%, assuming a Poisson’s
ratio of 0.2 for concrete since Hearne’s experiments were based on an infinite concrete
medium.

Table 2-4. Compression Wave Velocity in Concrete
Compression wave velocity, feet per

second (meters per second)
General concrete quality

Above 14,200 (4,300) Excellent
11,400 – 14,200 (3,500 – 4,300) Good
9,500 – 11,400 (2,900 – 3,500) Questionable
6,700 – 9,500 (2,000 – 2,900) Poor

Below 6,700 (2,000) Very Poor

14

According to a report published by the FHWA (Baker et al., 1993), concrete with a

c compressive strength of approximately 4,300 to 5,100 psi (30 to 35 MPa) has a V between
12,500 and 13,100 ft/s (Finno & Prommer, 1994).

In order to interpret a SET, both the concrete quality and the shaft length must be known or
assumed. Given these parameters, it is easy to determine if a reflection in the signal is either
the toe or an anomaly present in the shaft (1994).

Exponential amplification is used to progressively increase the amplitude of the reflected
signal in a similar manner to its attenuation. This amplification process is required because
the impact at the top of the shaft produces small strains relative to those required to mobilize
the shaft capacity. However, it is important to verify that the reflection is being amplified
and not just background noise (1994).

There is a limiting length / diameter (L/D) ratio beyond which all wave energy is dissipated
and no toe response can be detected (Baker et al., 1993) The limiting L/D ratio varies
depending on the damping and signal loss into adjacent soils. In soft soil deposits, such as
silts, good results can be obtained for L/D ratios of 50:1 (Davis and Robertson, 1976). For
stiff clays, this ratio is reduced to 30:1 (Hearne et al., 1981). In cases where the L/D ratio
is exceeded, the only useful information that can be obtained from a SET test is the presence
or absence of anomalies in the upper portion of the shaft (Finno & Prommer, 1994).

As with the CSL test, several variations of the SET have been developed in which a receiver
is embedded along the shaft or at the shaft toe. The additional points allow direct
measurement of the compression wave arrival time and permit more accurate velocity
calculations. This method also allows for shafts that exceed the L/D ratio to be tested with
a higher level of confidence. However, this method drastically increases the cost of the SET
since care must be given to the installation of the embedded receivers and the receivers are
not able to be retrieved and used again; they become a permanent part of the shaft (1994).

The SET is only useful for determining the linear continuity of a shaft. Its limitations
include but are not limited to (1994):

(1) SET provides no quantifiable information about the shafts cross-sectional area or
behavior of the shaft under load.

(2) Unless the test utilizes embedded receivers, only the uppermost defect can be readily
detected. Any defects occurring below the initial defect may not receive adequate
signal to return a reflection that will not be masked out by noise.

(3) The hammer impact generates Rayleigh waves which propagate along the shaft
surface and cause a noisy environment. This problem is especially troublesome in
the top 10 feet of a shaft.

15

(4) Defects located near the toe of the shaft can be difficult to identify since reflections
from anomalies close to the toe may easily be misinterpreted as the toe and not an
anomaly.

(5) Since a reduction in concrete shaft cross-sectional area, or necking, and poor
concrete quality both produce reductions in impedance, it is not possible to
distinguish them. In addition, a gradual decrease in cross-sectional area may not
generate a reflection at all.

(6) A layer of stiff soil may cause reflections, increasing the uncertainty of the shaft
integrity.

(7) An increase in cross-sectional area will actually increase the shaft capacity and is
generally not viewed as a problem. However, the reflection from the bulb will be
similar to that of a defective shaft.

(8) Utilizing higher frequency waves would improve the accuracy of the test. However
the wavelength used for the SET cannot decrease much less than the diameter of the
shaft. If shorter wavelengths are used, the shaft will behave as an elastic medium
where compression waves will occur from all shaft boundaries and not behave like
a rod-type structure.

(9) In stiff soils, wave attenuation can be a problem. The more similarity between the
toe bearing material and the concrete, the lower the amplitude toe reflection.
Therefore, shafts with end bearing in rock have very poor toe reflections.

It has been summarized in Finno & Prommer (1994), that “the method (SET) is best suited
for checking precast and permanently cased piles due to the straight-sided shafts these
structures provide. It is not as suitable for drilled shafts due to variations in cross-section
that often exist causing multiple reflections.”

Several case studies of SET discussed in Finno & Prommer (1994) are summarized below
as supporting documentation to the information contained herein:

(1) SET tests were performed on 1.6 feet (0.5 m) diameter auger cast friction piles with
lengths ranging from 20 to 59 feet (6 to 18m) and founded in stiff and very stiff clay
layers. As expected, the piles with a L/D ratio of 32:1 and 36:1 did not produce a toe
reflection. Since the length of the piles were known, allowing for the determination
of the compression wave velocity, it was also possible to determine that one pile had
poor or questionable concrete quality. Specifically, the compression wave velocity

c c in this pile was V = 11,200 ft/s (3,400 m/s). The remaining piles had V ranging
from 11,500 to 13,100 ft/s.

16

(2) As part of a FHWA test program for evaluating drilled shafts for bridge foundations,
a test section was constructed at Texas A & M University with nine shafts. These
shafts varied in length from 34 to 79 feet with 3 feet of stick-up above the ground
level. All of the shafts were constructed with a 36 inch diameter (L/D ratio from
11:1 to 26:1). The integrity tests performed on the piles included the Impulse
Response, Sonic Logging, and Sonic Echo. In this study, several shafts were
constructed with both planned and unplanned defects. In conclusion of this test, SET
was able to determine some areas where defects occurred. However, the results also
showed the limits of the SET and in one case, “…one could have been deceived into
thinking that the reflection at 31 feet (9.4m) was the toe, if it was unknown that the
shaft was 79 feet (24.1 m) long.”

Clearly the SET method of integrity testing can return some questionable results that may
lead an engineer to falsely accept or deny the integrity of a test.

2.1.4 Impulse Response Test

Another method that is based on the measurement of compression wave reflections is the
Impulse Response Test (IRT). This test is an extension of the vibration test, which was
found to provide more information than the SET, particularly with the irregular profiles of
drilled shafts. In the IRT the head of the shaft is impacted with a hammer that induces
transient vibrations with frequencies as high as 2 kHz. The response of the shaft to these
vibrations is measured in the time domain, and the signal is digitally converted to the
frequency domain for analysis (1994).

The equipment set up for IRT is similar to SET except the impact hammer has a load cell
that measures the impact force with time. A vertical geophone is triggered upon hammer
impact and records the vibrations at the shaft head. Both the hammer and the geophone are
connected to a portable PC which is used for acquiring, analyzing and storing the data.

The testing procedure for IRT is identical to the SET. However, it is critical that the hammer
strike the shaft head squarely to ensure proper force measurement.

Unlike SET, IRT provides a determination of the homogeneity of concrete in the shaft and
measure of the shafts performance (Higgs and Robertson, 1979). IRT provides a stiffness
value of the shaft which has a direct correlation to shaft performance. In addition, the shafts
length may be determined from the IRT (Finno & Prommer, 1994).

Analysis of the results obtained from an IRT includes performing Fast Fourier Transform
(FFT) on the force and velocity signals to convert them from the time to frequency domain.
Next, a plot of mobility versus frequency is obtained by dividing the velocity spectrum by
the force spectrum. The length of the shaft is calculated by measuring the frequency change
between resonant peaks (1994).

17

IRT data when presented on a mobility plot can be subdivided into two distinct regions.
First, at low frequencies there is a lack of significant inertial effects and the response of the
system is linear, like a spring. However, at higher frequencies the system goes into
resonance. The frequencies associated with this resonance depend on the length of the shaft,
and their relative amplitude depends on the damping characteristics of the soil (Baker et al.,
1993). If the results of an IRT test indicate a smaller shaft length than expected, this is
interpreted as an anomaly. Then, information from the linear portion of the mobility curve
(Figure 2-3) is used to obtain the dynamic stiffness of the shaft. This aids in the
determination of whether the measured anomaly is a neck or a bulge. The following
equation illustrates this calculation:

m o o mwhere, E’ is the Dynamic Stiffness, f is the frequency, and the ratio (V /F) is known as
the Mobility.

The low-strain dynamic stiffness (K’) can be calculated and correlated to the static stiffness.
At low frequencies, the lack of internal effects causes the shaft/soil system to behave as a
spring. This behavior appears as a linear increase in amplitude of mobility from zero to the
onset of resonance (Baker et al., 1993). The commonly accepted dynamic stiffness value (K)
provides a good indication of the low-strain, soil-foundation interaction. For a rigid base a
high stiffness value will be calculated; for a compressible base a low stiffness value will be
calculated. By comparing stiffness values for similar sized shafts, it can be determined
which ones should be considered questionable. Shafts founded in loose soil and shafts that
have soil inclusions, necks, and breaks will have lower stiffness values than sound shafts
founded in solid soils (Finno & Prommer, 1994).

min max An evaluation of the shaft performance is made by calculating the K and K or the
theoretical limiting values for dynamic stiffness and comparing them with the actual stiffness
value. In addition, the IRT provides a calculation of the theoretical mass of the shaft which
can be cross-checked against the amount of concrete used in the shaft (1994).

It is easier to determine if a bulb or a neck has occurred with IRT than with SET. Stiffness
values are lower than normal for necked shafts and higher than normal for shafts with bulbs.
In all, this method proves to be better for testing the integrity of drilled shafts than SET with
some of the same limitations, such as:

(1) This is a surface reflection method that relies on measuring reflected responses.

(2) There is a limiting L/D ratio based on the soil conditions. As this L/D ratio is
approached, the curve will flatten out to where resonant peaks are not discernable.

18

(3) This method is subject to the problems associated with surface waves.

(4) There is a limit on the size of defects that can be detected.

(5) Only the top defect in a shaft can be detected, if multiple defects exist.

(6) In order to interpret the results from a test, either the concrete compression wave
velocity or the shaft length must be known.

2.1.5 Gamma-Gamma Testing

Gamma-Gamma Testing (GGT) is an integrity testing method that is widely used and
accepted by Caltrans. In GGT testing, a source of ionizing radiation is lowered down an
access tube similar to CSL. The probe that emits the radiation also contains a gamma-ray
detector. The basic theory behind GGT is that the number of gamma-ray photons per unit
of time that are reflected from the nuclei of the modules of the material surrounding the tube
and return at a given energy level to the detector is related to the density of the material
surrounding the tube. In short, GGT can detect significant reductions in localized density
of the shaft concrete which would be indicative of a void or imperfection in the shaft
(O’Neill & Reese, 1999). GGT has an advantage over CSL in that it can detect reductions
in concrete density outside of the reinforcement cage.

The access tubes for GGT must be made of a material such as PCV that will allow the
photons to pass through and reflect back through the wall of the tube. In general GGT will
not detect changes in density of the concrete outside of about a 4 inch (100 mm) radius from
the access tube. In order to accurately determine the density of the entire shaft, access tubes
would need to be placed at 8 inches (200 mm) on center. Since this is not possible, an
engineer must be content with having intermittent sampling of the concrete density around
the perimeter of the cage (1999). Caltrans recommends that one access tube be used per foot
of pile diameter (Lew et al., 2002). This leaves a tube spacing of about 2.75 feet around the
circumference of the cage.

It is further recommended that the access tubes be placed at least 3 inches (76 mm) away
from any vertical reinforcement. Since the vertical steel reinforcement is about 3 times more
dense than concrete, having the reinforcement too close to the access tubes or varying the
distance between the tubes and the reinforcement will cause false readings in the bulk
density readings. Furthermore, if the access tubes around the perimeter of the cage are not
placed so that they have the same influence from the reinforcement, different tubes within
the shaft cannot be compared (Speer, 1997).

Due to the length of the gamma-gamma probe, vertical alignment of the access tubes must
be maintained so that a 2 foot (0.6 m) long by 1.9 inch (48 mm) diameter rigid cylinder can
pass from the top to bottom of the tube (1997). Since radiation sources are subject to the
Nuclear Regulatory Commission (NRC), regulations that require special training and

19

licensing is required for the handling and transporting of the device. Abandoning a lodged
device and grouting it in place is not an option. During one well documented GGT, the ion
transmitting probe was wedged in the inspection tube. It took two weeks to remove the
probe using special drilling and finishing tools (Lew et al., 2002). Caltrans specifications
require access tubes that do not allow the probe to pass through be drilled out to allow the
probe to pass through the access tube (Speer, 1997). In addition, the process can be time
consuming compared to other testing methods. A typical 7 foot (2.1 m) diameter shaft with
seven inspections tubes 60 feet (18 m) long will take eight hours to test.

The standard GGT has a 1.87 inch (47 mm) diameter gamma-gamma probe with a 10
millicurie Cs 137 source. The probe is lowered down the access tube with a cable. The
probes are configured for the determination of density by backscatter. This method allows
for the use of a less powerful radioactive source. Radiation is emitted from the source at the
bottom of the probe. The radiation is simultaneously absorbed and scattered by the concrete
and reinforcement surrounding the inspection tube. The receiver at the top of the tube counts
the reflected gamma rays over a time interval. More gamma rays are counted in less dense
material than in dense material (1997).

GGT data is processed by first plotting the bulk densities versus time. Next, this data is
compared to all of the data for shafts in the same vicinity, using the same probe. The data
sets are reviewed and data that is insignificant and redundant is discarded. The mean, mean
minus two standard deviations, and the mean minus three standard deviations are plotted on
the same graph. Figure 2-4 show the results of GGT that clearly shows the presence of a
necking defect.

Interpretation of the test results rely equally on experience, engineering judgment, and
statistical analysis (1997). In any shaft, there is normally some variation in the density of
normal concrete from different points in the shaft. In general, anomalies can be interpreted
if the bulk density of the concrete appears to drop below the mean minus three standard
deviations line (O’Neill & Reese, 1999). As with most, if not all of the integrity testing
methods, it is difficult, if not impossible, to determine the exact nature and full extent of
potential anomalies without extracting the shaft.

2.1.6 Concreteoscopy

Concreteoscopy is a relatively new testing method that allows the integrity of the shaft to be
checked in real time. In this testing method, ½ inch diameter (12.7 mm) clear plastic tubes
are attached to the rebar cage. As the concrete is placed, a miniature television camera on
a fiber-optic cable is used to view the concrete from within the tubes. This test is similar to
the GGT except that the results provide visual conformation as to the soundness of the
concrete instead of relying on density monitoring. As with GGT, Concreteoscopy is able to
view only the material directly adjacent to the access tubes (1999).

20

2.1.7 Parallel Seismic Integrity Testing

Parallel Seismic Integrity Testing (PSIT) was developed in France in the 1970’s to evaluate
the conditions of piles and drilled shafts under existing structures (Davis and Hertlein, 1993).
The general procedure for the (PSIT) is that after the shaft construction is complete, a
borehole is drilled adjacent to and slightly deeper than the shaft. Stress wave energy is
generated on the surface of the structure by impacting it with a hammer and the arrival time
of the compression wave is monitored in the bore hole by means of a hydrophone. The tests
are typically completed in increments of approximately 20 inches (50 cm) (Stain, 1987). A
profile of signals is built up for the entire length of the shaft. Under good conditions,
transmission distances up to 130 feet (40 m) are possible (Davis and Hertlein, 1993).

As in the CSL test, the access tubes are filled with water. As discussed in earlier testing
methods, the stress waves generated on the surface due to the impact have a velocity that is
directly proportional to the density of the medium in which they are propagating. Therefore,
the arrival times of the stress waves are proportional to the depth of the hydrophone. A
difference in the rate of the arrival time velocity with respect to depth indicates a change in
the medium or the base of the shaft (Finno & Prommer, 1994).

The test equipment required for a PSIT includes an impulse hammer, a hydrophone receiver,
and a data acquisition system that allows high speed sampling of the hydrophone. In a
typical arrangement, the data acquisition system is triggered when the impulse hammer
strikes the pile or the shaft. The hydrophone then records the arrival of the generated stress
waves. The hydrophone receiver must be capable of withstanding the hydrostatic pressure
generated within the access tubes or boreholes, which can be in excess of 43 psi. The data
is collected by the acquisition system, which typically consist of a data acquisition card in
a portable computer, and may be analyzed on site.

The borehole should be made in the ground adjacent to the foundation and slightly deeper.
To assure the correctness of the test, the boreholes must be parallel to and within 3 feet of
the shaft wall. If the distance between the shaft and the borehole is not relatively constant,
variations in arrival time will occur leading to false readings. In addition, if the borehole is
greater than three feet from the shaft wall, the signal will be affected due to attenuation and
the non-homogeneity of the different soil layers. Since compression waves are able to travel
through fluids, water is added to the borehole to act as a coupling medium for the
hydrophone receiver (1994).

This method of testing can also be accomplished by coring a hole in the suspect structure,
filling with water, and performing the test as outlined above. This test method is referred
to as the downhole seismic method. The arrival of the compression wave is critically
refracted along the core hole wall at the propagation wave velocity of concrete (Davis and
Hertlein, 1993).

21

The test results and integrity are dependent on the ability to measure the direct arrival time
of stress waves. An anomaly in a drilled shaft will appear as an increase in the arrival time
of the wave at the depth in which the anomaly occurs. A test result for a continuous shaft
without defects should contain a linear increase in arrival time with depth. The toe of the
shaft will also cause an increase in the wave arrival time, giving a clear indication of the
location of the shaft toe.

The downhole seismic test records a second wave in addition to the compression wave. This
second wave is known as the tube, hydo, or Stonely wave. The tube wave velocity is a
function of tube diameter, roughness, and the permeability of the material surrounding the
hole. The velocity of the tube wave is approximately 5,000 ft/s (1,500 m/s) in cored concrete
and, its amplitude is much greater than that of the concrete compression wave (1993).

Tube waves are reflected from the ends of the core hole. They are refracted at locations
where the bulk elastic modulus of concrete and the diameter of the core hole change. The
shape and the spectral content of the tube waves have a higher frequency and a shorter
duration than the first direct waves. Vertical receivers are generally used for recording tube
waves (Galperin, 1985). Little has been studied about obtaining information from the tube
wave, which theoretically should be able to yield information on the concrete quality (Finno
& Prommer, 1994).

All that can be determined from reviewing the results from either a parallel seismic or
downhole test is that arrival time of the compression wave or tube wave has increased as a
result of lower wave propagation velocity. These changes can be caused by several factors
including changes in concrete quality, cracks, soil inclusions, and the toe of the shaft.
Therefore, it is difficult to determine the type of defect, if any exists, that has caused the
change in the slope of the arrival time line. This may lead to inconclusive results. Another
major disadvantage of the tests is the cost of coring and installing the access hole (1994).

In review of a case study as reported by Finno & Prommer (1994), two test piles were
constructed at a research site in France by the CEBTP (Centre Expérimental �Études du
Bâtiment et des Traveux Publics). They were both 46ft (14m) long and 26in (65cm) in
diameter. One was continuous and the other had a break at 24.6ft (7.5m). Access tubes were
installed adjacent to the shafts to a depth of 66ft (20m) to facilitate parallel seismic testing.
The sound shaft had a signal transmission time that increased linearly with depth down to
the toe, proving continuity over the full length. The broken pile was linear down to 24.6ft
(7.5m), but the arrival time increased significantly below this point. For this shaft, it was
known that the pile extended to 46ft and had a break at 24.6ft, but the test was unable to
differentiate weather the break was in fact a defect or whether it was the pile toe.

22

2.1.8 Thermal Integrity Testing

Recently, a new method for evaluating the integrity of drilled shafts has been developed that
uses the natural temperature rise of curing concrete. This concept involves precisely
measuring the temperature within the shaft due to the heat of hydration generated while a
temperature gradient exists (within the first week). Subsequent signal matching with a
computer model is used to discern the location and size of inclusions that produce no heat.
Aside from the merits of thorough integrity evaluation, this method provides integrity
feedback while the concrete is still “green” allowing easy coring, flushing, and grouting of
affected areas.

In the late 1980's, University of South Florida researchers idealized a method of evaluating
the integrity of drilled shafts on the basis of the measured soil temperature around the curing
concrete foundation elements. At that time, it was conceived that the then-evolving quasi-
static cone penetrometer could be equipped with thermocouples capable of registering subtle
variations in soil temperature caused by the generation of heat from cement hydration
reactions. These variations in temperature would be indicative of a compromised shaft
structure. In concept, a homogeneous concrete cylinder would produce a uniform
temperature profile with depth (with some variations attributed to soil stratigraphy).
However, as many drilled shafts were cast in soils that were not amenable to cone
penetration testing (e.g. rock or gravelly soils), the applications for this approach were
severely limited.

The general use of access tubes in drilled shaft reinforcement cages refocused the thermal
integrity concept to consider capturing and modeling temperature data from the pile interior.
Recent developments in the remote monitoring of industrial processes, using windowed or
focused infrared systems, has allowed the researchers at USF to design a preliminary system
for recording continuous thermal traces on the interior walls of access tubes. The infrared
transducers used are robust and can register surface temperature using reflected wave
technology. Some of the signal condition systems, however, were fraught with components
incapable of withstanding the harsh down-hole conditions which have been overcome
through a series of system generations that are discussed below.

Temperature anomalies that can be expected in a drilled shaft may derive from various
phenomena, and are listed in Table 2-7. In general, three overall categories exist based upon
the anomaly type (heat source changes, boundary condition changes, and the scalar product
grad T • grad diffusivity). All three categories of thermal signal anomalies were observed
in the Auburn field data collected in an earlier study.

23

Table 2-5. List of thermal anomaly types and descriptions.

Phenomena Anomaly Type Anomaly Source

GWT boundary condition higher specific heat of water

aggregate heat source (none) lack of heat production

rebar diffusivity gradient very high conductivity

 shaft toe boundary condition vertical flow condition

 lift heat source mix age or mix proportions

soil slump heat source
 boundary condition

 lack of heat production
 change of heat flow geometry

2.2 Development of the Thermal Integrity Testing Device

The first probe capable of making thermal integrity measurements was outfitted with a single
infrared thermocouple that was inserted into a logging tube four times to ascertain the
temperature variation in both the radial and circumferential directions. This probe and
system was not a field unit, but rather was intended to verify that an anomalous temperature
signature could be identified from regions where no heat producing cementitious products
were curing. Signal conditioning was provided via an off the shelf (OTS) voltage to current
loop converter which in turn is digitized for computerized data acquisition using a
multipurpose system from Optim Electronics. This prototype served its intended purpose
and was subsequently upgraded at the onset of this study. Figure 2-5 shows the first data
collected from a 2ft diameter shaft cast above ground in a sonotube with several known
anomalies.

Generation I. The first generation of field thermal integrity devices was outfitted with four
orthogonally-oriented infrared sensors that could simultaneously register the wall
temperature in four directions. Due to space considerations, each sensor was separated
vertically by 3in. This improvement (of four sensors) led to more intelligible data, as the
introduction of the probe into the access tube disrupts the wall temperature (by inducing
cooling), and thus reducing the temperature for the subsequent three soundings.

The infrared transducer is based on thermocouple technology (junctions of dissimilar metal
conductors) using radiative thermal energy focused on a thermocouple. Each infrared
transducer generates a voltage signal output, on the order of 5-10mV over the range of
temperatures in outdoor conditions and hydrating concrete. The slope of the response curve
in the useful range of temperatures is roughly 0.3mV per degree Celsius. Maintaining the
integrity of the signal from the sonde (probe) to the data recording device (e.g., laptop
computer adjacent to the pile test) through lengthy copper cable requires high gain
amplification of the differential signal, and conversion to a current signal. Therefore a high
input impedance amplifier stage with gain and a voltage-to-current amplifier stage (4-20mA

24

“current loop” AD697 chip) is included in the sonde. Also included in the updated design
is a digitizing vertical displacement counter/encoder, similar to that used in computer
“mice,” for registering the depth of the sonde within the shaft.

The data output of the sonde consists of the depth within the access tube from the encoder,
and four current signals from each of the infrared sensors. The four current signals are
converted to voltage signals directly by simply reading a voltage drop across a resistor
placed in each sensor circuit near the recording equipment. These voltages, as well as the
encoder signal, are read directly into a laptop through a National Instruments DAQ700, 12-
bit multi-channel data acquisition card. As the depth encoder/counter represents one value
of depth within the shaft, a depth “shift” is added for each sensor, which represents the
vertical separation of each temperature sensor and the observed depth. After the voltage-
temperature conversions and depth corrections are made, individual temperature readings
from each channel will consist of an ordered pair of depth and temperature.

The system was composed of the following components:

(1) Sampling Tubes – Sampling Tubes, similar to those used in Cross Hole Sonic
Logging and other integrity methods are used to allow access of the sampling
equipment into the core of the concrete element being tested. Sampling Tubes for
TITS may be PVC Pipe, Black Steel Pipe, or Inclinometer Casing. Steel, however,
is less desirable.

(2) Quad-directional Infrared Thermocouple – The heart of the Thermal Integrity
Testing System is the four Omega Brand OS36RA Infrared Thermocouples. The
infrared thermocouples allow for the spot temperature measurement of the access
tube wall without having to touch the wall of the access tube. The infrared
thermocouples are housed inside a custom designed and fabricated Teflon housing.
The housing holds each of the OS36RA in one of the four different primary radial
directions, i.e. 0 , 90 , 180 , 270 .o o o o

(3) Voltage to Current Loop Converter – In order to effectively eliminate attenuation of
the thermocouple output signal from the infrared thermocouple, the output voltage
from the infrared thermocouple was converted to a 4 – 20mA current loop through
the use of the Analog Devices AD693 monolithic signal conditioning chip placed in
a custom designed and constructed circuit. The use of the current loop allowed for
repeatability of measurements regardless of the length of the umbilical cord. One
voltage to current loop converter for each thermocouple was housed in the Teflon
down hole casing (Figure 2-7).

(4) Alignment wheels – Alignment wheels complete the downhole sensor assembly,
maintain a uniform radial distance from the access tubes and the Infrared
Thermocouples, and prevent abrupt angular movement of the assembly. In addition,
the alignment wheels add weight to the downhole assembly which keeps it moving

25

down and overcomes sidewall rolling resistance. The alignment wheels are similar
to those used for an inclinometer and are therefore directly applicable to inclinometer
casings.

(5) Umbilical Cable – Belden 6-conductor 22 AWG shielded cable with a PVC jacket
is used to provide excitation to the downhole sensor along with signal return from
each of the infrared thermocouples. The cable also acts to lower and raise the sensor
in the access tube.

(6) Data Acquisition Signal Conditioning – The circuitry for the infrared thermocouples
is completed by transforming the current in the current loop back to voltage so it can
be easily measured and recorded by the Data Acquisition System. The current to
voltage circuit is housed in the electronics “black box” that also houses the
connections for the power supply, and the depth encoder along with the Data
Acquisition terminal block, the ribbon cable that connects the terminal block to the
Data Acquisition Card, and a manual thermocouple output device.

(7) Data Acquisition System – The backbone of the data acquisition system is the
National Instruments DAQCard – 700 which provides the hardware interface
between the data acquisition terminal board in the Black Box and the portable
computer. Software to monitor and the input signals from the infrared
thermocouples and the depth encoder consists of a LabView based program that
provides real time numerical and graphical representations as well as the ability to
adjust calibration factors.

(8) Power Supply – A standard 120VAC to +/- 15VDC @ 0.24A power supply /
transformer is used to provide excitation to the downhole device. Excitation for the
depth encoder is provided from the data acquisition card in the portable computer.

(9) Depth Encoder – The vertical position of the downhole sensor is determined from a
depth encoder wheel assembly. The wheel is made out of polyethylene and has a
roughened groove cut into it. This combination provides a high coefficient of
friction and a large amount of surface area between the umbilical cable and the
wheel, effectively eliminating the possibility of slippage. In addition, the shaft of the
wheel rides in two high precision bearings which are pressed into wheel assembly
housing. A Clarostat 600EN digital encoder is used to measure the angular motion
of the wheel assembly.

(10) Standard Surveying Tripod – A standard surveying tripod is used to position the
depth encoder over the access tubes and provide support during testing.

26

(11) Optional Driver Motor and Pulley Assembly – A 2 RPM 110VAC motor combined
with a drive pulley and an idler pulley is used to lower, and if desired, raise the
downhole sensor in the access tubes. This motor is typically mounted to a portable
job box. Figure 2-7 shows the general setup of the testing equipment.

Problems with this device were multi-fold: (1) the stagger in the IR devices led to doubt in
time variations between measurements from the first to the last transducers, (2) the down-
hole voltage to current loop converters were sensitive to temperature variations of the
connections between the transducer and the signal conditioners in that environment, (3) the
DAQ 700 data card in the National Instruments Labview environment was clumsy and made
updates to both the software and data collection difficult to use, and (4) the probe was too
long (almost 6ft long) to be easily used. Figure 2-8 shows the components of the system.

Generation II. The limitations of the first system led to modifications including signal
conditioning, probe geometry, data acquisition, and calibration. Signal conditioning was
upgraded in the second generation field probe whereby the temperature of down-hole
components were monitored to correct for Siebeck effects at the thermocouple junction with
the amplifiers. A cleaner power source was designed and fabricated and incorporated into
a specially produced printed circuit board that minimized the down-hole component volume
(Figure 2-9). The probes were also mount at the same elevation within the device.

Unfortunately, problems were still encountered with this device: (1) the specially printed
circuit board was not protected from environmental hazards causing corrosion on the board
over time, (2) the data acquisition system was changed from the DAQ 700 data card to the
Optim Megadac data acquisition system. The Optim system was a more robust data
acquisition system, but extremely bulky for field testing, and (3) the probe was still too long,
though shorter than the previous, to be easily used.

Generation III. As the second generation system was being developed, the third generation
system was also being built. The third generation system utilized pre-manufactured signal
transmitters from Omega Engineering (Figure 2-10). These transmitters were epoxy-potted
to protect them from environmental hazards and the overall size was much less than the
special printed circuit board in the second generation. The smaller size allowed for a smaller
down-hole device (almost half the size of the second generation). This device also used the
Optim data acquisition system as used by the second generation. Even though the
transmitters were protected, the infrared thermal probes still had to be connected to the
transmitters via a mechanical connection. This mechanical connection would collect
moisture down-hole, and after multiple scans the moisture buildup would short-out the
signal.

Generation IV. At the conclusion of this project, a new system was devised that overcame
the above obstacles from the prospective of both down-hole durability and portable data
acquisition. This system is presently in use.

27

Figure 2-2. Typical Response Curve for SIT (after Baker, 1993)

Figure 2-1. A Velocity Tomogram of a Drilled Shaft on a Highway
Bridge showing an anomalous zone between 31 and 33 feet

28

Figure 2-3. Typical Mobility Plot for IRT (after Baker, 1993)

Figure 2-4. Results of a Gamma Gamma Test Indicates Necked Shaft

29

Figure 2-5 Initial test results from probe with single infrared sensor.

30

Figure 2-6 Generation I integrated circuit board wiring configuration.

Figure 2-7 Generation I thermal integrity system with four orthogonal infrared sensors.

31

Figure 2-8. Generation I system components.

Figure 2-9. Generation II probe and down-hole electronics.

32

Figure 2-10. Generation III probe and down-hole electronics.

33

3. THERMAL TESTING MODEL

This chapter outlines three areas of the thermal modeling efforts performed in this study
which include the algorithm development, user guide, and the visual post processor.

3.1 Algorithm Development

This thermal software developed for this project has two significant components: (1) an
executable fortran algorithm and (2) a visual basic graphical user interface at present called
T3DModel. This section provides an overview of the fortran algorithm. Use of the visual
basic user interface is described in the following section.

3.1.1 Numerical Modeling

The 3-D forward model uses the diffusion equation for heat, with temperature T, and time-

sdependent source Q , as the governing equation,

where I denotes Einstein notation for the three spatial (x) coordinates, s is the scalar thermal

pconductivity, D is density, and C is the specific heat. Nodal spacing is constant in each
coordinate, but can vary between coordinate axes.

The Fortran-programmed solution uses a finite differences formulation on a 3-D grid of body
centered nodes in rectilinear parallel-piped elements of volume Dx*Dy*Dz. In general a
Cartesian system is sufficiently amenable to modeling curvilinear bodies, whereas a
cylindrically oriented system, preferable for circular section drilled shafts, is poor at
modeling rectilinear or even elliptical sections, and is therefore not as general a geometry
for modeling thermal bodies. Also, putting a finite difference geometry in cylindrical
coordinates finely divides the interior of the drilled shaft cylinder compared to the periphery,
whereas the thermal and material property gradients and overall structural interest is greatest
in the outermost 1-2ft of a deep foundation concrete member.

Each nodal “volume” is represented by two temperature grid matrices for tracking the n andth

(n+1) time-slice, and a matrix for the material index for specifying material density,th

specific heat, and thermal conductivity. The method proceeds iteratively to a solution by
relaxing the differential residuals introduced at each node at the beginning of each time-slice,
which can be thought of as heat “storage” and “production” Heaviside (“step”) functions at
each node, scaled by the product D Cp, for storage, and Q for the production term.
Physically, this corresponds to the Fourier heat transfer out of (or into) storage and

(1)

34

(2a)

(3)

production at each node instantaneously, and is analogous to a damped smoothing operator
in the uniform material case. The measure of convergence to a solution is simply the largest
residual observed in the model space, i.e., the largest nodal temperature relaxation in the
(n+1) time-slice grid during the latest iteration. th

To discuss the finite difference solution scheme, assume a uniform material distribution in
the model, and without sources. The remaining parts of equation (1) constitute the diffusion
equation with constant thermal parameters. Solving for temperature using explicit
differentials (from either the initial conditions or the previous time-slice), the spatial and
time derivatives can be written as,

(2b)

which are assumed to be solved at nodal location i,j,k (indices for x,y,z, respectively), and
Di,Dj,Dk represents the radius from point i,j,k over which summation occurs for evaluating
the n+1 time-slice. In the simplest case of an isotropic, uniform distribution of material
properties, without sources, substituting these two expressions in (2) into (1) yields a useable
finite difference scheme.

However, convergence of the solution using this formulation is not guaranteed. There are
several approaches for characterizing the development of an iterative solution through time;
the iteration- wavenumber method of von Neumann is used here. Consider the temperature
at a node to be a slowly varying parameter by iteration, and that it is affected locally by
similarly smoothly varying temperatures. This allows the temperature to be amenable to
methods in Fourier wavenumber space (which represents a differential equation system with
constant coefficients). This is the basis of the von Neumann method. The temperature field
which includes the node, results from the propagation of information from the previous
iteration’s nodal residuals, derived from the summations in the finite differences (2a). The
solution propagates through the model domain with a real-valued wave speed k. The
temperature at node i,j,k can be written as

where x is the complex-valued “amplification factor” of the n iteration. A similarth

expression for the n+1 temperature is also written. The solution behavior can be analyzed
after substituting these expressions for T into the finite difference formulation. In order for
a solution to converge, it must be bounded for all possible n+1 iterations. The analysis then
hinges on finding the expression for the latest amplification factor, x , dividing by x ,n+1 n

knowing that for convergence |x|<1. For the explicit formulation given in (2), the

35

(4)

amplification factor is,

which indicates that the solution is convergent when

(5)

This condition on the solution shows that the length of a time-slice is constrained by the
length of travel of a diffusion wavefront across nodal volume.

If, however, the spatial derivatives (2a) are written to include the solution both the n andth

n+1 temperature field, then the temperature Laplacian can be expressed as,th

(6)

where the first term on the RHS is implicit in the current solution, and the second term is that
from (2a) multiplied by 1-a, where a # 1. This formulation gives rise to a two-layered (in

time), five-point (in space) operator, that is unconditionally convergent for any size of time-
slice, when a $0.5. The amplification factor becomes considerably more complicate after
adding heat sources and a non-uniform material property distribution in the model space:

Equation (7) obtains if conductivity gradients are negligible compared to large the heat
“storage” and source terms that are commonly the case with concrete with typical steel
reinforcement and casing. Equation (7) indicates that convergence behavior is not sensitive
to the size of time-slice.

Accuracy to the fine temperature structure allowed by a nodal geometry is dependent on size
of time-slice. Press et al., [1992], suggest that the expression (4) is useful for deriving a

pdiffusion limit per iteration. For the purposes of evaluating a maximum Dt, the value of DC
at 2 standard deviations below average and s at 1 standard deviation above average are used.

(7)

36

3.1.2 Scheduled Residual Relaxation

The speed of convergence is sensitive to nodal dimension and size of time-slice. However,
these parameters are already constrained. The speed of convergence can be determined also
in part by the solution procedure.
A linear system Ax=b would be described if the equations representing the solution “10-
point” operator, applied over the model domain, if material gradients are negligible, are
appropriately arranged. The system would be banded and diagonally dominant. If solved
fully implicitly (" = 1), the solution is Gauss-Seidel, which is very efficient and which
reduces residuals to 0.25 each iteration, and if " = 0 (fully explicit) the solution is Jacobi,
which converges half as quickly. A method for extrapolating the solution beyond the Gauss-
Seidel method is called “successive over-relaxation” (SOR). The expression for this method,

stipulates the relaxation parameter T partition the n+1 iteration solution between the
previous n iteration model and the latest nodal solution. Equation (8) is a generalth

expression of how the model is solved iteratively: when T=1, Gauss-Seidel obtains, and
when T>1 the model residuals are reduced by an added, extrapolated differential of the
model space (i.e., the set of all possible temperature distributions given the initial conditions,
and the size of the model parameterization). It can be seen in (8) that if T>1 the solution
removes previous solution information. This can be a problem in models where there are
significant material property gradients, material properties or source functions that vary with
time, or boundary conditions that vary with time–all of these occur in concrete foundation
systems.

In all but a few special cases, SOR is implemented using more art than science.
Strang[1988] indicates that the relaxation parameter take values less than 2 and, given a
LUD decomposition of the problem (a prohibitive option) a closed form expression for T
can be obtained. Because the concrete model is inhomogeneous, the SOR problem is ill-
posed. Either fixing a value or using a monotonically decreasing sequence of T values
would improve convergence speed on some but not all models attempted, and may also
prevent solution convergence.

A scheme was tested after creating several different concrete models and applying
“scheduled relaxation” (SR) to the solution method. Initially a sequence of T values ranging
from 1.8 to 0.8 is used in the first 5 iterations, and a second sequence is cycled through for
all subsequent iterations. The second sequence consist alternating pairs of reciprocal values.
When the relaxation parameter drops below 1, the under-relaxed residuals are biased below
Gauss-Seidel, which was solved by dividing the convergence error by the SR parameter
value, so that convergence does not mistakenly appear to occur on the occasion the
relaxation parameter is set to a small value.

(8)

37

Table 3-1 gives the analysis of two SR methods, compared to no over/under-relaxation. The
physical models used in both instances were the same 2.75m concrete shaft with 0.0254m
(1in) steel casing, surrounded by water. Cross-sectional width was 3.50m. The maximum
convergence error, grid coarseness and total model time were the only differences in the
cases. Convergence error (for each iteration) as shown is the largest residual reduction
divided by the larger of 10°C or the temperature distribution mean absolute deviation for that
time-slice. The analysis gives the overall indication that SR is helpful in improving the
convergence behavior for this model, regardless of the size of the model space. The
significantly smaller magnitude of iterations per time-slice in the 60x60x30 model is due
largely to the smaller required convergence error in the 20x20x20 model.

3.1.3 Model Testing

A closed form cylindrical heat flow solution, called the Theis method, was compared to the
SR method for goodness of fit for a transient problem. The Theis method comes from the
equations (by Theis) that characterize the radial flow of a fluid that is sourced from an
infinitesimal filament surrounded by conductive material. The model domain is either
infinitely deep (in the case of an infinitely long filamental source) or bounded by planes
perpendicular to the filamental axis. The comparison was made with a 48x48x30 node SR
model geometry of a 8m wide ®= 4m) region with no-flux boundary condition on the
vertical faces. The physical model was a that of a 30in -diameter concrete shaft embedded
in a conductive (soil) medium. Both materials had the same volumetric heat capacity of 2.2

Model Type Scheduled SR
Sequence

Total
Iterations

Iterations / Time
Step, (Mean)

Change Over
Gauss-Seidel

20x20x20

nodes, t= 100h

2.75m x 15m

long cased shaft

in water (both

models)

error=0.00001

 (no SR) 1182 43.8 ---

 2 terms 617 22.9 48%

 4 terms 578 21.4 51%

60x60x30

nodes, t= 50h

error=0.0001

 (no SR) 322 6.85 ---

 2 terms 254 5.40 21%

 4 terms 223 5.11 31%

Note: Maximum convergence error is larger by a factor of 10 in the 60x60x30 model.

Table 3-1. Comparison of Gauss-Seidel iterations and scheduled relaxation iterations
using 2- and 4-term sequences.

38

10 J (m K) and thermal conductivity of 2.2W (m K) . The temperature distribution6 3 -1 -1

outside the source region would be modeled for two scenarios : (a) apply a continuous,
constant heat source function over a length of time, and (b) apply a 10hr uniform heat “slug”.
In the case of (b), the Theis solution consisted of two superposed solutions of equal
magnitude and opposite sign offset by 10hr.

Figure 3-1 shows the comparison for a 64 hour constant heat “slug” after 48 hour and 96
hour model time. This model is roughly demonstrative of a typical drilled shaft in soil, with
the exception that concrete does not generate uniform heat through time. Disagreement
between the two methods is about 1°-2°F from the edge of the source out to r ~1m.
Although the concrete represents a distributed source problem, the radial heat flow geometry
should be identical just outside the source area. The 48 hour curve shows that the distributed
nodal source solution does not suffer from discretization error very close to the source
region. This indicates that the SR can be used as a far-field model for generating pseudo-
boundary conditions, viz., a temperature time series in material very close to a concrete
shaft. The 96 hour plots track the temperature distribution 32 hours after the pulse
termination, showing very little error.

Figure 3-2 gives a similarly good comparison between the analytical and SR solutions, for
the second scenario short 10hr heat pulse. This scenario is simply tracking the decay at 14
hours, 38 hours and 86 hours after termination of the pulse. Due to the relatively low total
heat flux, the magnitude of the temperature field is less than 30° F above the boundary value
at all times, and therefore the much smaller span of temperatures in the model, and that the
1°-2°F errors in Figure 3-1 are significantly reduced. The errors may be scaled by the
temperature magnitude and the difference between nodal and ambient boundary temperature.
The boundary condition T=32°F is of no consequence for the source function, as the
programmed SR source function was a uniform time series of heat production values, i.e.,
no kinetics function was invoked, and the boundary value was chosen for simplicity.

3.2 User Guide

This section is designed to provide an introduction to the software. In general, the software
uses four editors to create the model: (1) the materials editor; this allows the user to either
use or create thermal properties for various materials, (2) the section editor; this makes 2-D
horizontal slices through the model space, (3) the sub-model editor; this stacks different slice
types into vertically aligned sub-parts making up a portion of the entire 3-D model, and (4)
the model editor; this editor stacks sub-models and makes up the entire model. In addition
to the editors, libraries of boundary conditions and concrete energy source files are pre-
prepared which can be selected as necessary to meet the desired model needs. Finally, when
executing the run, several variables such as time of run, amount of cementitious
material/energy and selected output locations can be adjusted to meet the needs of the user.

39

The main menu of the software screen (Figure 3-3) is relatively simple with three important
pull-down menus: File (file management), Editors (access the four editors), and Model (to
finalize a model assembly).

3.2.1 Editors

3.2.1.1 Materials editor. The materials editor provides an overview of the material library
which contains parameters such as the conductivity, specific heat, density, and heat
production potential for 26 materials that might be encountered. The editor gives the user
the option of defining a representative material color (for easy identification in the section
editor) as well as new materials not yet encountered by the software. In this way the
software can be tailored to the user’s needs and experiences. Figure 3-4 shows the standard
materials editor screen. Upon editing, the user can save the collection of materials in the
library under a new name for future use.

3.2.1.2 Section editor. The section editor creates slices that define the typically encountered
cross sections for a given model. In general, one section should be created for every cross
sectional geometry intended for modeling.

When the section editor is opened it asks for the DX, DY, and model space X and Y
dimensions. DX and DY refer to the number of elements in that slice and is limited to 80
x 80 elements. The X and Y dimensions refer to the overall dimensions of that section (slice
of the overall model) in the units of meters. These values can be edited using the geometry
menu at the top of the window Figure 3-5.

A material file should be opened in the section editor from which the user selects the type
of materials for their model. Usually, the user’s selection of material file is based on their
past use and updates to the library. It’s not uncommon for a given user to use the same
material file over and over updating it as new material information becomes
needed/available. If editing an existing section file, it is not necessary to establish the
material file one will have been appended to the section file for direct access.

Section geometries can be as complex as deemed necessary by the user. However, it is
recommended to start with less complex section geometries and add complexity only if the
results do not reflect observed features. Generally, small details have little affect on the
overall temperature distribution. Starting from the largest features to the smallest fill the 2-D
model space with the desired materials. For example, to create a slice through a 4ft (1.2m)
drilled shaft in saturated sand, select soil-saturated granular. . . from the material pull down
and click on section fill (Figure 3-6). To insert the shaft in the sand, select the desired
concrete type from the materials pull down list and click on cylindrical fill. The default
location for cylindrical or rectangular fills in the center of the model space (X/2,Y/2). Enter
the desired center location for the shaft or simply push ENTER twice for the default. The
fill body radius should be input in meters (or 0.6 for a 4ft diameter shaft). Figure 3-7 shows
the 1.2m (4ft) diameter shaft in a 2.5m x 2.5m 2-D model space (section). Because the

40

program is designed to accommodate both rectilinear as well as cylindrical model spaces,
regions around the shaft that are incompletely covered by the rectangular grid are assigned
partial properties of the two adjoining materials proportional to their area ratio. This shown
by the ring around the shaft of a third color.

A detailed section name should be inputted into the lower left most window and then the
section should be saved. Modifications to this section can be made using replacement over-
lays to the existing cross section file and renamed as another section name. For instance,
upon completing the section fill with saturated sand (above) the user could have saved that
section as just sand and then subsequently added the shaft and resaved to have two sections
with the same space dimensions.

3.2.1.3 Sub-Model editor. The sub-model editor opens by instructing the user to identify
the number of vertical slices/sections that will be stacked or assembled and how long/deep
the overall sub-model will be. Alternately, the user may open a previously created sub-
model with that information already saved. Click into the number of Z zones window and
then the sub-model length for Z and enter these values. The number of Z zones is limited
to 80 slices/sections. Next click on the Add a Section button and select each of the sections
that were created for that model. The user should select a different color for each of the
sections added to the sub-model so that they can be easily identified in the stacked view on
the right of the sub-model window (Figure 3-8).

Note: Each of the sections added to the sub-model should have the same X-Y
space dimensions and DX and DY values. Sub-models of different
dimensions can be assembled in the Model Editor to reduce the computations
with less complex regions of the overall model.

To assemble the sub-model, select the section from the Section Name pull down menu and
paint the individual slices/sections on the right with the corresponding section color for that
position in the vertical model. After painting in each section click the Refresh Page button
to assure proper section position assignment. Figure 3-9 shows a modeled shaft with five
different section types starting with air on top, the 4 ft shaft in sand, a void in the same shaft
in sand, back to the shaft only in sand, a different anomaly, and then just sand at the bottom
of the sub-model. The results of this model are detailed in Chapter 4 for the R.W. Harris test
site.

Both the sub-model description (top left window) and the file name (top right window)
should be filled in before saving and exiting.

3.2.1.4 Model editor. The last step before running the model is to assemble the sub-models
in the Integrated Model editor which is found on the main menu under Model. Select new
or open to begin creating or editing, respectively. Sub-models of different X and Y
dimensions can be assembled in the Integrated Model which allows complex models with
large dimensions (e.g. pile cap or footing) to be joined with smaller model spaces (e.g. pier

41

column). This reduces the computation overhead and provides detailed results where
necessary. A given model must have at least one sub-model; in reality most models can be
run with a single sub-model. One disadvantage, is that sub-models are restricted to 80 slices
which may provide too course a mesh for long shafts. Multiple sub-models provides for
finer vertical meshing.

To assemble the model, add sub-models by clicking the Append a Sub-Model button, input
the rough overall model length, and assigning a unique color to each sub-model (similar to
assembling sections in the sub-model editor). Click to the right in the vertically aligned
model window once for each sub-model you want to add. After painting in each of the sub-
models click on the Adjust Model Length button and assure the total unmodeled length is
zero and the total model length is as intended. Input the model name in the top-most input
window and save the model. Figure 3-10 shows the Integrated Model screen with two sub-
models and an overall model length of 58.8m.

3.2.1.5 Model Execution/output. To run a generated model, select the Editors menu from
the main menu and select model execution/output. This will open the Program control and
output viewer window. Within this window select the File menu and open the desired
model. Next select the Model pull down menu and select concrete source. Several options
are available for the user two of which are active. The first is Time Series which uses library
heat-time relations. If selected, a time series file should be selected; at present any time
series file (mix*.ts) that starts with mix will work. These files vary in the time over which
the total energy will be delivered; the actual total energy production is adjusted by changing
the Heat (kJ/kg) input cell. Placement temperature defaults to 32 C but can be easily changedo

in the Heat Source window. Likewise, the start time can be adjusted to be delayed for
multiple concrete types in a given model. For most models, this is left to be zero and starts
as soon as the model is executed.

The Model Specifications option in the Model pull down menu will be greyed out until the
concrete source information is completed. After which it can be selected to set the boundary
conditions along the edges of each section. The No-flux boundary is the default, but each
of the materials identified at the edges of the sections must be at least clicked/highlighted
to establish the default boundary condition. The specified temperature option allows the
user to input user defined or more sophisticated boundary conditions (e.g. diurnal
temperature variations, bay water temperature, etc.). When specifying a boundary condition
temperature, *.ts files must be selected by clicking in the Time Series Filename text box
from which a file menu will appear. Two model formats (Cylindrical or Rectagular) can be
selected which may or may not be more appropriate for a given application; cylindrical is
the default. For primarily circular features (e.g. shafts), cylindrical is perhaps better; for pier
columns try turning the default off by clicking on that check box. Both model formats
produce realistic results unless the model space is too small and/or approaching the edge of
the heat source. Within the Program control and output viewer window there are several
option text boxes that can be altered by the user. In general the default values can be used
successfully. However, one output file is created which contains the temperature values at

42

the end of the simulation time which can be selected in the Global Completion Time (h) text
box. By selecting a given time of interest every point in the model can be queried from the
output file named modelname.1.out where the modelname come from the name of the model
run. Figure 3-11 shows the Program control and output viewer window in which certain
execution controls can be exercised by the user.

If the user is uncertain of how the time-temperature will evolve, then the default run time of
96 hours can be used and the output reviewed from another output file. The maximum,
minimum, and center line modeled temperature developed in the 3-D model space are
outputted in an ASCII file named Tmax.out along with the times at which those temperatures
occurred. With this information, the user may opt to re-run the model with a specific
simulation time.

3.3 Visual Post Processor

The modelname.1.out file contains the output temperature for each element of each section
in sub-model 1. The modelname.2.out file would contain the same information for the
second sub-model and so on. Due to the potentially enormous amount of data stored in
these files, a simple macro-run post processing EXCEL spread sheet has been provided to
review each of the data visually.

43

Figure 3-1. The comparison of SR-modeled and Theis solution temperature
distributions for a constant, continuous heat pulse of 72hr, as a function of radial
distance from the z-axis. The two times shown are 48hr and 92hr.

Figure 3-2. The comparison of SR-modeled and Theis modeled temperature
distributions from the decay of short duration 10hr constant-valued heat pulse, as a
function of radial distance from the z-axis.

44

Figure 3-3. Software model main menu screen.

Figure 3-4. Standard materials editor screen.

45

Figure 3-5. Section geometry editor screen.

Figure 3-6. Soil-saturated granular section fill example.

46

Figure 3-7. 4ft diameter concrete section fill.

Figure 3-8. Sub-model geometry color selection chart.

47

Figure 3-9. Sub model editor screen.

Figure 3-10. Integrated model screen.

48

Figure 3-11. Program control screen.

49

4. FIELD TESTING AND MODELING RESULTS

The primary focus of this research project was to conduct large-scale thermal integrity tests
on drilled shafts and evaluate the test data to develop the thermal integrity testing
procedures. In conjunction with the tasks of this project, four test sites were evaluated for
thermal integrity testing on drilled shafts. These sites included: (1) Ringling Causeway
Bridge, Sarasota, FL, (2) the University of South Florida laboratory in Tampa, Florida, (3)
the RW Harris yard in Clearwater, Florida, and (4) the University of Florida laboratory in
Gainesville, Florida. The following sections discuss the thermal program for each site.

4.1 Site I: Ringling Causeway Bridge

A relatively recent structure which started to shed light on drilled shafts as mass concrete
was the Ringling Causeway Bridge spanning across Sarasota Bay, Florida. This segmental,
post-tensioned concrete box girder bridge is supported by single column piers founded on
two 9ft diameter drilled shafts. The concrete mix was a Class IV drilled shaft design. The
mix design can be found in Appendix B.

4.1.1 Instrumentation and Results

Thermocouples were installed at various points around the shafts and throughout the
reinforcement cage. In spite of relatively cool weather (for Florida) and that it being bathed
in cool bay water, the core temperature of the shafts reached 157 F. Figure 4-1 showso

temperature traces over a 9 day period for the shaft center and edge as well as in the
surrounding water and air. The bay water temperature averaged 63 F while the airo

temperature dipped as low as 37 F. A maximum differential temperature of 67 F waso o

recorded shortly after the coldest spell.

4.1.2 Modeled Results

The thermocouple data was used to calibrate a 3-D numerical model whereby other size
shafts could be evaluated under similar pour conditions with a similar concrete mix (same
energy production per cubic volume of cement). The finite difference model incorporated
a temperature time series as a boundary condition, and specified initial conditions for
concrete, water (or soil) and atmosphere. A water diffusion rind of 1.2ft was placed between
the concrete shaft and the imposed boundary.

Figures 4-2 and 4-3 show the peak and differential temperatures, respectively, for four
modeled shaft diameters. Under these relatively cool conditions, the differential temperature
predictions show shafts as small as 3ft can exceed the recommended limit; the generated
peak temperatures in general did not exceed the recommended limit. Figure 4-4 shows the
modeled response versus the actual measured temperature for the 9ft diameter Ringling
shaft.

50

Figure 4-1. Ringling Causeway Bridge thermocouple data.

Figure 4-2. Modeled peak temperature for various shaft sizes.

51

Figure 4-3. Modeled differential temperature for various shaft sizes.

Figure 4-4. Measured and modeled temperatures at the core and surface for the
Ringling shaft.

52

4.2 Site II: USF Test Site

The evolution of the thermal integrity systems started with casting a small diameter shaft
with pure cement paste to assure a high energy potential from within the shaft. Therein, the
temperature signature from a rather modest anomaly was easily detected. Subsequent trials
with full scale 42 inch shafts and normal concrete mix constituents also gave a reasonable
temperature signature; however, concerns still existed that at some undefined smaller size
and with a normal mix design the temperature generation may be insufficient to define an
anomaly presence. Modeling of these scenarios was thought to be an important tool, but the
software and the parameters necessary to produce such a software were still not developed.
This section deals with a small scale test program whereby thermal information was obtained
to confirm modeling capabilities and isolate the limitations of the thermal integrity system
up to the time of that device generation.

4.2.1 Construction & Instrumentation

Field testing at the University of South Florida consisted of 4 Sonotube shafts with diameters
of 2ft and lengths of 6ft. The Sonotubes were placed into the ground 2ft leaving 4ft above
ground surface. Each shaft had a single logging tube centered in the shaft and extended both
above and below the limits of the shaft. Steel and PVC logging tubes (2in diameter) were
used to determine the difference of thermal transmission within the logging tubes. Figures
4-5 and 4-6 show the construction and concrete placement of the test shafts. The test shafts
comprised of 2 control shafts and 2 shafts with anomalies placed inside the tube. Anomalies
were placed at the quarter points and varied in size (Figure 4-7). Table 4-1 shows the testing
matrix for the four test shafts. A standard FDOT concrete mix was used on all shafts (Figure
4-8).

Table 4-1. Testing Matrix for the USF Test Site

Test
Shaft

Logging Tube
Material

Anomalies Thermocouples

1 Steel Yes Yes

2 PVC Yes Yes

3 Steel No Yes

4 PVC No No

4.2.2 Thermal Testing and Results

Thermocouples were placed throughout each test shaft and monitored using an Omega OM-
220 portable data logging system (Figure 4-9). Thermal testing was conducted on each shaft
using Generation II and III systems. The testing was performed every three hours after the

53

initial six hour cure period. Figure 4-10 shows an infrared thermal test using the Generation
III system.

Thermocouple data shows a large influence from diurnal temperatures (Figure 4-11). The
temperature trace noted as the air temperature is the internal temperature of the data logging
box placed next to the shafts. The actual air temperature was not measure but can be
expressed as slightly lower temperature as the internal box temperature. The thermocouple
placed in the center of TS3 shows the least amount of influence from diurnal temperatures.
Unfortunately, it is still greatly affected. It is very difficult to determine the time of peak
temperature generation for the concrete mix design. The largest temperature differential
measured from center of shaft to edge was 5 F.o

Since the diurnal temperatures controlled the test shafts and the largest temperature
differential was 5 F, the infrared thermal testing showed very little difference from controlo

shaft to shafts with anomalies. Plotting the temperature profiles over time (Figure 4-12)
shows an increasing trend for the first three readings, even though the air temperature is
dropping (Figure 4-13). By the fourth reading, the air temperature beings to control the shaft
temperature. Figure 4-14 shows the 14 hour temperature trace (3 reading) which has theth rd

greatest temperature differential from center of shaft to air. Unfortunately, the anomalies
within the shaft cannot be detected by the infrared system. This testing series prompted the
need to test a larger shaft within the ground to help determine the effectiveness of the
infrared thermal testing system.

54

Figure 4-5. Construction of the four USF test shafts.

55

Figure 4-6. USF test shafts.

Figure 4-7. Anomaly placement inside the sonotubes.

56

Figure 4-8. USF concrete mix design.

57

Figure 4-9. Installation of thermocouples.

58

Figure 4-10. Infrared thermal testing.

Figure 4-11. Thermocouple data for three test shafts.

59

Figure 4-12. Infrared thermal readings over time.

Figure 4-13. Thermocouple data annotated to show time readings.

60

Figure 4-14. Generation III system thermal scan with anomalies after 14 hours.

61

4.3 Site III: R.W. Harris Test Site

The testing at R.W. Harris test site in Clearwater, Florida was conducted whereby a 25ft
deep, 4ft diameter shaft was cast in saturated sandy to silty sandy soil (Figure 4-15) complete
with thermocouple and strain gage instrumentation. The full scope of the study involved
anomaly detection, shaft integrity test method evaluations, and temperature development in
a commonly used shaft size.

4.3.1 Construction & Instrumentation

A 25ft deep, 48in diameter test shaft was constructed at R.W. Harris Engineering yard in
Clearwater, FL. This shaft was instrumented and equipped with thermocouples, strain gages,
steel CSL tubes, as well as PVC logging tubes. Prior to shaft excavation and concreting,
four thermal logging tubes were installed in the ground to a depth of 30ft at radial distances
1, 2, 4, and 8ft from the anticipated shaft edge (Figures 4-16 and 4-17). Two of which were
instrumented with thermocouples at a depth of 14ft-2in as an arbitrary point of calibration
and reference for the thermal sounding probes. Although no appreciable rotation has been
noted when using the thermal sounding probes, a single groove was cut into the inner surface
of the PVC logging tubes to provide a positive pathway for the probe alignment wheels and
to assure no rotation (providing an inexpensive alternative to inclinometer casing). Figures
4-18 through 4-21 show the construction of the shaft along with the mix design.

Along the outside of the test shaft reinforcing cage, two significant anomalies were formed
using sand bags filled with native soil. One anomaly completely filled the cover region for
half the shaft circumference (approximately 5in thick, 1.5ft long and 6ft around the shaft).
 This anomaly was located at 90in and extended up to 108in above the bottom of the shaft
(approximately 19ft from the top of shaft). The other anomaly location consisted of two
anomalies that created the same volume as the first location, but was comprised of two
quarter circumference anomalies that were on opposite sides of the shaft. The locations of
these anomalies were at 204in and extended up to 222in above the bottom of the shaft
(approximately 10ft from the top of shaft). Figure 4-22 shows the placement of the
anomalies on the reinforcement cage.

4.3.2 Quality Assurance Testing

Several types of post construction quality assurance testing were used to assess the condition
of the finished test shaft which include; Infrared Thermal Integrity Testing, Cross-hole Sonic
Logging (CSL), Pile Integrity Testing (PIT), and thermocouple measurements via continuous
on-site data logging (Figures 4-23 through 4-26). Infrared thermal integrity testing was
conducted on the shaft using Generation II and III systems. The testing was performed every
three hours after an initial six hour cure period. Both the CSL and PIT testing was
performed on the shaft nine days after the concrete was placed. These tests were performed
by a third party engineering firm with no knowledge of the shafts construction.

62

4.3.3 Quality Assurance Testing Results

The results from the thermocouple data are shown in Figure 4-27. The results show a
maximum temperature of 153.5 F on the inside edge of the reinforcement cage located nearo

the bottom quarter of the shaft opposite-side of the anomaly. Over a 10 F temperature dropo

occurred on the inside of the reinforcement cage where the anomaly was located. The
outside edge of the anomaly showed a 27 F temperature drop from the maximumo

temperature recorded. The logging tube located 8ft away from the shaft showed no signs of
being influenced by the shaft. However, the logging tube 1ft away from the edge of the shaft
was influenced from the heat generated by the shaft. Although there was a time delay from
the peak temperature of the shaft to a peak temperature of the logging tube of 64 hours, the
temperature increased 20 F from a baseline noted by the logging tube 8ft away.o

CSL testing results for the three steel tubes are shown in Figure 4-28. All the anomalies
were placed on the outside of the reinforcement cage and, as expected, the CSL testing did
not show any signs of anomalous formation. The six tubes (both PVC and steel) were also
tested to provide a finer analysis of the shaft. These test showed delamination in the upper
few feet of the PVC tubes. It should be noted that the PVC tubes were not filled with water
until after all the thermal testing was complete. All the CSL testing results can be found in
Appendix C.

A sample PIT testing result is shown in Figure 4-29. The engineering firm performing the
PIT testing reported that there was a likely neck about 6 to 8ft down the shaft. They did not
detect the anomaly at the lower level, but did get a good toe reflection. All the PIT testing
results can be found in Appendix C.

Figure 4-30 shows the results from one of the four orthogonally oriented infrared sensors
(inward looking) in one of the three PVC tubes (Tube 1) over a 12 hour time period. In this
case, the sensor clearly shows a reduced temperature in both regions of known anomalies.
In the region of the upper anomaly, the tube is not directly adjacent the sand bag, nor is it
oriented in the direction of either anomaly, yet it still shows a general reduction in
temperature. Near, the lower anomaly, the probe passes directly adjacent the anomaly, but
the particular sensor shown is oriented toward the center of shaft away from the sand bags.
In spite of its orientation, a clear reduction in temperature is noted in the core as a result of
the absence heat producing concrete. Figures 4-31 through 4-36 show the temperature
traces in all directions for all the PVC tubes for both Generation probes. All the infrared
thermal integrity testing results can be found in Appendix C.

4.3.5 Thermal Modeling

The model response of the shaft was produced to show the temperature effects from the
anomalies. Figure 4-37 shows the temperature contours for a slice of the length of pile. The
model is a 2m x 2m model defined by an 80 x 80 grid with a constant soil temperature
boundary condition. The temperature contours show a slight reduction in temperature near

63

the upper anomaly and a large reduction through the lower anomaly. The peak temperature
generated at the center of the shaft is between 75 and 80 C (167 to 176 F). The peako o

differential temperature from center to outside edge of shaft is 35 C (95 F).o o

Figure 4-38 shows the temperature profile around tube 1 at the 12 hour temperatureth

reading. The measured data was normalized to account for the changing soil/boundary
condition. The peak temperature measured at the 12 hour from thermocouple data wasth

153 F. The model response shows a peak temperature of 65.5 C (149.9 F) at the 12 houro o o th

temperature reading.

64

Figure 4-15. Test shaft cone penetration test sounding.

Figure 4-16. Installation of monitoring tubes away from test shaft.

65

Figure 4-18. Drilling of test shaft.

Figure 4-17. Test site layout.

66

Figure 4-19. Reinforcement cage placement.

Figure 4-20. Concrete placement and temporary casing removal.

67

Figure 4-21. Concrete mix design.

68

Figure 4-22. Sand bag anomalies being tied to the reinforcement cage.

Figure 4-23. Thermocouple installation and thermocouple data

69

Figure 4-24. CSL testing on the R.W. Harris test shaft.

Figure 4-25. PIT testing on the R.W. Harris test shaft.

70

Figure 4-26. Infrared thermal integrity testing.

Figure 4-27. Thermocouple data for the R.W. Harris shaft.

71

Figure 4-28. CSL test results for the 3 steel tubes.

Figure 4-29. PIT test result.

72

F
ig

u
re

 4
-3

0.
 T

yp
ic

al
 t

em
p

er
at

u
re

 t
ra

ce
s

at
 v

ar
io

us
 t

im
e

st
ep

s.

73

F
ig

u
re

 4
-3

1.
 R

.W
.

H
ar

ri
s

sh
af

t,
 G

en
er

at
io

n
 I

I
sy

st
em

,
tu

b
e

1
 r

ea
di

n
g

al
l

d
ir

ec
ti

o
ns

.

74

F
ig

u
re

 4
-3

2.
 R

.W
.

H
ar

ri
s

sh
af

t,
 G

en
er

at
io

n
 I

II
 s

ys
te

m
,

tu
b

e
1

 r
ea

di
n

g
al

l
d

ir
ec

ti
o

ns
.

75

F
ig

u
re

 4
-3

3.
 R

.W
.

H
ar

ri
s

sh
af

t,
 G

en
er

at
io

n
 I

I
sy

st
em

,
tu

b
e

3
 r

ea
di

n
g

al
l

d
ir

ec
ti

o
ns

.

76

F
ig

u
re

 4
-3

4.
 R

.W
.

H
ar

ri
s

sh
af

t,
 G

en
er

at
io

n
 I

II
 s

ys
te

m
,

tu
b

e
3

 r
ea

di
n

g
al

l
d

ir
ec

ti
o

ns
.

77

F
ig

u
re

 4
-3

5.
 R

.W
.

H
ar

ri
s

sh
af

t,
 G

en
er

at
io

n
 I

I
sy

st
em

,
tu

b
e

5
 r

ea
di

n
g

al
l

d
ir

ec
ti

o
ns

.

78

F
ig

u
re

 4
-3

6.
 R

.W
.

H
ar

ri
s

sh
af

t,
 G

en
er

at
io

n
 I

II
 s

ys
te

m
,

tu
b

e
5

 r
ea

di
n

g
al

l
d

ir
ec

ti
o

ns
.

79

Figure 4-37. Slice view of thermal modeled R.W. Harris shaft.

80

F
ig

u
re

 4
-3

8.
 M

od
el

ed
 a

nd
 m

ea
su

re
d

12
 h

ou
r

te
m

pe
ra

tu
re

 r
ea

di
ng

s
ar

ou
nd

 t
ub

e
1.

81

4.4 Site IV: University of Florida Test Site

The testing at the University of Florida test site in Gainesville, Florida was conducted
whereby a 40ft deep, 4ft diameter shaft was cast and thermally tested. The scope of the
study involved anomaly detection in an unknown shaft utilizing the infrared thermal integrity
testing device.

4.4.1 Construction & Instrumentation

The 40ft deep, 4ft diameter shaft was constructed with 4, 2in schedule 80 PVC monitoring
tubes (Figure 4-39). The concrete mix utilized a low cement mix design to minimize
temperature generation in the shaft. Thermocouples were installed 0.5, 1, 2, and 8ft away
from the edge of shaft, as well as, at the edge of shaft. These thermocouples were placed
approximately 2ft into the ground. A single thermocouples was placed in the center of the
shaft approximately 3ft down after the concrete was poured. Monitoring of the
thermocouples was done by using the Omega Engineering OM-220 data acquisition module
(Figure 4-40). Figures 4-41 and 4-42 show the data acquisition system and thermal integrity
testing, respectively.

4.4.2 Thermal Testing and Results

The thermocouple data (Figure 4-43) shows a slow generation of heat of 0.53 F/hr where ao

2.44 F/hr was generated in the R.W. Harris shaft. The shaft also had a low peak temperatureo

of 96.6 F after 48 hours. Ground thermocouples up to 1ft away show influence from the heato

generated from the shaft. The 2 and 8ft thermocouples show no temperature increase from
the shaft. The 2ft thermocouple was accidently pulled out of the ground after 57 hours
causing it to be influence by the air temperature.

Since the PVC monitoring tubes were schedule 80, the inside diameter was less than 2in
(approximately 1.94in), where as a schedule 40 pipe has an inside diameter of 2.067in. The
reduced inside diameter restricted the wheel-housing on the Generation III probe from
entering the pipe. Therefore, the Generation II probe was only used in the initial testing.
Electrical corrosion in the second generation probe caused signal loss after the first few
readings. Modification were made to accommodate the wheel-housing from the second
generation probe to the third generation probe sensors. Only a couple of thermal soundings
were performed before the electrical connections in the third generation probe failed.

Figures 4-44 through 4-47 show the temperature traces for all four tubes generated from the
third generation probe at the 38 hour. Tubes 1 (Figure 4-44) shows a lower temperatureth

trace which is a possible cross-sectional reduction around 6ft. Tube 3 (Figure 4-46) shows
a possible cross-sectional reduction around 22ft. The signal loss from tube 4 made the
analysis for that tube impossible. Appendix D contains the full thermal testing results for
this site.

82

Figure 4-39. UF test shaft layout.

Figure 4-40. Installation and monitoring of thermocouples.

83

Figure 4-41. Optim Megadac data acquisition system for infrared thermal
devices.

Figure 4-42. (a) Tripod and depth encoder and (b) Generation III
system with second generation wheel assembly.

84

Figure 4-43. UF thermocouple data.

Figure 4-44. UF thermal data for tube 1 (all directions) after 38 hours.

85

Figure 4-45. UF thermal data for tube 2 (all directions) after 38 hours.

Figure 4-46. UF thermal data for tube 3 (all directions) after 38 hours.

86

Figure 4-47. UF thermal data for tube 4 (all directions) after 38 hours.

87

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 General Conclusions

The results from this study revealed that a reduction in heat generation occurred in the shaft
at the anomaly locations. As such, the scope of the project was to investigate a new
technique for determining the integrity of the drilled shafts using infrared thermal probes and
develop software capable of determining the size and location of the anomalies. The project
investigated four different laboratory and field testing sites: (1) Ringling Causeway Bridge,
Sarasota (2) University of South Florida, Tampa (3) R.W. Harris, Clearwater, and (4)
University of Florida, Gainesville.

5.1.1 Ringling Causeway Bridge Test Data

The Ringling Causeway Bridge involved 9ft diameter shafts where thermocouple data was
collected to show the effects of mass concrete and temperature generation. The data showed
a significant temperature development in the shaft and a large differential from the center
to edge of shaft. The differential temperature measured was over the recommended values
set forth by the FDOT Structures Design Guidelines. The thermocouple data was
incorporated into a model to predict the heat generation of drilled shafts of various diameters
constructed in the same manner. The model was able to predict the generation of heat by the
Ringling shaft with good agreement. Furthermore, the model showed heat differentials in
typical size shafts (i.e. 3 and 4ft diameters) were over the recommended values.

5.1.2 University of South Florida Test Site

Four small-scale sonotube shafts were tested at the University of South Florida to
investigate: (1) peak temperature generation and differential in each shaft, (2) anomaly
detection, and (3) the effects of steel logging tubes versus PVC logging tubes. Since the
majority of the shafts were above ground surface, series I of the testing showed that the shaft
temperatures were greatly influenced by the diurnal temperatures. Due to the small scale,
peak temperature generation of the concrete was understated by the daily temperature
variations. The differential temperature measured from the center to edge of shaft was noted
to be only 5 F. Since the diurnal temperatures controlled the shafts, series II detection of theo

anomalies were impossible even at times where the temperature differential from the center
to air were the greatest. Series III of the testing also showed little effect from logging in
different materials. The most valuable aspect of this test site was the data collected from
thermocouples and the thermo-physical properties added to the library database for the
thermal model.

88

5.1.3 R.W. Harris Test Site

The field testing at the R.W. Harris site involved construction and quality assurance
monitoring of a 4ft diameter, 25ft long drilled shaft and the perimeter around the shaft.
Anomalies were placed in two locations along the outside perimeter of the reinforcement
cage consisting of several sand bags (filled with native soil). Thermocouples were installed
throughout the shaft and the monitoring tubes in the soil radially around the shaft. The
thermocouple data showed a delayed temperature increase in the soil 1ft away from the shaft.
The thermocouple data within the shaft showed a large differential in temperature from the
edge of the reinforcement cage with no anomaly to the edge with an anomaly of 10 F ando

27 F to the outside edge of the anomaly. The peak temperature measured for this mix deigno

was 153.5 F. This temperature was located on the inside edge of the reinforcement cage.o

Unfortunately, the center was unable to be measured. However, the thermocouple data was
incorporated into the model and a modeled response of the shaft showed that a temperature
of 183 F was generated in the center.o

Several non-destructive tests (cross-hole, impact echo, and thermal) were performed on the
shaft to show the effectiveness of detecting known anomalies placed in the shaft. The CSL
testing was unable to detect the anomalies. This was expected since CSL test between
logging tubes and no anomalies were placed between the tubes. The PIT test showed a
reflection around 6 to 8ft (near the top anomaly) but did not show any reflections around the
lower anomaly. Thermal testing was able to detect temperature drops near the location of
both anomalies. The temperature traces were more defined if the anomaly was located
adjacent to the logging tube. However, the infrared probes were able to detect slight
temperature drops even if the anomaly was not directly adjacent to the logging tube. This
is in agreement with modeled data. The modeled data shows a decrease in temperature
generation with a decrease in cross-sectional area (i.e. less concrete, less heat of hydration).

5.1.4 University of Florida Test Site

Data was collected from a test site in Gainesville, Florida from two, 4ft diameter, 40ft deep
shafts. Although data collected is presented, complications with the instruments used led
to somewhat unintelligible results. Further complications arose from undersized logging
tubes making access to the full depth impossible.

5.2 Recommendations

Thermal integrity testing as presented in this report shows promise for detecting anomalies
within drilled shafts via irregularities in temperature profiles. Further developments in the
instrumentation and data collection are underway and recommended to yield a robust quality
assurance system. This test method needs to be completely integrated with the thermal
modeling software to produce a user-friendly shaft signal matching algorithm.

89

Mass concrete predictions are presently based on geometric parameters as well as concrete
mix design constituents. Thermal modeling of mass concrete elements could be used to
better assess when and to what extent differential and peak temperature values will develop.
The ability to determine the exact temperature throughout the mass element also can be
inputted into a stress evaluation package that combines concrete strength maturation
information with the temperature gradients experienced. This information when used in
conjunction will afford a clearer indication of when/where concrete cracking is likely to
occur. The present temperature differential criterion takes no consideration into the
temperature gradient as it pertains to distance over which the differential exists. As a result,
the thermal modeling of these conditions combined with stress evaluation will enable the
State to produce a more thorough differential temperature criterion.

Finally, a concept involving large diameter drilled shafts has been introduced whereby the
central-most concrete is intentionally omitted. Inquiries with a local contractor has indicated
they would be willing to participate in a project to construct a 9ft diameter shaft with a 4ft
central void. Numerical modeling of this concept shows great promise. A demonstration
project would help flesh out the details to make it a practical, cost-effective alternate.

90

THIS PAGE IS INTENTIONALLY BLANK

91

REFERENCES

Alabama Department of Transporation (ADOT), Special Provision No. 01-0712, Section
506, Drilled Shaft Construction, November 28, 2001.

Baker, C. N., Parikh, G., Briaud, J-L., Drumright, E.E., Mensah, F. (1993). Drilled Shafts
for Bridge Foundations. Mountain View, CA: Federal Highway Administration.

Blitz, J. (1971). Ultrasonics: Methods and Applications, Van Nostrand Reinhold Company,
New York, pp. 151.

Branagan & Associates, Inc.(2002), Using Crosshole Sonic Logging (CSL) To Test Drilled-
Shaft Foundations, Branagan & Associates, Inc., Las Vegaas, NV.

Collepardi, M., (2003), “A State-of-the-Art Review on Delayed Ettringite Attack on
Concrete”, Cem. Conc. Res., v. 25, p.401-407.

Davis, A.G. & Hertlein, B.H. (1993), Evaluation of the Integerity of Some Large Concrete
Structures Using NDT,” American Concrete Institute Spring Convntion, Vancouver,
March.

Davis, A.G., & Robertson, S.A. (1976), Vibration Testing of Piles,” Structural Engineering,
June, pp. A7-A10.

FDOT. (2006). “Structures Design Guidelines.” Section 3.9, Mass Concrete
http://www.dot.state.fl.us/structures/StructuresManual/CurrentRelease/FDOTBridge
Manual.htm.

FDOT. (2000). “Standard Specifications for Road and Bridge Construction 2000.” Florida
Department of Transportation, Tallahassee, FL.

FDOT. (2006). “Payitems History Reports & Estimates.” State Estimates Office,
http://www.dot.state.fl.us/estimates/Main/BOEpayitems.htm

Finno, R.J. & Prommer, P.J. (1994). Evaluation on Inaccessible Drilled Shafts Using the
Impulse Response Method: Northwestern University, Infrastructure Technology
Institute: ITI Publications Directory.

Galperin, E.I. (1985), Vertical Seismic Profiling and its Exploration Potential, D. Reidel
Publishing Company, Boston, p. 316.

Herne, T.M., Stokoe, K.H. & Reese, L.C. (1981). Drilled-Shaft Integrity by Wave
Propagation Method,” Journal of Geotechnical Engineering, American Socity of
Civil Engineers, Volume 107, No. 10, October, pp. 1327-1344.

http://www.dot.state.fl.us/estimates/Main/BOEpayitems.htm

92

Higgs, J.S. and Robertson, S.A. (1979), Integrity Testing of Concrete Piles by Shock
Method,” Concrete, October, pp. 31-33.

Lew, M.; Zadoorian, C.J.; Carpenter, L.D. (2002), Integerity Testing of Drilled Piles for Tall
Buildings, Structure, A joint publication of: National Council of Structural Engineers
Associations; Council of Americian Structural Engineers, Structural Engineering
Institute, October, pp. 14-17.

Mullins, G. and Winters, D. (2004). “Post Grouting Drilled Shaft Tips - Phase II Final
Report.” Final Report submitted Florida Department of Transportation, June.

Olson Engineering (2003), Crosshole Sonic Logging (CSL),
 www.olsonengineering.com/CSL.html.

O'Neill, M. W., and Reese, Lymon C.,. (1999). Drilled Shafts: Construction Procedures and
Design Methods (Vol. I). Dallas, TX: ADSC: The International Assiociation of
Foundation Drilling.

Paquet, J. (1968). “Etude Vibratoire des Pieux en Beton: Response Harmonique,” Annales
Inst. Tech. Batim, 21 year, No. 245, May, pp. 789-803.st

Speer, D, The Use of NDE for Deep Shaft Foundation Construction Compliance, (1997), 5th

ITI Bridge NDE Users Group Conference (Proceedings), California Department of
Transportation (Caltrans) – Department of Transpiration – Office of Structural
Foundations – Foundations Testing and Instrumentation Section.

Stain, R.T. (1982), Integrity Testing, Civil Engineering, April and May, pp. 55-59 and 71-
73.

Stain, R.T. and Williams, H.T. (1987), Integerity Testing of Piles – Horses for Courses,”
International Conference on Piling and Deep Foundations, London, March.

Stark, J., and Bollman, K., (1998), “Delayed Ettringite Formation in Concrete”, Nordic
Concrete Research, v. 23-2, http://www.itn.is/ncr/publications/pub-23.pdf.

U.S. Department of the Interior. (2004). “Story of Hoover Dam; Concrete,” Bureau of
Reclamation, http://www.usbr.gov/lc/hooverdam/History/essays/concrete.html.

US Federal Highway Administration. (1997). Guide to nondestructive testing of concrete.
Washington, D.C.: Available to the public through the National Technical
Information Service.

Wagner, R.V. (2006). “Temperature Rise in Concrete.” Master’s Thesis, University of South
Florida, Tampa, FL. pp.182.

http://www.olsonengineering.com/CSL.html

93

Whitfield, T. T. (2006). “Effect of C3S Content on Expansion Due to Ettringite Formation.”
Master’s Thesis, University of South Florida, Tampa, FL (August).

94

THIS PAGE IS INTENTIONALLY BLANK

95

APPENDICES

96

THIS PAGE IS INTENTIONALLY BLANK

97

A.1 Visual Basic Code for Project Forms

A.1.1 frmMain.frm

Option Explicit

Option Base 1

Public smod As Csubmodel

Public flagM odel As Boolean, fileSaved As Boolean

Dim lDocumentCount As Long

Dim alpha As Single, endtime As Single, starttime As Single,

dtmax As Single

Dim dx As Single, dy As Single, dz As Single, errmax As Single

Dim i4 As Integer, j4 As Integer, k4 As Integer

Dim nsig As Integer, na As Integer

Dim bound(6) As String * 1, flag_delete As Boolean

Dim modfile As String, res As Variant, modelname As String

Dim tot_profiles As Integer, Tot_Loci As Integer

Dim prof_color(20) As Long

Dim Tot_Chunks As Integer, Chunk(100) As Integer

Dim title As String, modLength As Single, smodlength(20) As

Single

Dim chunky1(100) As Single, chunky2(100) As Single

Private Sub M DIForm_Load()

 '---set subsequent form properties here

 ' If sectionfile = "" Then mnuSection.Enabled = False

 flag_delete = False

 flagM odel = False

 fileSaved = True

 Picture1.Enabled = False

 Picture1.Visible = False

 mnufilesaveas.Enabled = False

 Set chkx = New Collection

 tot_profiles = 0

 txtnumgeotypes.Text = tot_profiles

 shpproColor.FillStyle = 0

 title = "M odel"

 txtM odLength.Text = 0

 txtTotChunks.Text = 0

 txtnumgeotypes.Text = 0

 CommonDialog1.InitDir = Cinfo.userDir

 modLength = 0#

 Dim x As Integer

 For x = 0 To 4

 lblPz(x) = "0"

 lblPz(x).Visible = False

 Next x

 For x = 1 To 100

 Chunk(x) = 0

 Next x

End Sub

Private Sub M DIForm_Unload(Cancel As Integer)

 If Me.W indowState <> vbM inimized Then

 SaveSetting App.title, "Settings", "M ainLeft", M e.Left

 SaveSetting App.title, "Settings", "M ainTop", M e.Top

 SaveSetting App.title, "Settings", "M ainW idth", Me.Width

 SaveSetting App.title, "Settings", "MainHeight", M e.Height

 End If

End Sub

Private Sub M DIForm_Terminate()

 Close

End Sub

Private Sub cboprofilename_Click()

 smod_ID = cboprofilename.ListIndex + 1

 Update_page smod_ID

End Sub

Public Sub chkxClear()

 Dim x As Integer

 clear_Chkx

 clear_Smx

 For x = 1 To Tot_Chunks

 Chunk(x) = 0

 chunky1(x) = 0

 chunky2(x) = 0

 Next x

End Sub

Private Sub clear_Form()

 Dim x As Integer, iq As Integer

 picM odel.Cls

 modelname = ""

 modfile = ""

 lblM odfile.Caption = ""

 txtmodelname.Enabled = False

 txtmodelname.Text = ""

 smod_ID = 0

 shpproColor.BackColor = vbW hite

 shpproColor.Cls

 cboprofilename.Clear

 txtmodelname.Enabled = True

End Sub

Private Sub cmdAddprofile_Click()

 Dim dummy As Single

 CommonDialog1.Filter = profilter

 CommonDialog1.DialogTitle = "Add a Sub-M odel"

 CommonDialog1.CancelError = True

 On Error GoTo cancelation

 CommonDialog1.ShowOpen

 profile = CommonDialog1.FileName

 If profile = "" Then

 Exit Sub

 End If

 Set smod = New Csubmodel

 read_profile profile

 If smx.count = tot_profiles Then Exit Sub 'bad profile

format--aborted read

 cboprofilename.AddItem profilename

 cboprofilename.ListIndex = cboprofilename.ListCount - 1

 tot_profiles = cboprofilename.ListCount

 smod_ID = smx.count 'smod_ID is 1-based, as a collection

is

 txtnumgeotypes.Text = tot_profiles

 prof_color(smod_ID) = vbW hite

 cmdProfColor smod_ID

 sm o d len gth(sm od _ID) = sm x(sm od _ID).dz *

Abs(Val(smx(smod_ID).nz))

 If flagModel = False Then flagModel = True

 Update_page

 fileSaved = False

 Exit Sub

98

cancelation:

 Exit Sub

End Sub

Private Sub cmdAdjChunks_Click()

 Dim x As Integer, qlast As Integer

 qlast = 0

 Dim y2last As Single, d As Single

 y2last = 0

 For x = 1 To 100

 If Chunk(x) > 0 Then

' M sgBox x & " adj a chunk " & y2last

 d = chunky2(x) - chunky1(x)

 chunky1(x) = y2last

 chunky2(x) = y2last + d

 y2last = chunky2(x)

 qlast = x

 End If

 Next x

 update_picture

 fileSaved = False

' M sgBox "Leaving adjCHUNKS " & y2last

End Sub

Private Sub cmdAdjLength_Click()

 Dim x As Integer, y As Integer, yL As Single, sm_count As

Integer

 cmdAdjChunks_Click

 clear_Chkx

 Dim d As Single, q As Integer

 For x = 1 To 100

 If Chunk(x) > 0 Then

 d = smodlength(Chunk(x))

 chunky1(x) = yL

 chunky2(x) = yL + d

 yL = chunky2(x)

 q = Chunk(x)

 chkx.Add q

' M sgBox x & " adjleng CHKX " & q

 End If

 Next x

 modLength = yL

 getM odLength

 getUnusedLength

 update_picture

 fileSaved = False

 Update_page

End Sub

Private Sub cmdDelChunk_Click()

 M sgBox "Click in the CENTER of the chunk to be deleted. You

can" & vbNewLine _

 & "only delete ONE from the selected sub-model type

(color).", , title

 flag_delete = True

 fileSaved = False

End Sub

Private Sub cmdDeleteProfile_Click()

 Dim x As Integer, y As Integer

 y = cboprofilename.ListIndex + 1 'basis is sx.item

 If y < 1 Then Exit Sub

 cboprofilename.RemoveItem y - 1

 smx.Remove y

 x = y

 Do Until x > tot_profiles - 1

 prof_color(x) = prof_color(x + 1)

 smodlength(x) = smodlength(x + 1)

 x = x + 1

 Loop

 For x = 1 To 100

' M sgBox x & cboprofilename.List(x - 1)

 If Chunk(x) >= y Then Chunk(x) = Chunk(x) - 1

 Next x

 tot_profiles = cboprofilename.ListCount

 smod_ID = tot_profiles

 Update_page

 fileSaved = False

 update_picture

End Sub

Private Sub cmdProfColor(iprofile As Integer)

 If iprofile < 1 Then Exit Sub

 CommonDialog1.Color = prof_color(iprofile)

 CommonDialog1.Tag = prof_color(iprofile)

 CommonDialog1.ShowColor

 prof_color(iprofile) = CommonDialog1.Color

 smod.smodColor = prof_color(iprofile)

 shpproColor.BackColor = prof_color(iprofile)

 shpproColor.FillColor = prof_color(iprofile)

 shpproColor.Refresh

End Sub

Private Function convertxy(ByVal x As Integer)

 convertxy = x / modLength * picModel.ScaleHeight

End Function

Private Sub delete_chunk(qq As Integer)

 Dim x As Integer, y As Integer, d As Integer

 d = 4770

 y = 101

 x = 1

 Do Until x > 100

 If Chunk(x) = smod_ID Then

 If Abs(qq - x) < d Then

 d = Abs(qq - x)

 y = x

 End If

 End If

 x = x + 1

 Loop

 If y > 100 Or y < 1 Then Exit Sub

 Chunk(y) = 0

 chunky1(y) = 0

 chunky2(y) = 0

' M sgBox "FOUND A CHUNK TO DELETE " & y

 Tot_Chunks = Tot_Chunks - 1

 txtTotChunks = Str$(Tot_Chunks)

 fileSaved = False

 txtUnusedLength = Format(Val(txtUnusedLength.Text) +

smodlength(smod_ID), "###.##")

 update_picture

End Sub

Private Sub drawM odel(vv As Long, y3 As Integer, y4 As Integer)

 Dim qc As Integer, y2 As Integer, x1

 qc = picModel.ScaleWidth \ 18

 y2 = picModel.ScaleHeight

 picModel.DrawW idth = 7 ' was 7

' picM odel.Line (x2 / 2, chunkY1(qq))-(x2 / 2, chunkY2(qq)),

vv, BF

99

 picM odel.Line (qc / 2, y3)-(qc / 2, y4), vv, B

 picM odel.Line (qc, y3)-(qc, y4), vv, B

 picM odel.Line (2 * qc, y3)-(2 * qc, y4), vv, B

 picM odel.Line (3 * qc, y3)-(3 * qc, y4), vv, B

 picM odel.Line (4 * qc, y3)-(4 * qc, y4), vv, B

 picM odel.Line (5 * qc, y3)-(5 * qc, y4), vv, B

 picM odel.Line (6 * qc, y3)-(6 * qc, y4), vv, B

 picM odel.Line (7 * qc, y3)-(7 * qc, y4), vv, B

 picM odel.Line (8 * qc, y3)-(8 * qc, y4), vv, B

 picM odel.Line (9 * qc, y3)-(9 * qc, y4), vv, B

 picM odel.Line (10 * qc, y3)-(10 * qc, y4), vv, B

 picM odel.Line (11 * qc, y3)-(11 * qc, y4), vv, B

 picM odel.Line (12 * qc, y3)-(12 * qc, y4), vv, B

 picM odel.Line (13 * qc, y3)-(13 * qc, y4), vv, B

 picM odel.Line (14 * qc, y3)-(14 * qc, y4), vv, B

 picM odel.Line (15 * qc, y3)-(15 * qc, y4), vv, B

 picM odel.Line (16 * qc, y3)-(16 * qc, y4), vv, B

 picM odel.Line (17 * qc, y3)-(17 * qc, y4), vv, B

 picM odel.Line (17.5 * qc, y3)-(17.5 * qc, y4), vv, B

End Sub

Private Sub getChunk(iq As Integer)

 Dim qc As Single, y1 As Single, y2 As Single

 qc = modLength * (iq - 0.5) / 100#

 chunky1(iq) = qc - smodlength(smod_ID) / 2#

 If chunky1(iq) < 0 Then

 chunky1(iq) = 0

 End If

 chunky2(iq) = chunky1(iq) + smodlength(smod_ID)

 txtUnusedLength.Text = Format(Val(txtUnusedLength.Text) -

smodlength(smod_ID), "###.##")

 Chunk(iq) = smod_ID

 'update_picture iq

End Sub

Private Sub getModLength()

 Dim res As Variant, dum As Single

 If (modLength <= 0 And smx.count > 0) Then

 modLength = 8#

 M sgBox "An ESTIM ATE of total M odel Length is required"

& vbNewLine _

 & "which will be adjusted as the model is built.", , title

 res = InputBox("Enter a rough total M odel Length", title,

modLength)

 If IsNumeric(res) Then modLength = Abs(Val(res))

 End If

 If modLength <= 0 Then modLength = 8#

 txtM odLength.Text = Format(modLength, "##0.0#")

End Sub

Public Sub getstring(iu As Long, xx As String)

 Dim aline As String, x As Integer, s As String

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

 M sgBox "problem in this file"

 s = "0"

 Else

 s = Trim(Mid(aline, x + 1))

 End If

 xx = s

End Sub

Public Sub getUnusedLength()

 Dim x As Integer, d As Single

 d = 0#

 For x = 1 To 100

 If Chunk(x) > 0 Then d = d + Abs(chunky2(x) - chunky1(x))

 Next x

 txtUnusedLength.Text = Format(modLength - d, "##0.0#")

End Sub

Public Sub getvalue(iu As Long, xx As Single)

 Dim aline As String, x As Integer, s As Single

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

 M sgBox "problem in this file"

 s = "0"

 Else

 s = RTrim(Mid(aline, x + 1))

 End If

 xx = s

End Sub

Public Sub mdi_cmdExit_Click()

 mnuExit_Click

 End

End Sub

Private Sub mnuExit_Click()

 If Not fileSaved Then mnufilesaveas_Click

 On Error Resume Next

 If modfile <> "" Then

 Cinfo.dataPath = fso.GetAbsolutePathName(modfile)

 Cinfo.modelfile = fso.GetAbsolutePathName(modfile)

 Cinfo.write_startup

 End If

 clear_Lists

 Close

 Unload M e

 End

End Sub

Private Sub mnufileopen_Click()

 On Error Resume Next

 CommonDialog1.Filter = modfilter

 CommonDialog1.InitDir = Cinfo.userDir

 CommonDialog1.FileName = modfile

 CommonDialog1.ShowOpen

 modfile = CommonDialog1.FileName

 If modfile = "" Then Exit Sub

 profileClear

 read_modfile modfile

 Cinfo.dataPath = fso.GetAbsolutePathName(modfile)

 Cinfo.modelfile = fso.GetAbsolutePathName(modfile)

 Picture1.Enabled = True

 lblM odfile.Caption = modfile

 txtmodelname.Text = modelname

 lblM odfile.Refresh

 fileSaved = True

End Sub

Private Sub mnufileSave_Click()

 If fso.FileExists(modfile) Then

 write_modfile modfile

 Else

 mnufilesaveas_Click

 End If

End Sub

100

Private Sub mnufilesaveas_Click()

 Dim res As String

 On Error Resume Next

 If modelname = "" Then txtmodelname_Change

 CommonDialog1.Filter = modfilter

 CommonDialog1.FileName = modfile

 CommonDialog1.ShowSave

 res = CommonDialog1.FileName

 If res = "" Then

 M sgBox "Save again using a good filename", , title

 Exit Sub

 End If

 modfile = res

 write_modfile modfile

End Sub

Private Sub mnuNewM odel_Click()

 Picture1.Enabled = True

 Picture1.Visible = True

 clear_Lists

 txtZLayers = 0

 clear_Form

 profileClear

 flagModel = True

 modelname = ""

 modLength = 0

 txtM odLength = 0

End Sub

Private Sub mnuOpenM odel_Click()

 mnufileopen_Click

End Sub

Private Sub mnuProGeom_Click()

' frm2.ValidateControls

 clear_Form

 clear_Lists

 profileClear

 frm2.Show

 flagModel = False

 Picture1.Visible = False

 mnufilesaveas.Enabled = False

 On Error Resume Next

 If nz * nx < 10 Then

 M sgBox "Please Open a sub-model file, or " & vbNewLine &

_

 "Enter the number of Z-zones, and either a DZ or" &

vbNewLine _

 & "a vertical submodel length" & vbNewLine _

 & "[you may tab through the dimension settings].", ,

"Sub-M odel File?"

 End If

End Sub

Private Sub mnuproM aterials_Click()

 clear_Form

 clear_Lists

 frm1.Show

 flagModel = False

 mnufilesaveas.Enabled = False

 Picture1.Visible = False

End Sub

Private Sub mnupromodel_Click()

 clear_Form

 clear_Lists

 frmRun.Show

 flagM odel = False

 mnufilesaveas.Enabled = False

 Picture1.Visible = False

End Sub

Private Sub mnuSection_Click()

 clear_Form

 clear_Lists

 frm3.Tag = "section only"

 frm3.Show

 flagM odel = False

 mnufilesaveas.Enabled = False

 Picture1.Visible = False

' frm3.mnusectionOpen

End Sub

Private Sub PicM odel_M ouseUp(Button As Integer, Shift As

Integer, x As Single, y As Single)

 Dim vv As Long, w_constant, q As Integer, q1 As Integer, q2

As Integer

 Dim x2 As Integer, y2 As Integer, x1 As Integer, qc As Integer

 If smx.count < 1 Then Exit Sub

 y2 = picModel.ScaleHeight

 x2 = picM odel.ScaleW idth

 vv = cboprofilename.ListIndex + 1

 vv = prof_color(vv)

 x1 = picM odel.DrawW idth

 picM odel.FillStyle = 0

 If modLength <= 0 Then getM odLength

 Dim qq As Integer, y3 As Integer, y4 As Integer

 q = (y \ 10 + 0.5) * 10

 qq = q \ (y2 / 99) + 1

 'M sgBox qq & " " & " " & cboprofilename.ListIndex + 1

' If qq > nz Then Exit Sub

 If flag_delete = True Then

 delete_chunk qq

' M sgBox x & " x,y " & y & vbNewLine & qq

 flag_delete = False

 Update_page

 Picture1.Refresh

 Exit Sub

 End If

 getChunk (qq)

 chkx.Add smod_ID

 Tot_Chunks = Val(txtTotChunks.Text) + 1

 Cmod.numChunks = Tot_Chunks

 txtTotChunks.Text = Tot_Chunks

' q=q*

'== smod.sec_number(qq) = cboSectionName.ListIndex + 1

 y3 = convertxy(chunky1(qq))

 y4 = convertxy(chunky2(qq))

 drawM odel vv, y3, y4

' picM odel.DrawW idth = 5

' picModel.Line (0, y3)-(x2, y3), vbBlack

' picModel.Line (0, y4)-(x2, y4), vbBlack

 picModel.DrawW idth = x1

 fileSaved = False

End Sub

Public Sub profileClear()

 Dim x As Integer, y As Integer

 cboprofilename.Clear

 cboprofilename.Refresh

 ' update cboindex,shpcolor,and picM Od

' M sgBox smod_ID & " UPDATE " & sm_id

101

 Tot_Chunks = 0

 txtTotChunks.Text = Tot_Chunks

 tot_profiles = 0

 txtnumgeotypes.Text = tot_profiles

 txtZLength = 0

 txtUnusedLength = 0

 modLength = 0

 Update_page

End Sub

Public Sub read_modfile(thefile As String)

 Dim x As Integer, dummID(80) As Integer, v As Variant

 Dim aline As String, dumstrg As String, dum As Integer

 Open thefile For Input As #19

 On Error GoTo badfile

 Set Cmod = New Cmodel

 clear_Lists

' M sgBox " pathname " & fso.GetAbsolutePathName(thefile)

 flagModel = True

 modLength = 999

 dumstrg = getStrVal(19, "name=")

 Cmod.modelname = dumstrg

 modelname = dumstrg

 Cmod.submodfiles = getNumVal(19, "submodelfiles=")

 tot_profiles = Cmod.submodfiles

 Tot_Chunks = getNumVal(19, "submodels=")

 Cmod.numChunks = Tot_Chunks

 v = findline(19, "[submodelprofiles]")

' M sgBox tot_profiles & "totprofs 1 totchnks " & Tot_Chunks

 If Cmod.numChunks < 1 Then GoTo badfile

 getrow 19, Tot_Chunks, dummID

 Dim xx As Integer

 For xx = 1 To Cmod.submodfiles

' M sgBox " at 5 " & xx

 v = findline(19, "model]")

' Set smod = New Csubmodel

' M sgBox "found submodel; before 11"

 dumstrg = getStrVal(19, "name=")

 cboprofilename.AddItem dumstrg

' M sgBox "before 12 " & smod.smodname

 profile = getStrVal(19, "file=")

' M sgBox "before 13 " & smod.smodfile

 prof_color(xx) = getNumVal(19, "color=")

' M sgBox " after 13 " & prof_color(xx)

 read_profile profile

 smodlength(xx) = smod.dz * smod.nz

 txtZLayers = smod.nz

' M sgBox xx & " finished smod: " & smod.smodfile

 Next xx

' M sgBox " leaving smod loop " & smx.count

 Dim q As Integer, d As Single, sum As Single

 Dim R As Integer

 sum = 0

 If chkx.count > 0 Then chkxClear

 For x = 1 To Tot_Chunks

 q = dummID(x)

 chkx.Add q

 d = smx.Item(q).nz * smx.Item(q).dz

 smodlength(q) = d

 sum = sum + d

 Next x

 modLength = sum

 sum = 0

 For x = 1 To 100

 Chunk(x) = 0

 chunky1(x) = 0#

 chunky2(x) = 0#

 Next x

 For x = 1 To Tot_Chunks

 q = dummID(x)

 R = CInt(((sum + smodlength(q) / 2#) / modLength) *

100)

 If R < 0 Or R > 100 Then M sgBox "BLOW UP HERE"

' M sgBox x & " chunk X= " & R

 Chunk(R) = q

 chunky1(R) = sum

 sum = sum + smodlength(q)

 chunky2(R) = sum

 Next x

 GoTo Finished

'============

Finished:

 Close #19

 smod_ID = cboprofilename.ListCount

 Cinfo.modelfile = fso.GetAbsolutePathName(modfile)

 Cinfo.dataPath = fso.GetAbsolutePathName(modfile)

 Update_page (smod_ID)

 update_picture

 fileSaved = True

 Exit Sub

badfile:

 M sgBox "a bad file to read" & vbNewLine & thefile

 Close #19

 Update_page

 Exit Sub

End Sub

Public Sub read_profile(afile As String)

 Dim aline As String, count As Integer, x As Integer, v As

Variant

 Dim s As String, y As S ingle, lx As Boolean, totsec_files As

Integer

 Dim dummy(100) As Integer, ss As String, iunit As Integer

 Set smod = New Csubmodel

 smod.smodfile = afile

 iunit = 17

 Open afile For Input As #17

 On Error GoTo badfile

 'On EOF(17) GoTo BadFile

 flagModel = True

 y = 1

 count = 1

 profilename = getStrVal(17, "modelname=")

 Let smod.smodname = profilename

 nx = getNumVal(17, "nx=")

 smod.nx = nx

 ny = getNumVal(17, "ny=")

 smod.ny = ny

 nz = getNumVal(17, "nz=")

 smod.nz = nz

102

 dx = getNumVal(17, "dx=")

 smod.dx = dx

 dy = getNumVal(17, "dy=")

 smod.dy = dy

 dz = getNumVal(17, "dz=")

 smod.dz = dz

 totsec_files = getNumVal(17, "files=")

 smod.scount = totsec_files

 v = findline(17, "submodel")

' On Error GoTo BadFile

 getrow iunit, nz, dummy

 For x = 1 To nz

' sec_number(x) = dummy(x)

 smod.L_secnumber(x) = dummy(x)

' M sgBox "sec # " & x

 Next x

Finished:

 On Error Resume Next

 Close #17

 smx.Add smod

 Cinfo.submodelfile = profile

 Cinfo.userDir = fso.GetParentFolderName(profile)

' M sgBox "Closing 17, updating SM X " & smx.count

' Update_page

 fileSaved = True

 Exit Sub

badfile:

 Close #17

 M sgBox "PROBLEM : submodel file=" & profile

 Exit Sub

End Sub

Private Sub shpproColor_Click()

 cmdProfColor smod_ID

End Sub

Private Sub txtModLength_DblClick()

 getM odLength

End Sub

Private Sub txtmodelname_Change()

 If Not txtmodelname.Enabled Then Exit Sub

 res = InputBox("Enter a descriptive Model name" & vbNewLine

_

 & "<CR> keeps old name", "model name", modelname)

 If res = "" Then Exit Sub

 modelname = res

 txtmodelname.Enabled = False

 txtmodelname.Text = modelname

 fileSaved = False

 txtmodelname.Enabled = True

End Sub

Private Sub Update_page(Optional id As Integer)

 Dim sm_id As Integer, dummy As Single

 If (id <> Empty) And id > 0 Then smod_ID = id

 sm_id = smod_ID

 If smod_ID <= 0 Then Exit Sub

 If flagM odel Then

 Picture1.Enabled = True

 mnufilesaveas.Enabled = True

 Picture1.Visible = True

 End If

 cboprofilename.ListIndex = sm_id - 1

' cboprofilename.SetFocus

 cboprofilename.Refresh

 ' update cboindex,shpcolor,and picM Od

' M sgBox smod_ID & " UPDATE " & sm_id

 tot_profiles = cboprofilename.ListCount

 Tot_Chunks = chkx.count

 txtnumgeotypes.Text = tot_profiles

 shpproColor.FillColor = prof_color(sm_id)

 shpproColor.BackColor = prof_color(sm_id)

 shpproColor.Refresh

 txtZLayers.Text = smx.Item(smod_ID).nx

' dummy = smx(smod_ID).dz * Val(txtZLayers.Text)

 txtZLength.Text = smodlength(smod_ID)

 If modfile <> "" Then lblModfile.Caption = modfile

 txtmodelname.Enabled = False

 txtmodelname.Text = modelname

 txtmodelname.Enabled = True

 txtTotChunks.Text = Tot_Chunks

 'now update picMODEL using chunks

 getM odLength

 getUnusedLength

 Frame1.Refresh

 Frame2.Refresh

 Dim x As Integer

 For x = 0 To 4

 If modLength > 0 Then

 lblPz(x).Visible = True

 dummy = modLength * x / 4#

 lblPz(x).Caption = Format(dummy, "##0.0##")

 End If

 Next x

End Sub

Private Sub update_picture()

 Dim x As Integer, y As Integer, vv As Long

 Dim y1 As Integer, y2 As Integer

 picM odel.Cls

 For x = 1 To 100

 If Chunk(x) > 0 Then

' M sgBox "found a chunk to redraw " & x

 y = Chunk(x)

 vv = prof_color(y)

 y1 = convertxy(chunky1(x))

 y2 = convertxy(chunky2(x))

 drawM odel vv, y1, y2

 End If

 Next x

End Sub

Public Sub write_modfile(thefile As String)

 Dim x As Integer, dummID(20) As Integer

 Dim aline As String, dumstrg As String, dum As Integer

 If thefile = "" Then

 M sgBox "bad model file name", , title

 Exit Sub

 End If

 On Error Resume Next

 modfile = thefile

 cmdAdjLength_Click

 Dim aa As String

 aa = quote & Trim(thefile) & quote

 Open thefile For Output As #20

 On Error GoTo badfile

 Print #20, "model file="; thefile

 Print #20, "Revised "; Date

 Print #20, "modelname="; Trim(modelname)

 Print #20, "submodelfiles="; tot_profiles 'find NX

 Print #20, "submodels="; Tot_Chunks 'find NY

103

 Print #20, "[submodelprofiles]"

' annoying M sgBox " profs,chunks,numchks,chkx_count:" &

vbNewLine _

' & tot_profiles & Tot_Chunks & Cmod.numChunks &

chkx.count

 aline = Trim(chkx.Item(1))

 x = 2

 Do Until x > Cmod.numChunks

 aline = aline & "," & Trim(chkx.Item(x))

 x = x + 1

 Loop

 Print #20, aline

 For x = 1 To smx.count

 Print #20, "[submodel]"

 Print #20, "profilename="; smx.Item(x).smodname

 Print #20, "profile="; smx.Item(x).smodfile

 Print #20, "color="; prof_color(x)

 Next x

 Print #20, "[parameters]"

 Print #20, "total time=", Cmod.tot_time

 Print #20, "start time=", Cmod.T0

 Print #20, "Rparam_1=", Cmod.Rparam_1

 Print #20, "Rparam_2=", Cmod.Rparam_2

 Print #20, "Rparam_3=", Cmod.Rparam_3

 Print #20, "[output]"

 Print #20, "output= " & Tot_Loci

 x = 0

 Do Until x > Tot_Loci

 Print #20, "locus= " ' and place other items here for

printing'

 x = x + 1

 Loop

Finished:

 Close #20

 Update_page

 Cinfo.dataPath = fso.GetAbsolutePathName(modfile)

 Cinfo.userDir = fso.GetParentFolderName(modfile)

 Cinfo.write_startup

 fileSaved = True

 Exit Sub

badfile:

 M sgBox "bad data to write" & vbNewLine & thefile

 Close #20

 Exit Sub

End Sub

A.1.2 frmTemp.frm

Option Explicit

Option Base 1

Private thefile As String

Private nx As Integer, ny As Integer, nz As Integer, z As Integer

Private icolor(99) As Long, pic_colr() As Long

Private sm_temp() As Single, average As Single, mscale() As

Single

Private asp_rat As Double, dx As Double, dy As Double, dz As

Double

Private nc As Integer

Private Sub Form_Load()

 If frmRun.Tag = "model" Then

 nc = frmRun.Tot_Chunks

 Text1.Text = fso.GetBaseName(frmRun.thefile)

 Dim n As Integer

 On Error GoTo Finished

 For n = 1 To nc

104

 nz = smx.Item(frmRun.g_ChunkNum(n)).nz

 nx = smx.Item(frmRun.g_ChunkNum(n)).nx

 ny = smx.Item(frmRun.g_ChunkNum(n)).ny

 dz = smx.Item(frmRun.g_ChunkNum(n)).dz

 dx = smx.Item(frmRun.g_ChunkNum(n)).dx

 dy = smx.Item(frmRun.g_ChunkNum(n)).dy

 mnuCross_Click

 Next n

 ElseIf frmRun.Tag = "sounding" Then

 mnuSounding_Click

 End If

Finished:

 Exit Sub

End Sub

Private Sub mnuCross_Click()

If frmRun.modfile = "" Or thefile = "" Then

 CommonDialog1.Filter = outfilter

 CommonDialog1.ShowOpen

 thefile = CommonDialog1.FileName

 If thefile = "" Then Unload M e

End If

 If (nx * ny <= 1) Then

 nx = InputBox("NX=")

 ny = InputBox("NY=")

 nz = InputBox("NZ=")

 End If

 asp_rat = nx * dx / ny / dy

 Picture1.Height = Picture1.W idth / asp_rat

 txtnx.Text = nx

 txtny.Text = ny

 txtnz.Text = nz

 read_outfile thefile

 ReDim pic_colr(nx, ny, nz) As Long

 set_scale average, mscale, icolor

 set_Zscroll nz, z

 update_picture nx, ny, z, mscale, icolor

End Sub

Private Sub mnuSounding_Click()

Dim x1 As Integer, y1 As Integer

x1 = Picture1.ScaleW idth

y1 = Picture1.ScaleHeight

'M sgBox x1 & " scale " & y1

Dim x As Integer, q As Single, y As Long

q = 1# / sound.datapts

For y = 1 To sound.datapts

 x = (-sdgx.Item(y).dTavg) * x1

 Picture1.PSet (x, y * q * y1), vbBlack

Next y

End Sub

Private Sub read_outfile(afile As String)

 Dim x As Integer, y As Integer, z As Integer, dummy() As

Single

 Dim aline As String

 ReDim dummy(nx) As Single, sm_temp(nx, ny, nz) As Single

 average = 0

 Close #41

 Open afile For Input As #41

 On Error GoTo badnum

begin:

 For z = 1 To nz

 For y = 1 To ny

 Input #41, aline

 For x = 1 To nx

 dummy(x) = getRowVar(aline)

 sm_temp(x, y, z) = dummy(x)

 average = average + dummy(x)

 Next x

 Next y

 Next z

 average = average / nx / ny / nz

' M sgBox average & " is average value"

Finished:

 Close 41

 Exit Sub

badnum: nx = InputBox("Enter NX (# of Xzones)")

 ny = InputBox("Enter NY ")

 nz = InputBox("Enter NZ (vertical zones)")

 GoTo begin

End Sub

Private Sub set_scale(average As Single, mscale() As Single,

icolor() As Long, _

 Optional ns As Long)

 Dim z As Integer, y As Integer, x As Integer, dev As Single

 Dim range As Single, n As Integer, C As Single, mx As Single,

mn As Single

'---

 Picture1.Scale (0, 0)-(nx, ny)

'++

 dev = 0#

 mx = -14#

 mn = 2000#

 For x = 1 To nx

 For y = 1 To ny

 For z = 1 To nz

 C = Abs(average - sm_temp(x, y, z))

 If sm_temp(x, y, z) > mx Then mx = sm_temp(x, y, z)

 If sm_temp(x, y, z) < mn Then mn = sm_temp(x, y, z)

' If sm_temp(x, y, z) < 1 Then M sgBox "zero at " & x & y &

z

 dev = dev + C

 Next z

 Next y

 Next x

 Dim q As Double

' M sgBox mn & " min, max " & mx

 q = 1# * nx * ny * nz

 dev = dev / q

 If ns < 2 Or ns > 29 Then ns = 30

 range = dev * 4.5

 C = (average + mx + mn) / 3#

' M sgBox range & " average " & c

 C = (C - range / 2) \ 1#

 dev = range * 3.1 / (ns) \ 3

 If dev = 0 Then dev = 0.25

 ReDim mscale(ns)

 Dim ic As Long

 picScale.Scale (-0.5, 0)-(0.5, ns + 1)

 picScale.BackColor = RGB(20, 20, 250)

 picScale.FillStyle = 0

 picScale.DrawW idth = 350

 For n = 1 To ns

 mscale(n) = C + dev * (n)

 ic = (n) * 255 / (ns)

 icolor(n) = RGB(ic, ic, 255 - ic / 3)

 picScale.ForeColor = icolor(n)

105

 picScale.Line (0, n)-(0, n + 1), icolor(n), BF

 Next n

 Label2.Caption = mscale(1)

 Label3.Caption = mscale(ns)

' picScale.BackColor = icolor(1)

' M sgBox mscale(1) & " " & mscale(ns)

End Sub

Private Sub set_Zscroll(nz As Integer, z As Integer)

 VScroll1.M ax = nz

 VScroll1.M in = 1

 VScroll1.SmallChange = 1

 VScroll1.LargeChange = 5

 VScroll1.Value = (nz + 1) \ 2

 z = VScroll1.Value

End Sub

Private Sub update_picture(nx As Integer, ny As Integer, z As

Integer, _

 mscale() As Single, ic() As Long)

 Dim ns As Integer, x As Integer, y As Integer, n As Integer, vv

As Long

 ns = UBound(mscale)

 Dim qq As Integer

 'Picture1.ScaleM ode = 0

 'Picture1.ScaleW idth = nx + 1

 'Picture1.ScaleHeight = ny + 1

 Picture1.DrawW idth = nx

 qq = Picture1.DrawW idth

' M sgBox qq & " drawwdith "

 For y = 1 To ny

 For x = 1 To nx

 n = 1

 vv = ic(1)

 Do Until n > ns

 If sm_temp(x, y, z) > mscale(n) Then

 vv = ic(n)

 pic_colr(x, y, z) = vv

 Else

 Exit Do

 End If

 n = n + 1

 Loop

 Picture1.Line (x, y - 0.5)-(x, y + 0.5), vv, BF

 Next x

 Next y

 frmTemp.Enabled = True

 frmTemp.Visible = True

 Picture1.Enabled = True

 Picture1.Visible = True

 txtLayer.Text = z

' Picture1.Line (0, 0)-(nx, ny), vbW hite

End Sub

Private Sub VScroll1_Change()

z = VScroll1.Value

txtLayer.Text = z

update_picture nx, ny, z, mscale, icolor

End Sub

106

A.1.3 frmSource.frm

Option Explicit

Option Base 1

Dim P1 As Single, P2 As Single, P3 As Single

Dim TSflag As Boolean, fcontinue As Boolean

' Dim Placement As Single

Public nFont As String, csrc As Csourceheat

Private Sub Form_Load()

 Dim x As Integer

 fcontinue = False

 lblP1.Alignment = 2

 lblP2.Alignment = 2

 txtTSfile.Enabled = True

 txtTSfile.Visible = True

 W ith cexe

 For x = 1 To 3

 txtparam(x - 1) = .Src.g_sParam(x)

 If txtparam(x - 1) <= 0 Then MsgBox x - 1 & " param=0"

 Next x

 txtparam(3) = .Src.Heat

 txtparam(4) = .Src.ConRho

 txtparam(5) = .Src.Placement

 txtparam(6) = .Src.T0

 optABT.Value = .Src.flagABT

 optTimeSeries = .Src.flagTS

 TSflag = .Src.flagTS

 If TSflag Then optTmodel = False

 Frame2.Enabled = TSflag

 Frame2.Visible = TSflag

 frame3.Enabled = Not TSflag

 frame3.Visible = Not TSflag

 If TSflag Then txtTSfile.Text = .Src.sourceTSfile

 End W ith

' remove below after debugging

' cexe.Src.flagTS = True

' cexe.Src.flagABT = False

' optABT.Enabled = False

 optTmodel.Enabled = False

' optTimeSeries.Enabled = True

' end debug alterations

 fcontinue = True

End Sub

Private Sub clear_srcx()

 Dim i As Object

 For Each i In cexe.Srcx

 cexe.Srcx.Remove i

 Next i

 cexe.Src.flagReady = False

 cexe.flagReady = False

End Sub

Private Sub cmdExit_Click()

 Dim ferr As Boolean, q As Single, x As Integer

 If cexe.Src.flagReady Then Unload frmSource

 If TSflag Then

 ferr = cexe.Src.read_sourceTS

 Else

 q = 1#

 For x = 1 To 6

 q = q * Val(txtparam(x - 1))

 Next x

 If q = 0# Then ferr = True

 End If

 If cexe.Src.Placement = 0 Then ferr = True

 If Not ferr Then

 cexe.Src.flagReady = True

 If frmRun.Tag = "" Then frmRun.Tag = "COM PLETE"

 Else

 M sgBox "A parameter is specified improperly " &

vbNewLine _

 & " or is unspecified."

 cexe.Src.flagReady = False

 frmRun.Tag = "ERROR"

 End If

 Unload M e

End Sub

Private Function getLocalP(q As Single)

 If Not fcontinue Then Exit Function

 Dim res As String

 res = InputBox("Enter Parameter Value", "Parameter Value", q)

 If Not IsNumeric(res) Then Exit Function

 getLocalP = Val(res)

End Function

Sub load_page()

 Dim x As Integer

End Sub

Private Sub optabt_Click()

 If (Not fcontinue) Then Exit Sub

 fcontinue = False

 optABT.Value = True

 optTmodel = False

 optTimeSeries = False

 TSflag = False

 cexe.Src.flagABT = True

 cexe.Src.flagTS = False

 fcontinue = True

 Update_page

End Sub

Private Sub optTimeSeries_Click()

 If (Not fcontinue) Then Exit Sub

 fcontinue = False

 optABT.Value = False

 TSflag = True

 optTmodel.Value = False

 optTimeSeries = True

 cexe.Src.flagABT = False

 cexe.Src.flagTS = True

 Frame2.Enabled = True

 Frame2.Visible = True

 txtTSfile_Click

 fcontinue = True

 Update_page

End Sub

Private Sub optTmodel_Click()

 If (Not fcontinue) Then Exit Sub

 fcontinue = False

 optTmodel.Value = True

 optABT = False

 optTimeSeries = False

 TSflag = False

 cexe.Src.flagABT = False

107

 cexe.Src.flagTS = False

 fcontinue = True

 Update_page

End Sub

Private Sub txtParam_Change(Index As Integer)

 If Not fcontinue Then Exit Sub

 txtParam_Click Index

End Sub

Private Sub txtParam_Click(Index As Integer)

 If (Not fcontinue) Then Exit Sub

 On Error GoTo badparam

 Dim q As Single, qq As Single

 qq = txtparam(Index)

 q = Val(getLocalP(qq))

 fcontinue = False

 txtparam(Index) = q

 W ith cexe.Src

 If Index < 3 Then

 .l_SParam(Index + 1) = q

 ElseIf Index = 3 Then

 .Heat = q

 ElseIf Index = 4 Then

 .ConRho = q

 ElseIf Index = 5 Then

 cexe.Placement = q

 .Placement = q

 ElseIf Index = 6 Then

 .T0 = q

 End If

 End W ith

 cexe.Src.flagReady = False

 fcontinue = True

 Exit Sub

badparam:

 M sgBox "A bad parameter value"

End Sub

Private Sub txtParam_GotFocus(Index As Integer)

 txtParam_Click (Index)

End Sub

Private Sub txtTSfile_Click()

 Dim res As String

 CommonDialog2.FileName = cexe.Src.sourceTSfile

 CommonDialog2.Filter = " Time series (*.ts)|*.ts| All files |*.*

"

 CommonDialog2.InitDir = Cinfo.DataDir

 CommonDialog2.ShowOpen

 res = CommonDialog2.FileName

 If res <> "" Then

 Dim s As String

 s = Trim(res)

 cexe.Src.sourceTSfile = s

 txtTSfile.Enabled = True

 txtTSfile.Text = s

 TSflag = True

 txtTSfile.Visible = True

 End If

 Update_page

 cexe.Src.flagReady = False

End Sub

Private Sub Update_page()

 Dim afont As String, bfont As String

 fcontinue = False

 afont = "Symbol"

 bfont = lblRho.Font

 If TSflag Then

 Frame2.Enabled = True

 Frame2.Visible = True

 frame3.Enabled = False

 frame3.Visible = False

 Else

 Frame2.Enabled = False

 Frame2.Visible = False

 frame3.Enabled = True

 frame3.Visible = True

 If optABT = True Then

 lblP1.Caption = " alpha = "

 lblP2.Caption = " beta = "

 lblP3.Caption = " tau = (time, in hrs)"

 Else

 lblP1.FontName = bfont

 lblP1.Caption = "P1 = time scaling (dimless)"

 lblP2.FontName = bfont

 lblP2.Caption = "Time of M aximum Rise" & vbNewLine

_

 & "(`Inflection Point`, in hrs)"

 lblP3.FontName = bfont

 lblP3.Caption = " P3 = exponent"

 End If

 End If

 fcontinue = True

End Sub

108

A.1.4 frmRun.frm

Option Explicit

Option Base 1

Public modfile As String, thefile As String

Public ppath As String, pfile As String, CylFormat As Boolean

Public modelname As String, tot_profiles As Integer, Cseries As

Cdataseries

Public Tot_Chunks As Integer, flagABT As Boolean, PlotSeqnx

As Collection

Public RecsTSx As Collection, USflag As Boolean, numRecs As

Integer

Private smod As Csubmodel

Dim smodlength(16) As Single, modLength As Single, ptitle As

String

Dim Chunk(100) As Integer, chunky1(100) As Integer,

chunky2(100) As Integer

Dim chkx As Collection, tsfilter As String, iplot As Integer

Dim runlayer As Integer, fsuspend As Boolean, TSfile As String,

Coord(16, 3)

Dim trashfile As String, rpath As String

Public test As CsdgDatum

Private Sub Form_Load()

 frmRun.Tag = ""

 Set cexe = New Cexec

' Set boundx = New Collection

 clear_Lists

 clear_Sx

 ptitle = "Run / View M odel"

 tsfilter = " Time Series (*.ts)| *.ts| All files (*.*)| *.*"

 fsuspend = True

 init_RunVars

 mnuExecute.Enabled = False

 mnuSource.Enabled = False

 mnuM odSpecs.Enabled = False

 mnuDisplaymodel.Enabled = False

 mnuM akeRunfile.Enabled = False

 cexe.CylFormat = True

 CylFormat = True

 barProg.Visible = False

 fsuspend = False

 frmRun.Tag = ""

End Sub

'===

===========

 ' alpha-listed methods

'===

===========

Private Sub change_NumRecs()

 If Val(txtP(5)) <= 0 Then

 numRecs = 0

 Exit Sub

 End If

 frmRecs.Show vbM odal

 txtP(5) = Str$(numRecs)

 If numRecs > 0 Then check_TSpts

End Sub

Private Sub check_TSpts()

 Dim x As Integer, lz(16) As Single, lzmax As Single

 lz(1) = smx.Item(Chunk(1)).nz * smx.Item(Chunk(1)).dz

 lzmax = lz(1)

 For x = 2 To Cmod.numChunks

 W ith smx.Item(Chunk(x))

 lz(x) = .dz * .nz + lz(x - 1)

 lzmax = lz(x)

 End W ith

 Next x

 Dim lx As Single, iq As Integer, a As Single, y As Integer

 lx = smx.Item(Chunk(1)).dx * smx.Item(Chunk(1)).nx

 iq = numRecs

 For x = 1 To numRecs - 1 ' Kill the off-domain bad points

 If (Coord(x, 1) > lx Or Coord(x, 2) > lx Or Coord(x, 3) >

lzmax) Or _

 (Coord(x, 1) * Coord(x, 2) * Coord(x, 3) < 0) Then

 For y = x To numRecs - 1

 Coord(y, 1) = Coord(y + 1, 1)

 Coord(y, 2) = Coord(y + 1, 2)

 Coord(y, 3) = Coord(y + 1, 3)

 Next y

 numRecs = numRecs - 1

 End If

 Next x

 x = numRecs

 If Coord(x, 1) > lx Or Coord(x, 2) > lx Or Coord(x, 3) > lzmax

Then numRecs = numRecs - 1

 If numRecs < iq Then M sgBox iq - numRecs & " points were

found to be outside the model."

 iq = numRecs

 For x = 1 To numRecs - 1 ' Kill Duplicates

 For y = x + 1 To numRecs

 If Coord(x, 1) = Coord(y, 1) And Coord(x, 2) = Coord(y, 2)

And Coord(x, 3) = Coord(y, 3) Then

 For iq = y To numRecs - 1

 Coord(iq, 1) = Coord(iq + 1, 1)

 Coord(iq, 2) = Coord(iq + 1, 2)

 Coord(iq, 3) = Coord(iq + 1, 3)

 Next iq

 numRecs = numRecs - 1

 End If

 Next y

 Next x

 x = numRecs

 If numRecs <= 0 Then Exit Sub

 If Coord(x, 1) > lx Or Coord(x, 2) > lx Or Coord(x, 3) > lzmax

Then numRecs = numRecs - 1

 If numRecs < iq Then M sgBox iq - numRecs & " points were

found to be outside the model."

' have the xyz scaling; now to order them

 For y = 1 To numRecs - 1

 iq = 0

 For x = 2 To numRecs

 If Coord(y, 3) > Coord(x, 3) Then iq = x

 Next x

 If (iq <> 0) Then

 For x = 1 To 3

 a = Coord(y, x)

 Coord(y, x) = Coord(iq, x)

 Coord(iq, x) = a

 Next x

 End If

 Next y

 txtP(5) = numRecs

End Sub

Public Sub chkxClear()

109

 Dim x As Integer

 If chkx.count < 1 Then Exit Sub

 For x = chkx.count To 1 Step -1

 chkx.Remove x

 Next x

End Sub

Private Function getP(ByRef q As Variant, ind As Integer) As

Variant

 Dim res As String

 On Error Resume Next

 If ind <> 5 Then

 res = InputBox(labp(ind).Caption, "Enter Parameter Value", q)

 If Not IsNumeric(res) Then res = Val(q)

 getP = Val(res)

 Else

 getP = 1

 End If

End Function

' === PutP is next to partner function

Private Function putP(Index As Integer)

 If Index = 0 Then

 cexe.itmax = Val(txtP(0))

 ElseIf Index = 1 Then

 cexe.errmax = Val(txtP(1))

 ElseIf Index = 2 Then

 cexe.dtmax = Val(txtP(2))

 ElseIf Index = 3 Then

 cexe.starttime = Val(txtP(3))

 ElseIf Index = 4 Then

 cexe.endtime = Val(txtP(4))

 ElseIf Index = 5 Then

 numRecs = Val(txtP(5))

 change_NumRecs

 End If

End Function

Private Sub init_RunVars()

 txtP(3) = cexe.starttime

 txtP(4) = cexe.endtime

 cexe.itmax = 22

 txtP(0) = cexe.itmax

 txtP(1) = cexe.errmax

 txtP(2) = cexe.dtmax

 txtP(5) = numRecs

 txtM odfile = ""

 txtmodelName = ""

End Sub

Private Sub mnuDisplaySounding_Click()

 frmRun.Tag = "sounding"

 frmTemp.Show

End Sub

Private Sub mnuExecute_Click()

 If Not cexe.flagReady Then Exit Sub

 Dim res As Variant, comm As String * 126, s As String

 Dim afile As String, x As Integer, xname As String

 runlayer = 1

 smod_ID = Chunk(runlayer)

 On Error Resume Next

 If fso.FileExists("series.pr") Then Kill "series.pr"

 mnurun.Enabled = False

 trashfile = "clrthred.tmp"

 If fso.FileExists(trashfile) Then Kill trashfile

startloop:

 Dim zero As String * 1, stdoutf As String

 cexe.putBounds runlayer

 ppath = quote & Trim(Cinfo.progPath) & quote

 If Cinfo.testing Then ppath = quote & Trim(Cinfo.homeDir

_

 & "\program\xtpf.exe") & quote

 xname = fso.BuildPath(Cinfo.TempDir, "tempfile." &

Trim(Str$(runlayer)))

 cexe.write_Tempfile Chunk(runlayer), xname, runlayer

 xname = quote & Trim(xname) & quote

 stdoutf = "STDOUT." & Trim(Str$(runlayer))

 comm = "call " & ppath & blah & xname & blah & stdoutf &

_

 blah & trashfile

 set_TSpts (runlayer)

 rpath = Cinfo.homeDir & "\project.bat"

 If fso.FileExists("project.bat") Then Kill "project.bat"

 Open rpath For Output As #74

 Print #74, "@ echo off"

 Print #74, comm

 Print #74, " "

 Close #74

 Shell rpath, vbM inimizedNoFocus

 Timer1.Interval = smx.Item(smod_ID).nx *

smx.Item(smod_ID).ny _

 * smx.Item(smod_ID).nz * (cexe.endtime -

cexe.starttime + 6#) / 32 \ 200

 Timer1.Enabled = True

 barProg.Visible = True

 barProg.M in = 0

 barProg.M ax = Tot_Chunks * 32

 barProg.Value = 0

' mnuExecute.Enabled = False

 Cinfo.dataPath = fso.GetAbsolutePathName(stdoutf)

 Cinfo.write_startup

End Sub

Private Sub mnuExit_Click()

 Close

 clear_Smx

 clear_Sx

 Unload M e

End Sub

Private Sub mnuM akeRunfile_Click()

 Dim err As Integer

 If Not cexe.flagReady Then Exit Sub

 Dim res As String

 CommonDialog1.Filter = runfilter

 CommonDialog1.FileName = "c:\diska\project"

 CommonDialog1.ShowSave

 res = CommonDialog1.FileName

 If res = "" Then Exit Sub

 cexe.write_Runfile res

End Sub

Private Sub mnuM odelDisplay_Click()

 On Error GoTo problem

 Tag = "model"

 frmTemp.Show vbM odal

 Exit Sub

problem:

 M sgBox "Problem displaying output file "

End Sub

Private Sub mnuM odSpecs_Click()

 If Not cexe.g_TxFlag Then

 cexe.alignSubM ods

110

 M sgBox " alignments have not been done yet??"

 End If

 mnuExecute.Enabled = False

 frmConds.Enabled = True

 frmConds.Show vbM odal

 If cexe.flagBndy And cexe.Src.flagReady Then

 On Error Resume Next

 cexe.alignChkBounds

 cexe.flagReady = True

 End If

 If cexe.flagReady Then

 mnuExecute.Enabled = True

 cexe.outfile = fso.GetBaseName(cexe.modelfile)

 End If

End Sub

Private Sub mnuOpenM odel_Click()

 Dim res As Variant, B As String, x As Integer, q As Integer

 B = blah

 clear_Sx

 clear_Smx

 CommonDialog1.FileName = ""

 CommonDialog1.Filter = modfilter

 CommonDialog1.InitDir = Cinfo.userDir

 CommonDialog1.ShowOpen

 res = CommonDialog1.FileName

 If res = "" Then Exit Sub

 modfile = res

 Set smod = New Csubmodel

 Call read_modfile(modfile)

 Cinfo.modelfile = modfile

 mnuM odel.Enabled = False

 Call cexe.alignSubM ods

 mnuSource.Enabled = True

 mnuM odSpecs.Enabled = False

 Tot_Chunks = Cmod.numChunks

 For x = 1 To smx.count

 W ith smx.Item(x)

 q = .sx.count

' M sgBox x & b & q & b & .sx.Item(q).sectionname &

vbNewLine _

 & .sx.Item(q).m_name(1) & b & .getvalarray(q, 1, 1) _

 & vbNewLine & "nx....dz " & .nx & .ny & .nz & b & .dx _

 & b & .dy & b & .dz & " section#(1)=" & .G_secnumber(1)'

 End W ith

 Next x

 cexe.flagReady = False

 cexe.flagBndy = False

End Sub

Private Sub mnuOpenRun_Click()

 Dim s As String

 CommonDialog1.Filter = " Execute files (*.rx)|*.rx|All files|*.*"

 s = ""

 CommonDialog1.FileName = s

 CommonDialog1.ShowOpen

 s = CommonDialog1.FileName

 If s = "" Then Exit Sub

 cexe.exefile = s

 cexe.read_exec

 mnuSource.Enabled = True

 mnuExecute.Enabled = True

End Sub

Private Sub mnuOpensounding_Click()

CommonDialog1.FileName = sdgfile

CommonDialog1.Filter = sdgfilter

CommonDialog1.ShowOpen

sdgfile = CommonDialog1.FileName

If sdgfile = "" Then Exit Sub

'Set sound = New Csounding

'sound.read_sounding sdgfile

'frmRun.Tag = "sounding"

'mnudisplaysounding.Enabled = True

End Sub

Private Sub mnuSource_Click()

 If Not cexe.g_TxFlag Then cexe.alignSubM ods

 frmSource.Show vbM odal

 If cexe.flagReady Then Exit Sub

 If cexe.flagBndy And cexe.Src.flagReady Then

' M sgBox "conditions are right"

 cexe.alignChkBounds

 cexe.flagReady = True

 mnuExecute.Enabled = True

 End If

 If cexe.Src.flagReady Then mnuM odSpecs.Enabled = True

 If Not cexe.flagBndy Then mnuExecute.Enabled = False

End Sub

Private Sub mnuTimeS_Click()

 Dim res As String, s As String

 CommonDialog1.Filter = tsfilter

 CommonDialog1.DialogTitle = "Time Series"

 If Not InStr(1, TSfile, ".ts", vbTextCompare) Then TSfile = ""

 CommonDialog1.FileName = TSfile

 CommonDialog1.ShowOpen

 TSfile = CommonDialog1.FileName

 If Not (TSfile <> "" And fso.FileExists(TSfile)) Then Exit Sub

 Set Cseries = New Cdataseries

 Cseries.read_TSfile (TSfile)

' iplot=cseries.

' draw_TS (iplot)

End Sub

Public Sub mnuTEST_Click()

 Dim res As Single

 Set test = New CsdgDatum

 Let test.dTemp1 = InputBox("enter temp at (0 , 0):", title, 0)

 Let test.dTemp2 = InputBox("enter temp at (0 , 1):", title, 0)

 Let test.dTemp3 = InputBox("enter temp at (1 , 1):", title, 0)

 Let test.dTemp4 = InputBox("enter temp at (1 , 0):", title, 0)

 M sgBox "matrix:" & vbNewLine & test.dTemp1 & test.dTemp2

_

 & vbNewLine & test.dTemp4 & test.dTemp3

 test.getRotation

 test.show_drtemp

 Set test = Nothing

End Sub

Private Sub prep_DirSpace(runlayer As Integer)

 Dim afile As String

 If runlayer = 0 Then

 M sgBox "BAD: runlayer not passed correctly " & runlayer

 Exit Sub

 End If

 If fso.FileExists(cexe.outfile) Then

 afile = Trim(cexe.outfile & "." & Trim(Str$(runlayer)))

 If fso.FileExists(afile) Then Kill afile

 FileCopy cexe.outfile, afile

 End If

 If fso.FileExists("Center.out") Then

 If fso.FileExists("TSeries." & Trim(Str$(runlayer))) Then Kill

111

"TSeries." & Trim(Str$(runlayer))

 fso.CopyFile "Center.out", "TSeries." & Trim(Str$(runlayer))

 End If

 If fso.FileExists("Tmax.out") Then

 If fso.FileExists("Tmax." & Trim(Str$(runlayer))) Then Kill

"Tmax." & Trim(Str$(runlayer))

 fso.M oveFile "Tmax.out", "Tmax." & Trim(Str$(runlayer))

 End If

 If fso.FileExists("project.bat") Then Kill "project.bat"

End Sub

Public Sub read_modfile(thefile As String)

 Dim aline As String, dumstrg As String, dum As Integer

 Dim x As Integer, dummID(100) As Integer, profs(50) As String

 Dim profile As String

 If thefile = "" Then GoTo badfile

 Open thefile For Input As #18

 txtM odfile = thefile

 cexe.modelfile = thefile

 dumstrg = getStrVal(18, "odelname=")

 Cmod.modelname = dumstrg

 modelname = dumstrg

 txtmodelName = modelname

 Cmod.submodfiles = getNumVal(18, "elfiles=")

 x = getNumVal(18, "submodels=") 'find NZ

 Cmod.numChunks = x

 Tot_Chunks = x

 If Cmod.numChunks < 1 Then GoTo badfile

 dumstrg = findline(18, "[submodelprofiles]")

 getrow 18, Cmod.numChunks, Chunk

 If smx.count > 0 Then clear_Smx

 Dim s As String, xx As Integer

 For xx = 1 To Cmod.submodfiles

 s = findline(18, "model]")

 Set smod = New Csubmodel

 profile = getStrVal(18, "file=")

 read_profile profile

 If profile = "ERROR" Then GoTo badfile

 smodlength(xx) = smod.dz * smod.nz

 ' M sgBox xx & "a submodel length= " & smodlength(xx) &

" meters"

 txtmodelName.Text = Cmod.modelname

' M sgBox xx & "b EOL " & smod.smodname & vbNewLine _

' & smod.smodfile & smx.count

 smx.Add smod

 Next xx

 xx = smx.count

 If Cinfo.testing Then

 M sgBox " leaving smod loop " & xx & vbNewLine _

 & smx(xx).smodname & vbNewLine & smx(xx).scount

 End If

'============

Finished:

' mnuM akeRunfile.Enabled = True

 mnuExecute.Enabled = False

 mnuOpenRun.Enabled = False

 mnuM odSpecs.Enabled = True

 mnuSource.Enabled = True

 mnuDisplaymodel.Enabled = True

 frmRun.Tag = "Ready"

 Cinfo.dataPath = fso.GetAbsolutePathName(thefile)

 Cinfo.userDir = fso.GetParentFolderName(thefile)

 Cinfo.write_startup

 Close #18

 Exit Sub

badfile:

 M sgBox "a bad file to read" & vbNewLine & thefile

 Close #18

 Exit Sub

End Sub

Private Sub read_profile(afile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean, sfile As String

 Dim dummy(80) As Integer, ss As String, iu As Integer

 W ith smod

 .smodfile = afile

 If Not fso.FileExists(afile) Then

 M sgBox "File not found: " & afile

 afile = "ERROR"

 Exit Sub

 End If

 Open afile For Input As #19

 y = 1

 count = 1

 On Error GoTo badfile

 profilename = getStrVal(19, "name=")

 .smodname = profilename

 .nx = getNumVal(19, "nx=")

 .ny = getNumVal(19, "ny=")

 .nz = getNumVal(19, "nz=")

 .dx = getNumVal(19, "dx=")

 .dy = getNumVal(19, "dy=")

 .dz = getNumVal(19, "dz=")

 If (.nx * .nz * .dy * .dz) <= 0 Then M sgBox "Big Trouble

reading"

 .tot_secfiles = getNumVal(19, "files=")

 .scount = .tot_secfiles

 s = findline(19, "model]")

 getrow 19, .nz, dummy

 aline = ""

 For x = 1 To .nz

 .L_secnumber(x) = dummy(x)

 aline = aline & Str$(dummy(x))

 Next x

 If Cinfo.testing Then

 M sgBox " Got sections: " & aline

' M sgBox Str$(.G_secnumber(1))

 End If

 s = findline(19, "ections]")

 If .sx.count > 0 Then

 For x = sx.count To 1 Step -1

 Set csec = Nothing

 .sx.Remove x

 Next x

 End If

 Dim res As Long, iq As Integer

 For x = 1 To .tot_secfiles

 Set csec = New Cgeom

' M sgBox x & " =i sexnfile reading; list count " & .sx.count,

vbApplicationM odal

112

 s = "ERROR"

 If EOF(19) Then GoTo badfile

 s = findline(19, "section]")

 ' On Error GoTo badfile

 sfile = getStrVal(19, "file=")

 csec.Sectionfile = sfile

 If sfile = "ERROR" Then GoTo badfile

 res = getNumVal(19, "color=")

 csec.sec_color = res

 csec.read_secfile sfile

 s = csec.sectionname

 .sx.Add csec 'x before this

 iq = .sx.count

 ' M sgBox .sx.Item(iq).sectionname & " is new sxn, # " & iq

 Next x

 End W ith

Finished:

 ' M sgBox "read_profile: finished reading submodel"

 Close #19

 ' On Error Resume Next

' smx.Add smod, profilename

 Exit Sub

badfile:

 Close #19

 M sgBox "PROBLEM : submodel file=" & profile

 Exit Sub

 End Sub

Private Sub set_TSpts(ck As Integer)

 Dim x As Integer, z0 As Single, z1 As Single, iz As Integer

 If numRecs = 0 Then Exit Sub

 On Error Resume Next

 Dim dx As Single, dy As Single, dz As Single

 z0 = 0#

 z1 = 0#

 Dim qx As Integer, qy As Integer, izz(100) As Integer

 For x = 1 To runlayer

 z0 = z1

 dx = smx.Item(Chunk(x)).dx

 dy = smx.Item(Chunk(x)).dy

 dz = smx.Item(Chunk(x)).dz

 z1 = z1 + dz * smx.Item(Chunk(x)).nz

 Next x

 iz = 0

 For x = 1 To numRecs

 If Coord(x, 3) >= z0 And Coord(x, 3) <= z1 Then

 iz = iz + 1

 izz(iz) = x

 End If

 Next x

 If iz = 0 Then Exit Sub

 If fso.FileExists("series.pr") Then Kill "series.pr"

 Close #46

 Dim s As String

 s = Cinfo.TempDir & "series.pr"

 Open s For Output As #46

 Print #46, iz

 For x = 1 To iz

 If Coord(izz(x), 3) >= z0 And Coord(izz(x), 3) <= z1 Then

 qx = Int((Coord(izz(x), 1) + dx / 2#) / dx)

 qy = Int((Coord(izz(x), 2) + dy / 2#) / dy)

 Print #46, qx, qy, Int((Coord(izz(x), 3) + dz / 2#) / dz)

 qx = Int((Coord(izz(x), 1) + dx / 2#) / dx)

 End If

 Next x

 Close #46

End Sub

Private Sub Timer1_Timer()

 Dim res As Variant, comm As String * 126, s As String

 Dim afile As String, x As Integer, xname As String, stdoutf As

String

 On Error Resume Next

 If barProg.Value < runlayer * 32 Then barProg.Value =

barProg.Value + 1

 'GoTo Finished

 If Not fso.FileExists(trashfile) Then Exit Sub

 Timer1.Enabled = False

 If fso.FileExists(trashfile) Then Kill trashfile

 ' M sgBox "finished " & runlayer & blah & Tot_Chunks

 Call prep_DirSpace(runlayer)

 If runlayer = Tot_Chunks Then GoTo Finished

 runlayer = runlayer + 1

' On Error Resume Next

 cexe.putBounds runlayer

 xname = Trim("tempfile.") & Trim(Str$(runlayer))

 cexe.write_Tempfile Chunk(runlayer), xname, runlayer

 trashfile = fso.GetTempName

 xname = quote & xname & quote

 stdoutf = "stdout." & Trim(Str$(runlayer))

 comm = "call " & ppath & blah & xname & blah & stdoutf & _

 blah & trashfile

 set_TSpts (runlayer)

 Open rpath For Output As #74

 Print #74, "@ echo off"

 Print #74, comm

 Print #74, " "

 Close #74

 Timer1.Enabled = True

 Shell rpath, vbM inimizedNoFocus

 Exit Sub

Finished:

 Timer1.Enabled = False

 barProg.Value = barProg.M ax

 barProg.Visible = False

 M sgBox "Completed all " & Str$(Tot_Chunks) & " sub-models

included.", , ptitle

 If fso.FileExists(trashfile) Then Kill trashfile

 mnuExecute.Enabled = True

 mnurun.Enabled = True

 frmRun.Tag = "model"

 Unload M e

 Exit Sub

End Sub

Private Sub txtP_Change(Index As Integer)

 If fsuspend Then Exit Sub

 txtP_Click (Index)

End Sub

Private Sub txtP_Click(Index As Integer)

 Dim q As Variant

 If fsuspend Then Exit Sub

 fsuspend = True

 If Not IsNumeric(q) Then q = 0#

 q = (txtP(Index))

 txtP(Index) = Val(getP(q, Index))

 putP (Index)

 fsuspend = False

End Sub

'===

=====

'===

=====

113

Public Property Get g_ChunkNum(x As Integer) As Integer

 g_ChunkNum = Chunk(x)

End Property

Public Property Let letCoord(ByVal rec As Integer, ByVal ind As

Integer, q As Single)

 Coord(rec, ind) = q

End Property

Public Property Get getCoord(rec As Integer, ind As Integer) As

Single

 getCoord = Coord(rec, ind)

End Property

A.1.5 frmRecs.frm

Option Base 1

Dim USflag As Boolean, fsuspend As Boolean

Dim totalpts

Private Sub Command3_Click()

 Unload M e

End Sub

Private Sub Form_Load()

 fsuspend = True

 USflag = frmRun.USflag

 chkUS.Value = 0

 Label2 = "in M eters"

 If USflag Then

 chkUS.Value = 1

 Label2.Caption = "in Feet"

 End If

 Dim x As Integer, x1 As Single, x2 As Single, x3 As Single

 totalpts = frmRun.numRecs

 W ith frmRun

 If totalpts > 0 Then

 For x = 1 To totalpts

 x1 = .getCoord(x, 1)

 x2 = .getCoord(x, 2)

 x3 = .getCoord(x, 3)

 If USflag Then

 x1 = x1 / 0.304569

 x2 = x2 / 0.304569

 x3 = x3 / 0.304569

 End If

 aline = Str$(x3) & "=Z, " & Str$(x1) & blah & Str$(x2)

 If x1 * x2 * x3 <= 0# Then

 totalpts = totalpts - 1

 frmRun.numRecs = totalpts

 Else

 Combo1.AddItem aline

 End If

 Next x

 End If

 If Combo1.ListCount > 0 Then

 Combo1.Refresh

 x = Combo1.ListCount

 Combo1.ListIndex = x - 1

 Command1.Enabled = True

 Else

 Command1.Enabled = False

 End If

 End W ith

 fsuspend = False

End Sub

Private Sub Form_Unload(Cancel As Integer)

 ' put the unit conversions here before death

 Dim x As Integer, q As Single, y As Integer

 frmRun.numRecs = totalpts

 frmRun.USflag = USflag

 If Not USflag Then Exit Sub

 W ith frmRun

 For x = 1 To totalpts

 For y = 1 To 3

 q = .getCoord(x, y) * 0.304569

 .letCoord(x, y) = q

 Next y

 Next x

 End W ith

End Sub

Private Sub chkUS_Click()

 If fsuspend Then Exit Sub

 fsuspend = True

 USflag = Not USflag

 If USflag Then

 chkUS.Value = 1

 Label2 = "in Feet"

 Else

 chkUS.Value = 0

 Label2 = "in M eters"

 End If

 fsuspend = False

End Sub

Private Sub Command1_Click()

 If fsuspend Then Exit Sub

 fsuspend = True

 Dim id As Integer, x As Integer, y As Integer

 id = Combo1.ListIndex + 1

 W ith frmRun

 For x = id To totalpts - 1

 For y = 1 To 3

 .letCoord(x, y) = .getCoord(x + 1, y)

 .letCoord(x + 1, y) = 0#

 Next y

 Next x

 End W ith

 totalpts = totalpts - 1

 Combo1.RemoveItem id - 1

 id = id - 1

 If Combo1.ListCount > 0 Then

114

 Combo1.ListIndex = 0

 Command1.Enabled = True

 Else

 Command1.Enabled = False

 End If

 Combo1.Refresh

 fsuspend = False

End Sub

Private Sub Command2_Click()

 If Combo1.Text <> "" Then Combo1.Text = ""

 Dim x As Single, y As Single, z As Single, aline As String

 If fsuspend Then Exit Sub

 fsuspend = True

 If (IsNumeric(Text1(0)) And IsNumeric(Text1(1)) And

IsNumeric(Text1(2))) Then

 x = Val(Text1(0))

 y = Val(Text1(1))

 z = Val(Text1(2))

 totalpts = totalpts + 1

 W ith frmRun

 .letCoord(totalpts, 1) = x

 .letCoord(totalpts, 2) = y

 .letCoord(totalpts, 3) = z

 End W ith

 aline = Str$(z) & "=Z, " & blah & Str$(x) & blah & Str$(y)

 Combo1.AddItem aline

 Dim q As Integer

 If Combo1.ListCount > 0 Then

 Combo1.Refresh

 q = Combo1.ListCount

 Combo1.ListIndex = q - 1

 Command1.Enabled = True

 Else

 Command1.Enabled = False

 End If

 End If

 fsuspend = False

End Sub

A.1.6 frmConds.frm

Private numTS As Long, BmIndex As Integer, ttl As String

Private bound As Object, f_loaded As Boolean

'N o tes : n eed re fe ren ce to b o u n d [] ," to p ,s id e ,b o tto m "

bndyTS<-->bndyTS(1-3) for TSB)

'and two other materials,and their names for list1, and initial temps

come from TS

'===

================

Private Sub Form_Load()

 Dim x As Integer

 f_loaded = False

 ttl = "Boundary Condition Specifications"

 If cexe.Boundx.count = 0 Then Set bound = New

CBoundarytype

 W ith cexe

 For x = 1 To .Boundx.count

 List1.AddItem .Boundx(x).matlName

 optDtype.Value = False

 optNtype.Value = False

 If .Boundx.Item(x).flagReady Then

 optDtype.Value = .Boundx.Item(x).flagDirichlet

 optNtype.Value = Not optDtype.Value

 End If

 Next x

 If .CylFormat Then

 optFormat.Value = vbChecked

 Else

 optFormat.Value = vbUnchecked

 End If

 End W ith

 If List1.ListCount < 1 Then

 M sgBox "ERROR: NO Boundary M aterials", , ptitle

 Exit Sub

 End If

 List1.ListIndex = 0

 BmIndex = 1

 txtTSfile = cexe.Boundx.Item(1).bndyTSfile

 f_loaded = True

End Sub

'N o tes : need re fe ren ce to b o u n d [] ," to p ,s id e ,b o tto m "

115

bndyTS<-->bndyTS(1-3) for TSB)

'and two other materials,and their names for list1, and initial temps

come from TS

'===

================

Private Sub Command1_Click()

 Unload M e

End Sub

Private Sub Form_Unload(Cancel As Integer)

 Dim x As Integer

 cexe.CylFormat = optFormat.Value

 cexe.flagBndy = True

 For x = 1 To List1.ListCount

 If Not cexe.Boundx.Item(x).flagReady Then cexe.flagBndy

= False

 Next x

End Sub

Private Sub List1_Click()

 If Not f_loaded Then Exit Sub

 Dim x As Integer

 f_loaded = False

 x = List1.ListIndex

 BmIndex = x + 1

 cexe.Boundx.Item(BmIndex).flagReady = True

 update_opts

 f_loaded = True

End Sub

Private Sub optFormat_Click()

 If (Not f_loaded) Then Exit Sub

 f_loaded = False

 Dim x As Boolean

 W ith optFormat

 If .Value = vbChecked Then cexe.CylFormat = True

 If .Value = vbUnchecked Then cexe.CylFormat = False

 End W ith

 f_loaded = True

End Sub

Private Sub optNtype_Click()

 If (Not f_loaded) Then Exit Sub

 f_loaded = False

 optNtype.Value = True

 optDtype.Value = False

 Frame3.Visible = False

 If BmIndex < 1 Then Exit Sub

 cexe.Boundx.Item(BmIndex).flagDirichlet = False

 cexe.Boundx.Item(BmIndex).flagReady = True

 cexe.Boundx.Item(BmIndex).bndyTSfile = ""

 update_opts

 f_loaded = True

End Sub

Private Sub optDtype_Click()

 If (Not f_loaded) Then Exit Sub

 f_loaded = False

 optDtype.Value = True

 optNtype.Value = False

 Frame3.Visible = True

 cexe.Boundx.Item(BmIndex).flagDirichlet = optDtype.Value

 cexe.Boundx.Item(BmIndex).flagReady = True

 update_opts

 f_loaded = True

End Sub

Private Sub txtInitT_Change()

 If Not f_loaded Then Exit Sub

 txtInitT_Click

End Sub

Private Sub txtTSfile_Click()

 Dim res As String, oldfile As String, x As Integer

 If Not f_loaded Then Exit Sub

 cexe.Boundx.Item(BmIndex).flagReady = False

 If optDtype <> True Then

 M sgBox "N-type for this boundary material", , ptitle

 Exit Sub

 End If

 numTS = cexe.numTS

 txtTSfile.Enabled = False

 CommonDialog1.Filter = " Time series (*.ts)|*.ts|All files

(*.*)|*.*"

 CommonDialog1.InitDir = Cinfo.DataDir

 CommonDialog1.ShowOpen

 res = CommonDialog1.FileName

 If res = "" Then Exit Sub

 On Error GoTo badexit

 Cinfo.DataDir = fso.GetParentFolderName(res)

 numTS = numTS + 1

 cexe.numTS = numTS

 txtTSfile.Enabled = True

 cexe.LbndyTSfile numTS, res

 txtTSfile.Text = res

 cexe.Boundx.Item(BmIndex).bndyTSfile = Trim(res)

 cexe.Boundx.Item(BmIndex).read_bndyTS BmIndex

 Exit Sub

badexit:

 Exit Sub

End Sub

Private Sub txtInitT_Click()

 Dim res As String, q As Single

 q = txtInitT

 f_loaded = False

 res = InputBox("Enter an Initial Temperature (Celsius):", ttl, q)

 If Not IsNumeric(Trim(res)) Then Exit Sub

 txtInitT.Text = res

 cexe.Boundx.Item(BmIndex).initValue = Val(res)

 f_loaded = True

End Sub

Private Sub update_opts()

 Dim x As Integer

 txtInitT.Text = cexe.Boundx.Item(BmIndex).initValue

 optDtype.Enabled = False

 optNtype.Enabled = False

 optDtype.Value = cexe.Boundx(BmIndex).flagDirichlet

 optNtype.Value = Not optDtype.Value

 txtTSfile.Text = cexe.Boundx.Item(BmIndex).bndyTSfile

 If optNtype.Value Then

 Frame3.Visible = False

 Else

 Frame3.Visible = True

 End If

 optDtype.Enabled = True

 optNtype.Enabled = True

End Sub

116

A.1.7 frmsectiongeom.frm

Option Explicit

Option Base 1

Public id As Integer, f_return As Variant

Public nx As Integer, ny As Integer, nz As Integer

Public dx As Single, dy As Single

'===

===============

Dim xdown As Integer, ydown As Integer

Dim xup As Integer, yup As Integer

Dim colr_array(80, 80) As Long, valarray(80, 80) As Integer

Dim nowdraw As Boolean, filechanged As Boolean

Dim imat As Integer, imatcolor As Long, matcount As Integer

Dim matl_name(99) As String, matl_sig(99) As Single,

matl_Sp(99) As Single

Dim matl_rho(99) As Single, matl_heat(99) As Single

Dim matl_size(99) As Single, matl_color(99) As Long

Dim thefile As String, sectionname As String, titmsgbox As String

Dim material() As Integer, drawW 1 As Integer, drawW 2 As

Integer

Dim icount As Integer, comp_count As Integer, ptitle As String

Dim xorig As Single, yorig As Single, radius As Single, lx As

Single, Ly As Single

Dim xtop As Single, ytop As Single, xbase As Single, ybase As

Single

'===

===============

'===

===============

Private Sub Form_Load()

 Dim x As Integer, y As Integer, col As Long

 make_Csec

 mnugeometry.Enabled = False

 fraObjFill.Enabled = False

 fraObjFill.Visible = False

 Aload_data

 titmsgbox = "Section Page . . ."

 ptitle = titmsgbox

 matfilter = " M aterials file (*.mts)|*.mts|All files (*.*)|*.*"

 secfilter = " Section files (*.sec)|*.sec|All files (*.*)|*.*"

 CommonDialog1.DialogTitle = ptitle

 filechanged = False

' If frm2.Tag <> "" Then f_return = frm2.Tag

 If Matfile = "" Then

' MsgBox "No section file name."

 CommonDialog1.Filter = matfilter

 CommonDialog1.InitDir = Cinfo.DataDir

 CommonDialog1.DialogTitle = "First open a materials file"

 CommonDialog1.ShowOpen

 M atfile = CommonDialog1.FileName

 If Matfile = "" Then

 Close

 Unload frm3

 End If

 End If

 cbomaterial.Refresh

 lblmaterialfile.Caption = M atfile

 If Sectionfile <> "" Then

 lblSectionfile.Caption = Sectionfile

 'frm2.txts

 End If

 id = 1

 x = csec.dx * csec.dy

 csec.dx = dx 'If sectionfile opened, .dx > 1

 If x <> 0 And (dx - csec.dx) * (dy - csec.dy) <> 0 Then

 M sgBox "You may need to change the zone geometry due"

& vbNewLine _

 & "to the difference in grid sizes between those set by the"

& vbNewLine _

 & " sub-model editor and the section file you imported.",

, ptitle

 End If

 id = 1

 If cbomaterial.ListCount > 0 Then

 id = cbomaterial.ListCount

 cbomaterial.ListIndex = id - 1

 shpM aterial.Visible = True

 shpM aterial.FillColor = matl_color(id)

 End If

 If dx * dy = 0 Then Call change_geometry

 If nx * ny < 1 Then

 M sgBox "Problem with the horizontal parameters", , ptitle

 mnugeometry.Enabled = True

 Exit Sub

 End If

 On Error Resume Next

 Picture1.Scale (0.5, 0.5)-(nx + 0.5, ny + 0.5)

' M sgBox "somewhere in formload"

 nowdraw = False

 'drawW 2 = (ScaleHeight / (ny + 0) + ScaleW idth / (nx + 0)) \ 2

 drawW 2 = 240 / (nx)

 Let Picture1.DrawW idth = drawW 2

 Let Picture1.DrawStyle = 0

 drawW 1 = drawW 2 * 1.6

 txtSectionName.Text = sectionname

' M sgBox "somewhere in formload 2"

 Update_page

 For x = 0 To 8

 lblX(x).Visible = False

 lblY(x).Visible = False

 Next x

' M sgBox "width " & Picture1.DrawW idth, , titmsgbox

endsub:

End Sub

'===

===============

'===

===============

Private Sub Aload_data()

 nx = Cinfo.initNX

 ny = Cinfo.initNY

 dx = Cinfo.initDX

 dy = Cinfo.initDY

 M atfile = Cinfo.Matfile

 If fso.FileExists(M atfile) Then

 csec.read_M atfile M atfile

 Update_materList

 If cbomaterial.ListCount > 0 Then mnugeometry.Enabled =

117

True

 End If

End Sub

Private Sub btnFillBox_Click()

 Dim res As Variant

 On Error GoTo exitsub

 xorig = -1

 yorig = -1

 radius = -1

 On Error GoTo exitsub

 fill_Section

exitsub:

 btnFillPoint.Value = True

End Sub

Private Sub btnFillCylinder_Click()

 Dim xhalf As Single, yhalf As Single

 On Error GoTo exitsub

 xhalf = nx * dx / 2#

 yhalf = ny * dy / 2#

 xorig = xhalf

 yorig = yhalf

 radius = 0

 xorig = InputBox("FILL CENTER: Enter the X-origin

coodinate (-1 indicates a" _

 & " concentric cylinder)", sectionname, xorig)

 If xorig < 0 Then GoTo step1

 yorig = InputBox("FILL CENTER: Enter the Y-origin

coodinate", sectionname, _

 yorig)

 GoTo step2

step1:

 xorig = xhalf

 yorig = yhalf

step2:

 radius = InputBox("FILL BODY RADIUS: Enter a cylindrical

radius", sectionname, radius)

 If radius > xhalf Or radius > yhalf Then

 M sgBox radius & " is too large", , ptitle

 fraFill.Refresh

 GoTo exitsub

 End If

 fill_cylinder radius

exitsub:

 btnFillPoint.Value = True

 update_picture

End Sub

Private Sub btnFillRect_Click()

 Dim xhalf As Single, yhalf As S ingle, rx As Single, ry As

Single

 On Error GoTo exitsub

 xhalf = nx * dx / 2#

 yhalf = ny * dy / 2#

 xorig = xhalf

 yorig = yhalf

 xorig = InputBox("FILL CENTER: Enter the X-origin

coodinate (-1 indicates a" _

 & " concentric cylinder)", sectionname, xorig)

 If xorig < 0 Then GoTo step1

 yorig = InputBox("FILL CENTER: Enter the Y-origin

coodinate", sectionname, _

 yorig)

 GoTo step2

step1:

 xorig = xhalf

 yorig = yhalf

step2:

 rx = InputBox("Fill: Enter Box X-Length", sectionname, 2# *

xhalf)

 rx = rx / 2#

 ry = InputBox("Fill: Enter Box Y-Length", sectionname, 2# *

yhalf)

 ry = ry / 2#

 If rx > xhalf Or ry > yhalf Then

 M sgBox "Length is too large", , ptitle

 fraFill.Refresh

 GoTo exitsub

 End If

 fill_rectangle rx, ry

exitsub:

 btnFillPoint.Value = True

 update_picture

End Sub

Private Sub cbomaterial_Click()

 cbomaterial.Refresh

 fraFill.Refresh

 If cbomaterial.ListIndex < 0 Then Exit Sub

 frmForm.Refresh

 id = cbomaterial.ListIndex + 1

 shpM aterial.FillColor = matl_color(id)

 If matl_size(id) = 0 Then

 frmForm.Enabled = False

 fraFill.Enabled = True

 Else

 fraFill.Enabled = False

 frmForm.Enabled = True

 End If

End Sub

Private Sub cbomaterial_LostFocus()

 cbomaterial.Refresh

 icount = cbomaterial.ListCount

 id = cbomaterial.ListIndex + 1

End Sub

Private Sub change_geometry()

 Dim res As Variant

 Picture1.Cls

start: res = InputBox("Enter the number of X-zones (nx):", ptitle)

 If IsNumeric(res) Then nx = Val(res)

 If nx > 80 Then nx = 80

 res = InputBox("Enter the number of Y-zones (ny):", ptitle)

 If IsNumeric(res) Then ny = Val(res)

 If ny > 80 Then ny = 80

 res = InputBox("Enter the X-domain length (meters", ptitle)

 If IsNumeric(res) Then dx = Val(res)

 res = InputBox("Enter the Y-domain length (meters", ptitle)

 If IsNumeric(res) Then dy = Val(res)

 If nx * ny * dx * dy < 1 Then

 M sgBox "these are not good numbers: " & vbNewLine &

Str$(nx) & " " & Str$(ny) _

 & " " & Str$(dx) & " " & Str$(dy) &

vbNewLine _

 & "Let's try again, without any negative or

zero-valued numbers"

 GoTo start

 End If

118

 dx = dx / nx

 dy = dy / ny

 Picture1.Scale (0.5, 0.5)-(nx + 0.5, ny + 0.5)

 nowdraw = False

 'drawW 2 = (ScaleHeight / (ny + 0) + ScaleW idth / (nx + 0)) \ 2

 drawW 2 = 240 / (nx)

 If frm2.Name <> Null Then

 M sgBox "frm2.name is NULL--Ha!"

 frm2.nx = nx

 frm2.ny = ny

 End If

 Text1 = nx

 Text2 = ny

 Let Picture1.DrawW idth = drawW 2

 drawW 1 = drawW 2 * 1.6

 Update_info

 Update_page

 Picture1.Refresh

End Sub

Public Sub clearout()

 Close

 Unload frm3

End Sub

Private Sub cmdReturn()

 Unload M e

End Sub

Private Sub cmdFinished_Click()

 Dim thefile As String

 If txtSectionName.Text = "" Then

 M sgBox "need a section name.", , ptitle

 Exit Sub

 End If

 thefile = Sectionfile

 If thefile = "" Then

 CommonDialog1.FileName = thefile

 CommonDialog1.Filter = secfilter

 CommonDialog1.ShowSave

 thefile = CommonDialog1.FileName

 End If

 If thefile = "" Then

 Unload M e

 Exit Sub

 End If

 write_Secfile thefile

 CsecID = CsecID + 1

 If f_return >= 0 Then

' frm2.getFocus = frm2.labc(f_return)

' M sgBox f_return

 End If

 Update_info

 Unload M e

End Sub

Public Sub disgorge_matl()

 cbomaterial.Clear

End Sub

Private Sub fill_cylinder(R As Single)

' mark valarray() =99 for all newly assigned composite zones, then

send to

'get_comp()

 Dim i As Integer, j As Integer, x As Single, y As Single, part1

As Single, u As Single

 Dim Rmin As Single, Rmax As Single, pi As Single, q As

Single, q2 As Single

 Dim return_id As Integer, id As Integer, id1 As Integer, del As

Single

 Dim r1 As Single, r2 As Single, p As Single

 Dim qc1 As Integer, qc2 As Integer

 id = cbomaterial.ListIndex + 1

 pi = 4# * Atn(1#)

 del = 0# * (dx + dy)

 For i = 1 To nx

 For j = 1 To ny

 If valarray(i, j) = 0 Then

 M sgBox " Please fill the section before excising/filling a

cylinder", , ptitle

 btnFillCylinder.Value = False

 Exit Sub

 End If

 get_radii i, j, r1, r2

 Rmax = r1

 Rmin = r2 ' get four corner radii; Rmax and Rmin;

 part1 = 0#

 If R > Rmin Then

 If R >= Rmax Then '! purely interior material

 part1 = 1#

 valarray(i, j) = id

 Else '!

 q = (R - Rmin - del) / (Rmax - Rmin - 2 * del)

 q2 = (Sin(pi / 2# * q))

 u = dx / (Rmax - Rmin)

 u = (u * u - 0.5) * 2#

 part1 = (1# - u) * q2 * q2 + u * q

 ' If part1 < 0.05 Then MsgBox i & j & " part1 is " & part1

_

 ' & vbNewLine & Rmin & " rmin, rmax " & Rmax

 If part1 > 0.925 Then

 valarray(i, j) = id

 ElseIf part1 > 0.075 Then

 id1 = valarray(i, j)

 If id <> id1 Then

 p = part1 + 0#

 valarray(i, j) = get_compval(id, part1, id1)

 End If

 End If

' valarray(i, j) = 18 '! remove ???

 End If

 End If

nextxy:

 Next j

 Next i

 filechanged = True

' M sgBox qc1 & " clear interior nodes; part1ial nodes " & qc2

End Sub

Private Sub fill_rectangle(rx As Single, ry As Single)

 Dim i As Integer, j As Integer, x1 As Single, y1 As Single, part1

As Single, u As Single

 Dim return_id As Integer, id As Integer, id1 As Integer

 Dim p As Single, x2 As Single, y2 As Single

 Dim a As Single, B As Single, C As Single, d As Single

 id = cbomaterial.ListIndex + 1

 x1 = xorig - rx

 y1 = yorig - ry

 x2 = xorig + rx

119

 y2 = yorig + ry

 a = nx * dx

 B = ny * dy

 If x1 * y1 < 0# Or x2 > a Or y2 > B Then

 M sgBox "Box extends past section domain"

 Exit Sub

 End If

 For i = 1 To nx

 For j = 1 To ny

 a = (i - 1) * dx

 B = i * dx

 C = (j - 1) * dy

 d = j * dy

 If (B > x1 And d > y1) And (a < x2 And C < y2) Then

 part1 = 1#

 If d > y2 Then part1 = part1 * (1# - (d - y2) / dy)

 If B > x2 Then part1 = part1 * (1# - (B - x2) / dx)

 If x1 > a Then part1 = part1 * (1# - (x1 - a) / dx)

 If y1 > C Then part1 = part1 * (1# - (y1 - C) / dy)

 id1 = valarray(i, j)

 If part1 > 0.925 Then

 valarray(i, j) = id

 ElseIf part1 > 0.075 Then

 id1 = valarray(i, j)

 If id <> id1 Then

 p = part1 + 0#

 valarray(i, j) = get_compval(id, part1, id1)

 End If

 End If

 End If

 Next j

 Next i

 filechanged = True

End Sub

Private Sub fill_Section()

 Dim x As Integer, y As Integer

 id = cbomaterial.ListIndex + 1

 For y = 1 To ny

 For x = 1 To nx

 valarray(x, y) = id

 Next x

 Next y

 btnFillPoint.Value = True

 fraObjFill.Enabled = True

 fraObjFill.Visible = True

 update_picture

End Sub

Public Function get_compval(i1 As Integer, part1s As Single, i2

As Integer)

' obtaining a (new) composite matl_number and name from two

 Dim c_id As Integer, s As String, dums As Variant, part1 As

Single

 Dim blah As String, ipart1 As Integer

 blah = " ++ "

 ipart1 = Int(Fix((part1s + 0.095) / 0.17)) '! finally, integer

suffix

 part1 = (1# * ipart1 * 0.17) - 0.01

 If ipart1 > 5 Then

 part1 = 0.84

 ipart1 = 5

 End If

 If ipart1 < 1 Then

 part1 = 0.16

 ipart1 = 1

 End If

 On Error GoTo badfunc

 s = comp.get_compkey(i1, matl_name(i1), i2, matl_name(i2),

ipart1)

 If compx.count > 0 Then ' if compx <> empty

 dums = get_Cmember(s) 'search for compkey

 If dums <> "empty" Then ' Found the composite

 get_compval = dums

 Exit Function

 End If

 End If

'Option: have NOT found it

' Dim a As Integer, b As Integer, c As Integer

Dim x As Integer, a As Integer

 W ith comp

 .c_name = s

 .c_number = .matl_number(compx.count + 1)

 x = .c_number

 get_compval = .c_number

 matl_name(.c_number) = s

 a = part1 * 74 + 180

 .c_color = RGB(a, a, 170)

 matl_color(x) = .c_color

 .c_rho = part1 * matl_rho(i1) + (1# - part1) *

matl_rho(i2)

 matl_rho(x) = .c_rho

 .c_sig = part1 * matl_sig(i1) + (1# - part1) *

matl_sig(i2)

 .c_Sp = part1 * matl_Sp(i1) + (1# - part1) *

matl_Sp(i2)

 .c_heat = part1 * matl_heat(i1) + (1# - part1) *

matl_heat(i2)

 matl_sig(x) = .c_sig

 matl_Sp(x) = .c_Sp

 matl_heat(x) = .c_heat

 End W ith

 comp_count = comp_count + 1

 compx.Add comp

exitsub:

 Exit Function

badfunc:

 Exit Function

 ' M sgBox dums & " bad-ass muther " & s & blah & a &

vbNewLine _

 & matl_color(x) & blah & matl_rho(x)

End Function

Public Function get_Cmember(w As Variant) As Variant

 Dim i As Integer, s As String

 On Error GoTo inerror

 s = w

 i = 0

 Dim x As Integer

 x = compx.count

' M sgBox x & " is compxcount"

 For x = 30 To compx.count + 30

' M sgBox compx.Item(x).c_name

 If matl_name(x) = s Then

 i = x

 get_Cmember = x

' M sgBox "Cmember got it"

 Exit Function

 End If

120

 Next x

inerror:

 get_Cmember = "empty"

 Exit Function

End Function

Public Sub get_radii(i As Integer, j As Integer, Rmax As Single,

Rmin As Single)

 Dim Lx1 As Single, Ly1 As Single, Lx2 As Single, Ly2 As

Single, RC As Single

 Dim q As Single

 Lx1 = Abs(xorig - dx * (i - 1))

 Lx2 = Abs(xorig - dx * i)

 If Lx1 > Lx2 Then

 Lx2 = Lx2 + Lx1

 Lx1 = Lx2 - Lx1

 Lx2 = Lx2 - Lx1

 End If

 Ly1 = Abs(yorig - dy * (j - 1))

 Ly2 = Abs(yorig - dy * j)

 If Ly1 > Ly2 Then

 Ly2 = Ly1 + Ly2

 Ly1 = Ly2 - Ly1

 Ly2 = Ly2 - Ly1

 End If

 Rmin = Sqr(Lx1 * Lx1 + Ly1 * Ly1)

 Rmax = Sqr(Lx2 * Lx2 + Ly2 * Ly2)

End Sub

Private Sub get_dxdy(dx As Single, dy As Single)

 Dim res As Variant

 res = inbox("Enter the model width", ptitle, dx)

 If IsNumeric(res) And nx * ny = 0 Then Call change_geometry

 lx = Val(res)

 Ly = lx

 lblX(8) = lx

 lblY(8) = Ly

 dy = Ly / ny

 dx = lx / nx

 Dim x As Integer

 For x = 0 To 8

 lblX(x).Visible = True

 lblY(x).Visible = True

 lblX(x).Caption = x * lx / 8#

 lblY(x).Caption = x * Ly / 8#

 Next x

End Sub

Public Sub getvalue(iu As Long, xx As Single)

 Dim aline As String, x As Integer, s As Single

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

 M sgBox "problem in this file", , titmsgbox

 s = "0"

 Else

 s = RTrim(Mid(aline, x + 1))

 End If

 xx = s

 End Sub

Public Sub getstring(iu As Long, xx As String)

 Dim aline As String, x As Integer, s As String

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

 M sgBox "problem in this file", , titmsgbox

 s = "0"

 Else

 s = RTrim(Mid(aline, x + 1))

 End If

 xx = s

End Sub

Private Sub load_data()

 Dim res As Variant, i As Integer

 If cbomaterial.ListCount > 0 Then cbomaterial.Clear

 comp_count = 0

' M sgBox nx & ny & nz, , titmsgbox

 If (M atfile <> "" And Sectionfile = "") Then 'only a matfile

 M sgBox "READING M ATFILE" & M atfile, , ptitle

 M atfile = csec.Matfile

 csec.read_M atfile M atfile

 For i = 1 To csec.m_count

 W ith csec

 matl_sig(i) = .m_Sig(i)

 matl_color(i) = .m_color(i)

 matl_Sp(i) = .m_Sp(i)

 matl_rho(i) = .m_Rho(i)

 matl_name(i) = .m_name(i)

 matl_heat(i) = .m_heat(i)

 End W ith

 cbomaterial.AddItem matl_name(i)

 Next i

 ElseIf (Sectionfile <> "") Then 'use sectionfile

material data

 Set csec = New Cgeom

 csec.read_secfile Sectionfile

 nx = csec.nx

 ny = csec.ny

 dx = csec.dx

 dy = csec.dy

 sectionname = csec.sectionname

 txtSectionName.Text = sectionname

 M atfile = "Sectionfile data"

' csec.read_M atfile M atfile

 lblmaterialfile.Caption = M atfile

 ' M sgBox nx & ny & csec.sectionname & csec.m_count

 cbomaterial.Clear

 For i = 1 To csec.m_count

 W ith csec

 matl_sig(i) = .m_Sig(i)

 matl_color(i) = .m_color(i)

 matl_Sp(i) = .m_Sp(i)

 matl_rho(i) = .m_Rho(i)

 matl_name(i) = .m_name(i)

 matl_heat(i) = .m_heat(i)

 End W ith

 If (i < 31) And matl_rho(i) <> 0# Then cbomaterial.AddItem

matl_name(i)

 Next i

 sx.Add csec

 lblSectionfile.Caption = Sectionfile

 Else 'force return

 M sgBox " sect 2 ", , ptitle

 nx = 1

 ny = 1

 M atfile = ""

 Sectionfile = ""

121

 MsgBox "Open a M aterials file or a Section file", , ptitle

 cbomaterial.Enabled = False

 clearout

 End If

 If cbomaterial.ListCount > 0 Then id = 1

 Dim x As Integer, y As Integer

 On Error GoTo Finished

 For x = 1 To nx

 For y = 1 To ny

 valarray(x, y) = csec.g_valarray(x, y)

 If valarray(x, y) = 0 Then valarray(x, y) = 1

 colr_array(x, y) = matl_color(valarray(x, y))

' Picture1.Line (x, y - 0.4)-(x, y + 0.4), colr_array(x, y), BF

 'try this one

 Next y

 Next x

Finished:

 lblmaterialfile.Caption = M atfile

' cbomaterial.ListIndex = id - 1

 cbomaterial.Refresh

 lx = nx * dx

 Ly = ny * dy

 mnuM atersOpen.Enabled = False

 mnuM atersOpen.Visible = False

 Update_page

 update_picture

 Update_info

 ' M sgBox nx & " leaving load_data " & ny

End Sub

Private Sub mnuCloseExit_Click()

Dim sfilename As String

' sfilename = ""

' If filechanged Then

' M sgBox "Need to save your changes", , titmsgbox

' CommonDialog1.ShowSave

' sfilename = CommonDialog1.FileName

' End If

' If sfilename <> "" Then SaveSFile sfilename

 clear_Lists

 Unload M e

End Sub

Private Sub mnuCloseRet_Click()

 cmdFinished_Click

 Update_info

End Sub

Private Sub mnuGeomChange_Click()

 Dim res As Variant

 change_geometry

End Sub

Private Sub mnuM atersOpen_Click()

 On Error Resume Next

 CommonDialog1.Filter = matfilter

 CommonDialog1.FileName = ""

' M atfile = ""

 CommonDialog1.InitDir = Cinfo.DataDir

 If Sectionfile <> "" Then M atfile = ""

 CommonDialog1.ShowOpen

 M atfile = CommonDialog1.FileName

 If Matfile = "" Then

 M sgBox "NEED A M ATERIALS FILE", , ptitle

 Exit Sub

 End If

 If cbomaterial.ListCount > 0 Then cbomaterial.Clear

 csec.read_M atfile M atfile

 Dim x As Integer

 On Error Resume Next

 For x = 1 To csec.m_count

 W ith csec

 matl_name(x) = .m_name(x)

 matl_color(x) = .m_color(x)

 matl_sig(x) = .m_Sig(x)

 matl_Sp(x) = .m_Sp(x)

 matl_rho(x) = .m_Rho(x)

 matl_heat(x) = .m_heat(x)

 matl_size(x) = .m_size(x)

 End W ith

 If x < 31 Then cbomaterial.AddItem matl_name(x)

 Next x

 If cbomaterial.ListCount > 0 Then id = 1

Finished:

 id = 1

 Cinfo.DataDir = fso.GetParentFolderName(M atfile)

 lblmaterialfile.Caption = M atfile

' cbomaterial.ListIndex = id - 1

 cbomaterial.Refresh

 Picture1.Cls

 Update_info

 Update_page

 ' M sgBox nx & " leaving load_data " & ny

End Sub

Private Sub mnuNewSection_Click()

 mnuM atersOpen.Enabled = True

 mnuM atersOpen.Visible = True

 mnugeometry.Enabled = True

 If InStr(1, M atfile, "ectionfile") <> 0 Then M atfile = ""

 If Matfile = "" Then

 mnuM atersOpen_Click

 Else

 csec.read_M atfile M atfile

 End If

 Update_materList

 Dim i As Integer

 For i = 1 To compx.count

 compx.Remove compx.count

 Next i

 Set comp = New Ccomp

 Picture1.Cls

 Sectionfile = ""

 sectionname = ""

 txtSectionName = ""

 lblSectionfile.Caption = Sectionfile

 frm3.Refresh

 Update_info

End Sub

Private Sub mnuSecSave_Click()

 CommonDialog1.Filter = secfilter

122

 If Sectionfile <> "" Then

 write_Secfile Sectionfile

 Else

 mnuSecSaveas_Click

 End If

 mnuM atersOpen.Enabled = False

 mnuM atersOpen.Visible = False

 Update_info

End Sub

Private Sub mnuSecSaveas_Click()

 On Error Resume Next

 If Sectionfile = M atfile Then Sectionfile = ""

 CommonDialog1.InitDir = Cinfo.userDir

 CommonDialog1.FileName = Sectionfile

 CommonDialog1.Filter = secfilter

 CommonDialog1.ShowSave

 Sectionfile = CommonDialog1.FileName

 If Sectionfile <> "" Then

 write_Secfile Sectionfile

 Update_info

 Update_page

 Else

 M sgBox "Enter a section name", , ptitle

 End If

 mnuM atersOpen.Enabled = False

 mnuM atersOpen.Visible = False

End Sub

Private Sub mnuSectionOpen_Click()

 Dim afile As String

 Dim res As Variant

 On Error Resume Next

 If Sectionfile <> "" And nx * ny > 5 And filechanged Then

 res = M sgBox("Save your changes to a section file?",

vbYesNo, ptitle)

 If res = vbYes Then

 mnuSecSave_Click

 End If

 Call disgorge_matl

 End If

 CommonDialog1.Filter = secfilter

 CommonDialog1.InitDir = Cinfo.userDir

 CommonDialog1.ShowOpen

 Sectionfile = CommonDialog1.FileName

 cbomaterial.Enabled = True

 shpM aterial.Visible = True

 If Sectionfile = "" Then Exit Sub

 '+++++++++++++

 load_data

 '+++++++++++++

End Sub

Private Sub Picture1_M ouseDown(Button As Integer, Shift As

Integer, x As Single, y As Single)

' Dim nxx As Integer, nyy As Integer

' nxx = nx - 1

' nyy = ny - 1

 If (matl_name(1) = "") Then

 M sgBox "NEED TO OPEN A MATERIALS FILE", , ptitle

' Exit Sub

 End If

 xdown = x

 ydown = y

 nowdraw = True

' Picture1.DrawW idth = drawW 1

 If (x >= 1 And x <= nx And y >= 1 And y <= ny) Then

 colr_array(x, y) = matl_color(id)

 valarray(x, y) = id

 Picture1.PSet (x, y), vbBlack

 End If

' M sgBox X & "down" & Y, , titmsgbox

End Sub

Private Sub Picture1_M ouseM ove(Button As Integer, Shift As

Integer, x As Single, y As Single)

' If checked enable printing operations

'Dim nxx As Integer, nyy As Integer

' nxx = nx - 1

' nyy = ny - 1

 If nowdraw Then

 If (x >= 1 And x <= nx And y >= 1 And y <= ny) Then

 colr_array(x, y) = matl_color(id)

 valarray(x, y) = id

 Picture1.PSet (x, y), vbBlack

 End If

 End If

End Sub

Private Sub Picture1_M ouseUp(Button As Integer, Shift As

Integer, x As Single, y As Single)

 Dim vv As Long, sum As Integer

 Dim x1 As Integer, x2 As Integer, y1 As Integer, y2 As Integer

 y2 = Picture1.ScaleHeight

 x2 = Picture1.ScaleW idth

' M sgBox x2 & y2

 sum = 0

 xup = x

 yup = y

 frm3.Cls

 Picture1.Cls

 ' Picture1.DrawW idth = 3

 ' Picture1.DrawW idth = drawW 2

 Picture1.FillStyle = 0

 Picture1.ForeColor = matl_color(id)

 For x = 1 To nx

 For y = 1 To ny

' x1 = x * 100 / x2

' y1 = Y * 100 / y2

 vv = colr_array(x, y)

' Picture1.Line (x - 0.5, y - 0.5)-(x - 0.5, y + 0.5), vv, BF 'try

this one

 Picture1.Line (x, y - 0.4)-(x, y + 0.4), vv, BF 'try this one

 Next y

 Next x

' xup = Picture1.DrawW idth

' Picture1.DrawW idth = 2

' For y = 0 To ny

' Picture1.Line (0.5, y + 0.4)-(nx + 0.5, y + 0.4), vbW hite

' Next y

' Picture1.DrawW idth = xup

 nowdraw = False

 filechanged = True

End Sub

Private Sub Text2_Click()

 Dim res As Boolean

 res = M sgBox("Do you want to change the geometry?",

123

vbYesNo, ptitle)

 If res Then

 mnugeometry.Enabled = True

 change_geometry

 End If

End Sub

Private Sub txtSectionName_Click()

Dim ss As String, res As String

 ss = txtSectionName.Text

 res = Trim(InputBox("Enter a section name", ptitle, ss))

 If res <> "" Then ss = res

 sectionname = ss

 txtSectionName.Text = ss

'if frm2.

End Sub

Private Sub update_Btns()

 If btnFillPoint.Value Then

 btnFillBox.Value = False

 btnFillCylinder = False

 btnFillRect = False

 End If

End Sub

Private Sub update_FillForm(i As Integer)

 ' If matl_size(i) = 0 Then 'Fill type

End Sub

 Private Sub Update_info()

 Cinfo.initDX = dx

 Cinfo.initDY = dy

 Cinfo.initNX = nx

 Cinfo.initNY = ny

 Cinfo.M atfile = fso.GetAbsolutePathName(M atfile)

 Cinfo.dataPath = Cinfo.Matfile

 Cinfo.DataDir = fso.GetParentFolderName(M atfile)

 If Sectionfile <> "Sectionfile data" Then

 Cinfo.Sectionfile = Sectionfile

 Cinfo.userDir = fso.GetParentFolderName(Sectionfile)

 End If

 End Sub

Private Sub Update_materList()

 Dim i As Integer

 If csec.matl_count < 1 Then

 M sgBox M atfile & " has not been read yet", , ptitle

 Exit Sub

 End If

 cbomaterial.Clear

 For i = 1 To csec.matl_count

 W ith csec

 matl_sig(i) = .m_Sig(i)

 matl_color(i) = .m_color(i)

 matl_Sp(i) = .m_Sp(i)

 matl_rho(i) = .m_Rho(i)

 matl_name(i) = .m_name(i)

 matl_heat(i) = .m_heat(i)

 End W ith

 cbomaterial.AddItem csec.m_name(i)

 Next i

 cbomaterial.ListIndex = 0

 Update_page

End Sub

Private Sub Update_page()

 Dim x As Integer

 cbomaterial.Refresh

 If id > 0 And id <= cbomaterial.ListCount Then

 shpM aterial.Visible = True

 cbomaterial.ListIndex = id - 1

 shpM aterial.FillColor = matl_color(id)

'8-05 Else

' cbomaterial.ListIndex = id - 1

 End If

' Call update_FillForm(id)

 lblmaterialfile.Caption = M atfile

 If Sectionfile <> "" Then lblSectionfile.Caption = Sectionfile

 txtSectionName.Refresh

 Text1 = nx

 Text2 = ny

 For x = 0 To 8

 lblX(x).Visible = True

 lblY(x).Visible = True

 lblX(x).Caption = Format(x * lx / 8#, "#0.00#")

 lblY(x).Caption = Format(x * Ly / 8#, "#0.00#")

 Next x

 frm3.Refresh

End Sub

Public Sub update_picture()

 Dim x As Integer, y As Integer, idd As Integer, vv As Long

 ' Picture1.ForeColor = vbW hite

 ' Picture1.BackColor = vbW hite

 ' Picture1.Refresh

 Picture1.Scale (0.5, 0.5)-(nx + 0.5, ny + 0.5)

 drawW 2 = 240 / (nx)

 Let Picture1.DrawStyle = 0

 drawW 1 = drawW 2 * 1.6

 For x = 1 To nx

 For y = 1 To ny

 idd = valarray(x, y)

 colr_array(x, y) = matl_color(idd)

 vv = colr_array(x, y)

 Picture1.Line (x, y - 0.4)-(x, y + 0.4), vv, BF 'try this one

 Next y

 Next x

 update_Btns

 frm3.Refresh

End Sub

Public Sub write_Secfile(thefile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean

 If thefile = "" Then Exit Sub

 lblSectionfile.Caption = thefile

 Dim aa As String

 aa = quote & Trim(thefile) & quote

 Open thefile For Output As #20

 y = 1

 Print #20, thefile

 Print #20, "Revised ", Date

 Print #20, "sectionname=", Trim(txtSectionName.Text)

 Print #20, "materialfile=", Trim(M atfile)

 Print #20, "nx=", nx

 Print #20, "ny=", ny

 Print #20, "dx=", dx

 Print #20, "dy=", dy

 Print #20, " "

 Print #20, "[Sectiongeometry]"

 Do W hile y <= ny

124

 aline = valarray(1, y)

 For x = 2 To nx

 aline = aline & "," & valarray(x, y)

 Next x

 Print #20, aline

 y = y + 1

 Loop

' x = compx.count

' debug M sgBox x & " composites " & compx.Item(x).c_name

 W rite #20,

 Print #20, "[M aterials]"

 x = 1

 Do W hile x <= 30 ' where we write comps'

 W rite #20,

 Print #20, "[material] " & x

 Print #20, "material name="; matl_name(x)

 Print #20, "material color="; matl_color(x)

 Print #20, "thermal conductivity="; matl_sig(x)

 Print #20, "specific heat="; matl_Sp(x)

 Print #20, "density="; matl_rho(x)

 Print #20, "heat production="; matl_heat(x)

 Print #20, "characteristic size="; matl_size(x)

 x = x + 1

 Loop

 W rite #20,

 Print #20, "[Composites]"

 W rite #20,

 For x = 31 To compx.count + 30

 Print #20, "[material] " & x

' W ith compx.Item(x)

' Print #20, "material name="; .c_name

' Print #20, "material color="; .c_color

' Print #20, "thermal conductivity="; .c_sig

' Print #20, "specific heat="; .c_Sp

' Print #20, "density="; .c_rho

' Print #20, "heat production="; .c_heat

' Print #20, "characteristic size="; 0

' W rite #20,

' End W ith

 Print #20, "material name="; matl_name(x)

 Print #20, "material color="; matl_color(x)

 Print #20, "thermal conductivity="; matl_sig(x)

 Print #20, "specific heat="; matl_Sp(x)

 Print #20, "density="; matl_rho(x)

 Print #20, "heat production="; matl_heat(x)

 Print #20, "characteristic size="; matl_size(x)

 W rite #20,

 Next x

 Cinfo.dataPath = fso.GetAbsolutePathName(thefile)

 Cinfo.userDir = fso.GetParentFolderName(thefile)

 Cinfo.Sectionfile = thefile

 Cinfo.initDX = dx

 Cinfo.initDY = dy

 Cinfo.initNX = nx

 Cinfo.initNY = ny

 Cinfo.write_startup

 filechanged = False

 Close #20

End Sub

125

A.1.8 frmsubmodel.frm

Option Explicit

Option Base 1

Dim alpha As Single, endtime As Single, starttime As Single,

dtmax As Single

Dim dx As Single, dy As Single, dz As Single, errmax As Single

Dim i4 As Integer, j4 As Integer, k4 As Integer

Dim nsig As Integer, na As Integer, xsig(99) As Single, xa(99) As

Single

Dim bound(6) As String * 1, ptitle As String

Public id As Integer, nx As Integer, ny As Integer, nz As Integer

Dim thefile As String, kempty As String

Dim f As Object, stream As Object

'========LOCAL DECLARATIONS================

Dim valarray(80, 80), sec_id As Integer, sec_Number(80) As

Integer

Dim matl_name(99) As String, matl_sig(99) As Single,

matl_Sp(99) As Single

Dim matl_rho(99) As Single, matl_heat(99) As Single

Dim matl_size(99) As Single, matl_color(99) As Long

Dim palcount As Integer, pal_Color(12) As Long

Dim profilter As String, FreeHorizontal As Boolean

'Dim sectionname(12) As String

Dim lx As Single, Ly As Single, ZLength As Single

Dim filechanged As Boolean, newitem As Boolean

Dim textchanged As Boolean, fsuspend As Boolean

Dim totsec_files As Integer, scount As Integer

'Dim labc(12) As Label

'===

====

Private Sub Form_Load()

 Set smod = New Csubmodel

 matfilter = " M aterials file (*.mts)|*.mts|All files (*.*)|*.*"

 profilter = " Profile files (*.prf)|*.prf|All files (*.*)|*.*"

 secfilter = " Section files (*.sec)|*.sec|All files (*.*)|*.*"

 ptitle = "Sub-M odel Geometry . . ."

 newitem = False

 fsuspend = True

 FreeHorizontal = True

 filechanged = False

 CommonDialog1.DialogTitle = ptitle

 CommonDialog1.InitDir = Cinfo.userDir

 Dim s As String

 kempty = " <empty>"

 cmdAdd.Tag = ""

 nx = 1

 ny = 1

 nz = 1

 dx = 0

 dy = 0

 dz = 0

 txtNX.Text = nx

 txtNY.Text = ny

 txtLayers.Text = nz

 txtDX.Text = 0

 txtDY.Text = 0

 txtLX.Text = 0

 txtLY.Text = 0

 palcount = 1

 Picture1.BackColor = vbW hite

 Picture1.ForeColor = vbW hite

 Picture1.Refresh

 Dim x As Integer

 For x = 1 To 12

 shp(x).FillStyle = 0

 shp(x).FillColor = vbW hite

 labc(x).Alignment = 1

 Let labc(x).Caption = kempty

 If x < 9 Then

 LblQP(x).Visible = False

 LblQP(x).Caption = "0"

 End If

 Next x

 LblQP(0).Visible = True

 fsuspend = False

 If smod_ID > 0 Then update_list

 Update_page

End Sub

Private Sub Form_Terminate()

 If smod_ID > 0 Then

 clear_Sx

 clear_Smx

 End If

 Close

End Sub

Private Sub Form_Unload(Cancel As Integer)

 ptitle = " Losing Precious Data ?"

 If filechanged Then mnuSubSaveAs_Click

 If smod_ID > 0 Then

 clear_Sx

 clear_Smx

 End If

 Close

End Sub

'===

====

' Procs alphabetically below

'===

====

Private Sub cboSectionName_Click()

 Dim x As Integer

 x = cboSectionName.ListIndex + 1

 If cboSectionName.list(x - 1) = "" Then

 cboSectionName.RemoveItem x - 1

 Exit Sub

 End If

 shapeScolor.BackColor = shp(x).FillColor

End Sub

Private Sub cmdAdd_Click()

 mnuSectionOpen_Click

End Sub

Private Sub Command1_Click()

Dim x As Integer

On Error Resume Next

If smod <> Empty Then x = smod.do_cullComps

126

End Sub

Private Sub cmdClose2_Click()

 Unload M e

End Sub

Private Sub cmdEdit_Click()

 Dim i As Integer

 newitem = False

 frm3.nx = txtNX

 csec.nx = txtNX

 frm3.ny = txtNY

 csec.ny = txtNY

 frm3.dx = txtDX

 csec.dx = txtDX

 frm3.dy = txtDY

 csec.dy = txtDY

 i = cboSectionName.ListIndex

 frm3.txtSectionName = cboSectionName.list(i)

 frm3.Tag = frm3.txtSectionName

 If frm3.Tag = "" Then frm3.Tag = "RETURN"

'CR cmdEdit.Tag = "RETURN"

 frm3.Show

End Sub

Private Sub cmdRemove_Click()

Dim x As Integer, y As Integer

 y = cboSectionName.ListIndex + 1 'basis is sx.item

 If y < 1 Then Exit Sub

 cboSectionName.RemoveItem y - 1

 If sx.count >= y Then sx.Remove y

 sec_Number(y) = 0

 labc(y).Caption = kempty

 shp(y).FillColor = vbW hite

 x = y

 Do Until x > 11

' M sgBox x & cboSectionName.List(x - 1)

 labc(x).Caption = labc(x + 1).Caption

 shp(x).FillColor = shp(x + 1).FillColor

 sec_Number(x) = sec_Number(x + 1)

 x = x + 1

 Loop

 update_pallette

 x = cboSectionName.ListCount - 1

 If x >= 0 Then cboSectionName.ListIndex = x

 cboSectionName.Refresh

 Picture1.Refresh

 filechanged = True

End Sub

Private Sub cmdRefresh_Click()

 Dim x As Integer, y As Integer, Index As Integer, res As Variant

 If Val(txtZLength) = 0 Then

 x = InputBox("Enter a value for vertical model length", ptitle)

 ZLength = Val(x)

 txtZLength = Val(x)

 If (nz > 0) Then

 dz = ZLength / nz

 End If

 End If

 If Val(txtLX) = 0 Then

 res = InputBox("Enter a value for X- model length", ptitle)

 If Not IsNumeric(res) Then Exit Sub

 lx = res

 txtLX = Format(lx, "##0.0##")

 End If

 If Val(txtLY) = 0 Then

 res = InputBox("Enter a value for Y- model length", ptitle)

 If Not IsNumeric(res) Then Exit Sub

 Ly = res

 txtLY = Format(Ly, "##0.0##")

 End If

 update_picture

 Update_page

 y = cboSectionName.ListCount

 For x = 12 To y + 1 Step -1

 labc.Item(x) = kempty

 shp.Item(x).BackColor = vbW hite

 shp.Item(x).FillColor = vbW hite

 If sx.count = x Then sx.Remove x

 Next x

' For X = Y To 1 Step -1

' If cboSectionName.List(X) = "" Then

' If sx.count = X Then sx.Remove X

' cboSectionName.RemoveItem X - 1

' End If

' Next X

End Sub

Private Sub Form_GotFocus()

 lx = nx * dx

 Ly = ny * dx

 txtZLength = ZLength

 txtLX = Format(lx, "##0.0##")

 txtLY = Format(Ly, "##0.0##")

 txtDX = dx

 txtDY = dy

 txtDZ = dz

End Sub

Public Sub getcolor(ix As Integer, acolor As Long)

 ' commondialog1.Flags=cdl

 If ix <= 0 Then Exit Sub

 If acolor > 0 Then CommonDialog1.Color = acolor

 CommonDialog1.ShowColor

 acolor = CommonDialog1.Color

 shapeScolor.BackColor = acolor

 On Error Resume Next

 shp(ix).FillColor = acolor

 pal_Color(ix) = acolor

End Sub

 Public Sub getvalue(iu As Long, xx As Single)

 Dim aline As String, x As Integer, s As Single

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

 M sgBox "problem in this file", , ptitle

 s = "0"

 Else

 s = RTrim(Mid(aline, x + 1))

 End If

 xx = s

 End Sub

 Public Sub getstring(iu As Long, xx As String)

 Dim aline As String, x As Integer, s As String

 Line Input #iu, aline

127

 x = InStr(aline, "=")

 If (x = 0) Then

 M sgBox "problem in this file", , ptitle

 s = "0"

 Else

 s = Trim(Mid(aline, x + 1))

 End If

 xx = s

 End Sub

Private Sub Frame3_Click()

 textchanged = True

 txtLX_Change

 textchanged = True

 txtLY_Change

 textchanged = True

 txtZLength_Change

End Sub

'Private Sub labc_Click(Index As Integer)

' M sgBox "cboindex= " & Index

' cboSectionName.ListIndex = Index

' ShapeSColor.FillColor = sectioncolor(Index)

 ' shp(Index).FillColor = sectioncolor(Index)

'End Sub

Private Sub labc_DblClick(Index As Integer)

 Dim acolor As Long

 If labc(Index).Caption <> kempty Then 'New selection to

pallette

' M sgBox Index

 cboSectionName.ListIndex = Index - 1

 secfile = sx.Item(Index).Sectionfile

' M sgBox secfile

' frm3.Show ' vbModal

' cmdEdit_Click

 Else

 sectionname = ""

 mnuSectionOpen_Click

' pallette_add Index, acolor, sectionname

 End If

' labc(Index).Caption = cboSectionName.List(Index)

 update_pallette

End Sub

Private Sub mnu2Close_Click()

 Unload M e

End Sub

Private Sub mnuAlignM aters_Click()

 mnuTest.Enabled = True

End Sub

Private Sub mnuEditor_Click()

 frm3.Show

End Sub

Private Sub mnuM atersOpen_Click()

 On Error Resume Next

 CommonDialog1.Filter = matfilter

 CommonDialog1.ShowOpen

 M atfile = CommonDialog1.FileName

 If Matfile <> "" Then

 Open Matfile For Input As #10

 Else

 M sgBox "Please pick a file next time", , ptitle

 Exit Sub

 End If

 readM atfile (M atfile)

 ' print to boxes'

 Close #10

End Sub

Private Sub mnuSectionOpen_Click()

Dim acolor As Long, s As String

 nx = 3

 ny = 3

 FreeHorizontal = True

 s = ""

 On Error Resume Next

 CommonDialog1.Filter = secfilter

 CommonDialog1.FileName = s

 CommonDialog1.ShowOpen

 s = CommonDialog1.FileName

 If s <> "" Then

 Sectionfile = s

 Else

' M sgBox "Quitting due to no section file name"

 Exit Sub

 End If

 Set csec = New Cgeom

 csec.read_secfile Sectionfile

 csec.Sectionfile = Sectionfile

 sectionname = csec.sectionname

 csec.CsecID = sx.count 'secid = count - 1

' If nx < 4 Then 'too small to be in a file

 nx = csec.nx

 txtNX.Text = nx

 ny = csec.ny

 txtNY.Text = ny

 dx = csec.dx

 txtDX.Text = dx

 dy = csec.dy

 txtDY.Text = dy

 lx = dx * nx

 Ly = dy * ny

 txtLX.Text = Format(lx, "##0.0##")

 txtLY = Format(Ly, "##0.0##")

' End If

 sx.Add csec

' M sgBox sectionname & nx & ny

' Csec.getSection

' frm3.Enabled = False

 cboSectionName.AddItem sectionname

 sec_id = cboSectionName.ListCount

 Csmod.scount = sx.count

 cboSectionName.ListIndex = sec_id - 1 '?? sec_id - 1 CDX

' M sgBox sec_id & sx.count & cboSectionName.ListCount

' cboSectionName.ListIndex = sec_id

' sectionname , sec_ID

 Call pallette_add(sec_id, acolor, sectionname)

 update_pallette

 If nx * ny > 9 Then FreeHorizontal = False

 Update_page

 cmdRefresh_Click

 filechanged = False

' M sgBox sx.count & " sx count, last sec=" & vbNewLine &

sx.Item(sec_id).sectionname

End Sub

128

Private Sub mnuSubNew_Click()

 Dim res As Variant, x As Integer

 For x = 0 To cboSectionName.ListCount - 1

 cmdRemove_Click

 Next x

 FreeHorizontal = True

 cboSectionName.Refresh

 profilename = ""

 profile = ""

 cboSectionName.Clear

 clear_Sx

 shapeScolor.FillColor = vbW hite

 Update_page

 update_picture

 shapeScolor.Refresh

 filechanged = True

' M sgBox smod_ID & " =s_ID, In submodel.frm, smxcount= "

& smx.count

End Sub

Private Sub mnuSubOpen_Click()

' Dim csec As Cgeom

 On Error Resume Next

 FreeHorizontal = True

 CommonDialog1.Filter = profilter

 CommonDialog1.InitDir = Cinfo.userDir

 If (profile <> "") Then

 CommonDialog1.FileName = profile

 Else

 CommonDialog1.FileName = ""

 End If

 CommonDialog1.ShowOpen

 profile = CommonDialog1.FileName

 If (profile = "") Then

 Exit Sub

 End If

 read_profile profile

 txtsubmodelfile.Text = profile

' cmdRefresh_Click

 mnuTools.Enabled = True

 filechanged = False

End Sub

Private Sub mnuSubSave_Click()

 If profile <> "" Then

 write_Profile profile

 Else

 mnuSubSaveAs_Click

 End If

 filechanged = False

End Sub

Private Sub mnuSubSaveAs_Click()

 On Error Resume Next

 CommonDialog1.FileName = ""

 CommonDialog1.Filter = profilter

 CommonDialog1.DialogTitle = ptitle

 CommonDialog1.ShowSave

 profile = CommonDialog1.FileName

 If profile <> "" Then

 write_Profile profile

 Update_page

 End If

 filechanged = False

End Sub

Public Sub pallette_add(x As Integer, C As Long, s As String)

 labc(x).Caption = s

 Call getcolor(x, C)

 shp(x).FillColor = C

 sx.Item(x).sec_color = C

End Sub

Private Sub Picture1_M ouseDown(Button As Integer, Shift As

Integer, x As Single, y As Single)

 fsuspend = True

End Sub

Private Sub Picture1_M ouseM ove(Button As Integer, Shift As

Integer, x As Single, y As Single)

 Dim vv As Long, w_constant, q As Integer, m As Integer

 Dim x2 As Integer, y2 As Integer, x1 As Integer

 If sx.count < 1 Then Exit Sub

 If Not fsuspend Then Exit Sub

 On Error Resume Next

 y2 = Picture1.ScaleHeight

 x2 = Picture1.ScaleW idth

 m = cboSectionName.ListIndex + 1

 vv = shp(m).FillColor

 m = cboSectionName.ListIndex + 1

' x1 = Picture1.DrawW idth

 Picture1.DrawW idth = 260 / nz

 Picture1.FillStyle = 0

 q = (y \ 10 + 0.5) * 10

 Dim qq As Integer

 qq = y * nz / y2 + 0.5

' M sgBox y & " " & m & " " & qq

 If qq > nz Then Exit Sub

 sec_Number(qq) = m

 Csmod.L_secnumber(qq) = m

' smod.sec_number(qq) = m

 Picture1.Line (0, q)-(x2, q), vv, BF 'try this one

End Sub

Private Sub Picture1_M ouseUp(Button As Integer, Shift As

Integer, x As Single, y As Single)

 Dim vv As Long, w_constant, q As Integer, m As Integer

 Dim x2 As Integer, y2 As Integer, x1 As Integer

 If sx.count < 1 Then Exit Sub

 On Error Resume Next

 m = cboSectionName.ListIndex + 1

 y2 = Picture1.ScaleHeight

 x2 = Picture1.ScaleW idth

 vv = cboSectionName.ListIndex + 1

 vv = shp(vv).FillColor

' x1 = Picture1.DrawW idth

 Picture1.DrawW idth = 260 / nz

 Picture1.FillStyle = 0

 q = (y \ 10 + 0.5) * 10

 Dim qq As Integer

 qq = y * nz / y2 + 0.5

' M sgBox y & " " & m & " " & qq

 If qq > nz Then Exit Sub

 sec_Number(qq) = m

 Csmod.L_secnumber(qq) = m

' smod.sec_number(qq) = m

 Picture1.Line (0, q)-(x2, q), vv, BF 'try this one

 'Picture1.DrawW idth = x1

 fsuspend = False

 filechanged = True

End Sub

129

Private Sub readM atfile(thefile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean

 count = 1

 Do Until EOF(10)

 Line Input #10, aline

 x = InStr(1, aline, "[Material]")

 If x > 0 Then

 getstring 10, s

 matl_name(count) = s

' M sgBox matl_name(count)

 s = ""

 getvalue 10, y

 matl_color(count) = y

' M sgBox "color"

 getvalue 10, matl_sig(count)

' M sgBox "sig"

 getvalue 10, matl_Sp(count)

' M sgBox "sp"

 getvalue 10, matl_rho(count)

' M sgBox "rho"

 getvalue 10, matl_heat(count)

' M sgBox "heat"

 getvalue 10, matl_size(count)

' M sgBox "size"

 count = count + 1

 End If

 Loop

' M sgBox "EOF"

 frm1.Refresh

 Close #10

End Sub

Public Sub read_profile(afile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean

 Dim dummy(100) As Integer, ss As String

 If afile = "" Then Exit Sub

 Set smod = New Csubmodel

 smod.smodfile = afile

 On Error GoTo badfile

 Open afile For Input As #19

 y = 1

 count = 1

 FreeHorizontal = True

 On Error Resume Next

another1: Line Input #19, aline

 x = InStr(1, aline, "modelname=")

 If x < 1 Then GoTo another1

 profilename = RTrim(Mid(aline, x + 10))

 Let smod.smodname = profilename

another2: Line Input #19, aline

 x = InStr(1, aline, "nx=")

 If x < 1 Then GoTo another2

 nx = RTrim(Mid(aline, x + 3))

 smod.nx = nx

another3: Line Input #19, aline

 x = InStr(1, aline, "ny=")

 If x < 1 Then GoTo another3

 ny = RTrim(Mid(aline, x + 3))

 smod.ny = ny

another4: Line Input #19, aline

 x = InStr(1, aline, "nz=")

 If x < 1 Then GoTo another4

 nz = RTrim(Mid(aline, x + 3))

 smod.nz = nz

another5: Line Input #19, aline

 x = InStr(1, aline, "dx=")

 If x < 1 Then GoTo another5

 dx = RTrim(Mid(aline, x + 3))

 smod.dx = dx

another6: Line Input #19, aline

 x = InStr(1, aline, "dy=")

 If x < 1 Then GoTo another6

 dy = RTrim(Mid(aline, x + 3))

 smod.dy = dy

another7: Line Input #19, aline

 x = InStr(1, aline, "dz=")

 If x < 1 Then GoTo another7

 dz = RTrim(Mid(aline, x + 3))

 smod.dz = dz

another8: Line Input #19, aline

 x = InStr(1, aline, "files=")

 If x < 1 Then GoTo another8

 totsec_files = CInt(RTrim(Mid(aline, x + 6)))

 smod.scount = totsec_files

another9: Line Input #19, aline

 x = InStr(1, aline, "submodel")

 If x < 1 Then GoTo another9

' On Error GoTo BadFile

 getrow 19, nz, dummy

 For x = 1 To nz

 sec_Number(x) = dummy(x)

 smod.L_secnumber(x) = dummy(x)

' M sgBox "sec # " & x

 Next x

another10: Line Input #19, aline

 x = InStr(1, aline, "ections]")

 If x < 1 Then GoTo another10

 If sx.count > 0 Then

 For x = sx.count To 1 Step -1

 Set csec = Nothing

 sx.Remove x

 Next x

 End If

 'M sgBox "now adding csec " & totsec_files

 x = 1

 Dim res As Single, iq As Integer

 Do W hile x <= totsec_files

' Set csec = New Cgeom

 make_Csec

'cd M sgBox x, vbApplicationM odal

 On EOF(19) GoTo Finished

' On Error GoTo BadFile

 s = ""

 Do

 Line Input #19, aline

 iq = InStr(1, aline, "[section]")

 If iq > 0 Then

 getstring 19, s

 csec.Sectionfile = s

'cd M sgBox x & s, vbApplicationM odal

 getvalue 19, res

'cd M sgBox x & res, vbApplicationM odal

 csec.sec_color = res

 pal_Color(x) = res

'cd M sgBox "start sec_read " & s, vbApplicationM odal

 csec.read_secfile s

130

 s = csec.sectionname

' M sgBox x & s, vbApplicationM odal

 sx.Add csec 'x before this

' M sgBox "end Loop, sxitem= " & sx.Item(x).sectionname,

vbApplicationM odal

 Exit Do

 End If

 'no loop counter for lines

 Loop

'cd M sgBox "End Loop " & x, vbApplicationM odal

 x = x + 1

 Loop

Finished:

 Close #19

 On Error Resume Next

 smx.Add smod, profilename

 Update_page

 FreeHorizontal = False

 filechanged = False

 Cinfo.userDir = fso.GetParentFolderName(profile)

 Exit Sub

badfile:

 Close #19

 M sgBox "PROBLEM : submodel file=" & profile, , ptitle

 Exit Sub

End Sub

Private Sub shapeScolor_Dblclick()

 Dim acolor As Long, x As Integer

 x = cboSectionName.ListIndex + 1

 getcolor x, acolor

 shapeScolor.FillStyle = 0

 shapeScolor.BackColor = acolor

 shp(x).FillColor = acolor

 Let sx.Item(x).sec_color = acolor

 update_pallette

End Sub

Private Sub txtDX_Change()

 textchanged = True

End Sub

Private Sub txtDX_LostFocus()

 Dim d As Single, dd As Single, iq As Integer, q As Single

' If (Not textchanged) Then Exit Sub

 dd = txtDX.Text 'alter

 iq = nx 'alter

 If iq <= 0 Then

 iq = InputBox("Enter a positive definite count of Zones in X

", ptitle)

 End If

 nx = iq 'alter

 q = iq

 lx = dd * q 'alter

 txtLX.Text = Format(lx, "0.0###") 'alter

 textchanged = False

End Sub

Private Sub txtDY_Change()

 textchanged = True

End Sub

Private Sub txtDY_LostFocus()

 Dim d As Single, dd As Single, iq As Integer, q As Single

' If (Not textchanged) Then Exit Sub

 dd = txtDY.Text 'alter

 iq = ny 'alter

 If iq <= 0 Then

 iq = InputBox("Enter a positive definite count of Zones in Y

", ptitle)

 End If

 ny = iq 'alter

 Ly = dd * iq 'alter

 txtLY.Text = Format(Ly, "##0.0##") 'alter

 txtLY.Refresh

 textchanged = False

 filechanged = True

End Sub

Private Sub txtDZ_Change()

 textchanged = True

End Sub

Private Sub txtDZ_LostFocus()

 Dim d As Single, dd As Single, iq As Integer, q As Single

' If (Not textchanged) Then Exit Sub

 dd = txtDZ.Text 'alter

 dz = dd

 iq = txtLayers.Text 'alter

 If iq <> nz Then M sgBox "ERROR: nz not matching edit

contents", , ptitle

 If iq <= 0 Then

 iq = InputBox("Enter a positive definite count of Zones in Z

", ptitle)

 End If

 txtLayers.Text = iq

 nz = iq 'alter

 q = iq

 ZLength = dd * q 'alter

 txtZLength.Text = ZLength 'alter

 textchanged = False

 filechanged = True

End Sub

Private Sub txtLayers_Change()

 textchanged = True

' picture1 vertical adjustments============

End Sub

Private Sub txtLayers_LostFocus()

 Dim d As Single, iy As Integer, y As Single

' If (Not textchanged) Then Exit Sub

 iy = txtLayers.Text

 If iy <= 1 Then

 iy = InputBox("Enter a positive definite count of layers ",

ptitle)

 txtLayers.Text = iy

 End If

 If iy <= 1 Then Exit Sub

 If iy > 80 Then iy = 80

 txtLayers = iy

 nz = iy

 ZLength = txtDZ.Text * iy

 txtZLength.Text = ZLength

 textchanged = False

 filechanged = True

 Dim kz As Integer

131

 If iy > 1 Then

 Picture1.ScaleM ode = 0

 Picture1.Scale (0, 0)-(10, iy * 10)

 Picture1.Refresh

 frm2.Refresh

 For kz = 2 To iy

 Picture1.Line (0, (kz - 1) * 10)-(10, (kz - 1) * 10), vbBlack

 Next kz

' update_picture

 End If

End Sub

Private Sub txtLX_Change()

 textchanged = True

End Sub

Private Sub txtLX_LostFocus()

 Dim d As Single, iq As Integer

 Dim res As Variant

' If (Not textchanged) Then Exit Sub

 iq = txtNX.Text

 If iq <= 0 Then

 iq = InputBox("Enter a positive definite COUNT of X-zones

", ptitle)

 End If

 d = txtLX.Text

 If d <= 0 Then

 res = InputBox("Enter a positive definite X-length of the

sub-model ", ptitle, d)

 If IsNumeric(res) Then d = Val(res)

 End If

 dx = d / iq

 txtDX.Text = dx

 txtLX = Format(lx, "##0.0##")

 textchanged = False

 filechanged = True

End Sub

Private Sub txtLY_Change()

 textchanged = True

End Sub

Private Sub txtLY_LostFocus()

 Dim d As Single, dd As Single, iq As Integer

 Dim res As Variant

' If (Not textchanged) Then Exit Sub

 iq = txtNY.Text

 If iq <= 0 Then

 iq = Val(InputBox("Enter a positive definite COUNT of

Y-zones ", ptitle))

 End If

 ny = iq

 txtNY.Text = ny

 d = txtLY.Text

 If d <= 0 Then

 res = InputBox("Enter a positive definite Y-length of the

sub-model ", ptitle, d)

 If IsNumeric(res) Then d = Val(res)

 End If

 dd = d / iq

 txtDY.Text = dd

 dy = dd

 txtLY = Format(Ly, "##0.0##")

 textchanged = False

 filechanged = True

End Sub

Private Sub txtNX_Change()

 textchanged = True

End Sub

Private Sub txtNX_LostFocus()

 Dim dd As Single, ix As Integer, x As Single

' If (Not textchanged) Then Exit Sub

 ix = txtNX.Text

 If ix > 80 Then

 ix = 80

 txtNX = 80

 End If

 If ix <= 0 Then

 ix = InputBox("Enter a positive definite count of Zones ",

ptitle)

 End If

 nx = ix

 dd = txtDX.Text

 lx = dd * ix

 txtLX.Text = Format(lx, "##0.0##")

 textchanged = False

 filechanged = True

End Sub

Private Sub txtNY_Change()

 textchanged = True

End Sub

Private Sub txtNY_LostFocus()

Dim dd As Single, ix As Integer, x As Single

' If (Not textchanged) Then Exit Sub

 ix = txtNY.Text

 If ix > 80 Then

 ix = 80

 txtNY = 80

 End If

 If ix <= 0 Then

 ix = InputBox("Enter a positive definite count of Zones ",

ptitle)

 End If

 ny = ix

 dd = txtDY.Text

 Ly = dd * ix

 txtLY.Text = Format(Ly, "##0.0##")

 textchanged = False

 filechanged = True

End Sub

Private Sub txtsubmodelfile_Click()

 Dim res As String

 If fsuspend Then Exit Sub

 fsuspend = True

 res = InputBox("Enter a sub-model file name", ptitle)

 CommonDialog1.Filter = profilter

 CommonDialog1.FileName = res

 CommonDialog1.DialogTitle = " Saving Sub-M odel "

 CommonDialog1.ShowSave

 profile = CommonDialog1.FileName

 If profile <> "" Then

 txtsubmodelfile.Text = profile

 Else

 If txtsubmodelfile.Text = "" Then M sgBox "A file name is

132

required to save your work", , ptitle

 End If

 fsuspend = False

 write_Profile profile

End Sub

Private Sub txtsubmodelfile_GotFocus()

 If fsuspend Then Exit Sub

 txtsubmodelfile_Click

End Sub

Private Sub txtsubmodname_Click()

 If fsuspend Then Exit Sub

 fsuspend = True

 Dim res As String

 res = InputBox("Enter a descriptive name", ptitle)

 If res <> "" Then

 txtsubmodname.DataChanged = False

 txtsubmodname.Text = res

 profilename = res

 Else

 If txtsubmodname.Text = "" Then MsgBox "A descriptive

sub-model name is useful and required.", , ptitle

 End If

 fsuspend = False

End Sub

Private Sub txtsubmodname_GotFocus()

 If fsuspend Then Exit Sub

 txtsubmodname_Click

End Sub

Private Sub txtZLength_Change()

 textchanged = True

End Sub

Private Sub txtZLength_LostFocus()

 Dim z As Single, iy As Integer

 Dim res As Variant, q As Variant

 If (Not textchanged) Then Exit Sub

 ZLength = Val(txtZLength.Text)

 If ZLength <= 0 Then

 res = InputBox("Enter a positive definite Height of the

sub-model ", ptitle, ZLength)

 If IsNumeric(res) Then ZLength = Val(res)

 End If

 If txtZLength.Text = "" Then Exit Sub

 iy = Val(txtLayers.Text)

 If iy <= 1 Then

 iy = InputBox("Enter a positive definite COUNT of layers ",

ptitle)

 End If

 nz = iy

 dz = ZLength / iy

 txtDZ.Text = dz

 textchanged = False

 filechanged = True

End Sub

Private Sub update_list()

 Dim x As Integer

 On Error Resume Next

 profile = smx.Item(smod_ID).smodfile

 profilename = smx.Item(smod_ID).smodname

 Cinfo.dataPath = fso.GetAbsolutePathName(profilename)

 nx = smx.Item(smod_ID).nx

 ny = smx.Item(smod_ID).ny

 nz = smx.Item(smod_ID).nz

 dx = smx.Item(smod_ID).dx

 dy = smx.Item(smod_ID).dy

 dz = smx.Item(smod_ID).dz

 Cinfo.initNX = nx

 Cinfo.initNY = ny

 Cinfo.initDX = dx

 Cinfo.initDY = dy

 scount = smx.Item(smod_ID).scount

 For x = 1 To scount

 sec_Number(x) = smx.Item(smod_ID).L_secnumber(x)

 Next x

 read_profile profile

End Sub

Private Sub Update_page()

 Dim q As String

' M sgBox "updating: " & dy & txtDY.Text

 txtsubmodelfile.Text = profile

 txtsubmodname.Text = profilename

 txtLayers.Text = nz

 If FreeHorizontal Then

 txtNX.Text = nx

 txtNY.Text = ny

 txtDX.Text = dx

 txtDY.Text = dy

 txtDX_LostFocus

 textchanged = True

 txtDY_LostFocus

 textchanged = True

' txtDX_LostFocus

 End If

 txtDZ.Text = dz

 txtDZ_LostFocus

 textchanged = True

 dx = txtDX.Text

 dy = txtDY.Text

 dz = txtDZ.Text

 Dim x As Integer

 LblQP(0) = Format(0#, "0.0")

 For x = 1 To 8

 LblQP(x) = Format(LblQP(0) + (ZLength / 8#) * x,

"##0.0##")

 If ZLength > 0# Then LblQP(x).Visible = True

 Next x

 If smx.count < 1 Then Exit Sub

 If sx.count < 1 Then Exit Sub

 cboSectionName.Clear

 For x = 1 To sx.count

 q = sx.Item(x).sectionname

 If q = "" Then

 q = InputBox("This section has no name, so please enter

one.", " NO NAM E")

 sx.Item(x).sectionname = q

 End If

' M sgBox x & q, vbApplicationM odal

 cboSectionName.AddItem q

 shp(x).FillColor = sx.Item(x).sec_color

' sec_number(x) = smod.l_secnumber(x)

 labc(x) = q

 Next x

 cboSectionName.ListIndex = cboSectionName.ListCount - 1

 update_pallette

 update_picture

133

 If cboSectionName.ListCount > 0 Then mnuTools.Enabled =

True

End Sub

Private Sub update_pallette()

Dim x As Integer

For x = 1 To 12

 labc(x).Alignment = 1

 labc(x).Refresh

 shp(x).Refresh

Next x

 Picture1.Refresh

End Sub

Private Sub update_picture()

 Dim vv As Long, w_constant, q As Integer, y As Integer

 Dim x2 As Integer, y2 As Integer, x1 As Integer

 Dim qq As Integer

 On Error Resume Next

 Picture1.FillColor = vbW hite

 Picture1.BackColor = vbW hite

 y2 = Picture1.ScaleHeight

 x2 = Picture1.ScaleW idth

 x1 = Picture1.DrawW idth

 Picture1.Line (0, y2)-(x2, y2), vbW hite, BF

 Picture1.Refresh

 Picture1.DrawW idth = 250 / nz

 Picture1.FillStyle = 0

 For y = 1 To nz

 vv = sec_Number(y)

 vv = sx.Item(vv).sec_color

 q = (y - 0.5) * y2 / nz

' q = (y \ 10 + 0.5) * 10

 qq = q \ 10 + 1

 Picture1.Line (0, q)-(x2, q), vv, BF

 Next y

 Picture1.DrawW idth = x1

' Picture1.Refresh

End Sub

Public Sub write_Profile(thefile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean

 For y = sx.count To 1 Step -1

' M sgBox sx.Item(y).sectionname

 If sx.Item(y).Sectionfile = "" Then sx.Remove y

 Next y

 If sx.count < 1 Then MsgBox "Bad: no sections in sub-model",

, ptitle

 Dim aa As String

 aa = quote & Trim(thefile) & quote

 Close #25

 Open thefile For Output As #25

 y = 1

 Print #25, thefile

 Print #25, "Revised ", Date

 Print #25, "submodelname=", Trim(profilename)

 Print #25, "[parameters]"

 Print #25, "nx=", nx

 Print #25, "ny=", ny

 Print #25, "nz=", nz 'nz is not zero-based

 Print #25, "dx=", dx

 Print #25, "dy=", dy

 Print #25, "dz=", dz

 Print #25, "sectionfiles=", cboSectionName.ListCount

 Print #25, " "

 Print #25, "[submodel]"

 aline = sec_Number(1)

 For x = 2 To nz

 aline = aline & "," & sec_Number(x)

 Next x

 Print #25, aline

 W rite #25,

 Print #25, "[Sections]"

 x = 1

 Do W hile x <= sx.count

 W rite #25,

 Print #25, "[section]"

 Print #25, "sectionfile=", Trim(sx.Item(x).Sectionfile)

 Print #25, "sectioncolor=", sx.Item(x).sec_color

 x = x + 1

 Loop

 Cinfo.dataPath = fso.GetAbsolutePathName(thefile)

 Cinfo.userDir = fso.GetParentFolderName(thefile)

 Cinfo.write_startup

 Close #25

End Sub

134

A.1.9 frmMaterials.frm

'It is possible to run the program with all files existent and not

'load this form.

Option Explicit

Option Base 1

Dim textchanged As Boolean

Dim thefile As String

Dim f As Object, stream As Object

Dim id As Integer

Dim dlgfilter As String, matl_Changed As Boolean

Dim matl_name(99) As String, matl_sig(99) As Single,

matl_Sp(99) As Single

Dim matl_rho(99) As Single, matl_heat(99) As Single

Dim matl_size(99) As Single, matl_color(99) As Long

'===

===========

' PROCEDURES AND OTHER CODING

Private Sub Form_Load()

 dlgfilter = " M aterials file (*.mts)|*.mts|All files (*.*)|*.*"

 textchanged = False

 thefile = Cinfo.Matfile

 readfile thefile

 Frame2.Enabled = False

 matl_Changed = False

 id = 1

End Sub

'

===

========

' procs are listed alphabetically below, after form_load()

'

===

========

Private Sub btnfrmHoriz_Click()

 If id < 1 Then Exit Sub

 If matl_size(id) = 0 Then get_size matl_size(id)

 matl_size(id) = 0 - Abs(matl_size(id))

 Text6.Text = Abs(matl_size(id))

 Label7.Visible = True

 Text7.Visible = True

 Text7.Text = InputBox("Enter the form's radius of curvature

(m)", "Radius", 0#)

' M sgBox "horiz body " & matl_size(id)

 textchanged = True

End Sub

Private Sub btnfrmVert_Click() 'only if changed from

horizontal

 If id < 1 Then Exit Sub

 If matl_size(id) < 0 Then

 matl_size(id) = Abs(matl_size(id))

 End If

 Text6.Text = matl_size(id)

' M sgBox "vert body " & matl_size(id)

 textchanged = True

End Sub

Private Sub cmdM aterColor_Click()

 Dim ic As Long

 If id < 1 Then Exit Sub

 CommonDialog1.Color = matl_color(id)

 CommonDialog1.ShowColor

 ic = CommonDialog1.Color

 matl_color(id) = ic

 Shape1.FillColor = matl_color(id)

 textchanged = True

End Sub

Private Sub chkFill_Click()

' chkForm.Value = Not chkFill.Value

' M sgBox "fill click " & chkFill.Value

 If id < 1 Then Exit Sub

 If chkFill.Value Then

 Text6.Visible = False

 matl_size(id) = 0#

 Else

 Text6.Visible = True

 End If

 display_boxes (id)

 textchanged = True

' frm1.Refresh

End Sub

Private Sub chkForm_Click()

 Dim y As Single, res As Variant

' M sgBox "chkform " & chkForm.Value

 If chkForm.Value = True Then

 Text6.Visible = True

 Frame3.Visible = True

' M sgBox "Check either the vertical or horizontal orientation"

 Else

 Text6.Visible = False

 Frame3.Visible = False

 End If

 frm1.Refresh

 textchanged = True

' display_boxes (id)

End Sub

Private Sub cmdAppend_Click()

 Dim s As String, float As Single, count As Integer

 On Error GoTo endsub

 count = Combo1.ListCount + 1

 s = InputBox(" Enter a unique material name for entry #" &

count, "M aterial")

 Combo1.AddItem s

 matl_name(count) = s

 float = 0#

 float = InputBox("Enter a thermal conductivity")

 matl_sig(count) = Val(float)

 float = 0#

 float = InputBox("Enter a specific Heat, Cp ")

 matl_Sp(count) = Val(float)

 float = 0#

 float = InputBox("Enter a material density: kg/cubic m")

135

 matl_rho(count) = Val(float)

 float = 0#

 float = InputBox("Enter a heat production / unit mass")

 matl_heat(count) = Val(float)

 matl_size(count) = 0#

 matl_color(count) = RGB(160, 160, 160)

 chkFill.Value = True

 id = Combo1.ListCount

 display_boxes id

endsub:

End Sub

Private Sub cmdChange_Click()

 Dim s As String

 id = Combo1.ListIndex + 1

 If id < 1 Then

 Exit Sub

 End If

 If textchanged = True Then

' M sgBox Combo1.List(id - 1)

 matl_sig(id) = Val(Text2.Text)

 matl_Sp(id) = Val(Text3.Text)

 matl_rho(id) = Val(Text4.Text)

 If Val(Text5.Text) > 2 Then Text5.Text = 1#

 matl_heat(id) = Val(Text5.Text)

 If chkForm.Value = True Then

 matl_size(id) = Val(Text6.Text)

 If (btnfrmHoriz.Value = True) Then matl_size(id) =

-Abs(matl_size(id))

 End If

 s = InputBox("Replacement name for material (<CR> to

keep)" & vbNewLine _

 & vbNewLine & Combo1.list(id - 1), "M aterial Name")

 If s <> "" Then

 matl_name(id) = s

 Combo1.list(id - 1) = s

 End If

 End If

' CommonDialog1.ShowColor

' matl_color(id) = CommonDialog1.Color

 display_boxes (id)

 textchanged = False

 matl_Changed = True

End Sub

Private Sub cmdSavefile_Click()

 write_file thefile

End Sub

'Private Sub Combo1_DblClick()

' id = Combo1.ListIndex

' M sgBox id

' display_boxes (id)

'End Sub

'Private Sub Combo1_Scroll()

' id = Combo1.ListIndex

' M sgBox id

' display_boxes (id)

'

'End Sub

Private Sub Combo1_change()

 Dim txt As String, txt2 As String

 Label7.Visible = False

 Text7.Visible = False

 textchanged = True

 txt = Combo1.list(id - 1)

 txt2 = InputBox("Enter / change the material label:",

"M aterials", txt)

 If txt2 = "" Then Exit Sub

 If Not chkFill.Value Then

 Frame3.Visible = False

 End If

 Combo1.list(id - 1) = txt2

 matl_name(id) = txt2

 If id < 1 Then id = 1

 Combo1.Refresh

 Combo1.ListIndex = id - 1

 textchanged = True

End Sub

Private Sub Combo1_Click()

 id = Combo1.ListIndex + 1

 If id < 0 Then Exit Sub

 display_boxes (id)

 textchanged = False

End Sub

Private Sub display_boxes(id As Integer)

 On Error GoTo endsub

 If id < 1 Then Exit Sub

 Text6.Visible = True

 If Combo1.ListCount = 0 Then

 mnu1fileopen_Click

 Else

 If id = 99 Then

 Let id = 1

 Combo1.ListIndex = id - 1

 Else

 If Combo1.ListCount = 0 Then Exit Sub

 Combo1.ListIndex = id - 1

 End If

 Text2.Text = matl_sig(id)

 Text3.Text = matl_Sp(id)

 Text4.Text = matl_rho(id)

' M sgBox id & " density " & matl_rho(id)

 Text5.Text = matl_heat(id)

 Text6.Text = Abs(matl_size(id))

 Frame3.Visible = True

 If (matl_size(id) = 0#) Then

 Text6.Visible = False

 chkFill.Value = True

 chkForm.Value = False

 Frame3.Visible = False

 ElseIf matl_size(id) < 0 Then

 btnfrmHoriz.Value = True

 Text6.Text = Abs(matl_size(id))

 chkFill.Value = False

 chkForm.Value = True

 Else

 btnfrmVert.Value = True

 chkFill.Value = False

 chkForm.Value = True

 Text6.Text = matl_size(id)

 End If

 Shape1.FillColor = matl_color(id)

 Frame2.Refresh

 End If

136

endsub:

 Combo1.Enabled = True

 Frame2.Enabled = True

End Sub

Private Sub get_size(ByVal y As Single)

 Dim res As Variant

 res = InputBox("enter a characteristic width", y)

 If res <> "" Then If IsNumeric(res) Then y = Val(res)

End Sub

 Public Sub getvalue(iu As Long, xx As Single)

 Dim aline As String, x As Integer, s As Single

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

 M sgBox "problem in this file"

 s = "0"

 Else

 s = RTrim(Mid(aline, x + 1))

 End If

 xx = s

 End Sub

 Public Sub getstring(iu As Long, xx As String)

 Dim aline As String, x As Integer, s As String

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

 M sgBox "problem in this file"

 s = "0"

 Else

 s = Trim(Mid(aline, x + 1))

 End If

 xx = s

 End Sub

Private Sub Form_Terminate()

 Close

 Unload M e

End Sub

Private Sub mnu1close_Click()

 If matl_Changed Then

 If thefile <> "" Then

 mnu1filesave_Click

 Else

 mnu1filesaveas_Click

 End If

 matl_Changed = False

 End If

 M atfile = ""

 Unload M e

End Sub

Private Sub mnu1fileopen_Click()

 On Error Resume Next

 CommonDialog1.Filter = " M aterials file (*.mts)|*.mts|All files

(*.*)|*.*"

 CommonDialog1.ShowOpen

 thefile = CommonDialog1.FileName

 txtfilename.Text = thefile

 If thefile = "" Then Exit Sub

 If Not fso.FileExists(thefile) Then Exit Sub

 readfile (thefile)

 M atfile = thefile

 Cinfo.M atfile = fso.GetAbsolutePathName(thefile)

 Cinfo.DataDir = fso.GetParentFolderName(Cinfo.M atfile)

 matl_Changed = False

 ' print to boxes'

End Sub

Private Sub mnu1filesave_Click()

 If thefile <> "" Then M atfile = thefile

 If Matfile = "" Then

 mnu1filesaveas_Click

 Exit Sub

 End If

 write_file M atfile

 Cinfo.M atfile = fso.GetAbsolutePathName(thefile)

 Cinfo.DataDir = fso.GetParentFolderName(Cinfo.M atfile)

End Sub

Private Sub mnu1filesaveas_Click()

 Dim afile As String

 On Error Resume Next

 CommonDialog1.Filter = dlgfilter

 CommonDialog1.ShowSave

 afile = CommonDialog1.FileName

 If afile = "" Then

 M sgBox "This file name selection is not useful."

 Exit Sub

 Else

 SaveFile afile

 txtfilename.Text = afile

 End If

 Cinfo.M atfile = fso.GetAbsolutePathName(thefile)

 Cinfo.DataDir = fso.GetParentFolderName(Cinfo.M atfile)

End Sub

Private Sub mnu1Help_Click()

 M sgBox "There is no help for you here"

End Sub

Private Sub mnuExit_Click()

 M sgBox "unsaved: " & textchanged

 If textchanged = True Then

 ' dlgUnSaved.ActiveControl

 ' dlgUnSaved.Enabled = True

 ' dlgUnSaved.Controls

 ' dlgUnSaved.PrintForm

 ' dlgUnSaved.Show

 End If

 Unload M e

 End

End Sub

Private Sub readfile(thefile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean, v As Variant

 Dim u As Long, e As String * 1, numM ats As Long

begin:

 If thefile = "" Then Exit Sub

 On Error GoTo badpath

 Close #10

 Open thefile For Input As #10

137

 u = 10

 e = "="

 count = 0

 txtfilename.Text = thefile

 numM ats = getNumVal(u, e)

 For x = 1 To numM ats

 Line Input #10, aline

 s = findline(u, "aterial]")

 If x > 0 Then

 count = count + 1

 matl_name(count) = getStrVal(u, e)

 Combo1.AddItem matl_name(count)

' M sgBox matl_name(count)

 matl_color(count) = getNumVal(u, e)

' M sgBox "color"

 matl_sig(count) = getNumVal(u, e)

' M sgBox "sig"

 matl_Sp(count) = getNumVal(u, e)

' M sgBox "sp"

 matl_rho(count) = getNumVal(u, e)

' M sgBox "rho"

 matl_heat(count) = getNumVal(u, e)

' M sgBox "heat"

 matl_size(count) = getNumVal(u, e)

' M sgBox "size"

 End If

 Next x

' M sgBox numM ats & "EOF " & count

 display_boxes 99

 frm1.Refresh

 Close #u

 Cinfo.dataPath = fso.GetAbsolutePathName(thefile)

 Cinfo.DataDir = fso.GetParentFolderName(thefile)

 Exit Sub

badpath:

' CommonDialog1.CancelError = True

 CommonDialog1.Filter = matfilter

 CommonDialog1.FileName = ""

 CommonDialog1.ShowOpen

 thefile = CommonDialog1.FileName

 If thefile <> "" Then GoTo begin

 GoTo exitsub

exitsub:

 Exit Sub

End Sub

Public Sub SaveFile(afile As String)

' Dim f As Object

' Set f = FileSystemObject

 If (afile = "") Then

 M sgBox "File name empty."

 Exit Sub

 End If

 write_file afile

End Sub

Private Sub Text1_Change()

 textchanged = True

End Sub

Private Sub Text2_Change()

 textchanged = True

End Sub

Private Sub Text3_Change()

 textchanged = True

End Sub

Private Sub Text4_Change()

 textchanged = True

End Sub

Private Sub Text5_Change()

 textchanged = True

End Sub

Private Sub Text6_Change()

 textchanged = True

End Sub

Private Sub text6_lostfocus()

 If textchanged = True Then

 If id < 1 Then Exit Sub

 matl_size(id) = Text6.Text

 End If

 textchanged = True

End Sub

Private Sub write_file(thefile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean

 If thefile = "" Then Exit Sub

 matl_Changed = False

 On Error Resume Next

 Dim aa As String

 aa = quote & Trim(thefile) & quote

 Open thefile For Output As #20

 x = 1

 Print #20, thefile

 Print #20, "Revised ", Date

 Print #20, "listcount=", Combo1.ListCount

 Print #20, " "

 Print #20, " "

 Do W hile x <= Combo1.ListCount

 Print #20, "[M aterial]"

 Print #20, "material name="; matl_name(x)

 Print #20, "material color="; matl_color(x)

 Print #20, "thermal conductivity="; matl_sig(x)

 Print #20, "specific heat="; matl_Sp(x)

 Print #20, "density="; matl_rho(x)

 Print #20, "heat production="; matl_heat(x)

 Print #20, "characteristic size="; matl_size(x)

 Print #20, " "

 x = x + 1

 Loop

 Close #20

 Cinfo.DataDir = fso.GetParentFolderName(thefile)

 Cinfo.write_startup

End Sub

138

A.1.10 frmFillform.frm

A.2 Visual Basic Code for Project Modules

A.2.1 module1e.bas

Option Explicit

Option Base 1

Public fM ainForm As mdifrmM ain

Public C_message As String

Public Matfile As String, secfile As String, profile As String,

Sectionfile As String

Public sectionname As String, nodes_x As Integer, nodes_y As

Integer

Public matfilter As String, secfilter As String, profilter As String,

runfilter As String

Public sdgfilter As String, outfilter As String, inifilter As String

Public profilename As String, modfilter As String, sdgfile As

String

Public fso As FileSystemObject

Public CsecID As Integer, CmatID As Integer, smod_ID As

Integer

Public Csection As Cgeom, csec As Cgeom, Cmod As Cmodel

Public Csmod As Csubmodel, smod As Csubmodel

Public cexe As Cexec, sound As Csounding

Public Cinfo As Cstartup

Public sdg As CsdgDatum

Public sdgx As Collection

Public comp As Ccomp, compx As Collection 'modx As

Collection

'Public Cprofile As Cprof

Public sx As Collection, smx As Collection

Public p_count As Integer, blah As String * 1

' = = = = G l o b a l D e c l a r a t i o n s

===============================

Public regular_mlist As Integer

Public title As String, Blank As String, quote As String * 1

'Dim matl_name(99) As String, matl_sig(99) As Single,

matl_Sp(99) As Single

'Dim matl_rho(99) As Single, matl_heat(99) As Single

'Dim matl_size(99) As Single, matl_color(99) As Long

Public nx As Integer, nz As Integer, ny As Integer

Public chkx As Collection

'model file params =========================

Public submodelfiles As Integer 'numChunks As Integer,

'===

=====

Sub M ain()

 title = " patent pending . . ."

 regular_mlist = 30

 quote = """"

 matfilter = " M aterials file (*.mts)|*.mts|All files (*.*)|*.*"

 profilter = " Profile files (*.prf)|*.prf|All files (*.*)|*.*"

 secfilter = " Section files (*.sec)|*.sec|All files (*.*)|*.*"

 modfilter = " M odel files (*.mod)|*.mod|All files (*.*)|*.*"

 runfilter = " Exec files (*.exc)|*.exc|All files (*.*)|*.*"

 inifilter = " Initial files (*.ini)|*.ini|All files (*.*)|*.*"

 sdgfilter = " Sounding files (*.sdg)|*.sec|Data files

(*.dat)|*.dat|All files (*.*)|*.*"

 outfilter = " out files (*.out)|*.out| text file (*.dat)|*.dat| all files

(*.*)|*.*"

 Set fso = New FileSystemObject

 Set Cinfo = New Cstartup

 Set smx = New Collection

 Set sx = New Collection

 Set Csmod = New Csubmodel

 Set compx = New Collection

 Set Cmod = New Cmodel

 Set comp = New Ccomp

' Set cexe = New Cexec

 Set fM ainForm = New mdifrmM ain

 fM ainForm.Show

 CsecID = 0

 smod_ID = 0

 CmatID = 0

 quote = Chr(34)

 blah = " "

 Blank = ""

 getPath

End Sub

Public Function arcSin(ByVal x As Double) As Variant

 If x * x <> 1 Then

 arcSin = Atn(x / Sqr(-x * x + 1))

 Else

 arcSin = Atn(1 / -2# / x)

 End If

End Function

Public Function aEOF(iu As Long)

 If EOF(iu) Then err.Raise 1

End Function

Public Sub clear_Chkx()

 Dim x As Integer

 For x = chkx.count To 1 Step -1

 chkx.Remove x

 Next x

End Sub

Public Sub clear_Compx()

 Dim x As Integer

 For x = compx.count To 1 Step -1

 compx.Remove x

 Next x

End Sub

Public Sub clear_Lists()

 clear_Smx

 clear_Chkx

 clear_Compx

End Sub

Public Sub clear_Smx()

 Dim x As Integer

 For x = smx.count To 1 Step -1

 smx.Remove x

 Next x

 smod_ID = 0

139

End Sub

Public Sub clear_Sx()

 Dim x As Integer

 For x = sx.count To 1 Step -1

 sx.Remove x

 Next x

 smod_ID = 0

End Sub

Public Function findline(iu As Long, aline As String, Optional

nflag As Long) As String

 Dim fulline As String, x As Integer

 On Error Resume Next

another1: Line Input #iu, fulline

 x = InStr(fulline, aline)

 If EOF(iu) Then GoTo badfile

 If x < 1 Then GoTo another1

 findline = fulline

 Exit Function

badfile:

 findline = "EOF"

 Close #iu

End Function

Public Function getFlagVal(iu As Long, B As String) As Boolean

 Dim aline As String, x As Integer, s As Boolean

 aline = findline(iu, B)

 x = Len(B)

 B = Trim(Mid(aline, x + InStr(1, aline, B)))

 getFlagVal = CBool(Val(B))

End Function

Public Function getNumVal(iu As Long, B As String) As Double

 Dim aline As String, x As Integer, s As String

 x = Len(B)

 aline = findline(iu, B)

 s = Trim(Mid(aline, (x + InStr(1, aline, B))))

 getNumVal = Val(s)

End Function

Public Sub getPath()

 Dim f As File

 Dim x As Long, s As String, S2 As String

 On Error Resume Next

 If Cinfo.homeDir = "" Then M sgBox "Cannot find homedir"

 If fso.FileExists(Cinfo.dataPath) Then

 s = Cinfo.dataPath

 ElseIf fso.FileExists(Cinfo.M atfile) Then

 s = Cinfo.Matfile

 ElseIf fso.FileExists(Dir("STDOUT.*")) Then

 s = fso.GetAbsolutePathName(Dir("stdout.*"))

 ElseIf fso.FileExists(Dir("*.mts")) Then

 s = fso.GetAbsolutePathName(Dir("*.mts"))

 ElseIf fso.FileExists(Dir("*.sec")) Then

 s = fso.GetAbsolutePathName(Dir("*.sec"))

 End If

 If Not fso.FolderExists(Cinfo.DataDir) Then

 Cinfo.DataDir = fso.GetParentFolderName(s)

 End If

 Cinfo.homeDir = fso.GetParentFolderName(Cinfo.DataDir)

 If Not fso.FolderExists(Cinfo.DataDir) Then

 M sgBox "Cannot find the data directory"

 Exit Sub

 End If

 If Not fso.FileExists(Cinfo.progPath) Then

 s = fso.BuildPath(Cinfo.homeDir, "program\target.exe")

 If fso.FileExists(fso.BuildPath(s, "target.exe")) Then

 Cinfo.progPath = fso.BuildPath(s, "target.exe")

 Else

 M sgBox "Cannot find program file"

 Exit Sub

 End If

 End If

End Sub

Public Function getRowVar(aline As String) As Variant

 Dim bline As String, x As Variant, a As Integer, dlim As String

* 1

 dlim = " "

 If InStr(1, bline, ",") > 0 Then dlim = ","

 bline = Trim(aline)

 a = InStr(1, bline, dlim)

 If a = 0 Then a = Len(bline) + 1

 x = M id(bline, 1, a - 1)

 getRowVar = Val(x)

 aline = LTrim(Mid(bline, a))

End Function

Public Sub getMatxRow(iu As Integer, n As Integer, q() As

Variant)

 Dim aline As String, x As Integer

 ReDim q(n)

 Input #iu, aline

 For x = 1 To n

 q(x) = Val(getRowVar(aline))

 Next x

End Sub

Public Function getStrVal(iu As Long, B As String) As String

 Dim aline As String, x As Integer, s As String

 aline = findline(iu, B)

 x = Len(B)

 s = Trim(Mid(aline, x + InStr(1, aline, B)))

 getStrVal = s

End Function

Public Sub getrow(iuu As Integer, n As Integer, v As Variant)

 Dim x As Integer, xo As Long, x1 As Long

 Dim dum As Variant, aline As String, iu As Integer

 Dim res As Variant, lastx As Integer

 On Error Resume Next

 iu = iuu

 x = 1

beginline:

 Line Input #iu, aline

 xo = 1

 Do While x <= n

 x1 = Len(aline)

 x1 = InStr(xo, aline, ",")

 If x1 = 0 Then GoTo lastval

 v(x) = Val(Mid(aline, xo, x1 - 1))

 xo = x1 + 1

 x1 = xo

 'M sgBox x & " getrow : " & v(x)

 lastx = x

 x = x + 1

 Loop

 Exit Sub

lastval:

 dum = RTrim(Mid(aline, xo))

 If IsNumeric(dum) Then

 v(lastx + 1) = Val(dum)

 End If

 If x < n Then GoTo beginline

140

 Exit Sub

exitsub:

 M sgBox "problem in getrowS " & x

 End

 Exit Sub

End Sub

Public Function inbox(p As String, Optional T As String, Optional

ByVal typ As Variant) As Variant

 Dim res As Variant, x As Double, s As String, mytype As String

 mytype = "all"

 If (typ <> Empty) And typ <> "" Then

 If IsNumeric(typ) = True Then mytype = "numeric"

 End If

 If T = Empty Then T = "For your consideration . . . "

starthere:

 res = InputBox(p, T)

 If mytype = "numeric" Then

 If res = "" Then

 inbox = 0

 ElseIf IsNumeric(res) = True Then

 inbox = Val(res)

 Else

 M sgBox "Not a proper value--try again"

 GoTo starthere

 End If

 Else

 inbox = res

 End If

 Exit Function

End Function

Public Sub make_Csec()

 Set csec = New Cgeom

End Sub

A.3 Visual Basic Code for Project Class Modules

A.3.1 CBoundarytype.cls

Option Explicit

Option Base 1

' = = = = = = = = = = D E C L A R A T I O N S

==============================

Public flagDirichlet As Boolean, flagReady As Boolean

Public matlNumber As Integer, matlName As String, matlRho As

Single, initValue As Single

Dim tsValue(2, 99)

Public bndyTSfile As String, bndyTSpoints As Integer

'===

=========

' = = = = = = = = = P R O C E D U R E S

=================================

'===

=========

Private Sub Class_Initialize()

 matlNumber = 0

 flagDirichlet = False

 flagReady = False

 initValue = 25#

End Sub

'===

=========

'======== Alfa-listed Procedures Below ================

Public Sub read_bndyTS(Optional n As Integer)

 Dim a As Single, B As Single

 On Error Resume Next

 Open bndyTSfile For Input As #41

 Dim x As Integer

 Input #41, bndyTSpoints

 x = 1

 Do W hile x <= bndyTSpoints

 If EOF(41) Then GoTo badfile

 Input #41, tsValue(1, x), tsValue(2, x)

 x = x + 1

 Loop

 x = bndyTSpoints

 flagReady = True

 Close #41

 If cexe.endtime < tsValue(1, bndyTSpoints) Then Exit Sub

141

 If x < 4 Then

 Dim tf As Single, T0 As Single, dt As Integer, xx As Integer,

dv As Single

 tf = 1.1 * cexe.endtime

 If tf < 168 Then tf = 168

 T0 = cexe.starttime - 1#

 dt = Abs(tf - T0) / 3

 dv = (tsValue(2, x) - tsValue(2, 1)) / (tsValue(1, x) -

tsValue(1, 1))

 bndyTSpoints = 4

 For xx = 0 To 3

 tsValue(1, xx + 1) = T0 + xx * dt

 tsValue(2, xx + 1) = tsValue(2, 1) + xx * dt * dv

 Next xx

 End If

 Exit Sub

badfile: M sgBox " not a good boundaryTS file " & x &

vbNewLine & bndyTSfile

 cexe.Boundx.Item(n).flagReady = False

 Close #41

End Sub

'===

=================

' = = = = = = = = = = P r o p e r t y F u n t i o n s

================================

Public Property Get g_tsTime(j As Integer) As Single

 g_tsTime = tsValue(1, j)

End Property

Public Property Get g_tsTemp(i As Integer) As Single

 g_tsTemp = tsValue(2, i)

End Property

Private Sub Class_Terminate()

 ' M sgBox " Ending Cboundary instance"

End Sub

A.3.2 CComposite.cls

Option Explicit

Option Base 1

Public c_count As Integer

Public c_name As String, c_sig As Single, c_Sp As Single

Public c_rho As Single, c_heat As Single

Public c_size As Single, c_color As Long, c_number As Integer

Public Function get_compkey(i1 As Integer, ByVal mname1 As

String, i2 As Integer, _

 ByVal mname2 As String, iparta As Integer) As String

 Dim suffix As String * 1, prefix As String * 40, n As Integer

 If i1 > i2 Then

 prefix = M id(mname1, 1, 20) & M id(mname2, 1, 20)

 suffix = Trim(Str$(iparta))

 Else

 prefix = M id(mname2, 1, 20) & M id(mname1, 1, 20)

 n = 6 - iparta

 suffix = Trim(Str$(n))

 End If

 get_compkey = Trim(prefix & suffix)

 Exit Function

badend:

 M sgBox prefix & " bad ops " & suffix

End Function

Public Function matl_number(mx As Integer)

 matl_number = mx + regular_mlist

End Function

142

A.3.3 Cdataseries.cls

Option Base 1

Option Explicit

Public modelname As String, pairsx As Collection, TSfile As

String

Dim soundingT0 As String

Public Tmax As Single, Tmin As Single, Rmax As Single, Rmin

As Single, totalpts As Integer

'===

============

Private Sub Class_Initialize()

 Set pairsx = New Collection

 Tmax = -10000#

 Tmin = 10000#

End Sub

Public Sub read_TSfile(thefile As String)

 Dim apair(2) As Single, ix As Integer, jy As Integer, x As

Single, y As Single

 On Error GoTo badfile

 TSfile = thefile

 Open TSfile For Input As #50

 Input #50, totalpts

 For ix = 1 To totalpts

 Input #50, x, y

 If (IsNumeric(x) And IsNumeric(y)) Then

 apair(1) = Val(x)

 apair(2) = Val(y)

 jy = jy + 1

 pairsx.Add apair

 End If

 Next ix

 On Error Resume Next

 totalpts = pairsx.count

 Close #50

 Cinfo.dataPath = fso.GetAbsolutePathName(TSfile)

 Exit Sub

badfile:

 M sgBox "badfile at Cseries"

 Close #50

 Exit Sub

End Sub

A.3.4 Cexec.cls

Option Explicit

Option Base 1

Public outfile As String, infile As String, ttfile As String, prjfile As

String

Public exefile As String, alpha As Single, beta As Single, tau As

Single

Public numTS As Long, CylFormat As Boolean

Public nx As Integer, ny As Integer, nz As Integer

Public dx As Double, dy As Double, dz As Double, GlobalDepth

As Double

Public errmax As Double, dtmax As Double

Public itmax As Integer, totsig As Integer, totA As Integer

'Public source_Q As Double, source_rho As Double

Public sourceTSfile As String, modelfile As String

Public endtime As Double, starttime As Double, nowtime As

Double

Public Placement As Double, Initial As Double, flagBndy As

Boolean

Public Txflag As Boolean, flagReady As Boolean, Boundx As

Collection

Public M strM atlx As Collection, Bndy As CBoundarytype, Src As

Csourceheat

Public Srcx As Collection, BndyMatIDx As Collection

Public numRecords As Integer

'Dim mmatlx(30) As CBoundarytype try this

'=============

Private runBounds(16, 6) As String * 1, Chunk(80) As Integer

Private Tot_Loci As Integer, bounds(6) As String * 1,

ChkBound(6) As String

Private sourceTSpoints As Long, bndyTSpoints(5) As Long,

bndyTSfile(5) As String

Private sourceTStime(100) As Double, sourceTSheat(100) As

Double

143

Private bndyTStime(5, 100) As Double, bndyTStemp(5, 100) As

Double

Private source_P(3) A s Single, M B_array(2, 16) As Integer,

totsecn_count As Integer

Dim m_Rho(99) As Single, m_Sp(99) As Single, m_heat(99) As

Single, m_Sig(99) As Single

Dim alist(99) As String, list(99) As Integer ' TransM atl(16, 99)

Dim scount As Integer, RecLocus(50, 3) As Integer, AirBoundary

As Boolean

'===

===================

'===

===================

Private Sub Class_Initialize()

 Set Srcx = New Collection

 Set BndyMatIDx = New Collection

 Set M strM atlx = New Collection

 Set Boundx = New Collection

 Set Src = New Csourceheat

'' So far, the use of the list Srcx has not been used, and the

' csrc class has 1 instance, src.

 clear_Smx

 CylFormat = True

 blah = " "

 outfile = "TTM odel"

 init_exec

 ' ++++++++++ trial proc+++++++

End Sub

Private Sub Class_Terminate()

 ' M sgBox " Endign Class CEXE instance"

End Sub

'===

===================

'===

===================

Public Sub alignChkBounds()

 Dim chk As Integer, sm As Integer, f As Integer

 Dim bnds(16, 6) As String * 1

 For sm = 1 To smx.count

 For f = 1 To 6

 bnds(sm, f) = getFaceBndy(sm, f)

 Next f

 Next sm

 For chk = 1 To Cmod.numChunks

 For f = 1 To 4

 runBounds(chk, f) = bnds(frmRun.g_ChunkNum(chk), f)

 Next f

 For f = 5 To 6

 runBounds(chk, f) = bnds(frmRun.g_ChunkNum(chk), f)

 If chk > 1 Then runBounds(chk, 5) = "N"

 If chk < Cmod.numChunks Then runBounds(chk, 6) = "N"

 Next f

 Next chk

End Sub

Public Sub alignSubM ods()

 Dim m As Integer, iq As Integer

 totsecn_count = 0

 If Txflag Then Exit Sub

 For m = 1 To smx.count

 totsecn_count = totsecn_count + smx.Item(m).sx.count

 Next m

 On Error Resume Next

 iq = cull_Lists

 findBndyM aters

End Sub

Public Sub clear_Boundx()

 Dim x As Integer

 For x = Boundx.count To 1 Step -1

 Boundx.Remove x

 Next x

End Sub

Private Function cull_Lists(Optional k As Integer) As Integer

 Dim s As String, S2 As String, n As Integer, x As Integer,

TransMatl(16, 16, 99) As Integer

 cull_Lists = 0

 If Txflag Then Exit Function

 For n = 1 To smx.count

 If smx.Item(n).sx.count < 1 Then

 M sgBox "There are no sections listed in this profile" &

vbNewLine _

 & smx.Item(k).smodname & vbNewLine &

smx.Item(k).smodfile

 Exit Function

 End If

 Next n

 If Not Txflag Then

 err = get_culledLists(TransM atl)

 End If

 Txflag = True

 get_translations TransM atl

 trans_valarray TransM atl

 For x = 1 To smx.count

 For n = 1 To smx.Item(x).sx.count

 test_valarray x, n

 Next n

 Next x

End Function

Public Function findBndyM aters() As Integer

 Dim x As Integer, B As Integer, bmlist(99) As Integer, aline As

String

' Dim Bndy As BoundaryType

'find edge materials list

 Dim i As Integer, j As Integer, iq As Integer

 For x = 1 To smx.count

 W ith smx.Item(x)

 nx = .nx

 ny = .ny

 For B = 1 To .sx.count

 For i = 1 To nx

 iq = .getvalarray(B, i, 1)

 bmlist(iq) = iq

 iq = .getvalarray(B, i, ny)

 bmlist(iq) = iq

 Next i

 For j = 1 To ny

 iq = .getvalarray(B, 1, j)

 bmlist(iq) = iq

 iq = .getvalarray(B, nx, j)

 bmlist(iq) = iq

 Next j

 test_valarray x, B

 Next B

 End W ith

 Next x

144

 ' Cull the list

 aline = ""

 On Error Resume Next

 For B = 1 To M strM atlx.count

 If bmlist(B) = B Then

 BndyM atIDx.Add Str$(B)

 aline = aline & M strM atlx.Item(B) & vbNewLine

 x = BndyM atIDx.Item(B)

 Set Bndy = New CBoundarytype

 Bndy.matlName = M strM atlx.Item(B)

 Bndy.matlNumber = B

 Bndy.matlRho = m_Rho(B)

 Boundx.Add Bndy

' M sgBox "fndbmaters in loop: " &

Boundx.Item(Boundx.count).matlName

 End If

 Next B

 aline = Blank

 For B = 1 To BndyMatIDx.count

 aline = aline & vbNewLine & Boundx.Item(B).matlName

 Next B

 If Cinfo.testing Then

 M sgBox Boundx.count & " EOF fndboundary: " &

BndyMatIDx.count & aline

 End If

 frmRun.mnuM odel.Enabled = True

End Function

Public Function get_culledLists(TransM atl() As Integer) As

Integer

 Dim x As Integer, y As Integer, iq As Integer, count As Integer

 Dim s As String, k As Integer, sm As Integer, tmat As Integer,

i As Integer

 count = 0

 get_culledLists = -1

 For sm = 1 To smx.count

 W ith smx.Item(sm)

' Now loading TransM atl() and Alist

 For k = 1 To smx.Item(sm).sx.count

 purge_Alist

 nx = .nx

 ny = .ny

 For x = 1 To nx

 For y = 1 To ny

 iq = .getvalarray(k, x, y)

 If list(iq) = 0 Then

 alist(iq) = Trim(.sx.Item(k).m_name(iq))

 list(iq) = iq

 TransM atl(sm, k, iq) = iq

' tmat = tmat + 1

 End If

 Next y

 Next x

 update_mstrmatlx alist, list

 Next k

 End W ith

' W rite mastermaterial list mstrM atlx

 get_culledLists = M strM atlx.count

 Next sm

 Exit Function

End Function

Private Function getFaceBndy(sm As Integer, f As Integer) As

String

 Dim x As Integer, y As Integer, z As Integer, m As Integer

 Dim q As Integer

 W ith smx.Item(sm)

 z = (.nz + 1) \ 2

 x = .nx \ 2

 y = 1

 If f = 2 Then

 y = .ny \ 2

 x = 1

 ElseIf f = 3 Then

 y = .ny

 ElseIf f = 4 Then

 x = .nx

 y = .ny \ 2

 End If

 If f > 4 Then

 x = .nx \ 2

 y = .ny \ 2

 If f = 5 Then

 z = 1

 Else

 z = .nz

 End If

 End If

 Dim R As String * 1, qx As Integer, n As Integer

 q = .G_secnumber(z)

 m = .getvalarray(q, x, y)

 R = "N"

 For n = 1 To Boundx.count

 If Boundx.Item(n).matlNumber = m Then

 If Cinfo.testing Then MsgBox x & y & z & "found matl " &

m

 If Boundx.Item(n).flagDirichlet Then R = "D"

 End If

 Next n

 End W ith

 getFaceBndy = R

End Function

Private Function getM atlIndex(k As Integer, isec As Integer, x As

Integer, y As Integer) As Integer

 getM atlIndex = smx.Item(k).getvalarray(isec, x, y)

End Function

Private Sub get_newHeats()

 Dim i As Integer, n As Integer, maxH As Double

 maxH = -1000#

 For i = 1 To M strM atlx.count

 If maxH < m_heat(i) Then maxH = m_heat(i)

 Next i

 If maxH <= 9# Then Exit Sub

 For i = 1 To M strM atlx.count

 If m_heat(i) <> 0 Then m_heat(i) = m_heat(i) / maxH

 Next i

End Sub

Private Sub get_translations(TransM atl() As Integer)

' Sifts nk sections using namelist mstrmatlx for unique materials;

' makes a corresponding master list of unique materials (4

properties) for the submodel

 Dim k As Integer, i As Integer, j As Integer, iq As Integer, err

As Integer

 Dim s As String, sc As Integer, count As Integer, m As Integer,

xflag As Boolean

 Dim aline As String

145

 For m = 1 To smx.count

 W ith smx.Item(m)

 For k = 1 To .sx.count

' For i = 1 To 99

' If TransMatl(m, k, i) = i Then

' Next i

 aline = ""

 For i = 1 To 99

 If TransMatl(m, k, i) > 0 Then

 s = Trim(.sx.Item(k).m_name(i))

 sc = sc + 1

 For j = 1 To M strM atlx.count

 If Trim(M strM atlx.Item(j)) = s Then

 count = count + 1

 TransM atl(m, k, i) = j

 m_Rho(j) = .sx.Item(k).m_Rho(i)

 m_Sp(j) = .sx.Item(k).m_Sp(i)

 m_Sig(j) = .sx.Item(k).m_Sig(i)

 m_heat(j) = .sx.Item(k).m_heat(i)

 aline = aline & i & blah & .sx.Item(k).m_name(i)

& vbNewLine

 End If

 Next j

 End If

 Next i

' M sgBox m & " transmatlx for ssn " & k & vbNewLine &

aline

 Next k

 End W ith

 Next m

 s = ""

 get_newHeats

 If Cinfo.testing Then

 For i = 1 To M strM atlx.count

 s = s & i & blah & M strM atlx.Item(i) & vbNewLine

 Next i

 M sgBox M strM atlx.count & " get_transx: " & sc & vbNewLine

& s

 End If

' M sgBox M strM atlx.Item(1) & blah & M strM atlx.count &

M strMatlx.Item(MstrMatlx.count) _

' & "M atls not properly found/written to list= " & err

End Sub

Public Sub init_exec()

 Txflag = False

 AirBoundary = False

 flagBndy = False

 nowtime = 0

 starttime = 0

 endtime = 96

 dtmax = 3#

 alpha = 0.53

 itmax = 15

 errmax = 0.0001

 alpha = 0.9

 beta = 1.5

 tau = 25

 ' ++++++++++ trial proc+++++++

 Dim x As Long, s As String

 For x = 1 To 6

 bounds(x) = "I"

 Next x

End Sub

Public Function LbndyTSfile(n As Long, s As String)

 Let bndyTSfile(n) = s

End Function

Public Function LsourceTSfile(s As String)

 Let sourceTSfile = s

End Function

Public Function LnumTS(n As Long)

 Let numTS = n

End Function

Sub purge_Alist()

 Dim x As Integer

 For x = 1 To 99

 alist(x) = ""

 list(x) = 0

 Next x

End Sub

Public Sub putBounds(C As Integer)

 Dim x As Integer

 For x = 1 To 6

 bounds(x) = runBounds(C, x)

 Next x

End Sub

Public Sub read_exec()

 Dim x As Integer, s As String, y As Double, Lflag As Boolean

 Open cexe.exefile For Input As #42

 modelfile = getStrVal(42, "odelfile=")

 ' need: sourceTSparms,bndyTSparms,initparms

 starttime = getNumVal(42, "starttime=")

 endtime = getNumVal(42, "ndtime=")

 alpha = getNumVal(42, "alpha=")

 dtmax = getNumVal(42, "dtmax=")

 errmax = getNumVal(42, "errmax=")

 itmax = getNumVal(42, "itmax=")

 s = getStrVal(42, "ound=")

 x = 1

 Do While x <= 6

 bounds(x) = M id(s, x, 1)

 x = x + 1

 Loop

 s = findline(42, "ource]")

'REDO ALL THE SOURCE STUFF HERE

 Dim x1 As Long, x2 As Long

 s = findline(42, "series]")

 numTS = getNumVal(42, "series=")

 x1 = 1

 clear_Boundx

 Do W hile x1 <= numTS

 Set Bndy = New CBoundarytype

 W ith Bndy

 .bndyTSfile = getStrVal(42, "file=")

 .read_bndyTS

 Boundx.Add Bndy

 x1 = x1 + 1

 End W ith

 Loop

 Close #42

End Sub

146

Private Sub test_valarray(m As Integer, k As Integer)

 Dim s As String, i As Integer, x As Integer, y As Integer, maxH

As Single

 Dim iq As Integer, sc As Integer, err As Integer, g As Integer

 sc = MstrM atlx.count

 W ith smx.Item(m)

 For x = 1 To nx

 For y = 1 To ny

 g = .getvalarray(k, x, y)

 If g > sc Or g < 1 Then err = err + 1

 If m_heat(g) > maxH Then maxH = m_heat(g) 'testing the

new m_heats

 Next y

 Next x

 End W ith

 If err > 0 Then

 Dim res As Boolean

 res = M sgBox(m & blah & k & " testvalry: errors in valarray=

" & err & vbNewLine _

 & " maxHeat= " & maxH & vbNewLine & " Continue? ",

vbYesNo, "Error")

 If Not res Then

 frmRun.chkxClear

 clear_Lists

 Unload frmRun

 Unload cexe

 End If

 End If

End Sub

Private Sub trans_valarray(TransM atl() As Integer)

 Dim i As Integer, k As Integer, v As Integer, j As Integer, sc As

Integer, m As Integer

 On Error GoTo badexit

 sc = 0

 For m = 1 To smx.count

 W ith smx.Item(m)

 For k = 1 To .sx.count

 For i = 1 To .nx

 For j = 1 To .ny

 v = .getvalarray(k, i, j)

 .L_valarray(k, i, j) = TransM atl(m, k, v)

 Next j

 Next i

 Next k

 End W ith

 Next m

 Exit Sub

badexit:

 M sgBox v & " bad param " & TransM atl(m, k, v)

End Sub

Sub update_mstrmatlx(alist() As String, list() As Integer)

 Dim x As Integer, flag As Boolean, i As Integer

 For x = 1 To 99

 flag = True

 If list(x) = x Then

 flag = True

 For i = 1 To M strM atlx.count

 If M strMatlx.Item(i) = alist(x) Then flag = False

 Next i

 If flag Then M strM atlx.Add alist(x)

 End If

 Next x

End Sub

Public Sub write_Runfile(runfile As String)

 Dim x As Integer, y As Integer, m As Integer, k As Integer, sc

As Integer

 On Error Resume Next

 Close #60

 Open runfile For Output As #60

 Dim aline As String

' write section geometries of just model data with source and

boundaries?

' the latter: read model as a model, culling/alignment is automatic,

but write copy of

' mastrM atlx, with boundary attachment lists ans source data list,

and then temporal

' data is written. sourceR normalized R matrix will also be

included.

 For m = 1 To smx.count

 W ith smx.Item(m)

 For k = 1 To .sx.count

 W rite #60,

 Print #60, "[section]"

 For y = 1 To .ny

 aline = .getvalarray(k, 1, y)

 For x = 2 To .nx

 aline = aline & "," & .getvalarray(k, x, y)

 Next x

 Print #60, aline

 Next y

 Next k

 End W ith

 Next m

 W rite #60,

 Print #60, "[M aterials]"

 For x = 1 To M strM atlx.count

 Print #60, x, " ", M strM atlx.Item(x)

 Next x

 Close #60

 Cinfo.dataPath = fso.GetAbsolutePathName(runfile)

End Sub

Public Sub write_Tempfile(smod_ID, thefile As String, zlayer As

Integer)

 Dim aline As String, x As Integer ', count As Integer

 Dim s As String, y As Integer, scount As Integer ', lx As

Boolean

 If thefile = "" Then Exit Sub

' If Not cexe.flagBndy Then

' M sgBox "Boundary condition is not specified properly"

' Exit Sub

' End If

' If Not Src.flagReady Then

' M sgBox "Source function/data are not specified properly"

' Exit Sub

' End If

 Close #20

 outfile = fso.GetBaseName(cexe.modelfile)

'+++++++++ all data are ready +++++

 Open thefile For Output As #20

 W ith smx.Item(smod_ID)

 scount = .sx.count

 Print #20, "M yName="; thefile

 Print #20, "Revised "; Date

147

 Print #20, "From:"

 P r i n t # 2 0 , " m o d e l f i l e = " ;

Trim(fso.GetAbsolutePathName(modelfile))

 Print #20, "submodelname="; Trim(profilename)

 Print #20, blah

 Print #20, "[times]"

 Print #20, alpha; starttime; endtime; dtmax; errmax; itmax

 Print #20, blah

 Print #20, "[parameters]"

 Print #20, "nx="; .nx

 Print #20, "ny="; .ny

 Print #20, "nz="; .nz 'nz is not zero-based

 Print #20, "dx="; .dx

 Print #20, "dy="; .dy

 Print #20, "dz="; .dz

 If CylFormat Then

 Print #20, "format=concentric"

 Else

 Print #20, "format=rectangular"

 End If

 Print #20, blah

 Print #20, blah

 Print #20, blah

 Print #20, "[hydration]"

 Print #20, "TimeseriesFile="; Src.sourceTSfile

 Print #20, "TimeseriesFlag="; Src.flagTS

 Print #20, "ABtFlag="; Src.flagABT

 Print #20, "ConcreteRho="; Src.ConRho

 Print #20, "Placement="; Src.Placement

 Print #20, "Qcementitious="; Src.Heat

 Print #20, "sourceP1="; Src.g_sParam(1)

 Print #20, "sourceP2="; Src.g_sParam(2)

 Print #20, "sourceP3="; Src.g_sParam(3)

 Print #20, blah

 If (Src.flagTS) Then

 Print #20, "seriespoints="; Src.TSpoints

 For x = 1 To Src.TSpoints

 Print #20, Src.g_tsTime(x); Src.g_tsHeat(x)

 Next x

 Else

 Print #20, "0"

 End If

 Print #20, blah

 Print #20, "[End Sources]"

 Print #20, blah

 Print #20, blah

 Print #20, "[Boundaries]"

 aline = ""

 For x = 1 To 6

 aline = aline & bounds(x)

 Next x

 Print #20, aline

 Print #20, blah

 Print #20, "materialboundaries="; Boundx.count

 Print #20, blah

 For x = 1 To Boundx.count

 W ith Boundx.Item(x)

 Print #20, "[boundary] "; x

 Print #20, "Dirichlet="; .flagDirichlet

 Print #20, "materialnumber="; .matlNumber

 Print #20, "materialname="; .matlName

 Print #20, "materialdensity="; .matlRho

 Print #20, "timeseriesFile="; .bndyTSfile

 Print #20, "initTemp="; .initValue

 Print #20, "TSpoints="; .bndyTSpoints

 For y = 1 To .bndyTSpoints

 Print #20, .g_tsTime(y); .g_tsTemp(y)

 Next y

 Print #20, blah

 End With

 Next x

 Print #20, "[End Boundaries]"

 Print #20, blah

 Print #20, blah

 Print #20, "[Files]"

 Print #20, blah

' M sgBox thefile & blah & zlayer

 Print #20, "OutputDirectory="; Cinfo.outDir

 s = Trim(outfile) & "." & Trim(Str$(zlayer)) & ".out"

 s = fso.BuildPath(Cinfo.outDir, s)

 Print #20, "output="; s

 Print #20, "sectionfiles="; scount

 Print #20, " "

 Print #20, "[submodel]"

 aline = .G_secnumber(1)

 For x = 2 To .nz

 aline = aline & "," & .G_secnumber(x)

 Next x

 Print #20, aline

 ' M sgBox "here at 2" & vbNewLine & aline

 W rite #20,

 Dim k As Integer

 Print #20, "[Sectiongeometry]"

 Print #20, " "

 For k = 1 To scount

 W rite #20,

 Print #20, "[section]"

 For y = 1 To .ny

 aline = .getvalarray(k, 1, y)

 For x = 2 To .nx

 aline = aline & "," & .getvalarray(k, x, y)

 Next x

 Print #20, aline

 Next y

' M sgBox "finished sgeom " & k

 Next k

 Print #20, blah

 W rite #20,

 Print #20, "[M aterials]"

 Print #20, "materials="; M strM atlx.count

 For x = 1 To M strMatlx.count ' where we write comps'

 W rite #20,

 Print #20, "[material] " & x

 Print #20, "material name="; M strM atlx.Item(x)

 Print #20, "thermal conductivity="; m_Sig(x)

 Print #20, "specific heat="; m_Sp(x)

 Print #20, "density="; m_Rho(x)

 Print #20, "heat production="; m_heat(x)

 Next x

 End W ith

 Close #20

 Exit Sub

End Sub

Public Sub write_valarray(m As Integer, nk As Integer)

 Dim i As Integer, j As Integer, aline As String, C As String * 1,

148

iu As Integer

 Dim k As Integer, bline As String

 C = ","

 W ith smx.Item(m)

 For k = 1 To .sx.count

 bline = ""

 For j = 1 To .ny

 aline = .getvalarray(k, 1, j)

 For i = 2 To .nx

 aline = aline & "," & .getvalarray(k, i, j)

 Next i

 bline = bline & vbNewLine & aline

 Next j

 Next k

 End W ith

End Sub

'===

=================

' = = = = = = = = = = P r o p e r t y F u n t i o n s

================================

Public Property Get g_TxFlag() As Boolean

 g_TxFlag = Txflag

End Property

Public Function g_SourceP(i As Integer) As Single

 g_SourceP = source_P(i)

End Function

Property Let l_SourceP(i As Integer, ByVal x As Single)

 source_P(i) = x

End Property

'===

=============================

Public Property Let letRecLocus(n As Integer, x As Integer, q As

Integer)

 RecLocus(n, x) = q

End Property

Public Property Get getRecLocus(n As Integer, x As Integer) As

Integer

 getRecLocus = RecLocus(n, x)

End Property

A.3.5 Cgeom.cls

'class Csec defn

Option Explicit

Option Base 1

Public Matfile As String ',sectionfile As String

Public sectionname As String, scount As Integer, thefile As String

Public nx As Integer, ny As Integer, CsecID As Integer

Public Sectionfile As String, sec_color As Long, matl_count As

Integer

Public cc As Ccomp

Dim valarray(80, 80) As Integer

Dim matl_name(99) As String, matl_sig(99) As Single,

matl_Sp(99) As Single

Dim matl_rho(99) As Single, matl_heat(99) As Single

Dim matl_size(99) As Single, matl_color(99) As Long

Public dx As Double, dy As Double

Private Sub Class_Initialize()

 Dim res As Variant, iq As Integer

 iq = smx.count + 1

 If smx.count > 0 Then

 CsecID = smx.Item(iq - 1).sx.count

 Else

 CsecID = 1

 End If

' M sgBox CsecID & " HERE at cgeom "

' M sgBox CsecID

' res = InputBox("enter a secable name")

' sectionname = res

End Sub

'Public Property Get namecount() As String

' namecount = 2

'End Property

149

'Public Function list(n As Integer)

' list = sectionname

'End Function

Private Sub Class_Terminate()

' M sgBox "destroying Csec." & CsecID

End Sub

Public Function getSection()

' M sgBox "getSection() " & CsecID & vbNewLine &

sectionname

End Function

Public Sub getrow(iu As Integer, n As Integer, v As Variant)

 Dim x As Integer, xo As Long, x1 As Long

 Dim dum As Variant, aline As String

 x = 1

beginline:

 Line Input #iu, aline

 xo = 1

 Do While x <= n

 x1 = InStr(xo, aline, ",")

 If x1 = 0 Then GoTo lastval

 v(x) = Val(Mid(aline, xo, x1 - xo))

 xo = x1 + 1

 x1 = xo

 x = x + 1

 Loop

lastval:

 dum = RTrim(Mid(aline, xo))

 If IsNumeric(dum) Then

 v(x) = Val(dum)

 End If

 If x < n Then GoTo beginline

End Sub

Public Sub getstring(iu As Long, xx As String)

 Dim aline As String, x As Integer, s As String

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

' M sgBox "problem in this file", , titmsgbox

 s = "0"

 Else

 s = Trim(Mid(aline, x + 1))

 End If

 xx = s

End Sub

Public Sub getvalue(iu As Long, xx As Single)

 Dim aline As String, x As Integer, s As Single

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

' M sgBox "problem in this file", , titmsgbox

 s = "0"

 Else

 s = RTrim(Mid(aline, x + 1))

 End If

 xx = s

 End Sub

Public Function m_count() As Integer

 m_count = matl_count

End Function

Public Function m_name(x As Integer) As String

 m_name = matl_name(x)

End Function

Public Function Lm_name(x As Integer, s As String)

 If x > 0 Then

 Let matl_name(x) = s

 Else

 M sgBox "bad material number " & x

 End If

End Function

Public Function m_color(x As Integer) As Long

 m_color = matl_color(x)

End Function

Public Function Lm_color(x As Integer, ByRef y As Long)

Let matl_color(x) = y

End Function

Public Function m_Sig(x As Integer) As Double

 m_Sig = matl_sig(x)

End Function

Public Function m_Sp(x As Integer) As Double

 m_Sp = matl_Sp(x)

End Function

Public Function m_size(x As Integer) As Double

 m_size = matl_size(x)

End Function

Public Function m_heat(x As Integer) As Double

 m_heat = matl_heat(x)

End Function

Public Function m_Rho(x As Integer) As Double

 m_Rho = matl_rho(x)

End Function

Public Property Get g_valarray(x As Integer, x2 As Integer) As

Integer

 g_valarray = valarray(x, x2)

End Property

Public Sub L_valarray(x As Integer, x2 As Integer, ind As Integer)

' If (x + x2 + ind = 3) Then M sgBox " here at l-valarray"

 Let valarray(x, x2) = ind

End Sub

Public Sub read_M atfile(thefile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean, n As Long

 On Error GoTo badexit

 If (thefile = "") Or (thefile = "Sectionfile data") Then Exit Sub

 Open thefile For Input As #10

 On Error Resume Next

 count = 0

 n = getNumVal(10, "=")

 For x = 1 To n

 If EOF(10) Then GoTo badexit

 s = findline(10, "[Material]")

 count = count + 1

 matl_count = x

 s = getStrVal(10, "name=")

 matl_name(count) = s

 s = "" 'clear string

 matl_color(count) = getNumVal(10, "color=")

 matl_sig(count) = getNumVal(10, "=")

 matl_Sp(count) = getNumVal(10, "=")

 matl_rho(count) = getNumVal(10, "=")

 matl_heat(count) = getNumVal(10, "=")

 matl_size(count) = getNumVal(10, "=")

 Next x

 On Error Resume Next

 Cinfo.dataPath = fso.GetAbsolutePathName(M atfile)

 Cinfo.DataDir = fso.GetParentFolderName(Cinfo.dataPath)

 Close #10

150

 Exit Sub

badexit:

 Close #10

 M sgBox count & " bad path or file " & vbNewLine & thefile

 End Sub

Public Sub readR_secfile(afile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean

 Dim dummy(100) As Integer, ss As String

 Sectionfile = afile

 If afile = "" Then Exit Sub

 lx = fso.FileExists(afile)

 If Not lx Then M sgBox "bad filename " & afile

' M sgBox " readsexn at 1 " & afile

 Close #37

 Open afile For Input As #37

' M sgBox " readsexn at 2 " & afile

 Close #37

End Sub

Public Sub read_secfile(thefile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean

 Dim dummy(100) As Integer, ss As String

 On Error GoTo badfile

 Sectionfile = thefile

 If thefile = "" Then Exit Sub

 Open thefile For Input As #10

another1: Line Input #10, aline

 x = InStr(1, aline, "sectionname=")

 If x < 1 Then GoTo another1

 sectionname = RTrim(M id(aline, x + 12)) 'sectionname is

12 wide

 Line Input #10, aline

 x = InStr(1, aline, "=")

 M atfile = RTrim(Mid(aline, x + 1))

another2: Line Input #10, aline

 x = InStr(1, aline, "nx=")

 If x < 1 Then GoTo another2

 nx = CInt(RTrim(Mid(aline, x + 3)))

another3: Line Input #10, aline

 x = InStr(1, aline, "ny=")

 If x < 1 Then GoTo another3

 ny = CInt(RTrim(Mid(aline, x + 3)))

 Line Input #10, aline

 x = InStr(1, aline, "dx=")

 If x < 1 Then GoTo another4

 dx = Val(Trim(Mid(aline, x + 3)))

 Line Input #10, aline

 x = InStr(1, aline, "dy=")

 If x < 1 Then GoTo another4

 dy = Val(Trim(Mid(aline, x + 3)))

another4: Line Input #10, aline

 x = InStr(1, aline, "[Section")

 If x < 1 Then GoTo another4

nextline1:

 For y = 1 To ny

 getrow 10, nx, dummy

 For x = 1 To nx

 valarray(x, y) = dummy(x)

 Next x

 Next y

 s = findline(10, "[Materials]")

 For count = 1 To 30

 s = findline(10, "aterial]")

 If s = "EOF" Then GoTo badfile

 matl_count = count

 getstring 10, s

 matl_name(count) = s

 ' M sgBox matl_name(count)

 s = ""

 getvalue 10, y

 matl_color(count) = Val(y)

 matl_sig(count) = getNumVal(10, "conductivity=")

 matl_Sp(count) = getNumVal(10, "heat=")

 matl_rho(count) = getNumVal(10, "density=")

 matl_heat(count) = getNumVal(10, "production=")

 matl_size(count) = getNumVal(10, "size=")

 Next count

 count = 30

 s = findline(10, "[Composites]")

 Do

 If EOF(10) Then GoTo Finished

 s = findline(10, "aterial]")

 If s = "EOF" Then GoTo Finished

 count = count + 1

 matl_count = count

 getstring 10, s

 matl_name(count) = s

 m_name (count)

 getvalue 10, y

 matl_color(count) = Val(y)

 matl_sig(count) = getNumVal(10, "conductivity=")

 matl_Sp(count) = getNumVal(10, "heat=")

 matl_rho(count) = getNumVal(10, "density=")

 matl_heat(count) = getNumVal(10, "production=")

 matl_size(count) = getNumVal(10, "size=")

 Set cc = New Ccomp

 W ith cc

 cc.c_color = y

 cc.c_name = s

 cc.c_rho = matl_rho(count)

 cc.c_sig = matl_sig(count)

 cc.c_Sp = matl_Sp(count)

 cc.c_heat = matl_heat(count)

 cc.c_size = matl_size(count)

 End W ith

 compx.Add cc

 Loop

Finished:

 On Error Resume Next

 Close #10

 Cinfo.dataPath = fso.GetAbsolutePathName(thefile)

 Cinfo.userDir = fso.GetParentFolderName(thefile)

 matl_count = matl_count

Exit Sub

badfile:

 M sgBox "bad file to read: "

 thefile = "ERROR"

 Close #10

End Sub

151

'Public Sub clean_matlist(matl_num As Integer)

' M sgBox "cgeom: sxcount= " & compx.count

'

'End Sub

Public Property Let Letvalarray(x As Integer, y As Integer, ind As

Integer)

 valarray(x, y) = ind

End Property

A.3.6 Cmodel.cls

' M odel Class Declaration ===================

Option Explicit

Option Base 1

Public modelfile As String, modelname As String

Public numChunks As Integer, submodfiles As Integer

Private Chunk(100) As Integer

Public tot_time As Double, T0 As Double

Public Rparam_1 As Double, Rparam_2 As Double, Rparam_3 As

Double

Public TotalLoci As Integer

Dim locusX(100) As Integer, locusY(100) As Integer, locusZ(100)

As Integer

'===

Public Sub Class_Initialize()

 Dim res As Variant

' Set tsec = New Cgeom

 smod_ID = smx.count

 TotalLoci = 0

' M sgBox CsecID

' res = InputBox("enter a secable name")

' sectionname = res

End Sub

Private Sub Class_Terminate()

' M sgBox "Terming Cmodel"

End Sub

A.3.7 CsdgDatum.cls

Option Explicit

Public dDepth As Double, dTime As Double, dRotation As

Double

Public dTemp1 As Double, dTemp2 As Double, dTemp3 As

Double, dTemp4 As Double

Public drTemp1 As Double, drTemp2 As Double, drTemp3 As

Double, drTemp4 As Double

Public dTavg As Double, dTerror As Double, dRot_local As

Double

Public dZVelocity As Double, dZRotation As Double, RADIAN

As Double

Public pi As Double

Dim test(2, 2) As Double

' tensor data: dTemp1-4 are raw temp readings C/wise from 1

' drTemp1-4 are net temp diffs, and later the rotated

diffs

' scalars: dRot_local is the 4-reading C/wise rotation w/out

adjustment

' to the Temp gradient

 'dRotation is the current smoothed rotation due to

long-wavelenght

' 'trend

' dTavg is the 4-reading average

Private Sub Class_Initialize()

 dRot_local = 0#

 dRotation = 0#

 pi = 4# * Atn(1#)

 RADIAN = 180# / pi

End Sub

152

Public Sub getRotation()

 Dim dt As Double

 Dim row As Integer, col As Integer

 ' Temp1 Temp2

 ' Temp4 Temp3

 getAverage

 drTemp1 = dTemp1 - dTavg

 drTemp2 = dTemp2 - dTavg

 drTemp3 = dTemp3 - dTavg

 drTemp4 = dTemp4 - dTavg

 get_testadj

 check_test row, col

 If row = 1 Then

 If col = 1 Then

 dRot_local = Atn((drTemp2 - drTemp3) * 0.5 / drTemp1)

 Else

 dRot_local = (Atn(drTemp2 / drTemp1) - Atn(drTemp2 /

drTemp4)) * 0.5

 End If

 ElseIf col = 2 Then

 dRot_local = Atn((drTemp3 - drTemp2) * 0.5 / drTemp4)

 Else

 dRot_local = (Atn(-drTemp3 / drTemp1) + Atn(drTemp3 /

drTemp4)) * 0.5

 End If

 dRot_local = dRot_local * RADIAN

' M sgBox dTavg & " =avgTemp , rotation=" & dRot_local

End Sub

Public Function arcSin(x As Variant) As Double

 Dim q As Double

 q = Val(x)

 If Abs(q) < 1 Then

 arcSin = Atn(q / Sqr(-q * q + 1))

 Else

 arcSin = 1#

 End If

End Function

Public Function determnt(ByVal a As Double, ByVal B As

Double, _

 ByVal C As Double, ByVal d As Double)

 determnt = a * d - B * C

End Function

Public Function length(a As Double, B As Double)

length = Sqr(a * a + B * B)

End Function

Public Sub show_drtemp()

 M sgBox drTemp1 & " " & drTemp2 & vbNewLine _

 & drTemp4 & " " & drTemp3 & vbNewLine _

 & " local rotation = " & dRot_local

End Sub

Public Sub get_testadj()

 Dim L As Double, R As Double, T As Double, B As Double

 T = Sqr(drTemp1 * drTemp1 + drTemp2 * drTemp2)

 B = Sqr(drTemp3 * drTemp3 + drTemp4 * drTemp4)

 L = Sqr(drTemp1 * drTemp1 + drTemp3 * drTemp3)

 R = Sqr(drTemp2 * drTemp2 + drTemp4 * drTemp4)

 test(1, 1) = (T + L) / 2# - 1

 test(1, 2) = (T + R) / 2# - 1

 test(2, 1) = (B + L) / 2# - 1

 test(2, 2) = (B + R) / 2# - 1

 Dim a As Double

 a = determnt(test(1, 1), test(1, 2), test(2, 1), test(2, 2))

 test(1, 1) = (test(1, 1) + a) / 0.01

 test(1, 2) = (test(1, 2) + a) / 0.01

 test(2, 1) = (test(2, 1) + a) / 0.01

 test(2, 2) = (test(2, 2) + a) / 0.01

End Sub

Public Sub check_test(R As Integer, C As Integer)

 Dim r1 As Double, r2 As Double, q As Double

 R = 1

 q = 2 * (Abs(test(1, 1)) - Abs(test(2, 2))) / (Abs(test(1, 1)) +

Abs(test(1, 2)))

 If q < 0.15 Then GoTo pickone

 r1 = length(test(2, 1), test(2, 2))

 r2 = length(test(1, 1), test(1, 2))

 If r1 > r2 Then R = 2

 GoTo pickcorner

pickone:

 C = 1

 If Abs(test(1, 1)) > Abs(test(1, 2)) Then C = 2

 If Abs(test(1, C)) > Abs(test(2, 1)) Then

 R = 2

 C = 1

 End If

 If Abs(test(R, C)) > Abs(test(2, 2)) Then

 R = 2

 C = 2

 End If

 Exit Sub

pickcorner:

 C = 1

 If Abs(test(R, 1)) < Abs(test(R, 2)) Then C = 2

End Sub

Public Sub getAverage()

 Dim x As Double

 x = dTemp1 + dTemp2 + dTemp3 + dTemp4

 dTavg = x / 4#

End Sub

153

A.3.8 Csounding.cls

Option Explicit

' sounding data Class module:

' (which includes the sounding "header"data)

' file data: soundingname, model (optional), nominal

orientation=N;

' date,start time, and tube labels; and the sounding time series:

' -time, depth, temp1, temp2, temp3, temp4,

rotation(optional)

' specified as a time-space observation (1 per line)

Public soundingname As String, soundingfile As String

Public modelname As String

Public soundingdate As Date, soundingT0 As String

Public cylTube As String

Public Tmax As Single, Tmin As Single, Rmax As Single, Rmin

As Single

Public Zmax As Single, Zmin As Single, tot_data As Long

Public offset As Double, slope As Double

Dim RADIAN As Double, pi As Double

'===

============

Private Sub Class_Initialize()

 Set sdgx = New Collection

 Tmax = -10000#

 Tmin = 10000#

 pi = 4# * Atn(1#)

 RADIAN = pi / 180#

 Dim res As Variant

 res = InputBox("Enter a thermcouple voltage offset (mV):",

title, 0)

 offset = Val(res) / 1000#

 res = InputBox("Enter a thermcouple voltage slope (deg/mV):",

title, 7#)

 slope = Val(res)

' M sgBox offset & " " & slope

End Sub

Public Sub getstring(aline As String, x As Integer, xx As Variant)

 Dim x1 As Integer, s As String

 x1 = InStr(x, aline, ",")

 If (x1 = 0) Then

 M sgBox "problem in this file", , title

 xx = ""

 Else

 s = Trim(Mid(aline, x, x1 - 1))

 M sgBox s

 xx = s

 End If

 x = x1 + 1

End Sub

Public Sub read_sounding(thefile As String, iplot As Integer)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean

 Dim tot_data As Integer, iunit As Integer, x0 As Integer

 Dim linedata(20) As Double, sdate As Date

 Dim sq As Double, ss As String, n As Integer

 soundingfile = thefile

 iunit = 31

 If thefile = "" Then GoTo badfile

 Open thefile For Input As #31

 On Error GoTo badfile

another1: Line Input #31, aline

 x = InStr(1, aline, "DATE")

 If x < 1 Then GoTo another1

' M sgBox "found date"

 On EOF(31) GoTo Finished

another2: Line Input #31, aline

 x = InStr(1, aline, "True")

 If x < 1 Then GoTo another2

 Set sdg = New CsdgDatum

 n = 1

 sdate = Mid(aline, 1, 10)

' M sgBox sdate & n

 sdg.dTime = sdate

 n = 18 + 1

 x0 = InStr(n, aline, ",")

 ss = Trim(Mid(aline, n, x0 - n - 1))

' M sgBox "depth=" & ss

 sdg.dDepth = Val(ss)

 n = x0 + 1

 x0 = InStr(n, aline, ",")

 ss = Trim(Mid(aline, n, x0 - n))

' M sgBox sdg.dDepth & " temp1= " & ss

 sdg.dTemp1 = Val(ss)

 n = x0 + 1

 x0 = InStr(n, aline, ",")

 ss = Trim(Mid(aline, n, x0 - n))

 sdg.dTemp2 = Val(ss)

 n = x0 + 1

 x0 = InStr(n, aline, ",")

 ss = Trim(Mid(aline, n, x0 - n))

 'the last (3rd) value is bogus: read next value

 n = x0 + 1

 x0 = InStr(n, aline, ",")

 ss = Trim(Mid(aline, n, x0 - n))

 sdg.dTemp3 = Val(ss)

 n = x0 + 1

 ss = Trim(Mid(aline, n))

 sdg.dTemp4 = Val(ss)

 sdg.getAverage

 sdg.getRotation

 get_minmax sdg.dTavg

' M sgBox sdg.dTemp1 & sdg.dTemp2 & vbNewLine _

' & sdg.dTemp4 & sdg.dTemp3

' Exit Sub

 sdgx.Add sdg

 If sdgx.count = 30 Then On Error GoTo Finished

 GoTo another2

Finished:

 M sgBox sdgx.count & " Finished rotating " & thefile

 Close #31

 write_sdgx ("c:\sdgx.out")

 Exit Sub

badfile:

 Close #31

 M sgBox sdgx.count & " PROBLEM : sounding data file=" &

thefile

154

 Exit Sub

End Sub

Public Function datapts()

 datapts = sdgx.count

End Function

Public Sub get_minmax(a As Double)

 If a > Tmax Then Tmax = a

 If a < Tmin Then Tmin = a

End Sub

Public Sub write_sdgx(afile As String)

 Open afile For Output As #32

 Dim x As Integer, C As String * 3, aline As String

 C = " "

 On Error GoTo badfile

 For x = 1 To sdgx.count

 aline = sdgx.Item(x).dDepth & C & sdgx.Item(x).dTavg & C

_

 & sdgx.Item(x).dRot_local & C &

sdgx.Item(x).dZRotation _

 & sdgx.Item(x).dTerror

 Print #32, aline

 Next x

' M sgBox "finished sdgx"

 Close #32

 Exit Sub

badfile:

 Close #32

 M sgBox " bad data to write"

End Sub

A.3.9 Csourcehest.cls

'#Defn Csourceheat

Option Explicit

Option Base 1

' = = = = = = = = = = D E C L A R A T I O N S

==============================

Public ConRho As Single, Heat As Single, Placement As Single,

T0 As Single

Public flagReady As Boolean, flagTS As Boolean, flagABT As

Boolean

Public sourceTSfile As String, TSpoints As Integer

'===

=========

Private Param(3) As Single, tsTime(100), tsHeat(100)

' = = = = = = = = = P R O C E D U R E S

=================================

'===

=========

Private Sub Class_Initialize()

 Param(1) = 0.9

 Param(2) = 1.5

 Param(3) = 25#

 Heat = 60#

 ConRho = 2270

 Placement = 32#

 flagABT = False

 flagTS = False

 flagReady = False

 T0 = 0#

 TSpoints = 0

End Sub

'===

=========

'======== Alfa-listed Procedures Below ================

Public Function read_sourceTS() As Boolean

 'M sgBox "starting read_sourctTS"

 On Error Resume Next

 Close #41

 Open sourceTSfile For Input As #41

 TSpoints = getNumVal(41, "")

 On Error GoTo badfile

 If TSpoints < 1 Then TSpoints = getNumVal(41, "")

 If TSpoints > 0 Then flagTS = True

 Dim x As Integer, dum(2) As Single

 x = 1

 Do W hile x <= TSpoints

 If EOF(41) Then GoTo badfile

' getrow 41, 2, dum

 Input #41, tsTime(x), tsHeat(x)

 'tsTime(x) = dum(1)

 ' tsHeat(x) = dum(2)

 x = x + 1

 Loop

 Close #41

 read_sourceTS = False

 Cinfo.dataPath = fso.GetAbsolutePathName(sourceTSfile)

 Cinfo.DataDir = fso.GetParentFolderName(sourceTSfile)

155

 Exit Function

badfile:

 M sgBox TSpoints & " not a good sourceTS file" & vbNewLine

& sourceTSfile

 Close #41

 read_sourceTS = True

End Function

'===

=================

' = = = = = = = = = = P r o p e r t y F u n t i o n s

================================

Public Function g_sParam(i As Integer) As Single

 g_sParam = Param(i)

End Function

Property Let l_SParam(i As Integer, ByVal x As Single)

 If i > 3 Then i = 3

 Param(i) = x

End Property

Property Get g_tsTime(i As Integer) As Single

 g_tsTime = tsTime(i)

End Property

Property Get g_tsHeat(i As Integer) As Single

 g_tsHeat = tsHeat(i)

End Property

A.3.10 Cstartup.cls

'// Defn Class Startup-Info

Option Explicit

Option Base 1

Public Startfile As String, M atfile As String, Execfile As String,

DataDir As String

Public submodelfile As String, modelfile As String, dataPath As

String, TempDir As String

Public initNX As Integer, initNY As Integer, testing As Boolean,

progPath As String

Public initDX As Double, initDY As Double, Sectionfile As String

Public homeDir As String, userDir As String, outDir As String

Private Sub Class_Initialize()

 Dim s As String

 M atfile = ".\M aterials.mts"

 initNX = 40

 initNY = 40

 initDX = 0.04

 initDY = 0.04

 getHomeDir

 Startfile = homeDir & "\T3Dmodel.ini"

 read_startup

 M atfile = fso.BuildPath(dataPath, "materials.mts")

End Sub

Public Sub getHomeDir()

 Dim hdir As String

 hdir = "c:\program files\t3dmodel"

 If fso.FolderExists(hdir) Then homeDir = hdir

 If fso.DriveExists("d:") Then

 hdir = "d:\program files\t3dmodel"

 If fso.FolderExists(hdir) Then homeDir = hdir

 End If

 If fso.DriveExists("e:") Then

 hdir = "e:\program files\t3dmodel"

 If fso.FolderExists(hdir) Then homeDir = hdir

 End If

 If fso.DriveExists("e:") Then

 hdir = "e:\program files\t3dmodel"

 If fso.FolderExists(hdir) Then homeDir = hdir

 End If

 If fso.DriveExists("e:") Then

 hdir = "e:\program files\t3dmodel"

 If fso.FolderExists(hdir) Then homeDir = hdir

 End If

 If fso.DriveExists("f:") Then

 hdir = "f:\program files\t3dmodel"

 If fso.FolderExists(hdir) Then homeDir = hdir

 End If

 If fso.DriveExists("g:") Then

 hdir = "g:\program files\t3dmodel"

 If fso.FolderExists(hdir) Then homeDir = hdir

 End If

 hdir = "c:\program files\t3dmodel"

 If fso.FolderExists(hdir) Then homeDir = hdir

End Sub

Public Sub getrow(iu As Integer, n As Integer, v As Variant)

 Dim x As Integer, xo As Long, x1 As Long

 Dim dum As Variant, aline As String

 x = 1

beginline:

 Line Input #iu, aline

 xo = 1

 Do While x <= n

 x1 = InStr(xo, aline, ",")

 If x1 = 0 Then GoTo lastval

 v(x) = Val(Mid(aline, xo, x1 - xo))

156

 xo = x1 + 1

 x1 = xo

 x = x + 1

 Loop

lastval:

 dum = RTrim(Mid(aline, xo))

 If IsNumeric(dum) Then

 v(x) = Val(dum)

 End If

 If x < n Then GoTo beginline

End Sub

Private Sub read_startup()

 Dim aline As String, x As Long, res As Boolean

 On Error GoTo badinitfile

 Open Startfile For Input As #29

 progPath = getStrVal(29, "ProgramPath=")

 dataPath = getStrVal(29, "DataPath=")

 DataDir = getStrVal(29, "ir=")

 TempDir = getStrVal(29, "ir=")

 userDir = Trim(getStrVal(29, "ir"))

 TempDir = Trim(TempDir)

 DataDir = Trim(DataDir)

 outDir = Trim(getStrVal(29, "tDir="))

' If InStr(Len(TempDir), TempDir, "\") = 0 Then TempDir =

TempDir & "\"

' If InStr(Len(DataDir), DataDir, "\") = 0 Then DataDir =

DataDir & "\"

 aline = findline(29, "param")

 initNX = getNumVal(29, "nx=")

 initNY = getNumVal(29, "ny=")

 initDX = getNumVal(29, "dx=")

 initDY = getNumVal(29, "dy=")

 testing = getStrVal(29, "testing=")

 aline = findline(29, "[")

 M atfile = getStrVal(29, "materialfile=")

 Sectionfile = getStrVal(29, "sectionfile=")

 checkDirectory "Temp", TempDir

 checkDirectory "Output", outDir

' aline = fso.BuildPath(homeDir, "Temp")

' If Not fso.FolderExists(aline) Then

' res = M sgBox(aline & vbNewLine & "does not exist.

Create it?", _

' vbYesNo, "Create Folder")

' If res Then fso.CreateFolder (aline)

' TempDir = Trim(aline)

' End If

' aline = fso.BuildPath(homeDir, "Output")

' If Not fso.FolderExists(aline) Then

' res = M sgBox(aline & vbNewLine & "does not exist.

Create it?", _

' vbYesNo, "Create Folder")

' If res Then fso.CreateFolder (aline)

' TempDir = Trim(aline)

' End If

 Close #29

 Exit Sub

badinitfile: M sgBox "initialization file problem"

 Close #29

 Exit Sub

End Sub

Public Sub checkDirectory(asubdir As String, ByRef DirType As

String)

 Dim aline As String, res As Boolean

 If asubdir = "" Then Exit Sub

 aline = fso.BuildPath(homeDir, asubdir)

 If Not fso.FolderExists(aline) Then

 res = M sgBox(aline & vbNewLine & "does not exist.

Create it?", _

 vbYesNo, "Create Folder")

 If Not res Then Exit Sub

 fso.CreateFolder (aline)

 End If

 DirType = Trim(aline)

End Sub

Public Sub write_startup()

 'name,date, matfile,sectionfile,nx,ny,dx,dy,submodfile,modfile'

 Dim afile As String

 getPath

 afile = ""

 If testing Then Exit Sub

 On Error Resume Next

 Open Startfile For Output As #37

 Print #37, Startfile

 Print #37, "Revised "; Date

 W rite #37,

 Print #37, "ProgramPath="; progPath

 Print #37, "DataPath="; dataPath

 Print #37, "DataDir="; DataDir

 Print #37, "TempDir="; TempDir

 Print #37, "UserDir="; userDir

 Print #37, "OutputDir="; outDir

 W rite #37,

 Print #37, "[parameters]"

 Print #37, "nx="; initNX

 Print #37, "ny="; initNY

 Print #37, "dx="; initDX

 Print #37, "dy="; initDY

 Print #37, "testing="; testing

 W rite #37,

 Print #37, "[Files]"

 Print #37, "materialfile="; M atfile

 Print #37, "sectionfile="; Sectionfile

 Print #37, "submodelfile="; submodelfile

 Print #37, "modelfile="; Cmod.modelfile

 Print #37, "execfile="; cexe.modelfile

 Print #37,

 Close #37

End Sub

157

A.3.11 Csubmodel.cls

'class Csubmodel defn

Option Explicit

Option Base 1

Public scount As Integer, smodfile As String, csec As Cgeom

Public CsecID As Integer, smodname As String, tflag As Boolean

Public outputfile As String, infile As String, ttfile As String

Public smodM atl As Ccomp, dumM atl As Ccomp, dataPath As

String

Public tot_secfiles As Integer, sx As Collection

Private smM namex As Collection

Private TransM atl(20, 99) As Integer, tempfile As String

Private Msx As Collection

'====SUB-M ODEL PARAM ETERS-==========

Public nx As Integer, ny As Integer, nz As Integer

Public dx As Single, dy As Single, dz As Single

Public smodColor As Long 'sxlist As Collection

Private sec_color(12) As Long, sec_Number(80) As Integer

Private xValarray(80, 80) As Integer

'==== master material listing ======

Private m_Rho(99) As Single, m_Sp(99), m_heat(99) As Single

Private m_Sig(99) As Single, m_name(99) As String

'Private sec_name(12) As String, sec_file(12) As String

Private Sub Class_Initialize()

 Dim res As Variant

 Set sx = New Collection

 Set smM namex = New Collection

 Set dumM atl = New Ccomp

 Set csec = New Cgeom

 smod_ID = smx.count + 1

 tflag = False

' Set sxlist = New Collection

' M sgBox sx.count & " new Csubmodel=smod " & smx.count

' res = InputBox("enter a secable name")

' sectionname = res

End Sub

Private Sub Class_Terminate()

 ' M sgBox "Smod is terminating "

End Sub

Private Sub clear_smM namex()

 Dim i As Integer

 For i = 1 To smM namex.count

 smM namex.Remove i

 Next i

End Sub

Private Function cull_Comps() As Integer '(ns As Integer,

Optional k As Integer)

 Dim s As String, S2 As String, n As Integer, x As Integer

 cull_Comps = 0

 If sx.count < 1 Then

 M sgBox "There are no sections listed in this profile" &

vbNewLine _

 & smodname & vbNewLine & smodfile

 Exit Function

 End If

 scount = sx.count

' MsgBox smodname & " there are " & sx.count & " items."

 For x = 1 To sx.count

 If Not tflag Then get_culledList x

 Next x

 tflag = True

 get_translations sx.count

 trans_valarray sx.count

End Function

Public Sub get_culledList(k As Integer)

 Dim alist(99) As String, x As Integer, y As Integer, iq As

Integer

 Dim count As Integer, list(99) As Integer, s As String

 For x = 1 To nx

 For y = 1 To ny

 iq = getvalarray(k, x, y)

 If alist(iq) = "" Then

 alist(iq) = Trim(sx.Item(k).m_name(iq))

 count = count + 1

 list(iq) = iq

 TransM atl(k, iq) = iq

 End If

 Next y

 Next x

 Dim i As Integer, flag As Boolean

 For i = 1 To 99

 flag = False

 If (list(i) = i) Then

 flag = True

 For x = 1 To smM namex.count

 If Trim(smM namex.Item(x)) = Trim(alist(i)) Then flag

= False

 Next x

 If flag Then

 smM namex.Add alist(i)

 m_name(smM namex.count) = alist(i)

 End If

 End If

 Next i

 ' M sgBox count & " end of transList= " & smM namex.count

End Sub

Private Function get_fileName() As String

 Dim s As String

 s = Trim(fso.GetTempName)

 get_fileName = Trim(Cinfo.dataPath) & "\" & s

' M sgBox Cinfo.dataPath & vbNewLine & get_fileName

End Function

Private Sub get_newHeats()

 Dim i As Integer, n As Integer, maxH As Double

 maxH = -1000#

 For i = 1 To smM namex.count

 If maxH < m_heat(i) Then maxH = m_heat(i)

 Next i

 If maxH <= 2# Then Exit Sub

 For i = 1 To smM namex.count

 If m_heat(i) <> 0 Then m_heat(i) = m_heat(i) / maxH

 Next i

End Sub

Private Function getSection()

158

' M sgBox "getSection() " & CsecID & vbNewLine &

sectionname

End Function

Private Sub getstring(iu As Long, xx As String)

 Dim aline As String, x As Integer, s As String

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

' M sgBox "problem in this file", , titmsgbox

 s = "0"

 Else

 s = RTrim(Mid(aline, x + 1))

 End If

 xx = s

End Sub

Public Sub get_translations(nk As Integer)

' Sifts nk sections using namelist smM namex for unique materials;

' makes a corresponding master list of unique materials (4

properties) for the submodel

 Dim k As Integer, i As Integer, j As Integer, iq As Integer

 Dim s As String, count As Integer, sc As Integer

 For k = 1 To nk ' 1 as debug

 For i = 1 To 99

 If TransMatl(k, i) > 0 Then

 s = Trim(sx.Item(k).m_name(i))

 sc = sc + 1

 For j = 1 To smM namex.count

 If Trim(smM namex.Item(j)) = s Then

 count = count + 1

 TransM atl(k, i) = j

 m_Rho(j) = sx.Item(k).m_Rho(i)

 m_Sp(j) = sx.Item(k).m_Sp(i)

 m_Sig(j) = sx.Item(k).m_Sig(i)

 m_heat(j) = sx.Item(k).m_heat(i)

 End If

 Next j

 End If

 Next i

 Next k

 s = ""

 For i = 1 To smM namex.count

 s = s & smM namex.Item(i) & vbNewLine

 Next i

 get_newHeats

' M sgBox count & " " & sc & vbNewLine & s

End Sub

Public Sub getrow(iu As Integer, n As Integer, v As Variant)

 Dim x As Integer, xo As Long, x1 As Long

 Dim dum As Variant, aline As String

 x = 1

beginline:

 Line Input #iu, aline

 xo = 1

 Do While x <= n

 x1 = InStr(xo, aline, ",")

 If x1 = 0 Then GoTo lastval

 v(x) = Val(Mid(aline, xo, x1 - xo))

 xo = x1 + 1

 ' x1 = xo 'unnecessary line

 x = x + 1

 Loop

lastval:

 dum = RTrim(Mid(aline, xo))

 If IsNumeric(dum) Then

 v(x) = Val(dum)

 End If

 If x < n Then GoTo beginline

End Sub

Private Sub getvalue(iu As Long, xx As Long)

 Dim aline As String, x As Integer, s As Long

 Line Input #iu, aline

 x = InStr(aline, "=")

 If (x = 0) Then

' M sgBox "problem in this file", , titmsgbox

 s = "0"

 Else

 s = Val(Trim(Mid(aline, x + 1)))

 End If

 xx = s

 End Sub

Public Function make_Tempfile() As Integer

 Dim tempfile As String

 tempfile = get_fileName

 write_Tempfile smod_ID, tempfile

 make_Tempfile = 1

End Function

Public Sub read_profile(afile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean

 Dim dummy(100) As Integer, ss As String, iu As Integer

 smodfile = afile

 Open afile For Input As #19

 On Error GoTo badfile

 y = 1

 count = 1

 profilename = getStrVal(19, "name=")

 smodname = profilename

 nx = getNumVal(19, "nx=")

 ny = getNumVal(19, "ny=")

 nz = getNumVal(19, "nz=")

 dx = getNumVal(19, "dx=")

 dy = getNumVal(19, "dy=")

 dz = getNumVal(19, "dz=")

 tot_secfiles = getNumVal(19, "files=")

 scount = tot_secfiles

 s = findline(19, "submodel")

 getrow 19, nz, dummy

 For x = 1 To nz

 sec_Number(x) = dummy(x)

 Next x

 s = findline(19, "ections]")

 If sx.count > 0 Then

 For x = sx.count To 1 Step -1

 Set csec = Nothing

 sx.Remove x

 Next x

 End If

 Dim res As Long, iq As Integer, sfile As String

 For x = 1 To tot_secfiles

159

 Set csec = New Cgeom

 s = ""

' Do

 If EOF(19) Then GoTo Finished

 Line Input #19, aline

 iq = InStr(1, aline, "[section]")

 If iq > 0 Then

 On Error GoTo badfile

 getstring 19, s

 sfile = Trim(s)

 csec.Sectionfile = sfile

 If sfile = "ERROR" Then GoTo badfile

 getvalue 19, res

 csec.sec_color = res

 csec.read_secfile sfile

 s = csec.sectionname

 sx.Add csec 'x before this

 iq = sx.count

' Exit Do

 End If

 'no loop counter for lines

' Loop

 Next x

Finished:

' M sgBox "read_profile: finished reading submodel"

 Close #19

 ' On Error Resume Next

' smx.Add smod, profilename

 Cinfo.dataPath = fso.GetAbsolutePathName(afile)

 Exit Sub

badfile:

 Close #19

 M sgBox "PROBLEM : submodel file=" & profile

 Exit Sub

 End Sub

Public Function test_valarray(k As Integer)

 Dim s As String, i As Integer, x As Integer, y As Integer, maxH

As Single

 Dim iq As Integer, sc As Integer, err As Integer, g As Integer

 sc = smM namex.count

 For x = 1 To nx

 For y = 1 To ny

 g = getvalarray(k, x, y)

 If g > sc Or g < 1 Then err = err + 1

 If m_heat(g) > maxH Then maxH = m_heat(g)

 Next y

 Next x

' M sgBox k & " errors in valarray= " & err & vbNewLine _

 & " maxHeat= " & maxH

End Function

Public Sub trans_valarray(nk As Integer)

 Dim i As Integer, k As Integer, v As Integer, j As Integer, sc As

Integer

 For k = 1 To nk

 For i = 1 To nx

 For j = 1 To ny

 v = getvalarray(k, i, j)

 sx.Item(k).L_valarray i, j, TransM atl(k, v)

 Next j

 Next i

 Next k

' M sgBox " leaving trans_valarray "

End Sub

Public Sub write_Profile(thefile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Single, lx As Boolean

 Open thefile For Output As #25

 y = 0

 Print #25, thefile

 Print #25, "Revised "; Date

 Print #25, "submodelname="; Trim(profilename)

 Print #25, "[parameters]"

 Print #25, "nx="; nx

 Print #25, "ny="; ny

 Print #25, "nz="; nz 'nz is not zero-based

 Print #25, "dx="; dx

 Print #25, "dy="; dy

 Print #25, "dz="; dz

 Print #25, "sectionfiles="; sx.count

 Print #25, " "

 Print #25, "[submodel]"

 aline = sec_Number(1)

 For x = 2 To nz

 aline = aline & ";" & sec_Number(x)

 Next x

 Print #25, aline

 W rite #25,

 Print #25, "[Sections]"

 x = 1

 Do W hile x <= scount

 W rite #25,

 Print #25, "[section]"

 Print #25, "sectionfile="; sx.Item(x).sectionname

 Print #25, "sec_color="; sec_color(x)

 x = x + 1

 Loop

 On Error Resume Next

 Cinfo.submodelfile = fso.GetAbsolutePathName(thefile)

 Cinfo.dataPath = fso.GetAbsolutePathName(thefile)

 Close #25

End Sub

Private Sub write_Tempfile(smod_ID, thefile As String)

 Dim aline As String, count As Integer, x As Integer

 Dim s As String, y As Integer, lx As Boolean

 If thefile = "" Then Exit Sub

 scount = sx.count

 Close #20

 Open thefile For Output As #20

 Print #20, thefile

 Print #20, "Revised ", Date

 Print #20, "submodelname=", Trim(profilename)

 Print #20, "[parameters]"

 Print #20, "nx=", nx

 Print #20, "ny=", ny

 Print #20, "nz=", nz 'nz is not zero-based

 Print #20, "dx=", dx

 Print #20, "dy=", dy

 Print #20, "dz=", dz

 Print #20, "sectionfiles=", scount

 Print #20, " "

 Print #20, "[submodel]"

 aline = sec_Number(1)

 For x = 2 To nz

 aline = aline & "," & sec_Number(x)

160

 Next x

 Print #20, aline

 ' M sgBox "here at 2" & vbNewLine & aline

 W rite #20,

 Dim k As Integer

 Print #20, "[Sectiongeometry]"

 Print #20, "sections=", scount

 For k = 1 To scount

 W rite #20,

 Print #20, "[section]"

 For y = 1 To ny

 aline = getvalarray(k, 1, y)

 For x = 2 To nx

 aline = aline & "," & getvalarray(k, x, y)

 Next x

 Print #20, aline

 Next y

 ' M sgBox "finished sgeom " & k

 Next k

 W rite #20,

 Print #20, "[M aterials]"

 For x = 1 To smM namex.count ' where we write comps'

 W rite #20,

 Print #20, "[material] " & x

 Print #20, "material name="; smM namex.Item(x)

 Print #20, "thermal conductivity="; m_Sig(x)

 Print #20, "specific heat="; m_Sp(x)

 Print #20, "density="; m_Rho(x)

 Print #20, "heat production="; m_heat(x)

 Next x

 Close #20

' M sgBox "finished Materials list " & smM namex.count

End Sub

'===

==================

' = = = = = = = = P R O P E R T Y F U N C T I O N S

===================================

Public Function do_cullComps() As Integer

 do_cullComps = cull_Comps

End Function

Public Function getmatlname(k As Integer) As String

 getmatlname = m_name(k)

End Function

Public Function getvalarray(k As Integer, x As Integer, y As

Integer) As Integer

 getvalarray = sx.Item(k).g_valarray(x, y)

End Function

Public Property Get g_seccolor(x As Integer) As Long

 g_seccolor = sec_color(x)

End Property

Public Property Let l_seccolor(x As Integer, a As Long)

 sec_color(x) = a

End Property

Public Property Let L_valarray(k As Integer, x1 As Integer, x2 As

Integer, ind As Integer)

 sx.Item(k).L_valarray x1, x2, ind

End Property

Public Property Get G_secnumber(x As Integer) As Integer

 G_secnumber = sec_Number(x)

End Property

Public Property Let L_secnumber(x As Integer, a As Integer)

 sec_Number(x) = a

' M sgBox " Lsecnumber = " & sec_Number(x)

End Property

161

B.1 Ringling Causeway Bridge

Figure B-1. Ringling Causeway Bridge Concrete Mix Design.

162

B.2 University of South Florida Test Site Thermal Results

Figure B-2. USF Test Site: Generation II system; Shaft 1 time traces.

Figure B-3. USF Test Site: Generation II system; TS1 all directions at 24th hour.

163

Figure B-4. USF Test Site: Generation II system; Shaft 2 time traces.

Figure B-5. USF Test Site: Generation II system; TS2 all directions at 24th hour.

164

Figure B-6. USF Test Site: Generation II system; Shaft 3 time traces.

Figure B-7. USF Test Site: Generation II system; TS3 all directions at 24th hour.

165

Figure B-8. USF Test Site: Generation II system; Shaft 4 time traces.

Figure B-9. USF Test Site: Generation II system; TS4 all directions at 24th hour.

166

Figure B-10. USF Test Site: Generation III system; Shaft 1 time traces.

Figure B-11. USF Test Site: Generation III system; TS1 all directions at 24th
hour.

167

Figure B-12. USF Test Site: Generation III system; Shaft 2 time traces.

Figure B-13. USF Test Site: Generation III system; TS2 all directions at 24th
hour.

168

Figure B-14. USF Test Site: Generation III system; Shaft 3 time traces.

Figure B-15. USF Test Site: Generation III system; TS3 all directions at 24th
hour.

169

Figure B-16. USF Test Site: Generation III system; Shaft 4 time traces.

Figure B-17. USF Test Site: Generation III system; TS4 all directions at 24th
hour.

170

C.1 R.W. Harris Test Site Thermal Results

Figure C-1. R.W. Harris Test Site: Generation II Probe, Tube 1 Inward.

Figure C-2. R.W. Harris Test Site: Generation II Probe, Tube l Outward.

171

Figure C-3. R. W. Harris Test Site: Generation II Probe, Tube 1 Radial.

Figure C-4. R. W. Harris Test Site: Generation II Probe, Tube 1 Radial.

172

Figure C-5. R. W. Harris Test Site: Generation II Probe, Tube 1 All Directions.

Figure C-6. .R. W. Harris Test Site: Generation II Probe, Tube 3 Radial.

173

Figure C-7. .R. W. Harris Test Site: Generation II Probe, Tube 3 Radial.

Figure C-8. R. W. Harris Test Site: Generation II Probe, Tube 3 Inward.

174

Figure C-9. R. W. Harris Test Site: Generation II Probe, Tube 3 Outward.

Figure C-10. R. W. Harris Test Site: Generation II Probe, Tube 3 All Directions.

175

Figure C-11. R. W. Harris Test Site: Generation II Probe, Tube 5 Inward.

Figure C-12. R. W. Harris Test Site: Generation II Probe, Tube 5 Outward.

176

Figure C-13. R. W. Harris Test Site: Generation II Probe, Tube 5 Radial.

Figure C-14. R. W. Harris Test Site: Generation II Probe, Tube 5 Radial.

177

Figure C-15. R. W. Harris Test Site: Generation II Probe, Tube 5 All Directions.

Figure C-16. R. W. Harris Test Site: Generation II Probe, Tube MP1 Inward.

178

Figure C-17. R. W. Harris Test Site: Generation II Probe, Tube MP1 Radial.

Figure C-18. R. W. Harris Test Site: Generation II Probe, Tube MP1 Outward.

179

Figure C-19. R. W. Harris Test Site: Generation II Probe, Tube MP1 Radial.

Figure C-20. R. W. Harris Test Site: Generation II Probe, Tube MP1 All
Directions.

180

Figure C-21. R. W. Harris Test Site: Generation II Probe, Tube MP6 Inward.

Figure C-22. R. W. Harris Test Site: Generation II Probe, Tube MP6 Radial.

181

Figure C-23. R. W. Harris Test Site: Generation II Probe, Tube MP6 Outward.

Figure C-24. R. W. Harris Test Site: Generation II Probe, Tube MP6 Radial.

182

Figure C-25. R. W. Harris Test Site: Generation II Probe, Tube MP6 All
Directions.

Figure C-26. R. W. Harris Test Site: Generation II Probe, Tube MP8 Inward.

183

Figure C-27. R. W. Harris Test Site: Generation II Probe, Tube MP8 Radial.

Figure C-28. R. W. Harris Test Site: Generation II Probe, Tube MP8 Outward.

184

Figure C-29. R. W. Harris Test Site: Generation II Probe, Tube MP8 Radial.

Figure C-30. R. W. Harris Test Site: Generation II Probe, Tube MP8 All
Directions.

185

Figure C-31. R. W. Harris Test Site: Generation III Probe, Tube I Radial.

Figure C-32. R. W. Harris Test Site: Generation III Probe, Tube I Inward.

186

Figure C-33. R. W. Harris Test Site: Generation III Probe, Tube I Radial.

Figure C-34. R. W. Harris Test Site: Generation III Probe, Tube I Outward.

187

Figure C-35. R. W. Harris Test Site: Generation III Probe, Tube I All Directions.

Figure C-36. R. W. Harris Test Site: Generation III Probe, Tube 3 Radial.

188

Figure C-37. R. W. Harris Test Site: Generation III Probe, Tube 3 Inward.

Figure C-38. R. W. Harris Test Site: Generation III Probe, Tube 3 Outward.

189

Figure C-39. R. W. Harris Test Site: Generation III Probe, Tube 3 Radial.

Figure C-40. R. W. Harris Test Site: Generation III Probe, Tube 3 All
Directions.

190

Figure C-41. R. W. Harris Test Site: Generation III Probe, Tube 5 Radial.

Figure C-42. R. W. Harris Test Site: Generation III Probe, Tube 5 Inward.

191

Figure C-43. R. W. Harris Test Site: Generation III Probe, Tube 5 Radial.

Figure C-44. R. W. Harris Test Site: Generation III Probe, Tube 5 Outward.

192

Figure C-45. R. W. Harris Test Site: Generation III Probe, Tube 5 All
Directions.

Figure C-46. R. W. Harris Test Site: Generation III Probe, Tube MP1 Inward.

193

Figure C-47. R. W. Harris Test Site: Generation III Probe, Tube MP1 Radial.

Figure C-48. R. W. Harris Test Site: Generation III Probe, Tube MP1 Outward.

194

Figure C-49. R. W. Harris Test Site: Generation III Probe, Tube MP1 Radial.

Figure C-50. R. W. Harris Test Site: Generation III Probe, Tube MP1 All
Directions.

195

D.1 University of Florida Test Site Thermal Data

Figure D-1. UF Test Site: Generation II Probe, Tube 1 Inward.

Figure D-2. UF Test Site: Generation II Probe, Tube 1 Outward.

196

Figure D-3. UF Test Site: Generation II Probe, Tube 1 Radial.

Figure D-4. UF Test Site: Generation II Probe, Tube 1 Radial.

197

Figure D-5. UF Test Site: Generation II Probe, Tube 1 All Directions.

Figure D-6. UF Test Site: Generation II Probe, Tube 2 Inward.

198

Figure D-7. UF Test Site: Generation II Probe, Tube 2 Radial.

Figure D-8. UF Test Site: Generation II Probe, Tube 2 Radial.

199

Figure D-9. UF Test Site: Generation II Probe, Tube 2 Outward.

Figure D-10. UF Test Site: Generation II Probe, Tube 2 All Directions.

200

Figure D-11. UF Test Site: Generation II Probe, Tube 3 Inward.

Figure D-12. UF Test Site: Generation II Probe, Tube 3 Radial.

201

Figure D-13. UF Test Site: Generation II Probe, Tube 3 Radial.

Figure D-14. UF Test Site: Generation II Probe, Tube 3 Outward.

202

Figure D-15. UF Test Site: Generation II Probe, Tube 3 All Directions.

Figure D-16. UF Test Site: Generation II Probe, Tube 4 Inward.

203

Figure D-17. UF Test Site: Generation II Probe, Tube 4 Outward.

Figure D-18. UF Test Site: Generation II Probe, Tube 4 Radial.

204

Figure D-19. UF Test Site: Generation II Probe, Tube 4 Radial.

Figure D-20. UF Test Site: Generation II Probe, Tube 4 All Directions.

205

Figure D-21. UF Test Site: Generation III Probe, Tube 1 Inward.

Figure D-22. UF Test Site: Generation III Probe, Tube 1 Outward.

206

Figure D-23. UF Test Site: Generation III Probe, Tube 1 Radial.

Figure D-24. UF Test Site: Generation III Probe, Tube 1 Radial.

207

Figure D-25. UF Test Site: Generation III Probe, Tube 1 All Directions.

Figure D-26. UF Test Site: Generation III Probe, Tube 2 Inward.

208

Figure D-27. UF Test Site: Generation III Probe, Tube 2 Outward.

Figure D-28. UF Test Site: Generation III Probe, Tube 2 Radial.

209

Figure D-29. UF Test Site: Generation III Probe, Tube 2 Radial.

Figure D-30. UF Test Site: Generation III Probe, Tube 2 All Directions.

210

Figure D-31. UF Test Site: Generation III Probe, Tube 3 Inward.

Figure D-32. UF Test Site: Generation III Probe, Tube 3 Outward.

211

Figure D-33. UF Test Site: Generation III Probe, Tube 3 Radial.

Figure D-34. UF Test Site: Generation III Probe, Tube 3 Radial.

212

Figure D-35. UF Test Site: Generation III Probe, Tube 3 All Directions.

Figure D-36. UF Test Site: Generation III Probe, Tube 4 Inward.

213

Figure D-37. UF Test Site: Generation III Probe, Tube 4 Outward.

Figure D-38. UF Test Site: Generation III Probe, Tube 4 Radial.

214

Figure D-39. UF Test Site: Generation III Probe, Tube 4 Radial.

Figure D-40. UF Test Site: Generation III Probe, Tube 4 All Directions.

	Table of Contents 050107.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18

	Binder1.pdf
	Chapter 1 Introduction 050107.pdf
	Chapter 2 Non-Destructive Testing 050107.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

	Chapter 3 Numerical Modeling 050107.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

	Chapter 3 Figures 050107.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

	Chapter 4 Ringling Causeway Bridge 050107.pdf
	Page 1
	Page 2
	Page 3

	Chapter 4 USF Test Site 050107.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

	Chapter 4 RWHarris Test Site 050107.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

	Chapter 4 RWHarris Test Site (TIT Results) 050107.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

	Chapter 4 RWHarris Test Site (Model Results) 050107.pdf
	Page 1
	Page 2

	Chapter 4 UF Test Site 050107.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

	Chapter 5 Conclusions & Recommendations 050107.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

	Appendix A Thermal Modeling VBA Code.pdf
	Appendix B USF Thermal Results 050207.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

	Appendix C 050207.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

	Appendix D UF Thermal Results 050207.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

