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WORKSITE TRIP REDUCTION MODEL (WTRM) AND MANUAL 
 
 

PROBLEM STATEMENT 
 
Today’s transportation professionals and others often use Institute of Transportation Engineers’ (ITE) Trip 
Generation Manual and the Parking Generation Manual to estimate future traffic volumes to base off-site 
transportation improvements or identify parking requirements. Planners may use these same resources to 
evaluate the impacts of land use or zoning changes on the transportation system. According to ITE, one of 
the many issues facing users of this trip generation data is determining whether specific transportation 
demand management programs and transit services can reduce site trip generation by predictable amounts.  
 

OBJECTIVES 
 
The objective of this project is to develop a Worksite Trip Reduction Model and accompanying manual that 
will estimate the impacts of various combinations of transportation demand management (TDM) strategies 
in reducing vehicle trips. 

 

FINDINGS AND CONCLUSIONS 
 

This project used several thousand worksite trip reduction plans to build the model. The data came from Los 
Angeles, Tucson, and several urban areas in the state of Washington; in all of the areas, employers had been 
under trip reduction requirements for many years. Employers were required to submit plans to reach 
particular objectives, such as a reducing the levels of single occupant vehicle (SOV) use. The data consisted 
of worksite modal characteristics aggregated at the employer level and a listing of incentives and amenities 
offered by employers. The Los Angeles data contained the most data; the Tucson and Washington datasets 
were considerably smaller. Data quality control problems reduced the size of the data in each area and 
eliminated or restricted some potentially useful variables (e.g., dollar values of some incentives). For 
performance evaluation, the datasets were divided into two disjoint sets:  the “training/testing set,” which 
was used to build the models, and the “validation set,” which was used as an unseen data to evaluate the 
models. The dependent variable chosen was the change in vehicle trip rate (VTR) (e.g., reduction of 4.5 
vehicles per 100 employees). VTR correlates closely with the goals of TDM—to reduce trips, decrease air 
pollution, and decrease the need for parking—and is generally proportional to the desired result. Alternative 
dependent variables such as SOV share or average vehicle ridership (AVR) have disadvantages. SOV share 
misses the benefits of moving from one non-SOV mode to another where the switch may actual reducing 
traffic but not affect SOV share (e.g., carpool to transit). The reduction in vehicle trips is distorted when 
using AVR as the dependent variable due to the non-liner relationship between AVR and vehicle trips. 
 
Two approaches were used for the model-building process: linear statistical regression models and non-
linear neural networks. The linear statistical regression models were used as a benchmark for the validity 
and accuracy of the neural net models. The linear statistical regression models minimize the sum of the error 
between the real and predicted data, learning simple linear relationships between the worksite 
characteristics, incentives and the dependant variable “change in VTR,” while the neural networks learn 
more complex non-linear relationships. Sometimes linear regression methods were used to determine which 
variables the neural net would use to build its models. 
 
Several phases were followed to build the models. Models were built for each of the three datasets using a 
variety of approaches for handling the data, including variable selection, grouping of incentives, and the 



treatment of outliers. Models were also built after combining the data from the three urban areas into a 
single dataset. Assuming that the transportation industry was most interested in a model that predicted when 
large reductions could be achieved, the model performance objective was focused on predicting the change 
equally well across the range of the changes in VTR. 
 
No single variable selection technique, data handling method, or modeling approach yielded the best-fitting 
model for all urban areas. In many cases, there was no significant performance difference between the top 
models, so the recommended model for some datasets had to be decided by using the F-value measure, 
which incorporated two other metrics: Recall, which gave a measure of the completeness of the model, and 
Precision, which gave a measure of the correctness of the model. 
 
The best model for each city also was not the model that used data only from that city. Before combining 
the Los Angeles dataset with the others, the preferred model was the one built on the grouped incentives 
data with records with “no incentives” removed. After combining the datasets, the neural network model 
built with no variable selection performed better for Los Angeles than the model built with only data from 
Los Angeles.  For Tucson data, a neural network model built on the equally sampled (i.e., each dataset 
contributes equally) data performed better than the previously selected neural network model built on the 
full sample (i.e., all valid records from the dataset) with ungrouped incentives data. The best model for the 
Washington data was the linear forced enter regression model built on full sample with ungrouped incentive 
data.  
 
The generalized models for any urban area were built on the combined training datasets and equally 
sampled training datasets. The models built using equally sampled datasets were not biased towards any 
dataset. Overall, the best generalized model for any location was the neural net model built on equally 
sampled data based on three performance measures:  (1) accuracy across the moderate range of change in 
VTR, (2) accuracy on full range of change in VTR, and (3) the R-square between the actual Delta_VTR and 
the predicted Delta_VTR (go to http://www.nctr.usf.edu/worksite). Overall, the neural net models 
performed better than the linear regression models, possibly because the neural network program can move 
beyond simple linear regression, which tries to minimize the error between the predicted and actual datasets. 
The neural network models in many situations could learn the non-linear relationships among various 
combinations of strategies. Some neural network models performed worse than the linear models, perhaps 
due to over-fitting the training data and reducing the neural net’s power to generalize unseen validation data. 
 

BENEFITS 
 
The developed model will allow transportation engineers, local planners, developers, employers, and TDM 
professionals to easily input various programs, incentives, disincentives, and worksite characteristics to 
obtain predictions about the change in vehicle trips from the input mix of tactics. The manual and model 
will (1) save the stakeholders time and money, (2) allow for a quick assessment of different worksite-based 
transportation demand management strategies on traffic volumes and parking impacts, (3) allow for 
assessment of parking needs in new developments (and potentially reduce the cost of parking construction), 
(4) enable informed decision-making regarding the types of services and programs employers and 
developers could offer employees, residents and tenants to decrease onsite traffic congestion and reduce 
their need for parking, and (5) contribute to improved air quality resulting from reduced vehicle traffic and 
vehicle miles traveled. 
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