Final Report

Contract No. BDV29-977-07

Extraction of Basic Roadway Information for Non-State Roads in Florida

Prepared for:

Research Center
Florida Department of Transportation
605 Suwannee Street, M.S. 30
Tallahassee, FL 32399-0450

Prepared by:

Wanyang Wu, Ph.D., Research Associate
Albert Gan, Ph.D., Professor
Priyanka Alluri, Ph.D., P.E., Assistant Professor

Lehman Center for Transportation Research
Florida International University
10555 West Flagler Street, EC 3680
Miami, FL 33174
Phone: (305) 348-3116
Fax: (305) 348-2802
E-mail: gana@fiu.edu

June 2015
DISCLAIMER

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation.
METRIC CONVERSION CHART

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU KNOW</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>inches</td>
<td>25.400</td>
<td>millimeters</td>
<td>mm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.305</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.914</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.610</td>
<td>kilometers</td>
<td>km</td>
</tr>
<tr>
<td>mm</td>
<td>millimeters</td>
<td>0.039</td>
<td>inches</td>
<td>in</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>3.280</td>
<td>feet</td>
<td>ft</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>1.090</td>
<td>yards</td>
<td>yd</td>
</tr>
<tr>
<td>km</td>
<td>kilometers</td>
<td>0.621</td>
<td>miles</td>
<td>mi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU KNOW</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in²</td>
<td>square inches</td>
<td>645.200</td>
<td>square millimeters</td>
<td>mm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.093</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yard</td>
<td>0.836</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.405</td>
<td>hectares</td>
<td>ha</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.590</td>
<td>square kilometers</td>
<td>km²</td>
</tr>
<tr>
<td>mm²</td>
<td>square millimeters</td>
<td>0.0016</td>
<td>square inches</td>
<td>in²</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
<td>10.764</td>
<td>square feet</td>
<td>ft²</td>
</tr>
<tr>
<td>m³</td>
<td>square meters</td>
<td>1.195</td>
<td>square yards</td>
<td>yd³</td>
</tr>
<tr>
<td>ha</td>
<td>hectares</td>
<td>2.470</td>
<td>acres</td>
<td>ac</td>
</tr>
<tr>
<td>km²</td>
<td>square kilometers</td>
<td>0.386</td>
<td>square miles</td>
<td>m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU KNOW</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>29.570</td>
<td>milliliters</td>
<td>mL</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.785</td>
<td>liters</td>
<td>L</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.028</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.765</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
<tr>
<td>mL</td>
<td>milliliters</td>
<td>0.034</td>
<td>fluid ounces</td>
<td>fl oz</td>
</tr>
<tr>
<td>L</td>
<td>liters</td>
<td>0.264</td>
<td>gallons</td>
<td>gal</td>
</tr>
<tr>
<td>m³</td>
<td>cubic meters</td>
<td>35.314</td>
<td>cubic feet</td>
<td>ft³</td>
</tr>
<tr>
<td>m³</td>
<td>cubic meters</td>
<td>1.307</td>
<td>cubic yards</td>
<td>yd³</td>
</tr>
</tbody>
</table>

NOTE: volumes greater than 1,000 L shall be shown in m³.
Abstract

The Florida Department of Transportation (FDOT) has continued to maintain a linear-referenced “All-Roads” map that includes both state and non-state local roads. The state portion of the map could be populated with select data from FDOT’s Roadway CharacteristicsInventory (RCI). However, the RCI data are available for only a small portion of the local roads in the All-Roads map, leaving a majority of the local roads in the map without the same data. Given the large number of local roads in the map, it is clearly not cost feasible to collect the data in the field. Methods that make use of existing data as alternatives to field data collection are thus needed.

One potential source of existing data is police crash reports. For every reported crash in Florida, the law enforcement officers record information on more than 300 variables to describe the site and time of the crash, the geometric conditions, the traffic control, and drivers’ and pedestrian’s characteristics. Accordingly, this project aims to develop methods to extract roadway data recorded in crash reports as a means to both acquiring and continually updating the All-Roads map for local roads in Florida. To the extent possible, the project attempted to extract data for the following four variables that are included in Florida’s crash reports: number of through lanes, posted speed limit, shoulder type, and median type.

The data extraction process to acquire data for the four variables in this project includes three steps. The first step involves the extraction of data from crash records for as many road segments as possible. The second step covers the case in which a road segment does not have any crashes. In this step, the values are derived from their adjacent segments based on the assumption that roadway features are likely to be continuous. Finally, the third step focuses on the remaining segments for which data could not be extracted or derived in the first two steps. In this step, the missing data are manually collected using a web-based data collection application that is designed specially to facilitate the process of observing and recording information from satellite images in Google Maps.
ACKNOWLEDGEMENTS

This research was funded by the Research Center of the Florida Department of Transportation (FDOT) under the direction of Mr. Darryll Dockstader. We are particularly grateful to our Project Manager, Mr. Joseph Santos, P.E., of the FDOT State Safety Office for his guidance and support throughout the project. We are also grateful to Dr. Kaiyu Liu for his assistance in data pre-processing and in the set up of the VRICS web application. The assistance of many student assistants who performed the manual data collection is also gratefully acknowledged.
EXECUTIVE SUMMARY

The Florida Department of Transportation (FDOT) has continued to maintain a linear-referenced All-Roads map that includes both state and non-state local roads. The state portion of the map could be populated with select data from FDOT’s Roadway Characteristics Inventory (RCI). However, these RCI data are available for only a small portion of the local roads (i.e., the “off-system” roads) in the All-Roads map, leaving a majority of the local roads in the map without the same data. Given the large number of local roads in the map, it is clearly not cost feasible to try to collect the data in the field. Accordingly, this project aims to develop methods to extract roadway data recorded in crash reports as a means to both acquiring and continually updating the All-Roads map for local roads in Florida. To the extent possible, the project attempts to extract data for the following four variables that are included in Florida’s crash reports:

- number of through roadway lanes,
- posted speed limit,
- shoulder type (paved or unpaved), and
- median type (divided or undivided).

The following databases were used to extract data on these four data variables:

- **Crash databases:**
 - Crash data in the shapefiles format for the years 2003-2012 for both on-system and off-system roads.
 - Roadway Table (RDWTBL) 50 for the years 2003-2012.

- **Roadway characteristics inventory databases:**
 - FDOT RCI database for the year 2015 for Type of Road variable.
 - FDOT Road Data shapefiles for:
 - Intersections
 - Number of Lanes
 - Shoulder Type – Outside
 - Maximum Speed Limits
 - All-Roads shapefiles for the year 2012 based on the data from NAVTEQ™.

The process to acquire information for the four data variables includes three steps. The first step involves extraction of data from crash records. Crash records for the years 2003 through 2012 are used to extract this information. In the case where there are multiple crashes with different data entries (e.g., different speed limits were recorded in the police reports for crashes that occurred on a segment), the process considered the number of crashes and the timeline of crash occurrences to select the most probable value. The second step covers the case in which a road segment does not have any crashes. In this step, the values are derived from their adjacent segment, and is based on the assumption that roadway features are continuous. Finally, the missing information is manually collected from satellite images in Google Maps. The process was facilitated using an in-house web-based system. The following sections summarize the results for each of the four data variables.
Number of Through Lanes

Although number of through lanes is an entry in the police reports, it was found that the data for the corresponding field, TRWAYLN, in RDWTBL 50 of the Crash Analysis Reporting (CAR) database were completely missing. However, because the All-Roads map already included the LANES variable for the number of through lanes, this part of the project became one of verifying the existing LANES data. The variable NOLANES in the RCI was used to verify the LANES data. The results show that the data was 96.3% accurate. This high percentage was expected as the verified LANES data came originally from the RCI. The 3.7% inconsistency was likely a result of mainly changes in the RCI data between 2012 (when the All-Roads map was updated) and 2015 (RCI data year used in verification) due to roadway construction. As 3.7% of the road links in the All-Roads map did not have the same number of through lanes as identified in the RCI database, these links (11,043 links in total) were manually verified in VRICS.

As the RCI data includes links on state roads and major off-system roads with functional classification codes 1-19, the inconsistencies in the RCI data and the All-Roads map could be because the major roads (i.e., freeway, arterials, and major collectors) were more likely to undergo frequent improvements as a result of upgrade or reconstruction. The remaining links in the All-Roads maps with functional classification codes 20-33 are mainly local roads. As these roads are typically two-lane and do not usually change, it was found that only about 0.5% of these roads needed to be updated or corrected.

Posted Speed Limit

Data for posted speed limit are recorded as SPDLIMIT in RDWTBL 50 and as SPEED in the RCI. Although SPEED_CAT variable in the All-Roads map has information on speed limit, it is not considered a reliable source since it does not provide the specific speed limit. After the data extraction and data derivation steps, 39.4% of the total links (i.e., 616,078 of 1,565,026 links) have information on speed limits. As part of the data verification step, the data obtained from the SPDLIMIT variable in RDWTBL 50 was compared to the data from the SPEED variable in the RCI. Only the links with functional classification codes 1-19 were verified as the data in the RCI includes only these links. The accuracy of this variable was found to be 62.7%. In other words, 62.7% of the total links verified were found to match those from the RCI.

Shoulder Type

Data for shoulder type are recorded as SHLDTYPE in both RDWTBL 50 and the RCI databases. However, the codes in the RCI are more detailed compared to the codes in RDWTBL 50. The police records shoulder type as paved, unpaved, or curved, while the RCI codes shoulder type using the following codes: raised curb, paved, paved with warning device, lawn, gavel/marl, valley gutter, curb and gutter, other, curb with resurfaced gutter, and managed lane. Therefore, the prospect of using shoulder type extracted from RDWTBL 50 is limited. In addition, manual data collection and data verification of shoulder type cannot be reliably done as the difference between “paved” and “curb” shoulder types is difficult to determine from the existing satellite images. Consequently, RDWTBL 50 was not found to be a sufficiently accurate data source for acquiring the shoulder type data.
Median Type

Data for median type are recorded as TYPTRWAY in RDWTBL 50, DIVIDER in the All-Roads map, and TYPEROAD in the RCI. For the links available in both the RCI and the All-Roads map, the accuracy of the variable DIVIDER in the All-Roads map was found to be only 49.0%. Therefore, this variable is not considered as a reliable source for median type information. On the other hand, the accuracy of this variable in RDWTBL 50 was found to be 77.8%. However, there is a slight inconsistency in how the police define “divided” segments and the RCI’s definition. The police code locations with only a physical barrier as “divided”, while the RCI codes links separated by turn bays as “divided”. Due to this inconsistency, the prospect of using median type information obtained from crash data (i.e., RDWTBL 50) is somewhat limited.
TABLE OF CONTENTS

DISCLAIMER .. ii

METRIC CONVERSION CHART .. iii

TECHNICAL REPORT DOCUMENTATION PAGE ... iv

ACKNOWLEDGEMENTS .. v

EXECUTIVE SUMMARY .. vi

LIST OF FIGURES .. x

LIST OF TABLES ... xi

LIST OF ACRONYMS/ABBREVIATIONS .. xii

CHAPTER 1 INTRODUCTION ... 1
 1.1 Project Background and Objectives ... 1
 1.2 Data Extraction Process ... 1
 1.3 Report Organization .. 2

CHAPTER 2 DATA SOURCES AND PREPARATION .. 3
 2.1 Crash Data .. 3
 2.2 RCI Database ... 7
 2.3 All-Roads Map .. 9

CHAPTER 3 DATA EXTRACTION FROM CRASH RECORDS .. 12
 3.1 Data Processing ... 12
 3.2 Data Extraction ... 16
 3.3 Data Verification ... 17

CHAPTER 4 DATA DERIVATION USING SPATIAL ANALYSIS ... 21
 4.1 Data Derivation ... 21
 4.2 Data Verification ... 24
 4.2.1 Number of Through Lanes ... 25
 4.2.2 Posted Speed Limit ... 25
 4.2.3 Shoulder Type ... 26
 4.2.4 Median Type ... 27

CHAPTER 5 MANUAL DATA COLLECTION ... 28
 5.1 VRICS Application ... 28
 5.2 Data Verification Results ... 29

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS .. 31
 6.1 Conclusions ... 31
 6.1.1 Number of Through Lanes ... 31
 6.1.2 Posted Speed Limit ... 32
 6.1.3 Shoulder Type ... 32
 6.1.4 Median Type ... 33
 6.2 Recommendations ... 33
LIST OF FIGURES

Figure 2-1: Florida Crash Report – Page 1 ..5
Figure 2-2: Florida Crash Report – Page 2 ..6
Figure 2-3: Shoulder Type Codes in RCI Database ..8
Figure 2-4: Median Type Codes in RCI Database ...9
Figure 2-5: NAVSTREETS Data Table Sample ...10
Figure 3-1: Screen Capture of the Buffer Tool in ArcGIS 10.2.2 ...13
Figure 3-2: Screenshot of All-Roads Map with 50-ft Buffer Around Intersections ...13
Figure 3-3: Screenshot of All-Roads Map with 10-ft Buffer Around Undivided Roads and 40-ft Buffer Around Divided Roads ...14
Figure 3-4: Screenshot of All-Roads Map with Buffer and Crash Layers ..14
Figure 4-1: Screenshot of Links After Data Extraction Step ..21
Figure 4-2: Screenshot of Links with Data Derived from Upstream and Downstream Links22
Figure 4-3: Distribution of Speed Limit Data Extracted from RDWTBL 50 for Links with Functional Class Greater Than 19 ...25
Figure 4-4: Example of a Road Link on Local Road with 70 mph Speed Limit ...26
Figure 4-5: Example of a Link Coded as “Divided” in RCI and “Undivided” in RDWTBL 5027
Figure 5-1: VRICS Application Customized to Collect Data for Number of Through Lanes28
Figure 5-2: Example of a Road Link with a Different Number of Through Lanes in All-Roads Map30
LIST OF TABLES

Table 2-1: Variables of Interest in RCI Database ... 7
Table 3-1: Sample Crash Data with Extracted Roadway Characteristics Information 15
Table 3-2: Sample Road Data with Multiple Crashes and Different Speed Limits 16
Table 3-3: Variable Names in Different Data Sources .. 18
Table 3-4: Comparison of Variable Codes in Different Data Sources 19
Table 3-5: Number of Links in All-Roads Map and RCI After Data Extraction Step 19
Table 3-6: Data Verification Results after Data Extraction Step ... 20
Table 4-1: Data Availability from Data Extraction and Data Derivation Steps Based on Number of Links ... 23
Table 4-2: Data Availability from Data Extraction and Data Derivation Steps Based on Miles of Road Network ... 23
Table 4-3: Number of Links in All-Roads Map and RCI After Data Derivation Step 24
Table 4-4: Data Verification Results after Data Derivation Step ... 24
Table 5-1: Data Verification Results for Number of Through Lanes 29
Table 6-1: New Variables Included in All-Roads Map .. 32
LIST OF ACRONYMS/ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>Average Annual Daily Traffic</td>
</tr>
<tr>
<td>API</td>
<td>Application Program Interface</td>
</tr>
<tr>
<td>CAR</td>
<td>Crash Analysis Reporting</td>
</tr>
<tr>
<td>DHSMV</td>
<td>Department of Highway Safety and Motor Vehicles</td>
</tr>
<tr>
<td>FDOT</td>
<td>Florida Department of Transportation</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>LRS</td>
<td>Linear Referencing System</td>
</tr>
<tr>
<td>RCI</td>
<td>Roadway Characteristics Inventory</td>
</tr>
<tr>
<td>RDWTBL</td>
<td>Roadway Table</td>
</tr>
<tr>
<td>SHS</td>
<td>State Highway System</td>
</tr>
<tr>
<td>TRCC</td>
<td>Traffic Records Coordinating Committee</td>
</tr>
<tr>
<td>UBR</td>
<td>Unified Basemap Repository</td>
</tr>
<tr>
<td>VRICS</td>
<td>Visual Roadway Inventory Collection System</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Project Background and Objectives

The Florida Department of Transportation (FDOT) has continued to maintain a linear-referenced All-Roads map based on the data from NAVTEQ™. This All-Roads map includes data on both state and non-state local roads. The state portion of the map could be populated with select data from FDOT’s Roadway Characteristics Inventory (RCI). However, these RCI data are available for only a small portion of the local roads (i.e., the “off-system” roads) in the All-Roads map, leaving a majority of the local roads in the map without the same data. Given the large number of local roads in the map, it is clearly not cost feasible to collect the data in the field. As such, methods that make use of existing data as alternatives to field data collection are needed.

One potential source of existing data is police crash reports. For every reported crash in Florida, the law enforcement officers record information on more than 300 variables to describe the site and time of the crash, the geometric conditions, the traffic control, and drivers’ and pedestrian’s characteristics. This project aims to develop methods to extract roadway data recorded in crash reports as a means to both acquiring and continually updating the All-Roads map for local roads in Florida. To the extent possible, the project attempts to extract data for the following four variables that are included in Florida’s crash reports: number of through lanes, posted speed limit, shoulder type, and median type.

1.2 Data Extraction Process

The process to acquire data for the four variables (i.e., number of through lanes, posted speed limit, shoulder type, and median type) includes the following three major steps:

1. Extract Data from Crash Records: This step is designed to extract the available data from the crash reports for as many roadway segments as possible. In the case where there are multiple crashes with different data entries (e.g., different speed limits were recorded in the police reports for crashes that occurred on a segment), the process considers the number of crashes and the timeline of crash occurrences to select the most probable value. This method is fine-tuned and its accuracy verified using the RCI data available for state roads.

2. Derive Data Using Spatial Analysis: This step addresses the scenarios in which a roadway segment does not have any police reports. The method relies on a Geographic Information System (GIS)-assisted approach with the assumption that roadway features tend to be continuous. For example, a roadway segment is likely to have a posted speed limit of 40 mph if it is determined from the crash records that its immediate upstream and downstream roadway segments both have 40 mph lanes. Again, using the RCI data available for the state roads, this method is fine-tuned to determine the extent of which feature data could reliably be inferred.

3. Collect Data Manually: In this third and final step of the process, data for the roadway
segments that cannot be extracted or derived in the first two steps are manually collected. An in-house web-based data collection application, Visual Roadway Inventory Collection System (VRICS), is applied to facilitate the process. VRICS integrates linear-referenced networks with Google Maps to allow the user to quickly navigate to different road segments to visually identify feature information through Google Maps’ satellite images and to quickly record the observed information.

1.3 Report Organization

The rest of the report is organized as follows:

- Chapter 2 describes the data sources and data preparation efforts undertaken for this project.

- Chapter 3 focuses on the first step of the data extraction process, i.e., the process of extracting data from crash records. It discusses the GIS application process and the rules used to retrieve data from crash records. The chapter also describes the verification procedure used to compare the data extracted from the crash records and the data available in the RCI database.

- Chapter 4 focuses on the spatial analysis procedures adopted to acquire data for segments that do not have any police reports. It discusses the methodology and results, and also provides the procedure used to verify the accuracy of the derived data.

- Chapters 5 focuses on the manual data collection procedures adopted to collect data for the segments for which data could not be extracted using the first two steps. It briefly introduces the basic functions of the VRICS web-based application. It further provides the results of the manual data collection efforts.

- Chapter 6 provides a summary of this project effort and the relevant findings, conclusions, and recommendations.
CHAPTER 2
DATA SOURCES AND PREPARATION

This chapter discusses the crash and roadway databases used in this project. It also describes the data preparation efforts undertaken to extract the data on number of through lanes, posted speed limit, shoulder type, and median type for the road network in Florida. The following databases were used to extract data for these four variables:

- **Crash databases:**
 - Crash data in the shapefiles format for the years 2003-2012 for both on-system and off-system roads.
 - Roadway Table (RDWTBL) 50 for the years 2003-2012.

- **Roadway characteristics inventory databases:**
 - FDOT RCI database for the year 2015 for Type of Road variable.
 - FDOT Road Data shapefiles for:
 - Intersections
 - Number of Lanes
 - Shoulder Type – Outside
 - Maximum Speed Limits
 - All-Roads shapefiles for the year 2012 based on the data from NAVTEQ™.

2.1 Crash Data

The crash data used in this project came from the Crash Analysis Reporting (CAR) system maintained by the FDOT State Safety Office. The database was originally generated by merging crash data from the Department of Highway Safety and Motor Vehicles (DHSMV) with roadway data from FDOT. All reported crashes with a fatality, an injury, or a property damage that occurred on state roads are included in this database. Each crash in the database is given a unique crash identification number in the database.

The database includes data recorded in each police crash report, which covers data for more than 300 variables to describe the site and time of the crash, the geometric conditions, the traffic control, and drivers’ and pedestrian’s characteristics. The data collected in the police reports are classified into three major categories: crash-level, vehicle-level, and person-level information. RDWTBL 50 is the crash-level data table, while RDWTBL 51 and 52 are the vehicle-level and person-level data tables, respectively. As the variables of interest for this project are specific to each crash (i.e., crash-level information), RDWTBL 50 files for the years 2003-2012 were obtained and used to extract the target data.

1 https://www3.dot.state.fl.us/unifiedbasemaprepository/
Although the CAR system contains location-specific markers, it does not include the spatial coordinates of the crashes (i.e., latitudes and longitudes of the crash locations). Since number of through lanes, posted speed limit, shoulder type, and median type are all location-specific, crash data in the shapefiles format for the years 2003-2012 from the Unified Basemap Repository (UBR) System maintained by the Florida Traffic Records Coordinating Committee (TRCC) were used. The UBR system provides separate shapefiles for crashes on on-system and off-system roads. These shapefiles were linked to the RDWTBL 50 file using the unique crash identification number.

The on-system crash database includes crashes recorded in the long-form crash reports within the state of Florida that occurred on the Florida State Highway System (SHS). On the other hand, the off-system crash database includes crashes recorded in the long-form crash reports within the state of Florida that did not occur on the SHS. This off-system database includes crashes on the public road network, and excludes crashes in parking lots, on private property, and on forest roads or private roads.

RDWTBL 50 includes relevant crash-level information for every crash in the system. The following four data variables were extracted from the RDWTBL 50:

- NOLANES (number of through roadway lanes)
- SPDLIMIT (posted speed limit)
- SHLDTYPE (shoulder type)
- TYPTRWAY (median type)

Figures 2-1 and 2-2 show the first two pages of the crash report form. Note that the four variables of interest are marked in red boxes. As can be seen in these figures, number of through lanes and posted speed limit are given in actual numbers, while shoulder type and median type are categorical variables. Specifically, shoulder type is recorded using the following three codes:

- 1: Paved
- 2: Unpaved
- 3: Curb

Similarly, median type is recorded using the following two codes:

- 1: Divided
- 2: Undivided
Figure 2-1: Florida Crash Report – Page 1
2.2 RCI Database

The RCI database includes various physical and administrative data related to the roadway networks that are either maintained by or are of special interest to FDOT. For this project, the following FDOT Road Data shapefiles were downloaded and used to extract the required data:

- Intersections
- Number of Lanes
- Shoulder Type – Outside
- Maximum Speed Limits

Note that the RCI database is the original data source for these shapefiles. Table 2-1 lists the five data variables in the RCI database (also available in the shapefiles) that are of interest to this project. These variables were used to verify the accuracy of the data retrieved from crash records.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Feature Type</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOLANES</td>
<td>Number of Through Lanes</td>
<td>polyline</td>
<td>2015</td>
</tr>
<tr>
<td>SPEED</td>
<td>Speed Limit</td>
<td>polyline</td>
<td>2015</td>
</tr>
<tr>
<td>SHLDTYPE</td>
<td>Shoulder Type</td>
<td>polyline</td>
<td>2015</td>
</tr>
<tr>
<td>TYPEROAD</td>
<td>Median Type</td>
<td>dBase</td>
<td>2014</td>
</tr>
<tr>
<td>INTERSECT</td>
<td>Intersection</td>
<td>Point</td>
<td>2014</td>
</tr>
</tbody>
</table>

The variable SHLDTYPE, with the following ten codes, is used to determine shoulder type. Figure 2-3 shows the shoulder type codes in the RCI database.³

- 0 – Raised Curb (no shoulder or width exists)
- 1 – Paved (including paved parking and bike slots)
- 2 – Paved with Warning Device (any device that serves to warn, guide, or regulate the motorist)
- 3 – Lawn (number of feet to support roadbed)
- 4 – Gravel/Marl
- 5 – Valley Gutter (not a barrier)
- 6 – Curb & Gutter
- 7 – Other (to warn, guide, or regulate the motorist)
- 8 – Curb with Resurfaced Gutter
- 9 – None (Managed Lane)

Figure 2-3: Shoulder Type Codes in RCI Database
The variable TYPEROAD, with the following four codes, was used to determine the median type. Figure 2-4 shows the median type codes in the RCI database.

- 0 – Not divided
- 2 – Divided (painted or physical)
- 4 – One-way
- 6 – Reversible

![Figure 2-4: Median Type Codes in RCI Database](image)

2.3 All-Roads Map

The shapefiles for the All-Roads map for the year 2012 is based on the data provided by NAVTEQ®. NAVTEQ® provides a dataset called NAVSTREETS which contains the most navigable attributes available in a database. This dataset includes access features including expressway ramps; complete and correct connectivity of all roadways; one-way streets; physical, logical, and legal turn restrictions; construction projects; and physical and painted lane dividers. Figure 2-5 shows the basic data table of the NAVSTREETS map.

For this project, the following seven data variables were extracted from the NAVSTREETS dataset:

1. LANE_CAT (lane category)
2. FROM_LANES (number of lanes from the reference node)
3. TO_LANES (number of lanes toward the reference node)
4. SPEED_CAT (speed category)
5. FR_SPD_LIM (from reference speed limit)
6. TO_SPD_LIM (toward reference speed limit)
7. DIVIDER (presence of physical blocking divider)

Lane Category classifies a road based on the number of through lanes in each direction. It has the following four codes:

- (space) - Not Applicable
- 1 - One Lane
- 2 - Two or Three Lanes
- 3 - Four or More Lanes

Speed Category classifies the general speed trend of a road based on posted or legal speed. Speed Category values represent the combination of several factors besides legal speed limit (e.g., physical restrictions, access characteristics, etc.). Therefore, Speed Category values can differ from posted speed limit values, which represent the legal speed limit. It has the following eight codes:
• 1 - > 80 mph
• 2 - 65-80 mph
• 3 - 55-64 mph
• 4 - 41-54 mph
• 5 - 31-40 mph
• 6 - 21-30 mph
• 7 - 6-20 mph
• 8 - < 6 mph

The variable DIVIDER identifies the presence of a physical traffic blocking divider. It has the following five codes:

• A is applied when the link and both nodes are divided. Additionally, right turns and U-turns are not allowed to/from the divided link to/from any link at either node or to driveways along the link.
• 1 is applied when the link and reference node are divided. Right turns and U-turns are not allowed from the divided link to/from any link at the reference node or to driveways along the link.
• 2 is applied when the link and non-reference node are divided. Right turns and U-turns are not allowed from the divided link to/from any link at the non-reference node or to driveways along the link.
• N is applied when the link is not divided and the link is navigable.
• (space) is Not Applicable, and is applied to non-navigable links.

The All-Roads map for the year 2012 was extended by FDOT by adding the following RCI variables: roadway ID, milepost, AADT, roadside information, and number of through lanes.
CHAPTER 3
DATA EXTRACTION FROM CRASH RECORDS

This chapter describes the first of the three-step process which is to extract data from crash records for as many roadway segments as possible. The method first applied GIS techniques to extract data for roadway segments that experienced at least one crash during the analysis period. Where multiple crashes occurred on a specific roadway segment, a rule based on the crash year and crash frequency was applied to select the most probable value. The accuracy of the variables in the final merged dataset was then verified using the RCI data available for the state roads.

3.1 Data Processing

The crash data includes three different datasets: two shapefiles for on-system and off-system roads, and a .txt dataset for crash-level information (i.e., RDWTBL 50). The following steps were used to extract the required roadway characteristics data from the crash records:

1. Open ArcGIS 10.2.2 and add 2003-2012 on-system crash shapefiles, 2003-2012 off-system crash shapefiles, FDOT intersection layer, and FDOT All-Roads map.

3. Create a 50-ft buffer around intersections. Figure 3-1 shows the screen capture of the buffer tool in ArcGIS 10.2.2. Figure 3-2 shows the screenshot of the All-Roads map with buffers created around the intersections.

4. Exclude the crashes within the buffer. Since the crashes at intersections do not give information on the data variables of interest, these crashes are excluded from the analysis. Note that although some of the crashes that occurred at intersections have information on these data variables, it is difficult to determine the roadway where this crash had occurred.

5. Create a 10-ft buffer around undivided streets and a 40-ft buffer around divided streets. Figure 3-3 shows the screenshot of the All-Roads map with 10-ft buffers around undivided sections and 40-ft buffers around divided streets.

6. Once the buffers are created, intersect this layer with the crash layer. Figure 3-4 gives a screenshot of the All-Roads layer overlaid with the buffer and crash layers.

7. Identify and exclude the crash records with inconsistent side of road by comparing ROADSIDE variable in the All-Roads map and SIDEOFROAD variable in the crash layer.

8. Identify and exclude the crash records that are in close proximity to more than one roadway section.
9. Export the attributes table of the crash shapefiles to Microsoft Excel.

![Buffer Tool in ArcGIS 10.2.2](image1.png)

Figure 3-1: Screen Capture of the Buffer Tool in ArcGIS 10.2.2

![All-Roads Map with 50-ft Buffer Around Intersections](image2.png)

Figure 3-2: Screenshot of All-Roads Map with 50-ft Buffer Around Intersections
Overall, the All-Roads map has data for 1,565,026 road links. Of these, 232,013 links have at least one crash during 2003-2012. These represent about 15% of the total road network. In total, during 2003-2012, 679,973 crashes occurred on 232,013 links. The number of crashes that have data for each variable is given below:

- 668,777 crashes (i.e., 98.3% of total crashes) have data on median type (TYPTRWAY).
- 668,811 crashes (i.e., 98.3% of total crashes) have data on shoulder type (TYPESHLD).
- 595,643 crashes (i.e., 87.6% of total crashes) have data on posted speed limit (SPDLIMIT).
- None of the crashes have data on number of through lanes (TRWAYLN).

Although data for number of through lanes are recorded in police reports, they are not recorded in the corresponding field TRWAYLN (number of through lanes) in RDWTBL 50. Since these data are missing in the crash database, it could not be obtained using the data extraction or data derivation steps. However, since the All-Roads map includes number of through lanes under its LANES variable, this project does not include Step 1 and 2 of the process. Instead, it focuses on Step 3 of the process which is to manually verify and update the existing data. Table 3-1 provides the sample crash data with the extracted roadway characteristics information. The table includes the following columns:

- LINK_ID: Link identification number in the All-Roads map
- CALYEAR: Year when the crash occurred
- CRASHNUM: Crash number
- TYPTRWAY: Type of travel way (1 is divided and 2 is undivided)
- TRWAYLN: Number of through roadway lanes
- TYPESHLD: Type of shoulder (1 is paved, 2 is unpaved, and 3 is curb)
- SPDLIMIT: Posted speed limit

Table 3-1: Sample Crash Data with Extracted Roadway Characteristics Information

<table>
<thead>
<tr>
<th>LINK_ID</th>
<th>CALYEAR</th>
<th>CRASHNUM</th>
<th>TYPTRWAY</th>
<th>TRWAYLN</th>
<th>TYPESHLD</th>
<th>SPDLIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000030</td>
<td>2012</td>
<td>22561662</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>100001460</td>
<td>2006</td>
<td>23048332</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>100001470</td>
<td>2006</td>
<td>23057330</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>100001500</td>
<td>2006</td>
<td>23047308</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>100004190</td>
<td>2007</td>
<td>135857653</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>100006610</td>
<td>2007</td>
<td>22905136</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>100008670</td>
<td>2008</td>
<td>134888595</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>100011870</td>
<td>2008</td>
<td>761578183</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>100022000</td>
<td>2010</td>
<td>888102752</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>100027180</td>
<td>2010</td>
<td>23238906</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>100028040</td>
<td>2008</td>
<td>782992718</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>100028080</td>
<td>2008</td>
<td>23179614</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>100038570</td>
<td>2011</td>
<td>755413950</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>100040390</td>
<td>2008</td>
<td>771546783</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>100040980</td>
<td>2008</td>
<td>838794886</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>100041010</td>
<td>2008</td>
<td>23163354</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>100074640</td>
<td>2012</td>
<td>22405311</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>100074680</td>
<td>2012</td>
<td>762079448</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>100074750</td>
<td>2012</td>
<td>22405574</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>100074800</td>
<td>2012</td>
<td>875175606</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>
3.2 Data Extraction

As discussed in Section 3.1, the crash data from 2003 to 2012 were first merged with the roadway characteristics data to extract information on the following three data variables: posted speed limit, shoulder type, and median type. The next step was to extract this information for all the links. Some of the links experienced multiple crashes, and in several instances, the data in these crash records was inconsistent. Table 3-2 gives an example for the speed limit variable. As can be seen from the table, link 16982194 experienced five crashes between 2003 and 2012. The two crashes that occurred in 2003 and 2004 recorded a speed limit of 40 mph, the crash report from 2006 recorded a speed limit of 45 mph, while the crash reports from 2009 and 2010 each recorded a speed limit of 50 mph. This is one of the several scenarios where inconsistent data were found.

<table>
<thead>
<tr>
<th>LINK_ID</th>
<th>CALYEAR</th>
<th>CRASHNUM</th>
<th>SPDLIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>16982194</td>
<td>2003</td>
<td>732196010</td>
<td>40</td>
</tr>
<tr>
<td>16982194</td>
<td>2004</td>
<td>701661050</td>
<td>40</td>
</tr>
<tr>
<td>16982194</td>
<td>2006</td>
<td>768858890</td>
<td>45</td>
</tr>
<tr>
<td>16982194</td>
<td>2009</td>
<td>804573380</td>
<td>50</td>
</tr>
<tr>
<td>16982194</td>
<td>2010</td>
<td>819627230</td>
<td>50</td>
</tr>
</tbody>
</table>

An algorithm was developed to select the most accurate value of each variable for each link for which multiple values were extracted from the crash records. The algorithm is based on the following rules:

- Select the most recent year’s data.
- If the most recent year has multiple crash records, select the value with the highest frequency in the most recent year.
- If the multiple values have the same highest frequency in the same year (for example, year 2012 has one record with a speed limit of 30 mph and another record with a speed limit of 35 mph), ignore the most recent year and select the data from the preceding year.

The detailed steps of the algorithm are described below:

1. Open crash data with the extracted roadway characteristics data table, sort the table by road link and CALYEAR separately for the following three data variables: median type, shoulder type, and posted speed limit.
2. For each link, retrieve only the crash data from the most recent year.
3. For each link, calculate the values of the fields and their frequencies for median type, shoulder type, and posted speed limit.
4. For each of the three data variables, select and retain the value of the fields with the highest frequency in the most recent year.

5. If multiple values have the same highest frequency in the most recent year (for example, year 2012 has one record with a speed limit of 30 mph and another record with a speed limit of 35 mph), ignore this year and select the information from the preceding year.

6. Repeat Steps 3-5 for each link.

7. Generate the final table with the link, median type, shoulder type, and posted speed limit values extracted from crash data.

Overall, of the 1,565,026 links in the All-Roads map, 232,013 links (i.e., 14.8%) experienced at least one crash during 2003-2012. The number of links that have data for each variable is given below:

- 226,300 links (i.e., 14.5% of total links) have data for median type.
- 229,778 links (i.e., 14.7% of total links) have data for shoulder type.
- 210,203 links (i.e., 13.4% of total links) have data for posted speed limit.

3.3 Data Verification

During the data extraction process, the data from the crash records were extracted for the links in the All-Roads map for which the crash data are available. In the data verification process, the data from the RCI database were compared with this extracted data. Note that the RCI database includes data on all state roads and a few off-system roads, while the All-Roads map includes data on the entire road network (i.e., both state roads and non-state roads) in Florida. More specifically, the RCI database includes data on links with the following functional classification codes:

- 01 – RURAL – Principal Arterial–Interstate
- 02 – RURAL – Principal Arterial–Other
- 06 – RURAL – Minor Arterial
- 07 – RURAL – Major Collector
- 08 – RURAL – Minor Collector
- 09 – RURAL – Local
- 11 – URBAN – Principal Arterial–Interstate
- 12 – URBAN – Principal Arterial–Other Freeways and Expressways
- 14 – URBAN – Principal Arterial–Other
- 16 – URBAN – Minor Arterial
- 17 – URBAN – Collector
- 19 – URBAN – Local

On the other hand, the links in the All-Roads map have functional classification with codes from 01 to 33, where the codes from 01 to 19 are similar to the codes in the RCI database and the remaining codes (i.e., from 20 to 33) constitute the remaining local roads that are not identified
in the RCI database. For this reason, the data verification process only compares the data for the links that are available in both the All-Roads map and the RCI database.

Table 3-3 lists the four variable names in the three data sources (i.e., RDWTBL 50, All-Roads map, and RCI). Note that there are two variables for number of through lanes in the All-Roads map. The variable LANE_CAT was developed by NAVTEQTM and the variable LANES was added by FDOT in 2012. Four variables, FROM_LANES, TO_LANES, FR_SPD_LIM and TO_SPD_LIM, discussed in Section 2.3, were not used in data verification process because these four variables have only limited number of valid links. The FROM_LANES and TO_LANES variables only have approximately 200,000 valid links out of 1,565,026 total links (i.e., 12.8\% of total links). Similarly, the FR_SPD_LIM and TO_SPD_LIM variables only have approximately 20,000 valid links out of the 1,565,026 total links (i.e., 1.3\% of the total links).

Table 3-3: Variable Names in Different Data Sources

<table>
<thead>
<tr>
<th>Variable</th>
<th>RDWTBL 50</th>
<th>All-Roads Map</th>
<th>RCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Through Lanes</td>
<td>Not Available</td>
<td>LANES</td>
<td>NOLANES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LANE_CAT</td>
<td></td>
</tr>
<tr>
<td>Posted Speed Limit</td>
<td>SPDLIMIT</td>
<td>SPEED_CAT</td>
<td>SPEED</td>
</tr>
<tr>
<td>Shoulder Type</td>
<td>SHLDTYPE</td>
<td>Not Available</td>
<td>SHLDTYPE</td>
</tr>
<tr>
<td>Median Type</td>
<td>TYPTRWAY</td>
<td>DIVIDER</td>
<td>TYPEROAD</td>
</tr>
</tbody>
</table>

To verify the data extracted from RDWTBL 50 and the All-Roads map, the RCI GIS layers were first merged into the layer generated in Section 3.2. The merging process is based on the following rules:

- The link in the extracted layer and the link in the RCI layer should have the same Roadway ID.
- The link in the extracted layer and the link in the RCI layer should have the same Roadside (i.e., C - Composite, R - Right, or L - Left).
- The begin milepost of the link in the extracted layer should be greater than or equal to the begin milepost of the link in the RCI layer.
- The end milepost of the link in the extracted layer should be less than or equal to the end milepost of the link in the RCI layer.

Table 3-4 compares the variable codes in the three data sources (i.e., RDWTBL 50, All-Roads Map, and RCI) for the two categorical variables, shoulder type, and median type.

For the LANE_CAT and SPEED_CAT variables, the rule is to test whether or not the corresponding data in the columns LANES and SPDLIMIT fall within the same category (i.e., identified by the LANE_CAT and SPEED_CAT variables).
Table 3-4: Comparison of Variable Codes in Different Data Sources

<table>
<thead>
<tr>
<th>Variable</th>
<th>RDWTBL 50</th>
<th>All-Roads Map</th>
<th>RCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder Type</td>
<td>1 - Paved</td>
<td>N/A</td>
<td>1 - Paved with or without Striping (including paved parking and bike slots)</td>
</tr>
<tr>
<td></td>
<td>2 - Unpaved</td>
<td></td>
<td>2 - Paved with Warning Device (raised or indented strips)</td>
</tr>
<tr>
<td></td>
<td>3 – Curb</td>
<td></td>
<td>3 - Lawn (number of feet to support road bed)</td>
</tr>
<tr>
<td>Median Type</td>
<td>1 - Divided</td>
<td></td>
<td>4 - Gravel/ Marl</td>
</tr>
<tr>
<td></td>
<td>2 - Undivided</td>
<td></td>
<td>5 - Valley Gutter (not a barrier)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 - None (Managed Lane)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 - Raised Curb (no shoulder or width exists)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 - Curb and Gutter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 - Not divided</td>
</tr>
</tbody>
</table>

Table 3-5 shows the number of links with valid records (i.e., links with acceptable codes for the data variables) in the All-Roads map and the corresponding links in the RCI. As information on number of through lanes is complete for all links in the All-Roads map, all the links in the RCI database with valid data on number of through lanes were identified for verification. These constitute approximately 300,000 links (i.e., 20% of total links). On the other hand, only around 200,000 links in the All-Roads map have data extracted for all the remaining three variables, and only around 100,000 links in the RCI were identified for verification (i.e., around 45% of total links with extracted data).

Table 3-5: Number of Links in All-Roads Map and RCI After Data Extraction Step

<table>
<thead>
<tr>
<th>Variable</th>
<th>Links with Extracted Data (Source: All-Roads map)</th>
<th>Total Links Identified for Verification (Source: RCI)</th>
<th>Percent of Links Identified for Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Through Lanes</td>
<td>1,565,026</td>
<td>302,245</td>
<td>19.3%</td>
</tr>
<tr>
<td>Posted Speed Limit</td>
<td>210,203</td>
<td>83,612</td>
<td>39.8%</td>
</tr>
<tr>
<td>Shoulder Type</td>
<td>229,778</td>
<td>106,471</td>
<td>46.3%</td>
</tr>
<tr>
<td>Median Type</td>
<td>226,300</td>
<td>114,147</td>
<td>50.4%</td>
</tr>
</tbody>
</table>

Table 3-6 shows the results from the data verification process after the data extraction step for all four variables. For number of through lanes, the variable LANES was found to have the highest accuracy of 96.3%. This is expected as the verified LANES data came originally from the RCI. The 3.7% inconsistency was likely a result of mainly changes in the RCI data between 2012 (when the All-Roads map was updated) and 2015 (RCI data year used in verification) due to roadway construction. It is noted that even though the number of through lanes and speed limits in NAVSTREETS are given in ranges, the accuracies of these variables were still found to be lower than those from RDWTBL 50 and the LANES column updated by FDOT. The variable LANE_CAT was found to have the lowest accuracy of 44.7%.
For posted speed limit, the variable SPDLIMIT in RDWTBL 50 was found to have an accuracy of 66.4%. Although this is lower than the 86.3% achieved by the SPEED_CAT variable in the All-Roads map (provided by NAVTEQ™), the SPDLIMIT variable is still considered more reliable, as the SPEED_CAT variable does not provide the specific speed limit of the roadway. For example, a link with SPEED_CAT = 3 could either be a 55 mph section or a 60 mph section.

As can be seen from Table 3-6, data for shoulder type are available only in RDWTBL 50, and their accuracy was found to be 82.1%. The accuracy of the variable median type (TYPTRWAY) in RDWTBL 50 was found to be 77.3%, while the accuracy of its counterpart (DIVIDER) in the All-Roads map was found to be a low 49.0%.

Table 3-6: Data Verification Results after Data Extraction Step

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total Links Verified</th>
<th>Links Matching RCI</th>
<th>Percent Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Through Lanes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOLANES in RCI vs LANES in All-Roads Map</td>
<td>302,245</td>
<td>291,202</td>
<td>96.3%</td>
</tr>
<tr>
<td>NOLANES in RCI vs LANE_CAT in All-Roads Map</td>
<td>302,245</td>
<td>135,164</td>
<td>44.7%</td>
</tr>
<tr>
<td>Posted Speed Limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPEED in RCI vs SPDLIMIT in RDWTBL 50</td>
<td>83,612</td>
<td>55,554</td>
<td>66.4%</td>
</tr>
<tr>
<td>SPEED in RCI vs SPEED_CAT in All-Roads Map</td>
<td>83,612</td>
<td>72,197</td>
<td>86.3%</td>
</tr>
<tr>
<td>Shoulder Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHLDTYPE in RCI vs SHLDTYPE in RDWTBL 50</td>
<td>106,471</td>
<td>87,386</td>
<td>82.1%</td>
</tr>
<tr>
<td>Median Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPEROAD in RCI vs TYPTRWAY in RDWTBL 50</td>
<td>114,147</td>
<td>88,280</td>
<td>77.3%</td>
</tr>
<tr>
<td>TYPEROAD in RCI vs DIVIDER in All-Roads Map</td>
<td>114,147</td>
<td>55,917</td>
<td>49.0%</td>
</tr>
</tbody>
</table>
CHAPTER 4
DATA DERIVATION USING SPATIAL ANALYSIS

This chapter describes the second step of the three-step process, which is to derive the missing data for roadway segments from adjacent segments that were already populated with data from the first step. It relies on the spatial analysis capabilities of GIS with the assumption that roadway features tend to be continuous. Similar to the verification procedure described in Section 3.3, the accuracy of the four variables in the final dataset was verified using the RCI data available for the state roads.

4.1 Data Derivation

The data extraction step described in Chapter 3 yielded information for only 14.9% of total links. Figure 4-1 shows an example of the data extraction results in ArcGIS. In this figure, the links in thick red color represent those with the information extracted from RDWTBL 50 and the All-Roads map. The links in gray color did not experience any crashes from 2003-2012, and hence, information is missing for these links. The links within the blue rectangle are in close proximity and they belong to the same roadway and share the same roadway characteristics. Accordingly, it can be assumed that the links in gray color are likely to have the same roadway geometry and traffic properties as the links in red color within the blue rectangle area.

Figure 4-1: Screenshot of Links After Data Extraction Step

Based on the above continuity assumption, an automatic filling algorithm implementing the following rules was developed to derive the missing data:

- The link with missing data has the same Roadway ID as the link with extracted data.
- The link with missing data is physically connected to the link with extracted data.
- The link with missing data has the same roadway direction as the link with extracted data. This is determined by comparing the variable ROADSIDE in the roadway layer.
- The link with missing data has the same number of through lanes as the link with extracted data. This is determined by comparing the variable LANES in the roadway layer.
The detailed steps of the algorithm are described below:

1. Open the data table after the data extraction process, sort the table by ROADWAY ID, ROADSIDE, and LANES for the following three variables: median type, shoulder type, and posted speed limit.

2. Group all the links with the same ROADWAY ID, ROADSIDE, and LANES.

3. Within each group, select the link with extracted data and the smallest begin/end mile post (BMPADJ/EMPADJ) separately for all the three variables.

4. Based on the smallest begin/end mile post, verify whether or not the connected links have the data for the variables median type, shoulder type, and posted speed limit.

5. If the connected links do not have the data for these three variables, assign the values of the selected link (i.e., those with extracted information) to these links.

6. Repeat Steps 3-5 until all links within each group have a value for the variables median type, shoulder type, and posted speed limit.

7. Repeat Steps 3-6 for each group.

8. Generate the final table with the link, median type, shoulder type, and posted speed limit values.

Figure 4-2 shows the results of the automatic filling algorithm. Within the blue rectangle, the values for all westbound links in green color were derived from the adjacent (i.e., upstream and downstream) red links (i.e., links with extracted information) and the values for all eastbound links in purple color were derived from the adjacent red links.

Figure 4-2: Screenshot of Links with Data Derived from Upstream and Downstream Links

After this step, 648,120 links (i.e., 41.4% of total road network) were found to have information for at least one variable. The number of links that have data for each variable is provided below:
• 616,078 links (i.e., 39.4% of total links) have data for posted speed limit.
• 646,772 links (i.e., 41.3% of total links) have data for shoulder type.
• 642,140 links (i.e., 41.0% of total links) have data for median type.

The above discussed statistics in terms of roadway miles are provided here. The links in the All-Roads map constitute 187,882.6 miles. After both the data extraction and data derivation steps, 114,342 miles (i.e., 60.8% of total miles) have data for at least one of the three variables. The total roadway miles that have data for each variable is given below:

• 104,314.7 miles (i.e., 55.5% of total miles) have data for posted speed limit.
• 114,301.7 miles (i.e., 60.8% of total miles) have data for shoulder type.
• 112,783.6 miles (i.e., 60.0% of total miles) have data for median type.

Tables 4-1 and 4-2 provide the results of the data extraction and data derivation steps based on number of links and miles of road network, respectively.

Table 4-1: Data Availability from Data Extraction and Data Derivation Steps Based on Number of Links

<table>
<thead>
<tr>
<th>Variable</th>
<th>Crashes with Information</th>
<th>Total Links with Extracted Data (Step 1)</th>
<th>Percent Links with Extracted Data (Step 1)</th>
<th>Total Links with Derived Data (Step 2)</th>
<th>Final Percent of Links with Data (Steps 1 and 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Through Lanes</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Posted Speed Limit</td>
<td>595,643</td>
<td>210,203</td>
<td>13.4%</td>
<td>616,078</td>
<td>39.4%</td>
</tr>
<tr>
<td>Shoulder Type</td>
<td>668,811</td>
<td>229,778</td>
<td>14.7%</td>
<td>646,772</td>
<td>41.3%</td>
</tr>
<tr>
<td>Median Type</td>
<td>668,777</td>
<td>226,300</td>
<td>14.5%</td>
<td>642,140</td>
<td>41.0%</td>
</tr>
</tbody>
</table>

Note: There are a total of 1,565,026 links in the All-Roads map.

Table 4-2: Data Availability from Data Extraction and Data Derivation Steps Based on Miles of Road Network

<table>
<thead>
<tr>
<th>Variable</th>
<th>Crashes with Information</th>
<th>Total Miles with Extracted Data (Step 1)</th>
<th>Percent of Miles with Extracted Data (Step 1)</th>
<th>Total Miles with Derived Data (Step 2)</th>
<th>Final Percent of Miles with Data (Steps 1 and 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Through Lanes</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Posted Speed Limit</td>
<td>595,643</td>
<td>32,264.6</td>
<td>17.2%</td>
<td>104,314.7</td>
<td>55.5%</td>
</tr>
<tr>
<td>Shoulder Type</td>
<td>668,811</td>
<td>34,625.5</td>
<td>18.4%</td>
<td>114,301.7</td>
<td>60.8%</td>
</tr>
<tr>
<td>Median Type</td>
<td>668,777</td>
<td>34,219.8</td>
<td>18.2%</td>
<td>112,783.6</td>
<td>60.0%</td>
</tr>
</tbody>
</table>

Note: There are a total of 187,882.6 miles in the All-Roads map.
4.2 Data Verification

The data verification procedure adopted to verify the accuracy of the data derived from spatial analysis is similar to the procedure discussed in Section 3.3. Table 4-3 gives the number of links with valid records (i.e., links with acceptable codes for the data variables) in the All-Roads map and the corresponding links in the RCI database after the data derivation step. Note that since the data for number of through lanes are complete for all links, the data were not derived for this variable. The results for number of through lanes are similar to the results presented in Section 3.3. About 600,000 of links in the All-Roads map have data derived for all the remaining three variables, and about 250,000 links in the RCI were identified for verification (i.e., 40% of total links with derived data).

Table 4-3: Number of Links in All-Roads Map and RCI After Data Derivation Step

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total Links with Data Derived from Spatial Analysis (Source: All-Roads map)</th>
<th>Total Links Identified for Verification (Source: RCI)</th>
<th>Percent of Links Identified for Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Through Lanes</td>
<td>1,565,026</td>
<td>302,245</td>
<td>19.3%</td>
</tr>
<tr>
<td>Posted Speed Limit</td>
<td>616,078</td>
<td>180,223</td>
<td>29.2%</td>
</tr>
<tr>
<td>Shoulder Type</td>
<td>646,772</td>
<td>247,855</td>
<td>38.3%</td>
</tr>
<tr>
<td>Median Type</td>
<td>642,140</td>
<td>266,852</td>
<td>41.5%</td>
</tr>
</tbody>
</table>

Table 4-4 provides the final data verification results for all the four variables for the data extraction step, the data derivation step, and the overall combining both steps. As expected, the accuracy of the data derivation step was found to be generally lower compared to the accuracy of the data extraction step. This is observed for both the speed limit and shoulder type variables. However, for the median type variable, the accuracy of the data derivation step was found to be slightly higher than that of the data extraction step. Overall, the accuracies of the data derivation step are somewhat similar to the accuracies of the data extraction step, indicating a good viability of using the automatic filling algorithm (i.e., data derivation step) to increase the number of links with data.

Table 4-4: Data Verification Results After Data Derivation Step

<table>
<thead>
<tr>
<th>Variable</th>
<th>Step 1: Data Extraction</th>
<th>Step 2: Data Derivation</th>
<th>Overall Steps 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Links Verified</td>
<td>Links Matching RCI</td>
<td>Percent Matched</td>
</tr>
<tr>
<td>No. of Through Lanes</td>
<td>302,245</td>
<td>291,202</td>
<td>96.3%</td>
</tr>
<tr>
<td>Speed Limit</td>
<td>83,612</td>
<td>55,554</td>
<td>66.4%</td>
</tr>
<tr>
<td>Shoulder Type</td>
<td>106,471</td>
<td>87,386</td>
<td>82.1%</td>
</tr>
<tr>
<td>Median Type</td>
<td>114,147</td>
<td>88,280</td>
<td>77.3%</td>
</tr>
</tbody>
</table>
4.2.1 Number of Through Lanes

As discussed in Chapters 2 and 3, the LANES column in the All-Roads map has data for the number of through lanes for all the links. As discussed in Section 3.3, the NOLANES variable in the RCI was compared to the LANES variable in the All-Roads map. The data in the All-Roads map were found to have an accuracy of 96.3% for links with functional classification codes 1-19. Note that these links are either state roads or major off-system roads, and this 3.7% inaccuracy could be because of either road construction projects or incorrect information. The data accuracy of the remaining local roads with functional classification codes 20-33 was manually verified, and the results are discussed in Chapter 5.

4.2.2 Posted Speed Limit

RDWTBL 50 was found to give an accuracy of 62.7% based on a total of 180,223 links verified, or about 11.5% of the total 1,565,026 links in the All-Roads map. It is reasonable to assume that speed limits extracted from RDWTBL 50 for the remaining 88.5% of links could achieve a similar level of accuracy. Figure 4-3 shows the number and distribution of speed limits extracted from RDWTBL 50 for the links on local streets with functional classification codes greater than 19. It can be seen that most of the links have a speed limit of 25 mph or 30 mph. This is expected because a majority of these links are minor local roads. Note that there are still a significant number of links with higher speed limits (i.e., ≥ 45 mph).

![Figure 4-3: Distribution of Speed Limit Data Extracted from RDWTBL 50 for Links with Functional Class Greater Than 19](image-url)
Figure 4-4 shows an example of a link with a 70 mph speed limit. The link identified in Figure 4-4 is a ramp section and a parking plaza within a freeway service area. This link should not have 70 mph speed limit. It appears that the police officer had incorrectly considered this link to be part of the adjacent freeway, and recorded the freeway speed limit of 70 mph as the default speed limit for this link. Overall, with an accuracy of 62.7%, the data from RDWTBL 50 are not sufficiently accurate to be used for acquiring posted speed limits. However, they may serve as a means to detecting future changes in posted speed limits for the purpose of data updates.

Figure 4-4: Example of a Road Link on Local Road with 70 mph Speed Limit

4.2.3 Shoulder Type

The data from RDWTBL 50 were found to achieve an overall accuracy of 81.5% based on a total of 247,855 links verified, or 15.8% of the total 1,565,026 links. It may be assumed that the data extracted from RDWTBL 50 for the remaining 84.2% of links have a similar level of accuracy. Although the accuracy of the derived data for shoulder type is over 80%, the data were not collected to the required detail in the crash records. The shoulder type variable in the police crash reports has three codes, while the RCI has ten codes (see Table 3-4). For this reason, the prospect of using shoulder type extracted from RDWTBL 50 is considered limited. In addition, manual data collection and data verification of shoulder type cannot be reliably done as the difference between “paved” and “curb” shoulder types is difficult to determine from the existing satellite
images. Consequently, RDWTBL 50 is not considered a sufficiently accurate data source for acquiring shoulder type data.

4.2.4 Median Type

The median type data from RDWTBL 50 were found to have a relatively better accuracy of 77.8% based on a total of 266,852 links verified, or about 17% of the total 1,565,026 links. It may be assumed that median type data extracted from RDWTBL 50 for the remaining 83% of links could achieve a similar level of accuracy. However, there is a slight inconsistency in how the police define “divided” segments and the RCI’s definition.

Figure 4-5 gives an example of a link identified as “divided” in the RCI database and “undivided” in RDWTBL 50. It can be seen from the figure that the links in the two directions are separated by a left-turn bay. The police code this link as undivided because there is no raised median. On the other hand, the link was coded as divided in the RCI database because the left-turn bay separates the links in the two directions. Due to such inconsistency, the prospect of using median type information obtained from crash data (i.e., RDWTBL 50) is somewhat limited.

Figure 4-5: Example of a Link Coded as “Divided” in RCI and “Undivided” in RDWTBL 50
CHAPTER 5
MANUAL DATA COLLECTION

This chapter describes the manual data collection and verification process adopted to verify and update data on number of through lanes. As aforementioned, although number of through lanes is recorded in the police reports, data for this variable are not included in RDWTBL 50. However, because the All-Roads map already included the LANES variable for the number of through lanes, this project focused on verifying this existing LANES data. An in-house web-based application, Visual Roadway Inventory Collection System (VRICS), was adapted to facilitate the collection and verification of the LANES data using Google Maps. This chapter first introduces the VRICS application, and then discusses the data collection effort to collect information on number of through lanes. It also provides the descriptive statistics of the data collected.

5.1 VRICS Application

Figure 5-1 shows a screen capture of the main interface of the system. The system reads a linear-referenced roadway segment, converts its coordinates to the Google Maps projection on the fly, and then displays the satellite image of the segment. The system also shows the existing number of through lanes retrieved from the All-Roads map. The user can choose the observed number of through lanes (from 1 lane to 9 lanes) based on the displayed satellite image. If the user cannot determine the number of through lanes, a note can be made to explain the reason (for example, the segment is covered with trees and lanes are not clearly visible, etc.). After completing a segment, the user can quickly have the system jump to and display the next segment to continue with data verification and collection.

Figure 5-1: VRICS Application Customized to Collect Data for Number of Through Lanes
5.2 Data Verification Results

As shown in Table 4-3, a total of 302,245 links from the RCI were used to automatically verify the accuracy of number of through lanes information in the All-Roads map. Of these 302,245 links, 291,202 were found to match the RCI, and the remaining 11,043 links (i.e., 3.7%) needed to be updated. Information on non-state roads that is not available in the RCI could not be automatically verified. VRICS was customized to verify number of through lanes data for the remaining 1,262,781 links. Of these 1,262,781 links, only 6,061 links (i.e., 0.5%) were updated. Table 5-1 shows the detailed results of the data verification and collection process. In total, 17,104 links were updated for the number of through lanes variable, which accounts for 1.1% of the total 1,565,026 links.

Table 5-1: Data Verification Results for Number of Through Lanes

<table>
<thead>
<tr>
<th>Process</th>
<th>Total Verified Links</th>
<th>Total Corrected Links</th>
<th>Percent of Corrected Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Data Verification after Data Extraction and Data Derivation Steps</td>
<td>302,245</td>
<td>11,043</td>
<td>3.7%</td>
</tr>
<tr>
<td>Manual Data Verification using VRICS</td>
<td>1,262,781</td>
<td>6,061</td>
<td>0.5%</td>
</tr>
<tr>
<td>Total</td>
<td>1,565,026</td>
<td>17,104</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

As can be seen from Table 5-1, 0.5% of links were updated using manual data verification process, while 3.7% of links were corrected using automatic data verification process. The difference in the two percentages is expected. The links verified manually using VRICS were mostly minor local roads in areas such as local communities and subdivisions. These roads are typically two-lane and do not usually change. On the other hand, the links in the RCI were mostly major roads, which have a varying number of lanes and were more likely to undergo frequent improvements as a result of upgrade or reconstruction. However, some of the corrected links were also due to miscoding in the All-Roads map. Figure 5-2 shows an example of a link with incorrect number of through lanes. The highlighted two links should each have only one through lane based on the satellite image; however, the LANES variable in the All-Roads map for the two links shows two lanes for each link.
Figure 5-2: Example of a Road Link with a Different Number of Through Lanes in All-Roads Map
CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This project aimed to develop methods to extract roadway data recorded in crash reports as a means to both acquire and continually update the All-Roads map for local roads in Florida. To the extent possible, the project attempted to extract data for the following four variables that are included in Florida’s crash reports:

- number of through roadway lanes,
- posted speed limit,
- shoulder type (paved or unpaved), and
- median type (divided or undivided).

The process to acquire information for the four data variables involved three steps. The first was to extract data from crash records. Crash records for the years 2003 through 2012 were used. In the case where there were multiple crashes with different data entries (e.g., different speed limits were recorded in the police reports for crashes that occurred on a segment), the process considered the number of crashes and the timeline of crash occurrences to select the most probable value. The second step was designed to address the case in which road segments did not have any crashes. In this step, the values were derived from their adjacent segment based on the assumption that roadway features are continuous. Finally, as the third and final step of the process, missing data for the remaining segments were manually collected using an in-house web-based application designed to facilitate the review and recording of information from Google Maps’ satellite images.

Table 6-1 lists the new variables added to the All-Roads map using the three-step process. The table also provides the field names of the variables obtained during each step of the process along with the variable codes.

6.1.1 Number of Through Lanes

Although number of through lanes is an entry in the police reports, it was found that the data for the corresponding field, TRWAYLN, in RDWTBL 50 of the CAR database were completely missing. However, because the All-Roads map already included the LANES variable for the number of through lanes, this part of the project became one of verifying the existing LANES data. The variable NOLANES in the RCI was used to verify the LANES data. The results show that the data was 96.3% accurate. This high percentage was expected as the verified LANES data came originally from the RCI. The 3.7% inconsistency was likely a result of mainly changes in the RCI data between 2012 (when the All-Roads map was updated) and 2015 (RCI data year used in verification) due to roadway construction. As 3.7% of the road links in the All-Roads map did not have the same number of through lanes as identified in the RCI database, these links (11,043 links in total) were manually verified in VRICS.
Table 6-1: New Variables Included in All-Roads Map

<table>
<thead>
<tr>
<th>Variable</th>
<th>Field Name</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Through Lanes</td>
<td>LANES_S3</td>
<td>Number of Lanes from Step 3 of the process for updated links only</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>LANES_UPTD</td>
<td>Final Number of Lanes for all links</td>
<td></td>
</tr>
<tr>
<td>Posted Speed Limit</td>
<td>SPDLIM_S1</td>
<td>Extracted Maximum Speed Limit from Step 1 of the process</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>SPDLIM_S2</td>
<td>Derived Maximum Speed Limit from Step 2 of the process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPDLIM</td>
<td>Maximum Speed Limit from Steps 1 and 2 of the process</td>
<td></td>
</tr>
<tr>
<td>Shoulder Type</td>
<td>SHLDTYPE_S1</td>
<td>Extracted Shoulder Type from Step 1 of the process</td>
<td>1 - Paved</td>
</tr>
<tr>
<td></td>
<td>SHLDTYPE_S2</td>
<td>Derived Shoulder Type from Step 2 of the process</td>
<td>2 - Unpaved</td>
</tr>
<tr>
<td></td>
<td>SHLDTYPE</td>
<td>Shoulder Type from Steps 1 and 2 of the process</td>
<td>3 - Curb</td>
</tr>
<tr>
<td>Median Type</td>
<td>TYP WAY_S1</td>
<td>Extracted Median Type from Step 1 of the process</td>
<td>1 - Divided</td>
</tr>
<tr>
<td></td>
<td>TYP WAY_S2</td>
<td>Derived Median Type from Step 2 of the process</td>
<td>2 - Undivided</td>
</tr>
<tr>
<td></td>
<td>TYP WAY</td>
<td>Median Type from Steps 1 and 2 of the process</td>
<td></td>
</tr>
</tbody>
</table>

As the RCI data includes links on state roads and major off-system roads with functional classification codes 1-19, the inconsistencies in the RCI data and the All-Roads map could be because the major roads (i.e., freeways, arterials, and major collectors) were more likely to undergo frequent improvements as a result of upgrade or reconstruction. The remaining links in the All-Roads maps with functional classification codes 20-33 are mainly local roads. As these roads are typically two-lane and do not usually change, it was found that only about 0.5% of these roads needed to be updated or corrected.

6.1.2 Posted Speed Limit

Data for posted speed limit are recorded as SPDLIMIT in RDWTBL 50 and as SPEED in the RCI. Although SPEED_CAT variable in the All-Roads map has information on speed limit, it is not considered a reliable source since it does not provide the specific speed limit. After the data extraction and data derivation steps, 39.4% of the total links (i.e., 616,078 of 1,565,026 links) have information on speed limits. As part of the data verification step, the data obtained from the SPDLIMIT variable in RDWTBL 50 was compared to the data from the SPEED variable in the RCI. Only the links with functional classification codes 1-19 were verified as the data in the RCI includes only these links. The accuracy of this variable was found to be 62.7%. In other words, 62.7% of the total links verified were found to match those from the RCI.

6.1.3 Shoulder Type

Data for shoulder type are recorded as SHLDTYPE in both RDWTBL 50 and the RCI databases. However, the codes in the RCI are more detailed compared to the codes in RDWTBL 50. The
police records shoulder type as paved, unpaved, or curbed, while the RCI codes shoulder type using the following codes: raised curb, paved, paved with warning device, lawn, gavel/marl, valley gutter, curb and gutter, other, curb with resurfaced gutter, and managed lane. Therefore, the prospect of using shoulder type extracted from RDWTBL 50 is limited. In addition, manual data collection and data verification of shoulder type cannot be reliably done as the difference between “paved” and “curb” shoulder types is difficult to determine from the existing satellite images. Consequently, RDWTBL 50 was not found to be a sufficiently accurate data source for acquiring the shoulder type data.

6.1.4 Median Type

Data for median type are recorded as TYPTRWAY in RDWTBL 50, DIVIDER in the All-Roads map, and TYPEROAD in the RCI. For the links available in both the RCI and the All-Roads map, the accuracy of the variable DIVIDER in the All-Roads map was found to be only 49.0%. Therefore, this variable is not considered as a reliable source for median type information. On the other hand, the accuracy of this variable in RDWTBL 50 was found to be 77.8%. However, there is a slight inconsistency in how the police define “divided” segments and the RCI’s definition. The police code locations with only a physical barrier as “divided”, while the RCI codes links separated by turn bays as “divided”. Due to this inconsistency, the prospect of using median type information obtained from crash data (i.e., RDWTBL 50) is somewhat limited.

6.2 Recommendations

Among the four variables explored in this project, the number of through lanes and posted speed limits are considered the most important for safety analyses as well as for many other applications. While the All-Roads map includes the number of through lanes, there is not an automated mechanism to either acquire these data for new links or update existing links (other than those links that are in the RCI database). It is not known why such data from the crash reports are missing from the CAR system. However, the authors have been told that the data would be included in the CAR database beginning with the 2011 crash data under its new crash data format. Once the data are included, Steps 1 and 2 of the process presented in this project may be applied to serve as a means to detecting and updating number of through lanes for the All-Roads map.

In this project, data for posted speed limits were obtained from crash report data for only 39.4% of the total links in the All-Roads map. Unfortunately, it was not feasible to collect the data for the remaining links. An extension of the current study would be to explore the use of speed limits data from Google Maps’ Roads API\(^5\). The application uses large samples of real-time speed data from local vehicles to estimate speed limits.

\(^5\) https://developers.google.com/maps/documentation/roads/
Future studies could also explore methods to estimate the posted speed limit from existing speed data. One potential source of speed data is the Waze application\(^6\) which collects speed data reported by local drivers. The application helps drivers reduce travel times by suggesting less congested routes, identifying locations with traffic incidents, etc. The travel speeds of drivers could be calibrated to correlate with the known posted speeds from the RCI for the state roads and from crash reports for the local roads. It is then possible to apply these calibrated relationships to estimate the posted speed limits for similar roadways given their drivers’ travel speeds. The calibration can be done for different types of roads and for different areas and regions.

\(^6\) https://www.waze.com/