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Executive Summary 

Land use information is essential for transportation demand modeling, and land use modeling is 
critical for producing future land use information. In 2009, the Florida Department of Transportation 
(FDOT) Central Office surveyed FDOT and MPO modelers asking for input on the current state of 
modeling. Land use modeling and integrated land use and transportation modeling are identified as the 
top priority for future modeling development in the state of Florida.  

Traditional land use models, like Lowry and Lowry-type models, allocate land use based on the 
amount of vacant land, zoning, accessibility, land use policies and constraints (e.g., urban growth 
boundaries, land conservation) at individual traffic analysis zones (TAZ), and population and employment 
growth at the county level. Agglomeration factors and market equilibrium of land supply and demand, 
which are important in integrated land use and transportation modeling [1], are not adequately considered. 
To address these issues, this study presents a prototype land use model based on an integrated Cellular 
Automata (CA) and Agent-based Model to simulate the temporal and spatial dynamics of interactions of 
land use and transportation. Data from Orange County, Florida, is used as a case study. 

The land use model is based on the 50m x50m cell grid, using CA model to capture the influence of 
land characteristics (e.g., slopes and neighboring land use types) and accessibility (e.g., travel time or 
distance to major transportation facilities) on land use changes, and agent-based models to model 
behaviors of individual decision maker or agent. The market equilibrium of land demand and supply is 
based on the bid-rent theory.   

Land use change is related to several factors.  In this study, the spatial factors are handled by the CA 
model, while other external drivers are treated as agents. The land development equilibrium is formulated 
as two integer linear problems to combine CA and Agents results to generate the land use change at cell 
level for next year. The bid-rent based land use supply-demand market equilibrium is used to produce the 
household and employment results at TAZ level. The use of agent-based model (e.g., household, 
employment, and developer agent） in CA models is beneficial. CA analyzes the spatial suitability of 
land use change, while the agent models represent policy making and cumulative effects of many micro 
decision-making entities on land use dynamics. 

The CA Model is used in spatial suitability analysis of land change. The spatial properties include: 
(1) the physical attributes of land cell, including soil quality and slope; (2) the number of developed cells 
in Moore neighborhoods; and (3) the local spatial attributes, including transportation accessibility, and 
distance to specific areas (e.g. Central Business District (CBD), shopping centers, education institutes and 
other main public facilities). The regression results of the CA model offer several valuable empirical 
findings. For example, for vacant cells, the closer to CBD, the more likely to be changed to commercial 
land. In the case of neighborhood attributes, the positive coefficient suggests that if a cell is surrounded 
by more residential cells in the Moore neighborhoods, it will be more likely to be developed into 
residential land, reflecting the clustering development phenomenon. 

CA models have limited ability to reflect socioeconomic representations and decision making 
processes, since the models focus on simulating the change in the state of individual cells based mainly on 
the characteristics of neighboring cells [2]. It is difficult to incorporate human decision making into these 
models. Torrens argues that these drawbacks provide motivation to integrate agent simulation [3]. Agent-
based models can model individual decision-making entities’ behavior as well as their interactions. 
Therefore, when modeling land use change, the Multi-Agent method is used to capture the behavior of 
households, employers, developers, and other factors of governmental policies and economics. In our 
model, the agents include government, transportation, household, employment, and developer.  
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It is assumed that the urban land market functions by an auction mechanism where the real 
estate/land parcel is assigned to the highest bidder. In the land market, the behaviors of developers 
constitute the market supply, whereas the household and employment agents form the market demand. 
Under equilibrium conditions, the land price is generated with the bid-rent theory.  From the interactions 
between market demand and supply, land use prices are updated and provide feedback to the land use 
forecasting model for the next time period.  

Take the household agent for example. From the calibrated results of the household mobility model, 
the probability of the household’s willingness to moving decreases with the increase of household size 
and with the presence of school-age children and people older than 50. Increases in the number of 
workers in the household, income, and vacant dwelling units enhance household mobility. In the 
household location choice model, the willingness-to-pay function was calibrated with both 1990 and 2000 
data. The calibration results show that the number of commercial, institutional, residential cells in 
neighborhoods had a positive effect on household location choice. Total travel time for all purposes has a 
negative impact, which means that, when evaluating the potential future land use of a vacant cell, long 
travel times to the location would reduce the possibility of developing into commercial and residential 
land uses. 

To capture the interaction between land use and transportation, a feedback loop is introduced in the 
LandSys program. The output of land use forecasting and allocation models provides the input to the trip 
generation step of the travel forecasting model, and the accessibility and travel time resulting from the 
transportation demand forecasting model are then fed back to and become the input of the land use model.  

The introduction of the feedback loop has increased the accuracy of the land use model. This 
research experimented with two approaches to the CA model: one using the multinomial logit (MNL) 
model (or MNL-CA-Agents model), the other using artificial neural networks (or the ANN-CA-Agents 
model).  The results are very similar, as shown by an accuracy of 87.6% for the MNL-CA-Agents model 
and that of the ANN-CA-Agents model of 87.7%. Because the ANN models employ a “black box” 
technique, which makes it difficult to test the effects of policy intervention, the MNL-CA-Agent land use 
model provides a more clear relationship between spatial variables and land use change, allowing for a 
better interaction with Florida Standard Urban Transportation Model Structure (FSUTMS). For the MNL-
CA-Agent land use model, most allocation errors fell within a range of [-50, 50] for households (~52% of 
cells) and employment (~37% of cells). At the TAZ level, the model predicts changes in household and 
employment with accuracies of 75.7% and 69.9%, respectively, considering the error ranges within ±200. 

To evaluate the performance of the integrated land use and transportation model, three indicators  -- 
link saturation in the transportation network, overall vehicle miles traveled (VMT), and vehicle hours 
traveled (VHT)-- are used to compare the results of the integrated model and the traditional transportation 
demand modeling alone. Four scenarios were examined for Orange County in 2000, 2012, and 2025: 
business-as-usual, land use integration model, urban growth boundary options, and mixed land use. The 
results show that in the integrated model, the values of the three indicators are lower than those predicted 
by standalone FSUTMS models, that indicates the transportation model alone without the land use model 
produces higher VMT and VHT. In addition, this also shows that the standalone land use model without 
the accessibility feedback produces fewer households and employments in the center of the study area and 
more at the edge of the city than that estimated by the integrated model.  

This study shows that the LandSys is capable of producing accurate land use change results, is able 
to capture the decision makers’ behavior, and is sensitive to policy changes and transportation 
accessibility and travel time changes. The next step is to create a user-friendly graphical interface to 
integrate the LandSys model into the transportation demand modeling (e.g., FSUTMS model), and to 
automate the land use-transportation feedback loop. The ultimate vision is to create a new function inside 



vii 
 

the FSUTMS using Cube Voyage so that transportation modelers can model the land use changes and 
integrate the land use model results into the transportation model, and the results of the transportation 
demand modeling results can be automatically fed back into the land use model, to achieve a fully 
automatic and seamless process.   

Key words：integrated land use and transportation modeling, cellular automata, agents model, land use 
modeling, GIS 
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1. Introduction 

1.1 Background 

In 2009, the FDOT Central Office conducted a survey of Florida Standard Urban Transportation Model 

Structure (FSUTMS) users, including 26 metropolitan planning organizations (MPO), FDOT districts, 

and other planning agencies in Florida. From this survey, the most important need was identified to be 

integrating land use models into FSUTMS.  Improving integrated land use and transportation models is 

highly recommended by the State agencies and MPOs to model the interaction of land use and 

transportation and facilitate what-if analysis in land use and transportation policies. 

 

All traffic demands result from different land use formation. Analyzing land use changes is essential to 

traffic demand modeling. In particular, the land-use patterns (e.g., types, intensity, and changes) are 

necessary for understanding travel demand and traffic congestion. To effectively capture land use in 

transportation demand analysis, the traditional four-step transportation demand model takes land use 

information as given and reflects it in its first step --a trip generation model. The results of trip generation 

are heavily influenced by land use patterns, because different land use patterns lead to different travel 

demands (trip generation and attraction).  

 

Land use change is a dynamic process that involves complex interactions between many factors (e.g., land 

suitability, zoning and land use policies) and decision makers (e.g., developers, government agencies, 

residents and employers) at various spatial scales (e.g., neighborhoods, cities, counties and metropolitan 

areas). The complexity of this dynamic process makes the creation of a comprehensive land use model 

very challenging.  
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1.2  Goal and Objective 

The objective of this study is to explore the feasibility of developing a land use model based on readily 

available data to serve the needs of the Florida Standard Urban Transportation Model Structure 

(FSUTMS), a transportation model primarily developed to forecast travel demand for long-term 

transportation planning in Florida [4].  The goal is to develop a prototype of such model. 

 

Ideally, the model should be able to 

 Provide land use data as input to FSUTMS models; 

 Accurately reflect land use changes in the past (accurate validation); 

 Be sensitive to policy changes; 

 Reflect behavior changes of different players in the supply and demand of land use market; 

 Conduct what-if scenario analysis; 

 Have strong theoretic basis; 

 Use existing readily available data; 

 Be seamlessly integrated with GIS and FSUTMS model. 

 

1.3  Methodology Design and Modeling Framework 

Land use change is a complicated and dynamic process over both spatial and temporal dimensions with 

many impetus factors, including changes in demand, economic factors, land suitability, and the 

complicated decision-making processes of households, firms, developers, land owners and governmental 

policies. Ideally, all of these factors must be considered when modeling land use changes. However, in 

reality, due to the limitations of data availability, only some of the factors are included in the land use 

modeling process. Nevertheless, land use models should at least reflect three important categories of 

factors (or processes) that shape land use changes: characteristics of the location and the nature of the 
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land use, the market demand and supply, and the behavior of different decision makers who make 

decisions on the purchase and construction of different land developments, as well as government policies. 

 

This research uses cellular automata (CA) and agent-based models for modeling land use changes and the 

bid-rent theory to represent the equilibrium of the market demand and supply of land uses. Cellular 

automata models have been extensively used in modeling and simulating complicated spatio-temporal 

processes. CA can model the changes of land use patterns over time and simulate a variety of spatial 

processes and influences relevant to land use based on the location and the characteristics of the land as 

well as the influence of the neighboring land use. The agent-based model presents a flexible 

representation of heterogeneous decision makers, or agents, whose behaviors are potentially influenced by 

interactions with other agents and with their natural and built environment, including employment agent, 

household agent, developer agent and government agent. Each agent is composed of dynamic models and 

elements. Dynamic models depict the agent state change (e.g., change from vacant to residential, or from 

residential to commercial) from one base year to the next. The input data of these dynamic models is 

generated from the elements of the agent itself and other agents. By using a cell-based representation of 

land, and transition rules defined for each cell considering the agents’ behavior and impacts, the land use 

changes over time can be well modeled and simulated. 

 

A major advantage of this modeling approach is the integration of the CA and agent-based models, which 

can not only capture the changes of land use patterns, but also model the behavior of individual decision-

making entities and the interactions between them. This method incorporates social processes and non-

monetary influences on land use change, such as agglomeration, consumer preferences, and government 

policies in transportation, land use and growth management. The proposed approach can also reveal 

important factors that affect land use patterns over time and over space. Therefore, it could produce better 

results for modeling land use changes and forecasting future land use development patterns. Detailed 
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framework of the model is shown in Figure 1-1 and Figure 1-2. Figure 1-1 describes the model structure 

while Figure 1-2 depicts the relationship between different modeling components and relationship with 

the transportation demand models. 

 

The CA model analyzes the spatio-temporal land use changes using the multinomial logit model based on 

the characteristics of land (such as accessibility, slope and distance to certain attractions like airport, 

central business district and transportation hubs) and the nature of the neighboring land use types. The 

transitional rule is estimated as the probability of the changes of land use from one state in one year (i.e., 

land use types) to another in the following year (e.g., from vacant land in year t to commercial 

development in year t+1). The output of the CA model is the amount of land use by type in different 

geographic locations at certain time period. The model is validated by measuring its accuracy in 

replicating land use changes in the past. The CA model can capture the spatial and temporal 

characteristics of complex urban processes, and has earned a positive reputation for its use in simulating 

land use change [5 6]. 

 

Though cellular modeling techniques offer greater flexibility than TAZ-based models when representing 

spatial and temporal dynamics, CA models have limited ability to reflect socioeconomic representations 

and decision-making processes, since the models focus on simulating the change in the state of individual 

cells[2]. These models are difficult to incorporate human decision making into the process. Torrens[3] 

argues that these drawbacks provide motivation to integrate agent simulation into CA models agent 

simulation. Agent-based models can model individual decision-making entities’ behavior as well as their 

interactions. Therefore, as shown in Figures 1-1 and 1-2, when modeling land use change, the Multi-

Agent method is used to capture the behavior of households, employers, developers, land owners, and 

government policies. 
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In the Multi-Agent Model, the first step is to use the bid-rent function to calculate households’ and 

employment’s location choice. This assumes that the urban land market is operated by an auction 

mechanism where the real estate/land parcel is assigned to the highest bidder. CA land use model will 

produce a land use allocation strategy, and then the bid-rent model will generate new developed 

residential/employment cells as well as the number of households/employment allocated in these cells. 

After that, the Land Owner Agent captures land owners’ willingness to develop the vacant land, using the 

Monte Carlo method to simulate the probability of this happening. Then, a Government Policy Agent is 

used to estimate government policies on land use. This includes decisions regarding conservation land 

parcels, zoning and land use planning. Finally, a Land Price Agent is used to capture land price changes. 

 

Figure 1-1. Model Structure 
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Figure 1-2. Input and Output Relationship between Models 

 

1.4  Geographic Scale 

Land use models can be estimated in different geographic scales. Most existing land use models are 

estimated at the traffic analysis zone (TAZ) level, which makes it difficult for the models to identify the 

changes of land use and transportation facilities at the micro level, which makes the analysis of some 

microscopic policy changes difficult, such as mixed land use, or transit-oriented development. The 

simulation of land use change at a smaller grid cell level is one way to address this concern.  
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Therefore, this research uses a small cell (50m X 50m) as the basic unit of modeling analysis (more 

discussion will be given later in the document). The cells also allow for the integration of raster-based 

geospatial datasets in Geographic Information System (GIS). We realize, however, there are some 

problems with the use of cells in land use modeling, such as the modeling results may be sensitive to the 

size and layout of the cells [7 8]. Nevertheless, compared to TAZ-based models, the cell-based land use 

models provide greater simplicity and a clearer representation of the dynamics of land use change [9].  
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2. Model Specifications and Literature Review 

2.1  Integrated Land Use and Transportation Modeling Review 

The integration of land use development with transportation planning has been regarded as an important 

facet of smart growth and sustainable development [10 11]. Transportation demand results from the spatial 

distribution of various land use patterns. Investigating the spatial interactions between land use and 

transportation is essential for transportation policy-making and long-term planning. Forecasting future 

land use change is the first step for transportation demand modeling as future land use generates 

socioeconomic and demographic data for transportation models [12]. Based on forecasts of future land use 

development patterns, transportation planners can simulate what measures should be taken to enhance 

positive impacts and avoid certain negatives effects. Thus, the accuracy of land use forecasting is crucial 

for transportation planning modeling.  

 

Land use change is related to the interactions among social, ecological, and geophysical processes [13]. 

The consequences of land use change can include a loss of biodiversity, climate changes, increased 

pollution, urban sprawl, and traffic congestion. The demand for industry and residential land contribute to 

many of these changes, as do transportation developments, which have transformed large areas of 

agricultural land to residential and industrial land along highways [14]. When choosing suitable land, the 

nearby transportation system is an important factor, especially in respect to accessibility and travel cost. 

While conversely, haphazard land use development may induce increase in travel demand, which is a 

result of different spatial pattern of activities resulted from various land use patterns. Due to the complex 

relationship between land use and transportation, for the sake of future transportation planning and policy, 

it is important to understand how land use change interacts with transportation [1 11 15]. Based on 

simulations of future land use situations, planners and decision makers can take measures to plan well for 

future growth. 
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2.1.1 TAZ-based Integrated Model 

Modeling land use change is  complex and challenging, because it involves dynamic and complex 

activities, including the interactions between multiple land use attributes (e.g., suitability, zoning, policy) 

and decision makers (e.g., developers, government agencies, households, employers). Examples of land 

use models include Lowry and Lowry-type models, Land Use Model for Santiago City (MUSSA), 

Production Exchange and Consumption Allocation System (PECAS), Integrated Land Use Transport 

model (TRANUS), and Transportation Analysis and Simulation System (TRANSIMS)  [16 17 18 19 20]. In 

traditional models, households and firms are allocated to traffic analysis zones (TAZ), based on vacant 

land zoning, accessibility, growth management policies, and land use zoning policies.  

In TAZ-based land use models, especially when the TAZ is large, TAZ-level data provides insufficient 

information for the detailed land use and transportation analysis. Land use change is difficult to track at 

the TAZ level. In addition, the forecasting transportation results show only the allocated results in 

aggregate (e.g., number of household and firms), rather than the detailed geographical location inside 

each TAZ. This makes it difficult to analyze the interactions between land use and transportation within a 

TAZ; therefore, forecasting land use change at a cell level (e.g., 50m × 50m) has the potential to generate 

land use change more accurately. There are, however, several problems when using cells in land use 

modeling, such as the modeling results may be sensitive to the size and layout of the cells [7 8]. 

Nevertheless, compared to TAZ-based models, the cell-based land use models provide greater simplicity 

and a clearer representation of the dynamics of land use change [9]. 

 

2.1.2 Cell-based Integrated Model 

The cell-based model, when compared with TAZ-based models, is able to calculate the change in land 

usages. The discrete cell not only represents these changes more accurately, but also enables the 

integration of raster-based geospatial datasets in GIS (see Figure 2-1).  
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Figure 2-1.    Cell-based Land Use Map. (An illustration of the cell concept, not the 50m X 50m cell) 

 

2.2  CA Model 

CA is used to simulate complicated spatial-temporal processes [21]. In the 1940s, Ulam suggested that the 

notion of a self-replicating machine would be amenable to rigorous treatment if it could be described in a 

“cell space” format – a geometrical grid or tessellation, regular in all dimensions [22]. Since then,, CA has 

been used to investigate the logical nature of self-reproducible systems [21] and extensive experiments [23], 

simulate phenomena in the geo-spatial domain, and dynamically simulate the land use change [24 25 26]. 

 

CA represents the dynamic behaviors in both temporal and spatial dimensions. However, it is limited in 

its ability to reflect socioeconomic characteristics and decision-making processes. This is the inherent 

drawback of CA motivated agent-based models, which otherwise flexibly represents individual decision-

making entities’ behavior and interactions [3]. Integrating the CA and agent-based models provides a way 

to capture spatial drivers, human behaviors, and socioeconomic characteristics of land use change.  
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In the CA model, the space is composed of individual cell which can take one of several states. The states 

of each cell may represent any spatial variable, e.g., the various types of land use with different intensity. 

The CA will evolve over a sequence of discrete time steps. Transition rules are the heart of a CA, as they 

guide its dynamic evolution. A transition rule normally specifies the states of cell before and after 

updating based on its neighborhood conditions. In CA, the state of a cell can change only based on the 

transition rules, which are defined in terms of neighborhood functions. 

 

Recent advances in CA and agent-based models make them viable to dynamically simulate land use 

change [27 28].  The CA models represent space as a grid (raster) with a set of rules that govern the state of 

a cell based on the configuration of its adjacent cells [28 29]. The discrete cells in CA models accurately 

represent the spatial and temporal characteristics of complex urban processes and enable the use of 

integrating raster-based geospatial datasets into GIS. Therefore, when compared to TAZ-based land use 

models, CA models better simulate land use cover changes. However, when reflecting socioeconomic 

representations and decision-making processes, they have limited ability since they only focus on the 

changes in the state of individual cells and are unable to incorporate human decision making [2]. To solve 

this problem, Torrens [3] recommends an integration of agents into CA models.  

 

2.3  Agent Model 

Development of cellular automata (CA) and agent-based models provide a powerful and flexible tool for 

the dynamic modeling of land use change [30].   

 

Agent-based models have many of the characteristics of cellular automata modeling. They can be used to 

model the behaviors of mobile agents within a geographic area. Agents can be considered as a special 

case of an automaton, having all features of the general automation, but there is a distinction in that these 

agents are mobile and can represent the external drivers responsible for processes (e.g. socio-economic, 
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population, etc)[31]. Thus, agent-based models are mobile geographical automata with transition rules. 

While cellular models are focused on landscapes and transitions, agent-based models focus on human 

actions.  

 

An agent in the agent-based modeling is considered to be a self-contained program that has its own 

behavior and makes its own decision to achieve its own goals and objectives, based on its perception of 

its environment and relationship to other agents. Several characteristics define the agents. For example, 

they are autonomous, share an environment through agent communication and interaction, and make 

decisions that tie their behavior to the environment [32] . Agent-based models capture the behavior and 

decision-making process that each individual decision maker (agent) performs, as well as related 

interactions. The agent-based model provides for an extremely flexible representation of heterogeneous 

decision makers, who are potentially influenced by interactions with other agents and with their natural 

environment. Agent-based modeling has become popular in the land use modeling community in recent 

years, because it can capture the behavior and decision-making process of each individual decision maker 

(agent) and their interactions by considering social interaction, adaptation, and decision making at 

different levels. 

  

Under certain social interactions, adaptation, and decision making choices, agent-based models capture 

the behavior and decision-making processes of each individual decision maker (agent) and their 

interactions[33]. For example, in the UrbanSim model, agents are used to reflect the key choices of 

households, businesses, developers, and government bodies and their interactions in the real estate market 

[12]. By focusing on certain principal agents in urban markets and their choices relating to location and 

development, the UrbanSim model deals directly with behaviors that are readily understood and analyzed 

by planners, policy makers, and the public. To achieve market equilibrium, Zhou and Kockelman (2010) 

developed an agent-based approach at the parcel level to forecast land use change by relying on 
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behavioral foundations for market agents (households, firms, and land developers/owners) and their 

interactions. 

 

Multi-agent system land use change (MAS/LUCC) models are particularly well suited for representing 

complex spatial interactions under heterogeneous conditions and for modeling decentralized, autonomous 

decision making. MAS/LUCC combines two key components into an integrated system[30 31]. First, a 

cellular mode that represents the landscape over which decision makers making decisions, which is 

consistent with the discrete cells in the ANN based CA model. The second component is an agent-based 

model that describes the decision making architecture [34].  

 

Sudhira (2004) developed a framework for the integration of agent-based and CA models for geospatial 

simulations. Here, all processes are modeled as agent-automata in the agent-based modeling process, 

which effectively helps visualize ‘what if’ scenarios. The integration of CA models with the agent-based 

model are also adopted in UrbanSim (Waddell, 2002 and 2003). In the design of the UrbanSim system, 

several of the preceding modeling approaches have been assimilated. In UrbanSim, a cell-based 

representation of land, and a probability of change in development type from one year to the next that is 

influenced by the state of neighboring cells, and the real estate development model component is modeled 

using cellular automata 

 

This project extends this line of research by integrating the CA model and multi-agent-based model in the 

forecasting of land use. It differs from previous research in two aspects. First, it specifically focuses on 

land use forecasting at the travel analysis zone level for the purpose of serving transportation demand 

modeling. This is unlike the previous studies, which have focused on explanations of current land use 

patterns. Second, transportation and land use are integrated by feeding the transportation modeling results 

back into the land use models. By using a cell-based representation of land, and a transition rules defined 

for each cell considering the agents impacts, the land use forecasting can be well implemented.  
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2.4  Bid-Rent Theory 

Bid-rent theory is a geographic economic theory that refers to how the price and demand of real estate 

change with distance, as it increases towards some point in the market, usually the Central Business 

District (CBD) [35 36]. Because travel costs rise with distance from the market (typically the CBD), rents of 

real estate generally tend to fall correspondingly. Generally, retail establishments wish to maximize their 

profitability, so they are more willing to pay higher rents for land close to the CBD [37]. 

 

In an integrated land use and transportation model, the market-based supply-demand relationship tends to 

dominate aggregate behavior, with prices being endogenously determined in determining the outcome of 

these supply-demand interactions. If these major supply demands are not considered, the model cannot 

capture the dynamic evolution of urban system over time [1]. To describe the interactions of agents’ 

behavior in the integrated land use and transportation models, bid-rent theory has gained increasing 

interest in capturing the market equilibrium [18 38 39 40]. The bid-rent theory describes how the price and 

demand of real estate vary over distance. For example, the price of the land typically but not always 

increases as the land is closer towards some point in the market, usually the Central Business District 

(CBD), and decreases as the land is away from the CBD [35 36].  The MEPLAN model directly represents 

land market dynamics with location-choice processes of different industries and households and their 

interactions [41]. The MUSSA model [18 42] employs a bid-rent theory to simulate the competitive urban 

land market, where land rents are endogenous and consistent under equilibrium conditions (e.g., land 

availability and the developers’ behavior). In the UrbanSim model, a hedonic regression is used to reflect 

the effects of site, neighborhood, accessibility, and policy on land prices [12].  

 

Bid-rent theory has become increasingly popular among the integrated land use and transportation models 

[18 38]. The MUSSA model developed by Martínez — a land use equilibrium model — focuses on the bid-
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choice of competitive urban land market [18]. In a four-stage transportation model, the interactions 

between land use and transportation can be captured in a static equilibrium. Briceño (2008) proposed a 

global system equilibrium model which integrates land use bidding, land use supply, and Markovian 

traffic in a hyper-network [39]. The integrated equilibrium model assures the convergence of solutions 

under certain conditions; however, it is based on static rather than dynamic land use changes. To capture 

the relationship between transportation and residential location, Chang and Mackett (2006) proposed a bi-

level model which explores the bid-rent network equilibrium by accounting for the decision making 

process of households which is similar to an n-player non-cooperative game following the Nash 

equilibrium [43]. 

 

In land use and transportation models based on bid-rent theory, the changes in travel cost and 

transportation accessibility result in the households’ relocation choice through a bidding location process, 

which affects the transportation demand in transportation networks [44]. Like Briceño’s integrated model 

[39] and Martínez’s bidding model [45], the bid-rent model in this study is integrated with a dynamic land 

use change-based CA model to explore the effect of land use allocation on transportation.  

 

In bid-rent theory, the urban land market is assumed to follow an auction mechanism where the land will 

be developed by the highest bidder. In bid-rent, households’ residential location choice model and the 

bidders (i.e., the households) are categorized into different types (h = 1, 2, …, and h ), according to 

socioeconomic characteristics. The bids are represented by the consumer’s willingness to pay function for 

an available residential location, which is in turn related to the household income, the spatial attributes of 

a location, and potential transportation effects.  
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For household of type h  and cell i  available for residential location, the willingness to pay function hiB  

is postulated as follows [39]: 

1( ) ( )p p
hi h hi i h hi

p

B b z M t    
  

         (2-1) 

where hb  is a monetary disutility bid for household agent of type h  and is proportional to household’s 

income. hiz
 is a function of 1i  and captures how a household of type h  values the spatial attributes of 

cell i . The last term indicates the total transportation utility under different trip purposes p , which 

chooses cell i  as a residential location. p
hM  is the number of trips with purpose p  for household of type 

h . ( )p
hi t  is the total cost to reach purpose p , when the household of type h  chooses cell i  as the 

residential location. ( )p
hi t  is obtained from the logit-based trip distribution model. 

 

The bid function hiB  is assumed to be a random variable. This accounts for the behavior produced by 

idiosyncratic differences among consumers within a cluster [20]. The bid function can be represented by 

hi hi hiB B   , where the random item hi  is assumed to follow IID Gumbel distribution with dispersion 

parameter  . The bid probability, /Prh i , probability that the household type h  is the highest bidder for 

location i, is given as follows: 

/

exp( )
Pr Pr( ) , ( 1, 2, ..., h)

exp( )
hi

h i hi h i
h ih

B
B B h

B






    
    

                     (2-2) 

In the supply side, a residential location is assumed to be offered to the household with highest payment. 

As a result, the rent of location ir  is determined by the expected highest bid and could be given as 

follows: 

1
[ ( )] ln exp( )i hi hi

h
h

r E Max B i B


 
    
 
              (2-3) 

where   is a constant. 
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The household agents’ optimal choice for a residential location is supposed to maximize the surplus 

between bidding price and rent, which results in the following problem: 
( )i hi hiMax B r 

 where 

0 1{ | , 1}ii i x   denotes the available residential cells. The rent is taken as a deterministic variable. The 

choice probability /Pri h , probability that an alternative residential location 1i
 yields the highest 

utility to household agent of type h  given by: 

0

/
1

exp( ( ))
Pr

exp( ( ))
hi i

i h
i hi i

i

B r

x B r










                     (2-4) 

/Pri h  is the probability that the household of type h  chooses residential location i  when location i  is 

developed for residential land use. 

 

 

2.5 Artificial Neural Network (ANN) Model 

Simulating land use change is a complex and challenging process, since it is a dynamic spatial-temporal 

activity that involves complex interactions between multiple land use attributes (e.g., suitability, zoning, 

and policy) and multiple human decision making behaviors (e.g., developers, households, firms, 

government agencies) [46 47]. Moreover, modeling land use change for transportation demand analysis 

involves modeling many land use types. Depending on their contribution to trip generation, Meyer and 

Miller [48] divide land use into five general types: residential, industrial, commercial and services, 

institutional (education), and transportation. Modeling changes among multiple land use types is 

complicated and more difficult than modeling urban growth, which is normally done on a binary basis: 

land is either developed or undeveloped [28].  

In the last decade, along with the rapid development of artificial intelligence (AI), symbolic approaches 

[e.g., artificial neural network (ANN), evolutionary programming, and fuzzy logic] are becoming 
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integrated into modeling land use change [28 46 49 50 51 52]. Neural network technology helps geographers 

address issues  previously poorly handled by traditional statistical techniques, such as scale, space–time 

dependencies, nonlinear relationships, and data outliers [52]. There has been an explosion of interest in 

ANN models, which have been successfully applied in geographic and spatial research, including remote 

sensing, image recognition, climate change, ecological and environmental sciences, and land use change 

[53 54].  

Neural networks are silicon analogs of neural structure that are trained to associate outcomes with stimuli. 

ANNs therefore use a learning approach to quantify and model complex behaviors and patterns. The 

relationship between spatial factors and land use change is most often non-linear, irregular, and highly 

complex. An advantage of ANNs is their ability to handle non-linear functions. They can capture the 

complex non-linear relationships between input and output layers through an adaptable learning process. 

ANNs provide highly flexible function approximates for any data and, once trained, are extremely 

efficient with computations [54].   

The temporal and spatial complexities of land use change in urban systems can be well modeled by 

properly defining transition rules in CA models [28 29 55]. A transition rule specifies the state of cell before 

and after updating. In a CA land use model, varying transition rules are deployed to satisfy multiple 

objectives and specifications, or they can be coupled by setting a series of constraints, all of which work 

towards generating an idealized urban form [21 28 46 56]. Conventional methods used to define transition 

rules include statistical regression models, logit models, fuzzy logic, neural networks, support vector 

machines, and multi-criteria evaluation techniques [57]. When defining parameters, neural networks have 

the ability to reduce the tedious work, while also relaxing the condition of independence between spatial 

variables, as opposed to many other conventional methods used when defining transition rules.  
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3. Data Processing 

3.1  Data Source 

To implement the model, the required raw data includes parcel level data, including land use, planning 

and zoning data; and data from both parcel and traffic analysis zones (TAZ), including household, 

employment, and other socio-economic data. The model database includes digital elevation model (DEM) 

files from U.S. Geological Survey [58], soil information, land use/cover data, parcel data, and zoning 

boundaries information from Florida Geographic Data Library [59], census information from the Census 

Bureau, and the transportation network skim file from FSUTMS.  

Travel time data provided by FSUTMS, was generated by the Central Florida Regional Planning Model 

(CFRPM), and implemented in Cube Voyager. After the distribution, model split and assignment steps, 

the zone to zone travel time for Orange County was extracted from the output of CFRPM after 

distribution, model split and assignment steps. In the agents’ model, the index of agents’ total travel time 

is used as an index for decision making. This ensures reliable data are provided for further land use 

change modeling.  

 

3.2 Data Processing 

Figure 3-1 shows the procedures of data processing that employs a set of tools built from both Matlab and 

ArcGIS to read, analyze, and process the original GIS data. In the case of the CA model, all data were 

converted into grid cells (50m X 50m). In the case of the agent models, the household information from 

polygon-based census data are allocated into residential cells according to different residential density, 

while the employment information are assigned correspondingly into employment land cells. The 

individual household and employment information are linked with land cells in the database.  
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Figure 3-1. Schematic Diagram of Data Processing 

In order to read, analyze, and process the raw data, a set of tools were constructed using both Matlab and 

ArcGIS. When using ArcGIS, all data were converted into raster format, with each cell representing an 

area of 50m X 50m. For the data in the agent model, the household information from polygon-based 

census data was assigned to residential cells based on residential density, and the employment information 

are assigned correspondingly into employment lands. The individual household and employment 

information were linked with land cells in the database.  
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3.3  Land Use Classification  

Based on their contributions to trip generation, Meyer and Miller [48] divide land into five land use types: 

residential, industrial, commercial and services, institutional (education), and transportation. The first four 

are related to travel demand and the last is related to travel supply.  

 

This study focuses only on changes of travel-demand related land uses, and therefore travel-supply related 

lands (e.g., roads, airport, railway station) are not considered. There are more than 40 land types in land 

use/cover data of Orange County, FL. To satisfy the requirements of the proposed land use model, all land 

types are reclassified into four land use types: A, B, C, and D (see Table 3-1). Related to travel demand, 

land use Type C is further classified into residential, industrial, commercial and services, and institutional 

(education). 

 

Table 3-1. Reclassification of Land Use Types 

New Land 

Types  

Features Original Land Types in land use/cover data 

A  Unchanged over 

time 

Rivers, lakes, water, reservoirs, bays and 

estuaries 

B  Related with travel 

supply  

Transportation, communication and utilities, 

airport 

C  Related with travel 

demand  

Residential, commercial services, institutional, 

industrial  

D  Vacant Open land, agriculture, range land, special 

classification land, wetlands, tree plantation 

area, upland forests 

 

The reclassification of land use types, based on transportation demand, has been completed using data 

from Orange County. A quantitative method was developed to discover what land types are subject to 

change in relation to with trip generations.  
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3.3.1 Land Classification in Orange County 

Orange County land use data was provided by the Florida Geographic Data Library (FGDL) to the 

researchers. There were four years for which data was available, 1979, 1990, 2000, and 2004. Two of 

these, 1990 and 2000, were chosen for this study, and the land use types reclassified. 

 

The Orange County land use/cover data attribution table for both 1990 and 2000 distinguishes land use 

types into three levels. The first level includes eight classifications, which are mainly used to distinguish 

between urban and nonurban areas. The second level is related to land types involving trip generation, 

such as residential, industrial, commercial and services, and institutions. There are 40 of these divisions in 

1990, and 38 for 2000. The third level of the data includes 123 types with more detailed land use 

information.  

 

For the purposes of this study, one level needed to be chosen as the base. The first level is too broad; and 

the third level would produce a data process unnecessarily complicated for this work, therefore, the 

middle level is chosen. 
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Table 3-2. Original Land Use Classifications (Level 1 and Level 2)  

LEVEL ONE LEVEL TWO 

Land use type  Land use type  1990 index 2000 index 

Water 

Bays and Estuaries     28 37 

Lakes 23 10 

Reservoirs 20 7 

Streams and waterways 27 26 

Water 7 33 (beach) 

Wetlands 

Non-vegetated wetlands 40 35 

Vegetated non-forested wetlands 3 13 

Wetland coniferous forests 15 16 

Wetland forested mixed 18 8 

Wetland hardwood forests 9 9 

Upland forests 

Tree plantations 26 24 

Upland coniferous forests 6 11 

Upland forests 37 2 (con.) 

Upland hardwood forests 16 5 

Agriculture 

Cropland and pastureland 8 22 

Feeding operations 29 36 

Nurseries and vineyards 31 29 

Other open lands (rural) 33 31 

Specialty farms 35 32 

Tree crops 12 19 

Barren Land 
Disturbed land 28 14 

Sand other than beaches 38 34 
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LEVEL ONE LEVEL TWO 

Land use type  Land use type  1990 index 2000 index 

Rangeland 

Herbaceous (dry prairie) 17 18 

Mixed rangeland 24 27 

Shrub and brushland 2 12 

Special 

Classifications 

Special classifications 4 38 

Vegetation 5 N/A 

Urban and Built-

up 

Extractive 21 4 

Open land 10 20 

Commercial and Services 1 3 

Recreational 11 25 

Industrial 32 17 

Institutional 25 28 

Residential, high density (> 6) 13 6 

Residential, low density (< 2) 14 23 

Residential, medium density (2-5) 22 21 

Communications 36 30 

Transportation 30 1 

Transportation, communication & 

utilities 

34 N/A 

Utilities 19 15 
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3.3.2 Land Use Types in Orange County 

Using the level two land classification, the land use types were reclassified to allow for further analysis. 

The data was reclassified into five A/B/C/D/E levels. Certain spatial land use types, such as rivers and 

most forest and conservation areas, do not change over time. These land types as classified as A. In 

addition, those land types which contain only an extremely small number of cells, so much so that they 

can be neglected in the data analysis, are labeled type A. Type B is defined by land types that are not 

related with trip generation. These areas may change from one land usage to another, but they are not 

suitable for construction. Examples include certain wetlands and forests. These would never be land types 

related with trip generation. Thus, A and B lands are not included in the integrated land use and 

transportation model. After they are removed, the remaining land that will be used in the model is further 

divided. 

 

All land related to trip generation is classified as Type C. This is further divided into residential, industrial, 

commercial and services, and institutional land, depending on trip purposes. Transportation network and 

facilities are also included in Type C, which will be expanded according to increasing traffic demand. 

Classifications for type C are shown in Table 3-3.Those areas that could possibly be changed into C are 

classified as type D. The land use forecasting model for transportation demand will focus on this category 

when examining changed traffic demands. 
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Table 3-3. Land Uses in Level 2 that Contribute to Transportation Planning Purposes 

Major LU for Transportation Land uses in LEVEL 2 (with the corresponding 

1990 index) 

 

 

 

C 

Commercial 

and Services 

Commercial and Services (1) 

Recreational (11) 

Industrial Industrial (32) 

Institutional Institutional (25) 

Residential 

Residential, high density (13) 

Residential, low density (14) 

Residential, medium density (22) 

 Transportation 

Communications (36) 

Transportation (30) 

Transportation, communication and utilities (34) 

Utilities (19) 

 

3.3.3 Quantitative Definition  

Next, we will introduce the method used to categorize land into either A, B or D, as mentioned above. 

 

First, each land use change for type i in Level Two will be further classified into two sets: change out 

{ }i  and change in{ }i . Set { }i  includes all the land types that current land type i will change to, 

namely the future land use type set. Set { }i includes all the land types that current land type i are from, 

the past land use type set. Based on the land use change between 1990 and 2000, set { }i will be 

generated using 1990 data as the base year data for land use change analysis. Set { }i will use 2000 data 

as base year data. Detailed notations for data reclassification are shown as following: 

iN : Total number of cells in type i . 

( )iN j


: Number of cells that change from type i to type j  

( )iN j


: Number of cells that change from type i to type j  



27 
 

( )iP j


: Proportion of the cells (raster) number in type i  that are changed into  

       type j ; ( ) 1ij
P j


 and ( ) ( ) /i i iP j N j N

 
 . 

( )iP j


 : Proportion of type i  cells that are changed from type j ;   

       ( ) 1ij
P j


  , ( ) ( ) /i i iP j N j N

   

 

Permitting for a certain range of allowed error, according to the definition, type A, B, and D can be 

formulated as follows: 

     
{ ( ) 90%} { | 100}i iA P i i N


     

     
{ | ( ) 0.03 ( ) 0.03, }i iB i P j P j j C

 
     and  

     
{ | ( ) 0.03 ( ) 0.03, }i iD i P j P j j C

 
     or   

3.3.4 Results of Reclassification 

Using the spatial data analysis tool in ArcGIS for the LEVEL ONE water data, 91.2% of cells show no 

land use change. The five corresponding subsections in Level Two are reclassified as type A. According 

to the definitions of B and D, by calculating the change-in set and change-out set of categories, C, B and 

D will be separated.  

 

Table 3-4 shows the main results of change-out data, based on the change between 1990 and 2000 data, 

according to the definitions of B and D. Using the change-out proportion ( )iP j


, over 70% of land in 

Category C will remain unchanged. What did changes were mostly internal, such as a shift from low-

density residential land to medium density (0.17) or medium-density land shifting to high-density (0.16) 

or industrial land converting to commercial land.   
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Table 3-4. Change-Out and Change-In Results from 1990 to 2000 

Type C   Change out { }i  Change in{ }i  

 i  
iN 90 ( )iP j


  

iN 00 ( )iP j


 j  ( )iP j


 j

 

Commercial 

and Services 

Commercial 

and Services 

1 

 

7161 

 

0.66  1 10059 0.52  1 0.04  30 

0.09  32 0.08  32 0.09  2 

0.08  30 0.08  6 0.03  10 

  0.05  9 0.03  22 

    0.04  8 

Recreational 

11 

3273 0.53  11 3695 0.04  22 0.03  8 

0.04  25 0.11  12 0.07  16 

0.06  22 0.05  10 0.04  2 

0.03  10 0.03  9   

0.03  6     

Industrial 

Industrial 

32  

3011 0.25  1 2899 0.53  32 0.04  2 

0.51  32 0.03  10 0.23  1 

  0.03  11   

Institutional 

(Education) 

Institutional 

25 

2399 0.03 10 5056 0.11  9 0.03  1 

0.04 28 0.04  8 0.33   

0.03 11 0.15  6 0.05  24 

0.06 22 0.04  2 0.03  15 

0.70 25     

Residential 
Residential 

high 13 

4364 0.79  13 12650 0.27  13 0.08  12 

0.07  22 0.08  10 0.07  6 
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Type C   Change 

out 

{ }i  

Change 

in{ }i  

Type 

C  

 Change 

out 

{ }i  

Change 

in{ }i  

Type 

C  

 

 i  
iN 90 ( )iP j


  i

iN 90 ( )iP j


  i

Residential Residential, 

low density 

14 

7933 0.04  16 7532 0.03  6   

0.51  14 0.72  22   

0.17  22 0.05  14   

0.05  8 0.04  12   

0.03  6 0.03  10   

Residential, 

medium 

density 22 

24038  0.16  13 23973 0.13 22 0.07  12 

 0.72  22  0.04  8 0.05  10 

 0.04  14  0.54  14   

 

Using the results from Table 3-3 and the definition of types B and D, a detailed reclassification is shown 

in Table 3-5.  
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Table 3-5. Land Use Type Reclassification for the Integrated Land Use and Transportation Model 

Land use type Land use type    

Water 

Bays and Estuaries     28 A 

Lakes 23 

Reservoirs 20 

Streams and waterways 27 

Water 7 

Wetlands 

Non-vegetated wetlands 40 D 

Vegetated non-forested wetlands 3 D 

Wetland coniferous forests 15 D 

Wetland forested mixed 18 D 

Wetland hardwood forests 9 D 

Upland forests 

Tree plantations 26 D 

Upland coniferous forests 6 D 

Upland forests 37 D 

Upland hardwood forests 16 D 

Agriculture 

Cropland and pastureland 8 D 

Feeding operations 29 A 

Nurseries and vineyards 31 D 

Other open lands (rural) 33 D 

Specialty farms 35 D 

Tree crops 12 D 

Barren Land 
Disturbed land 28 D 

Sand other than beaches 38 D 

Rangeland Herbaceous (dry prairie) 17 D 
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Land use type Land use type    

Rangeland 
Mixed rangeland 24 D 

Shrub and brushland 2 D 

Special 

Classifications 

Special classifications 4 D 

Vegetation 5 D 

Urban and Built-

up 

Extractive 21 D 

Open land 10 D 

Commercial and Services 1 C 

Recreational 11 C 

Industrial 32 C 

Institutional 25 C 

Residential, high density (> 6) 13 C 

Residential, low density (< 2) 14 C 

Residential, medium density (2-5) 22 C 

Communications 36 C 

Transportation 30 B 

Transportation, communication and 

utilities 

34 B 

Utilities 19 C 

 

The land use/cover data of Orange County includes more than 40 land types. Figure 3-2 shows the 

reclassification results of the land use/cover data for Orange County, FL. 
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(a)              (b) 

 

(c)                                                                     (d) 

 

                                            (e)   
 

 

Figure 3-2. Reclassification of Land Use in Orange County, FL. (a) Study area, Orange County, Florida; 
(b) Reclassification of land use types in 1990; (c) All Land use types in 1990; (d) All Land use types in 

2000; (e) Type C Land use in 1990. 
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3.4 Determination of Cell Size 

According to the requirements of the square shape used in the CA model, the land use/cover feature data 

for each year is converted into raster data based on Level Two values. The cell size is 50m x 50m. We 

experimented with four different cell sizes. By comparing situations with 30 meters, 50 meters, 100 

meters and 300 meters, only the total raster count at 50 meters was deemed appropriate, as it can represent 

the trip related lands well, and it is large enough for efficient analysis [60].  

  

Figure 3-3(a) shows the raster image of 100m, demonstrating that selected segments of roads in feature 

based land use data are not included. Figure 3-3(b) shows the raster image at 50 meters, which covers 

most of the road. Depending on the purpose of analysis, this must be considered. 
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                                  (a) 

(b)  

 

 

 

Figure 3-3. (a) Transportation Network Converted into Raster, (100*100m); (b) Transportation Network 

Converted into Raster (50m x 50m) 
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4. Multinomial Logit and Artificial Neutral Network based Cellular Automata Model 

A multinomial logit (MNL) model is also known as multinomial logistic regression. As its names 

indicates, MNL model is a regression model predicting the probabilities of the different possible 

outcomes. MNL is integrated into land use models to generalize the probabilities when a certain land use 

is transferred to other types.  Artificial Neutral Network (ANN) is also employed in land use modeling 

because it generally can generate more accurate validation results of land use changes. ANN considers its 

inputs and outputs as a set of interconnected artificial neurons, using a connectionist approach to process 

data and made prediction. It is an adaptive system that changes its structure based on the information 

flows through the network during the training phase. But due to its “black box” nature, the ANN approach 

is not useful for conduct what-if policy analysis. We employ the ANN model as a way to validate the 

accuracy of the MNL model. 

 

4.1  Multinomial Logit (MNL) Based  CA model 

In the CA model, each cell has a state representing the land use type. Based on the transition rules, the 

land use type is updated at each time step by its spatial properties. In a conventional CA-based land use 

model, the cell states are described as developed or undeveloped only, regardless of development types 

(e.g., residential, industrial, commercial).  In this study, to track land use change from Type D to 

transportation related land use types (LUT), the MNL model formulates the CA transition function for 

multiple land types, which estimates the probability of future land use for each cell in Type D. 

 

The CA model is used to capture the spatial properties of land use change from Type D to LUT.  The 

spatial properties of the cell include: (1) the physical attributes of land cell, ikυ , including soil quality and 

slope; (2) the number of developed cells in Moore neighborhoods, ikη ; and (3) the local spatial attributes, 

ikτ , including transportation accessibility, and distance to special trip generators such as CBD, shopping 

centers, education institutes and other main public facilities.  



36 
 

 

For each cell in Type D, its land use status will either change to four LUT or remain unchanged. The 

suitability of land Type D changing into land Type k ( =1, 2, 3, 4 and 5k ) in cell i can be depicted as 

CA
1,CA 2,CA 3,CAik k ik k ik k iku   w υ w η w τ      (4-1) 

where 1,CAkw , 2,CAkw , and 3,CAkw  are the corresponding linear coefficients. Since most spatial attributes 

are measured at varying scales, the variables are normalized before further calibration. The mean utility 

function CA
iku  is associated with a stochastic item ik , which is assumed that errors follow the IID Gumbel 

distribution. In the CA model, the probability of land use change in cell i  from vacant land to a new land 

use Type k  can be formulated as 

                                       

CA
CA
, CA

exp( )
Pr  ( 1, 2,3, 4)

exp( )
ik

i k
ik

k

u
k

u




 


                              (4-2) 

The vacant cells with higher values of CA
ikP  are more likely to be developed into type k  land use. 

 

4.2  ANN CA model 

The model proposed in this work employs a neural network to define the transition rules in the CA model 

to simulate spatial land use changes. Generally speaking, ANN models simulate land use change via four 

subsequent steps [47]: (1) design the network, inputs, and outputs, based on historical data; (2) choose a 

subset of the inputs and perform neutral network training; (3) validate ANN with the full data set of the 

inputs; and (4) employ ANN to simulate changes in future years. 

 

4.2.1 Principles of ANN 

The multi-layer perceptron (MLP) network used in this study is one of the most popular ANN 

architectures [54 61 62]. MLP is a feed-forward network framework and represents non-linear functional 
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mappings between a set of input and output variables. It includes an input, hidden, and output layers. As 

shown in Figure 4-1, circles represent neurons and lines indicate unidirectional interconnections between 

neurons in the corresponding layer [61].   

1is

2is

3is

4is

5is

6is

ins

... ...

Sp
1Pri

Sp
2Pri

Sp
3Pri

Sp
4Pri

Sp
5Pri

 

Figure 4-1.  Neural network structure for land use change from Type D to LUT. 

To simulate the effect of spatial attributes on land use change from Type D to LUT, the input layer has n  

neurons with regard to spatial attributes ins . There are 16 spatial attributes considered in the input layer: 

the physical attributes of land cell, including soil quality and slope; six Moore neighborhood attributes, 

including the number of industrial, commercial, institutional, residential, Type A and Type D land; and the 

local spatial attributes, including distance to railway station, airport, CBD, bus hubs, major roads, 

commercial center, industrial center and residential center. All inputs are normalized into the range of [0, 

1], according to the following method:  

0 0 0 0( min ) / (max min )in in in in ini ii
s s s s s  

                                      
(4-3) 

where 0
ins denotes the initial value of attribute n in cell i. 
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In Kolmogorov’s theorem, the use of 2 n  + 1 hidden neurons (with n  the number of input neurons) in a 

hidden layer guarantee the goodness of fit [61]. Previous studies shows that 2 n  + 1 hidden neurons may be 

too many in applications and that 2 n /3 hidden neurons can achieve almost similar accuracy while 

requiring less training time [28 54 63] . To ensure a balance between accuracy and simulation speed, 15 ( m ) 

hidden neurons were used in this study’s ANN.  

The topology of network structure can be translated into the corresponding mapping function. The output 

of mth hidden neuron is obtained by a weighted linear combination of the n  input variables. Activation 

functions are used to represent the non-linear mapping function. In the one hidden layer MLP, the 

activation of hidden neuron m is then obtained through the logistic sigmoid activation function. The 

output of mth hidden neuron can be formulated as: 

1

1 exp( )m
mn n

n

v
w x


 

                                                        ( 4-4) 

The output layer has five neurons which calculate the land change probability ( SpPrik ) from current vacant 

land cell i (Type D) to residential, commercial, industrial, institutional, and unchanged lands, respectively. 

It can be calculated as follows: 

PrSP
ik mk m

m

w v 
                                                         

(4-5) 

where mnw  in Eq.( 4-4) and mkw  in Eq.( 4-5) are the weights from input to hidden layer, and from hidden 

to output layer, respectively. Weights are obtained through neural network training. Using the neural 

network toolbox available in Matlab, the training process is automatically implemented by a back-

propagation algorithm. The algorithm iteratively minimizes error between the network outputs 

(predictions) and desired outputs (observations) by adjusting the weights based on the training data set. 

Essentially, the network ‘learns’ the mapping relationship in the training data.  
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To evaluate the effect of hidden layers on the ANN performance, this study compares one and three 

hidden layers to each other.  In the ANN with three hidden layers, the number of neurons and activation 

that function are 15 (logistic sigmoid), 10 (pure linear), and 15 (logistic sigmoid). Similarly, the mapping 

functions can be deduced from Eqs. (4-4) and (4-5).  

The selected Type D data from base year 1990 and observation year 2000 are used to train the ANN. After 

training, the neutral network was validated by using the whole Type D land cells in 1990, and produced 

Pr  ( =1, 2, 3, and 4)Sp
ik k  for each cell i. The land cells with high transition probability are more likely to 

be developed into type k  land. According to maximizing the development probability, and constrained 

by the total development cells from type D to LUT, the predicted land use development can be generated 

for year 2000. 

 

4.2.2 Model Evaluation Method 

To evaluate the model goodness of fit goodness, two methods have been employed in this study. The first 

method was evaluated by comparing predicted with actual land use change, as denoted by the following 

formula [47]:  

 

SameC

ActualC
k

k
k

N
R

N


                                                                     
(4-6) 

where SameC
kN  denotes number of cells that predicted to change to Type k land and is the same as the 

observed results. ActualC
kN denotes the total number of cells that change to  type k land from observation. 

The latter method is to employ confusion matrix to compare the predicted and actual value cell-by-cell [28], 

which is detailed in the Results and Discussion chapter 

. 
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5. Bid-rent-based Agents models 

Cellular Automata (CA) models are based on stationary grid cells. Although integrating with MNL and 

ANN models can greatly improve the simulation accuracy, CA models still cannot fully capture the 

dynamics of land use changes. This is largely caused by the fact that people who decide land uses are 

mobile in nature. To bridge this gap, this research weaves agent-based models into land use models and 

integrates them with CA models to better understand land use dynamics.   

 

5.1 CA-Agent Model Framework 

To generate comprehensive inputs for transportation models (e.g., FSUTMS), a desired land use model 

should consider the following factors:  population change; the spatial suitability of land use development, 

such as topographic, slope, and neighborhoods attribute; and the decision making behavior of 

stakeholders (e.g., households, employers, developers).In the CA-Agents model framework, Table 5-1 

shows the specific sub-models used to simulate the land use change.  

 

Table 5-1. Individual Models Employed to Simulate the Land Use Change for Specific Land 

 Land Use Change Models 

 Initial 
type 

Final type CA Agents 

Househol
d agent 

Employment agent   

HH 
LC
M 

HH 
M
M 

IND 
LCM 

IND 
MM 

COM 
LCM 

COM 
MM 

SE
R 
LC
M 

SER 
MM 

CO
N 

DEM 

Z2 Type D RESL √ √        √  

Type D  INDL √   √      √  

Type D COML √     √  √  √  

Type D INSL √         √  

Z1 RES Non-RESL   √        √ 

IND Non-INDL     √      √ 

COM Non-
COML 

      √  √  √ 
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RESL = residential land; INDL = industrial land; COML = commercial and service land; INSL= 
Institutional land; Non-RESL= Nonresidential land; Non-INDL=Non industrial land; Non-COML=land 
type other than commercial and service land 
 
HH=household agent, COM=commercial employment agent, SER=retail service agent; IND=industrial 
employment agent, LCM=location choice model, MM=mobility model, CON=construction model; 
DEM=demolition model 
 

Figure 5-1 shows the proposed land use model that integrates the CA model, Agents model, and bid-rent 

market equilibrium mechanisms. The land use model is able to interact with FSUTMS. The land use 

development is forecasted in agent-based CA models. When the interactions between the agents are 

described by the bid-rent theory, both the specific household characteristics (e.g., population, residential 

type, car ownership) in residential cells and the number of firms by sector in the non-residential cells are 

produced at cell level, aggregated to TAZ level thereafter to update the required inputs of FSUTMS. The 

new travel cost and accessibility are calculated from FSUTMS and then fed back into the data store, 

updating the inputs for land use model in the next time period.  
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Bid-Rent Theory
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Residential Type Choice Model
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Year T
Data Store

 

Figure 5-1.  Framework of the Land Use Model. 
 

The multinomial logit (MNL) based CA model captures the spatial attributes of land use change.  In the 

CA model employed here, MNL is employed to process the transition rules of multiple land use change. 

The MNL-based CA model determines the probability of each vacant land cell to be converted to the land 

use type related with travel demand (LUT, including residential, industry, commercial and services, and 

institutions). The spatial properties of each land cell include physical attributes (e.g., soil quality, slope, 

and topographic), neighborhood characteristics, accessibility, and distance to other special trip generators 

(e.g., CBD, shopping centers, education institutes, and other main public facilities).  
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Three agents are investigated: household agents, capturing the residential mobility, location choice, and 

housing type choices for the households; employment agents, to generate uniform input data for FSUTMS, 

employment is categorized into three sectors: industrial, commercial, and retail service employment, and 

each employment sector then uses two sub-models: employment mobility and location choice; and 

developer agents, developers and land owners decide whether to demolish or construct houses, apartments, 

or buildings of each employment sector on a specific land cell. 

 

In the land market, the behaviors of developers constitute the market supply, whereas the household and 

employment agents form the market demand. Under the equilibrium condition, the land price is generated 

with the bid-rent theory.  From the interactions between market demand and supply, land use prices are 

updated and provide feedback to the land use forecasting model for the next time period.  

 

5.2  Agents Model 

Each agent contains two parts: dynamic models and elements. Dynamic models are used to depict the 

agent’s behavior in Year T+1 based on data from Year T. The elements are the basic variables. The input 

data of these dynamic models can be generated from the elements of the agent itself or from other agents. 

Combined with the ANN model, the output of the agent models will be used to refine transition rules for 

land use change. 

The relationship between the household, employment and developer agents is shown in Figure 5-2. The 

relationship among these agents is based on bid-rent theory, using endogenous land prices. In the land 

market, the behaviors of developers constitute the market supply, whereas the household and employment 

agent form the market demand [64]. Bid-rent theory is able to represent the interactions between the 

demand and supply sides.  



44 
 

HH Mobility 
Model

HH Location 
Model 

Demolition 
Model

1990 existing 
Type C lands
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Figure 5-2. Interrelationships between Household, Employment, and Developer agent. 

 

5.2.1 External Agents 

The government agent is considered external, as it uses external inputs to account for policies (e.g., 

zoning preference, urban growth boundary, and conservations). The government agent includes a policy 

quantification model, which interprets land polices into the constraints or preference and integrates them 

into the predicted land use change for next time period. For example, polices on protection areas will be 

interpreted as a constraint, as no development will occur in this area. The zoning preferences are 

interpreted by assigning a different preference score to each zone. 
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5.2.2    Household and Employment Agent Model  

In the household agents, according to their size, income and car ownership, households are clustered into 

h  categories and will be subsequently allocated into available residential cells. In the employment agents, 

firms are categorized into industrial, commercial, and retail service. Industrial firms are allocated to 

industrial land cells, while commercial and retail service firms are allocated to commercial and services 

land cells. Households are assumed to be only in residential cells.  

 

Both mobility and location choice behavior are captured in the household and employment agents. In the 

mobility model, the existing agents (households/firms) decide whether to move from its current location 

or not. If a household/firm has chosen to move, it is added to the set of new households/firms that have no 

current location, and will be located in the location choice model.  

 

In the location choice model, a household/firm that is either new (from exogenous immigration) or has 

decided to move within the study area (from household/employment mobility model) will choose a 

particular residential/employment location cell. Based on the bid-rent theory, households of different 

types bid for residential location based on income and other household characteristics (e.g. household 

composition, number of children). Similarly, the firms at different sectors places a bidding price for a 

particular cell based on firms’ attributes.  

 

5.2.2.1 Household Mobility Model 

In the Household Mobility Model, Binary Logit is employed to estimate the probability of existing 

households moving out from current residential cell i  or staying during a particular time period, denoted 

by ,movPrh
ik . The utility of mobility ,movh

iu  that represents the behavior of household h are related with 

household’s characteristics ,movhI  (e.g. household size, age, income), the attributes of current residential 

cell i  , iO  (e.g. vacant dwelling units, owner occupancy) and accessibility iA  
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,mov
1,mov ,mov 2,mov 3,mov

h
ik h i iu   w I w O w A                                     (5-1) 

where w are coefficients. ,movh
iku  is assumed to follow IID Gumbel distribution with dispersion parameter 

 .The mobility probability ,movPrh
ik , can be denoted as 

,mov
,mov

,mov

exp( )
Pr

1 exp( )

h
h ik

ik h
ik

u

u







.                                                 

(5-2) 

Similar to the household agent model, the independent variables in employment mobility model include 

individual firm’s characteristics, attributes of current cells, including transportation accessibility, 

neighborhood attribute, and land price.  

 

5.2.2.2 Location Choice Model 

In bid-auction processes, the location choice is determined by the willingness to pay function. In the 

classical urban economic theory, it is widely accepted that the urban land market behaves like an auction 

[65]. Goods are taken by the highest bidder and bids are represented by a function of the consumer’s 

willingness to pay. Households’ willingness to pay for an available residential location is related to 

household income, the spatial attributes of a desired location, accessibility and transportation cost. For the 

type h household, when cell i is available for residential location, the willingness-to-pay function of 

household h is postulated as [65]:  

 

1 ( )h p p
i h hi h hi

p

B b z N t   
                                                

(5-3)

 

where hb  is a monetary disutility bid for household agent of type h based on the income. hiz
 captures 

how a household of type h  values the spatial neighborhoods’ attributes of cell i . The final component 

represents the transportation utility under different trip purposes p if the cell i  is chosen as the residential 

location. p
hN  translates to the number of trips with purpose p for household agent of type h , where the 
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destination cell j s . ( )p
hi t represents the cost to reach purpose p when the household of h  type 

chooses cell i as the residential location.  

 

The bid function h
ikB  is also assumed to be random and accounts for the behavior produced by 

idiosyncratic differences among consumers within a cluster [45].  The bid can be represented by 

h h h
ik ik kB B   , where the random item h

k  is assumed to follow IID Gumbel distribution with dispersion 

parameter  . The bid probability, ,bidPrh
ik ( 1k  residential land), probability that the household type h  

is the highest bidder for residential location i, is given as follows: 

,bid exp( )
Pr , ( 1, 2, ..., ; 1)

exp( )

h
h ik
ik h

ikh

B
h h k

B




   
    

                                (5-4) 

It is assumed that a residential location in the supply side is offered to the household with the highest 

payment; therefore, the rent of location ikr  (k =1 for residential) is determined by the expected highest 

bid and could be given as follows 

1
[ ( )] ln exp( )k k

ik hi hi
h

h

r E Max B i B


 
    
 
         (5-5) 

where   is a constant.
 

1ir  denotes the rent in residential cell i. Eq. (5-5) shows that the location rents are 

endogenously built from locators’ willingness to pay as a result of the bid-auction process. The household 

agents’ optimal choice for a residential location is supposed to maximize the surplus between bidding 

price and rent, which results in the following problem: 
( )i hi hiMax B r 

 where 1{ | 1}ii x   denotes the 

available residential cells. The rent is taken as a deterministic variable. The choice probability ,choPrh
ik , 

(k=1 for residential) that an alternative residential location yields the highest utility to household agent of 

type h  given by: 
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,cho
1

1

exp( ( ))
Pr

exp( ( ))

k
h hi ik

ik
i hi ik

i

B r

x B r








                   (5-6) 

,cho
1Prh

i  is the probability that the household of type h  chooses residential location i  when location i  is 

developed for residential land use.  

The bid-auction theory is deployed in the employment location choice model. Based on urban economics 

and available data, the attributes considered in the willingness to pay function for each employment sector 

include characteristics of employment/firms and agglomeration economies. The attributes of 

agglomeration economies include total commuting time, neighborhoods attributes, and distance and travel 

time from employment centers.  

 

5.2.3    Developer Agent Model 

To maximize profit and satisfy the needs of households and employments, developers study both location 

and type of development. In the developer agent, two sub-models are deployed, a demolition and a 

construction model. In the demolition model, the developers’ decision towards existing buildings in Type 

C land cells is considered to either be demolished or keep unchanged.  In the construction model, both the 

redevelopment for demolished cells, and development for Type D cells are taken into consideration.  

For demolition behavior in Type C land cells, the profit of demolition is formulated as 

dem dem
1,dem 2,dem 3,dem( )i ik ik ik i

k

u w m w v w c  
                                        

(5-7) 

where ik  is the characteristic variable of land type in cell i, and 1 1i   if the developed cell i is 

residential cell. dem
ic denotes the demolished cost, and ikv denotes maintenance cost. ikm is the expected 

utility of existing locator’s (household or employment sector) mobility. ikm can be deduced by 

,mov1
ln[ exp( )]h

ik ik
h

m u


 
 

                                 
(5-8) 
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where ,movh
iku  denotes the mobility utility of type h consumer in cell i with land type k, which follows IDD 

Gumbel distribution with dispersion parameter  . The demolition model of developer agent is 

implemented following a Binary Logit model, and the probability of demolition for existing developed 

cell i can be represented as follows: 

dem
dem dem

dem
dem

exp( )
Pr

1 exp( )
i

i
i

u

u







                                               (5-9) 

For the construction behavior in Type D land cells, the profit function of developers is defined as the 

difference between the rent ikr [from Eq.(5-5)] that will be obtained from a supply option and its 

production cost, including land ikl , construction con
ikc , and maintenance cost items ikv . The profit of a 

vacant land (Type D) or currently demolished as vacant land (from Type C) to be constructed into type k 

land can be formulated as 

con con
1,con 2,con 3,con 4,conik ik ik ik iku w r w l w c w v   

                            
(5-10) 

Additionally, profits are assumed to be stochastic, IID, which leads to an optimum supply probability with 

the MNL form. For each cell location i, the probability of the developer would like to develop it into type 

k development, which can be represented as: 

con
con con

con
con

exp( )
Pr

exp( )
ik

ik
ik

k

u

u







                                              

(5-11) 

 

5.3  MNL-CA-Agent and ANN-CA-Agent Land Use Model 

Based on the framework of MAS/LUCC, this study employs a MNL/ANN-CA-Agents land use change 

model that combines the spatial factors and the affect of decision makers’ behavior on land use change. 

Coupled with the transition rules from the MNL/ANN based CA model that deploy spatial factors on land 

use change,  the output of the agent models will be used to refine transition rules of land use change at 

discrete cell level, taking decision makers behavior into consideration. The proposed model was 
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implemented using data from Orange County, which has experienced much population growth, and will 

continue to do so.  

The actual land use change model, which links spatial attributes and the agents’ micro-scale decisions to 

macro-scale phenomena, is shown in Figure 5-3. With certain policy making, government agent captures 

the change of Type A land over time. The water area is supposed not change over time, and the parks and 

protection areas are updated through policy changes. Type B land is updated from FSUTMS based on 

future transportation facilities. Type C land, representing existing developed land, remains mostly 

unchanged, though some lands are demolished or changed to other land use types, as seen in FIGURE 2-1. 

When capturing land use change involving existing developed Type C land uses, only the agents’ 

behavior is considered, including household and employment mobility model, and developers’ demolition 

model.  
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Figure 5-3. Schematic of the Interactions between the Micro-models, Transition Rules,  

and Land Use Change 
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Vacant lands especially experience changes. With increasing population, vacant lands will be developed if 

the current land cannot meet the increasing land demands. To capture land use change from Type D land 

to LUT, the ANN-based CA model is employed to deploy the spatial attributes, and household and 

employment location choice model. The developer’s construction model is used to capture the agents’ 

preference on land development. Transition rules of land use change from vacant land to LUT are defined 

from interacted results of both spatial attributes and micro agents’ preference. 

 

5.4  Land Market Equilibrium Model 

In the land use market, both supply and demand are assumed to be in equilibrium, at least in the long. 

Therefore, certain vacant land cells will be developed, while some existing developed properties will be 

demolished and redeveloped to satisfy land demand at the cellular level. Under the supply-demand market 

equilibrium, each household and firm will find a location, which simultaneously satisfies the conditions to 

achieve the maximum utility for each location and maximum bid for each consumer.  

 

5.4.1 Land Development Equilibrium 

The land development equilibrium can be formulated as two integer linear problems:  optimization 

problem Z1 and Z2. Z1 captures land use change in existing land Type C that is related with travel 

demand, to be demolished or unchanged. Optimization problem Z2 describes the land use development of 

vacant cells in land Type D and demolished cells from Z1, to satisfy the location needs of households and 

firms. To describe the land use change in Type C land, Z1 employs the household and employment agents 

mobility model and demolition model. In the case of land use change in Type D and demolition cells in 

Type C, Z2 uses the CA, location choice, and developer’s construction models. To maximize the 

demolition probability, the optimization problem Z1 represents land use change in existing travel-demand 

related land Type C is determined by the mobility preference of households and firms agents, and 

demolition behavior of developer agent. 
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1 dem 2 ,mov1 max ( Pr Pr )
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h
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(5-12)

 
s.t.        1 or 0   iky                                                                     (5-13)

 ,      ik ik k C
i

y N M i                                                               (5-14)

 where  iky is a characteristics variable denoting whether cell i  in Type k will be changed. If  iky
 equals to 

1, cell i  will be reset as vacant land, and all consumers ikN  in cell i  must find a new location, which is 

simulated in location choice model. 1
kw  and 2

kw denote the weights.  kM
 denotes the total amount of 

constraint of households or firms that decide to move, which can be generated from historical data 

through move ratio.  

 

The problem Z2 is formulated as follows:   

3 CA 4 con 5 ,cho

( , )
{ | 1}

2 max ( Pr Pr Pr )
ik ik

D ik

h
ik k ik k ik k ik

x S
i i y k h

Z x w w w
  

    

                 

(5-15)

 
s.t.       1 and 1 or 0ik ik

k

x x                                                                  (5-16) 

           T
ik k

i

x Q                                                                                         (5-17) 

where the three terms in Eq. (5-15) aim to maximize the spatial suitability of total land development, the 

developer’s profit, and agents’ location choice probability, respectively. 3
kw , 4

kw  and 5
kw  denote weights, 

respectively. The characteristic variable ikx
 indicates whether the vacant cell i  will be developed into 

land type k . T
kQ

 is the bound of new developed land area of land type k at year T, denoted by the number 

of cells with the same area (50m x 50m). This value can be generated from historical data.  

 

 

The constraint Eq. (5-16) indicates that each land cell can only be developed into one land use type. Eq. 
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(5-17) ensures the new developed land area in each land type falls within the maximum bounded supply 

T
kQ . The outputs of Z1 and Z2, (x, y), are the results of land use change at cell level, in which the 

programming problem Z1 and Z2 can be defined as the transition rules of the land use change of each cell.  

 

5.4.2 Equilibrium between Land Supply and Demand 

The land use supply-demand market reaches equilibrium when all agents are located in the developed 

land cells. On the supply side, according to the maximizing developer’s profit in Eq. (5-12), the optimal 

number of building supply of land type k in cell i is: 

con

con

exp( )

exp( )

CON
ik ik

ik k CON
ik ik

i

x u
S S

x u







                                                (5-18) 

where ikx ensures the supply of type k building only exists in the new type k cells. kS denotes the total 

building supply of type k. For example, if 1ikx  , the cell i  will be developed into type k development, 

and the developer will construct buildings with the dwelling supply ikS .  

 

For residential lands, the building type is divided into single family and multiple families, which are 

further determined by those households located in this cell using the residential type choice model. For 

each location in land type k, the developer chooses the highest bidder among all h  consumers and the 

consumer will be allocated in this cell. According to Eq. (5-4), the number of agents allocated in each 

developed cell i for land use type k is created as follows: 

exp( )

exp( )

h
h ik ik
ik ik h

ik ik
h

x B
N S

x B







                                     

(5-19) 

Eq. (5-19) simulates an auction-type process with stochastic bids at each location i. By combining Eq. (5-

18) and (5-19), the land supply-demand equilibrium can be easily generated as follows. 
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k ik
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(5-21)

 
h
ik ik

i h i

N S                                                           (5-22) 

 

Eq. (5-20) represents the equilibrium between the land supply and demand at each location i. Eq. (5-21) 

means the total supply of type k development equals the sum of supply of type k development in each 

location. From Eqs. (5-20) and (5-21), the equilibrium between supply and demand for the whole study 

area can be deduced as Eq.(5-22). The results of land use development and the inputs for FSUTMS can be 

generated from the above three equilibrium problems.   

 

5.5 Transition Rules of Land Use Change 

5.5.1 Transition Rules between the Government Agent and Transportation Model 

Government policies are organized into two categories, G1 and G2. G1 are the lands that must be strictly 

preserved, such as conservation areas and parks. Second, there are G2 areas, which are the zoning 

preferences. These dictate what types of development that will occur, but recognizing there may be 

zoning variances. The transportation network facilities are an output from the transportation (e.g. 

FSUTMS) model, which contains development of future transportation facilities for specific years.  The 

transition rules are described as if-then rules, as follows: 

If 1( 1)i G T  , then Type A ( +1)i T                                                   (5-23)

 If 2( 1)i G T  , then 2Pr 1G
ik  , otherwise ,

 

2Pr 0G
ik                                 (5-24)

 If Tr( 1)i T  , then Type B ( +1)i T                                                    (5-25)

 The zoning preference 2PrG
ik vacant cell, are integrated into the transition rules in Section 5.3. 
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5.5.2 Transition Rules for Land use change on Already-Developed Land 

The transition rules governing land use change on developed land cells are described as the optimization 

problem Z1, where the results  iky is a characteristics variable denoting whether cell i  in type k will be 

changed or not, representing the results of land use change (or transition) in the cell.  

5.5.3 Transition Rules of Land Use Change in Vacant and Demolished Land 

The optimization problem Z2 is used to describe the land use development of vacant cells (Type D lands) 

and demolished cells from Z1. Land development is deployed by the ANN model, the construction model 

of developer agent, the agents’ location choice model, and the government policy (G2).  
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6. LandSys-FSUTMS Integration  

6.1   LandSys Design 

LandSys is a land use simulation program based on MNL-CA-Agent (multinomial logic cellular automata 

and agent). The program is built upon Matlab 2009 platform, which has powerful image processing and 

matrix manipulation capabilities. LandSys calls for a .m file to establish graphical user interface (GUI) 

and generates an executable file to improve the performance of user interface. The executable file will be 

called by FSUTMS transportation program to integrate land use with transportation modeling. 

 

As shown in Figure 6-1, LandSys includes three modules: the basic module, a parameter adjustment 

module, and an application module. Of the three modules, the basic module is for early-stage preparations. 

The parameter module is used for system learning and the determination of model parameters. Finally, 

after plugging in the parameters, the LandSys program can simulate land use changes and generate input 

data for FSUTMS transportation models. 

 

The basic module contains three sub-modules:  land use categorization, data processing and storage. Land 

use categorization classifies initial land use types via Quantitative Change In-out method. The input data 

are the land use/cover data of case study areas in the past two periods (to avoid misclassification, the 

selected two periods are always 10 years apart). The output data includes the reclassification of land use 

types in account of land use and transportation integration of the case study area. 

 

The input data in the data processing and storage module consists of three groups: spatial data, such as 

DEM and land use (data i1), output data from transportation modeling (FSUTMS) concerning travel time 

and accessibility (data i2), and statistics like population and employment (data i3). According to data 

processing flow chart, the data processing and storage can be divided into three steps: 
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(1) Convert data i1 to 50m x 50m raster data by ArcGIS Spatial Analysis tools; then use Matlab to 

read the raster data and save them as matrix. 

(2) Establish a module converting TAZ data to raster data. More specifically, convert data i2, which 

is based on TAZs, to raster data, then record and store the travel cost and accessibility information 

that connects one cell to each of other cells. 

(3) Based on statistics and land use classification, assign household information to associated 

residential automata; assign employment information to non-residential automata; and save this 

information as matrix. 
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Figure 6-1. Model Framework 

 

The parameter adjustment module includes two sub-modules: parameter adjustment sub module of CA 

models and parameter adjustment sub module of Agent models. The input in the data processing and 

storage sub-module includes data i1, data i2 and data i3 of year N and year N+1. The output data are o1, 
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o2, and o3. Then data o1 and land use data of year N and year N+1 are plugged into parameter adjustment 

module of Cellular Automata modeling, which calculates the accuracy of the model by standardizing the 

MNL model parameter and process randomly selected samples. Similarly, data o2 and o3 are plugged into 

the parameter adjustment module of the Agent model adjusted to the model parameters. The adjusted 

parameters are major inputs of model application module.  

 

The model application module includes a land use change sub-module, as well as an information 

assignment module based on land use, household and employment. The land use change sub-module 

includes two parts: conversion rules based on external factors, such as government and transportation 

policies; and the estimated land use of next year based on the solutions of optimization model Z1 and Z2 

according to land development balance. The assignment module generates TAZ-based household and 

employment data for the next year, based on the solutions of land biding theory and the balance model of 

the supply and demand of the land market.  

 

6.2   FSUTMS Introduction [66] 

The FSUTMS model structure consists of standardized computer software programs, urban area data 

formats, and operating procedures. These standards are common to all urban transportation models in 

Florida, and were developed for the primary purpose of reducing the time and effort required to produce 

long-range travel demand forecasts for the Metropolitan Planning Organizations (MPOs) Long Range 

Transportation Plans. Under such standardization, the FDOT Central Office is able to efficiently provide 

software updates, procedural manuals, and technical support to both the FDOT districts and MPOs.  

 

The primary objective of travel demand forecasting is to predict the effects of various policies, programs, 

and projects on highway and transit facilities [67]. These impacts are commonly quantified by representing 

the projected travel demand in terms of forecasted traffic volumes and transit ridership. Forecasting travel 

demand is an integral part of an area’s MPO Long Range Transportation Plan.  
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Travel demand forecasting consists of four primary steps: trip generation, trip distribution, mode choice, 

and assignment. However, to create the necessary input files for each of the four primary steps the FDOT 

has expanded these steps to a total of 12 steps in the FSUTMS software. The twelve steps in the FSUTMS 

software are the:  

 

• External Travel Model  

• Trip Generation Model  

• Highway Network Model  

• Highway Pathbuilding Model  

• Trip Distribution Model  

• Transit Network Model  

• Transit Pathbuilding Model  

• Mode Choice Model  

• Highway Assignment Model  

• Highway Evaluation Model  

• Transit Assignment Model  

• Transit Evaluation Model  

 

In Florida, as of 2003, there were 25 MPO planning models, eight non-MPO planning models, eight 

regional models, and one statewide model. The urban area MPO and the regional models are maintained 

jointly by the MPO and FDOT District Planning staffs. The non-MPO models are maintained by the 

counties and FDOT Planning Districts. 
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6.3   Integration Framework 

The integrated land use and transportation platform for Orange County, FL is a combination of the 

LandSys land use model and FSUTMS transportation model. Its framework is shown in Figure 6-2. 

 

 

Figure 6-2. Model Framework of Integrated LandSys-FSUTMS Model 

 

The results of the LandSys model include household and employment information based on TAZs. These 

results are connected to the FSUTMS models by updating their TAZ data 1 and 2 of the trip generation 

module. With these updated data, the trip flows and accessibility of TAZs generated by transportation 

model will be used as inputs of land use models. The described connections between land use and 

transportation models explain the relationship between land use and transportation: the spatial distribution 

of different land uses causes the variation of trip generation; the travel cost and accessibility of each TAZ 

directly impact land uses. 
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Figure 6-3 displays the analysis framework. The variation of transportation policies, such as the 

construction of new networks and new alternative transportation modes, are weaved into FSUTMS 

transportation models as updated inputs to get new network information. The inputs of integrated 

modeling are taken into consideration of demographic statistics, regional economic statistics, land use, 

government policy, and community planning. The modeling result can help analyzing planning policies. 

Different land use strategies, transportation policies, transportation planning and other planning strategies 

can be included into the models by updating transportation and land use inputs. The impacts of news 

policies on transportation and land use can be captured by the models. In addition, the regional 

environmental assessment, cost-benefit analysis, and air quality, etc can also be analyzed by the integrated 

land use and transportation models. 

 

 

Figure 6-3. The Policy Analysis Framework of the Integrated LandSys-FSUTMUS Models 

 

6.4   Software Design 

Table 6-1 shows the comparison between the integrated LandSys-FSUTMS models and other mainstream 

models in terms of model structure, composition of sub-models, real estate development, policy analysis. 

Etc. 
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Table 6-1. Comparison between the Integrated LandSys-FSUTMS Models and Other Mainstream Models 

Characteristics  DRAM/EMPAL  MEPLAN  PECAS  UrbanSim  CUF-
1/CUF-2  

LandSys-
FSUTMS 

Structure  The Lowry 
Model 

Spatial 
input-output 
model  

Spatial 
input-
output 
model 

Discrete 
choice 
model 

Discrete 
choice 
model 

Discrete choice 
model 

Behavior of  
household 
location choice 

yes yes yes yes No yes 

Behavior of 
business 
location choice  

yes yes yes yes No yes 

Real estate yes yes yes yes Yes yes 
Spatial unit Statistical 

community  
TAZ TAZ  Cell, parcel 

or TAZ 
cell cell and TAZ  

Sensitivity of 
policies  

no Congestion 
pricing  

Land use 
policy  

Congestion 
pricing, 
land use 
policy and 
regional 
planning 

Land use 
policy 

Land use policy, 
congestion 
pricing, regional 
planning, 
environmental 
impact 

Temporal scale  year year year  year year  Year or 
customized scale 

Interaction with 
transportation 
models 

yes yes yes yes No yes 

Software 
ownership  

Commercial 
software 

Commercial 
software 

Open 
source 

Open 
source  

N/A  TBD 

 

As opposed to other models, LandSys-FSUTMS takes into account the behavior of household and 

employment based agent, and includes land use and transportation policies. It also mimics the land market 

equilibrium by employing land bid-rent theory. When describing the change of land use, accuracy is 

guaranteed by using 50m x 50m raster data. The raster data can be converted to TAZ format when they 

are used as inputs of transportation models,. 

 

Another important characteristic of LandSys-FSUTMS is that LandSys can adjust its parameters by self-

learning the historical data of the case study area. Therefore, the portability of the models makes 

uncomplicated to adjust model parameters and apply the models in different cities. Furthermore, the 
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models of LandSys can be coupled with transportation models other than FSUTMS if the types of input 

data match with each other. This means that LandSys models can also be integrated with many models 

other than FSUTMUS.  
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7. Results and Discussions 

7.1  CA Results 

7.1.1 MNL-CA Results 

Fifty percent of Type D land cells in 1990 land use/cover data were selected to calibrate MNL-based CA 

model. In 1990, the total number of cells in Type D was 566,093, with 70,261 cells that changed to trip 

generated land types in 2000. The cells of Type D in 1990 were grouped into five categories based on the 

final land use types in 2000:  commercial land (17,765 cells); industrial land (2,012 cells); institutional 

land (8,790 cells); residential land (41,694 cells); and unchanged (495,832 cells). By using a Monte Carlo 

sampling process, fifty percent of the cells in each category were chosen for calibration, and the category 

‘remain unchanged’ is considered to be the baseline category.  

 

Table 7-1 shows the calibrated results of MNL (Eq. 4-1). The regression results of the CA model offer 

several valuable empirical findings. For example, in the interpretation of the coefficients of distance 

attributes, ‘distance to airport’ has a positive coefficient, which indicates the farther the cell from the 

airport, the more easily it will be developed into the corresponding land types. The possibility of land cell 

change to LUT increases with its distance to airport increases, whereas the cells near major roads and the 

CBD are more likely to be developed at a closer distance. For vacant cells, as the distance to CBD 

decreases, its possibility of changing to commercial land increases. In the case of neighborhood attributes,  

under ‘Number of Residential,’ the positive coefficient of 1.3391 means that if a cell is surrounded by 

more residential cells in Moore neighborhood, then it will be more likely to be developed into residential 

lands.  Land cells with more industrial cells in neighborhood are more possible to be developed into 

industrial land and less possible to be developed into residential land. This is partly a result of zoning and 

partly a result of the agglomeration effect.  

 



66 
 

Table 7-1. Calibrated Coefficients of Multinomial-logit Model 

 

RESL = residential land; INDL = industrial land; COML = commercial and service land; INSL= 

Institutional land; Coef= Coefficients; T-statistics=T-stat 

 

 

 Attributes 
Description 

Parameters for each land use type 

  Commercial Industrial Institutional Residential

  Coef T-stat Coef T-
stat

Coef T-stat Coef T-stat

Physical 
attributes 

Cell soil  0.350 12.85 0.121 4.28 0.136 4.85 0.365 14.05

Cell slope 0.057 1.36 0.111 2.57 0.214 5.03 0.436 11.10
 
 
 
Spatial 
accessibility 

Distance to railway 
station 

-
0.191

-1.49 -
0.716

-5.50 -0.026 -0.20 -
2.697

-23.70

Distance to bus 
station 

0.244 3.47 0.322 4.47 0.563 8.15 1.139 17.04

Distance to airport 0.648 8.57 0.500 6.52 0.066 0.88 1.786 25.13

Distance to major 
roads 

-0.118 -3.12 -
0.173

-4.44 -0.109 -2.84 -
0.592

-16.83

Distance to CBD -
0.843

-
16.65

-
0.282

-5.39 -0.455 -8.84 -
0.644

-13.55

Distance to 
commercial center 

-
0.221

-3.03 0.044 0.59 0.657 9.24 -
0.099

-1.41

Distance to industrial -
0.009

-0.21 -
0.036

-0.78 -0.289 -6.48 -
0.038

-0.90

Distance to 
residential 

0.271 7.85 0.067 1.86 0.145 4.16 -
0.093

-2.66

 
 
Moore 
neighborhoo
d  

Number of 
commercial 

1.414 5.95 0.675 2.68 0.917 3.60 0.300 1.26

Number of industrial 0.294 0.98 1.344 4.81 0.486 1.59 -
0.466

-1.60

Number of institutes 0.630 1.83 0.645 1.84 2.797 9.27 0.094 0.28

Number of residential 0.453 1.81 0.426 1.66 0.887 3.44 1.339 5.56

Number of Type A -
0.042

-0.17 -
0.094

-0.37 0.257 1.02 -
0.352

-1.47

Number of Type D 0.079 0.33 -
0.029

-0.12 0.187 0.76 -
0.097

-0.42

Constant Constant -
1.687

-7.03 -
1.448

-5.89 -1.852 -7.47 -
1.084

-4.62

Dependent 
Variable 

CA
,Pri k , the probability of land use change in cell i  from the current vacant land to new type 

k  land from CA model. 
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7.1.2 ANN-CA Results 

7.1.2.1 Training the ANN 

For each selected training cell i, the input value corresponding to input layer of neural network in are the 

spatial attributes of cell i. The output neuron was assigned with the desired value of 1 when the vacant 

cell in 1990 changes to the associated target land use in 2000. For example, if in 2000 the cell was 

residential, then the value for each neural in the output layer is (1, 0, 0, 0, 0). When comparing the land 

use data, the total number of Type D cells in 1990 was 566093, where 70261 cells were changed into LUT 

in 2000: to commercial land, 17765 cells; to industrial land, 2012 cells; to institutional land, 8790 cells; to 

residential land, 41694 cells; and remain unchanged, 495832 cells. By using a random sampling process, 

25 percent of the cells in each category are chosen for training the neural network.  
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(a)                                                                            

   

(b)      

  

Figure 7-1. Training Performances of ANN. (a) Network with One Hidden Layer; (b) Network with Three 

Hidden Layer.    
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Figure 7-1 shows the training performance of ANN with one- and three-hidden layers. During the training, 

prediction errors decreased rapidly in a short time, followed by a steady reduction.  In the one hidden 

layer neural network, the convergence reached at 54th epochs, (3 minutes 36 seconds), whereas in three 

hidden layers, it reached at 44th epochs (7 minutes and 14 seconds).  

7.1.2.2 Validation of the ANN 

To predict land use change based on all of the Type D cells in 1990, Table 7-2 compares the prediction 

performance of training the ANN with one and three hidden layers.  According to the goodness of fit 

presented by Eq. (4-6), the total accuracy for all LUT can reach 69.7% and 74.6% for ANN with one and 

three hidden layers, respectively. With the increase in hidden layers employed in a multilayer neural 

network of ANN, the ANN could reach higher precision. The training time, however, is longer with the 

increase of hidden layers.  

Table 7-2. Validation of the ANN with Different Hidden Layers 

Land Type  One hidden layer Three hidden layers 
1990 2000 ActualC

kN  
SameC
kN  Accuracy kR  

SameC
kN  Accuracy kR  

Type D Commercial 17765 10983 0.618 11934 0.672 

Type D Industrial 2012 53 0.026 118 0.059 

Type D Institutional 8790 6671 0.759 6600 0.751 

Type D Residential 41694 31221 0.749 33792 0.810 

Total Accuracy 0.696 0.746 
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7.2   Calibration Results of Agent Models 

The calibration results of the household mobility model are shown in Table 7-3. From the calibrated 

coefficients, the probability of household mobility decreases with the increase of household size, and with 

the presence of school-age children and people older than 50. Increases in workers, income, and vacant 

dwelling units enhance the likelihood of households’ mobility. 

 
Table 7-3. Calibration Results of Household Mobility Decision Model 

 
 Attributes Description Coefficients T-

statistics 
 Constant  1.432 30.18
Household’s 
characteristics 

Household size -0.139 -9.15
Workers 0.213 10.11
Presence of children between 5 and 17 years of 
age 

-0.040 -2.30

Presence of persons above 50 years of age -0.909 -11.97
Average Income per person (/1000) 0.017 4.37

Attributes of 
current cells 

Vacant dwelling units 0.156 5.09
Owner occupy  -0.088 -9.80

Dependent 
variable 

,movPrh
ik , the probability of existing households moving from current 

residential cell i . 
Note: LLC stands for log-likelihood at convergence; n is sample size. 

 

In the location choice model, the willingness-to-pay function was calibrated with both 1990 and 2000 data. 

The calibration results are shown in Table 7-4. The number of commercial, institutional, residential cells 

in neighborhoods had a positive effect on household location choice. Total travel time for all purposes has 

a negative impact, which means that long travel time in vacant cell i reduces the possibility that this cell is 

converted for the residential land uses. 
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Table 7-4. Coefficients of Household Location Choice Model 
  

 Attributes Description Coefficients T-statistics 

 Constant -1.730 -52.41

Household 
characteristics 

( hb
) 

Income 0.004 5.01

Household size 0.277 40.06

Neighborhood 

attributes ( hiz
) 

Number of commercial cells in Moore 
neighborhood 

0.087 15.64

Number of institutional cells in Moore 
neighborhood 

0.046 5.58

Number of residential cells in Moore 
neighborhood 

0.533 197.62

Travel time 

( hiT
) 

Household’s total travel time under three trip 
purposes  

-0.405 -13.07

Dependent 
variable 

,cho
1Prh

i , the probability that the household of type h  chooses residential 

location i . 
 

The detailed calibrated model results of the willingness-to-pay function for each employment sector are 

shown in Table 7-5. The total travel time to the existing commercial center had a negative effect on 

location choice of the commercial and service employment sectors, which indicates both firms prefer 

cluster together. In Economic Geography, it is well known that clustering firms together can significantly 

decrease production costs, and therefore attract more suppliers and customers. The benefits of clustering 

were also recognized in neighborhoods within 500 and 2000 meters. Locations with more residential cells 

in a neighborhood are more attractive to commercial and service firms, since they are more likely to reach 

potential customers. In contrast, with respect to the location choice results of the industrial sector, there 

are negative coefficients in respect to the number of residential cells in neighborhoods, indicating that the 

industrial activities prefer those cells that are surrounded by less residential lands, partly as a result of 

zoning. Higher land price has a negative effect on employment location choice, which means the higher 

land price will lead to less likelihood of firm location choice. Locations with high accessibility to airport 

and major roads are preferred by all kinds of employers 
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Table 7-5. Calibration Results of Employment Sectors Location Choice Model 
 
 Attributes 

Description 
Commercial Service Industrial 

Coefficie
nts 

T-
statistics 

Coefficie
nts 

T-
statistics 

Coefficie
nts 

T-
statistics 

 Constant 0.5251 7.45 -1.0987 -22.13 -1.5236 -29.97

Employment 
Characteristi
cs 

Employment size 0.0316 14.54 0.0314 49.87 0.3793 58.49

Neighborhoo
d Attributes  

Number of 
commercial cells 
within 500 
meters 

0.0009 31.60 0.0013 55.69 N/A N/A

Number of 
Industrial cells 
within 500 
meters 

N/A N/A N/A  N/A 0.0002 3.53

Number of 
residential cells 
within 2000 
meters 

0.0025 15.32 0.0039 29.17 -0.0004 -2.14

Agglomerati
on 
economies 

Total travel time to 
commercial 
center 

-1.8278 -30.48 -1.3165 -37.55 -0.2731 -8.54

Total travel time to 
industrial center 

1.7944 30.02 1.2971 37.25 0.2613 8.38

Distance to major 
roads 

-4.10E-
06

-0.94 -3.08E-
06

-0.09 0.0000 -0.69

Distance to CBD -0.0033 -11.05 0.0007 3.17 -0.0014 -6.60
Distance to 
commercial center 

-0.0099 -19.64 -0.0031 -12.02  N/A  N/A

Distance to 
industrial center 

 N/A  N/A  N/A  N/A 0.0013 5.29

Land price -0.0018 -8.30 -0.0021 -10.42 -0.0015 -6.22

Dependent 
variable 

,choPrh
ik , the probability that the firm of type h  chooses location i  in land type k.  

N/A = Not Applicable. 
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7.3   CA-Agent Results 

7.3.1 MNL-CA-Agent Model 

7.3.1.1 Forecasting Land Use Change in Land Type C 

The model is validated using GIS data from Orange County, employing a three-step process. First, data 

from 1990 is calibrated. Second, land use development for 2000 is predicted. Third, the real data from 

2000 are compared to the predictions. According to the first optimization problem of land development 

equilibrium (Z1), the land use change in existing Land Type C can be simulated through the results ( iky ). 

The demolition results of existing residential lands and the corresponding redevelopment (to other land 

types or keep demolished) of those demolished cells are shown in Figure 7-2. From Figure 7-2 (a), 

residential cells, especially those that are far from the CBD, are demolished (Non_Res in Figure 7-2 (a)), 

some are redeveloped into other land types. The model correctly estimated the demolished lands 75.10, 

65.03, and 53.95% for residential, commercial, and industrial land, respectively.  

 

(a)  
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(b) 

 

Figure 7-2. The Simulation of Land Use Change for Type C. (a) Demolition Results of Existing 

Residential lands. (b) Land Redevelopment of the Demolished Cells.   

 

7.3.1.2 Model Prediction Performance 

To evaluate simulation accuracy, a confusion matrix is used to compare the predicted and actual value 

cell-by-cell [67]. Table 7-6 shows a cell-by-cell comparison using the confusion matrix. In the case of LUT, 

the simulation accuracy of CA model only was 60.7%.  When combined with Agent models, the 

integrated CA-Agents model improves the prediction estimation to 85.4%, which is a significant 

improvement (~25%) from the CA model only.  In the case of all land types, the combined CA-Agents 

model has a high prediction accuracy of 89.9%.   
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Table 7-6.  Cell-by-Cell Comparison of the Results of the CA and Agents Model Predictions and Actual 
Land Changes a 
 
  
Cell-by-cell Comparison 
(By Land use types)  

Simulation results   
Accuracy 
(%) 

Type 
A  

Type 
B 

Type C Type D 
  RESL COML INDL INSL 

Actua
l 
result
s 

 Type A 89261 518 424 378 262 321 19675  80.5

 Type B 309 1916
0

492 656 634 642 16888  49.4

Type 
C  

RESL 1651 659 16346
5

2889 223 1701 5995 92.6

COM
L 

524 1673 1495 43255 2130 1506 3964 79.3

INDL 91 216 502 3460 5926 90 1383 50.8

INSL 565 330 1468 2110 245 12931 2635 63.7

 Type D 4748 3670 1083 3752 2318 1627 609145 97.3
Overall Accuracy (%) 87.6
 Accuracy of LUT 85.7

 

a RESL = residential land; INDL = industrial land; COML = commercial and service land; INSL= 

Institutional land; Non-RESL= Nonresidential land; Non-INDL=Non industrial land; 

 

High prediction accuracy indicates that the proposed Agents-based CA model is sufficiently accurate to 

simulate land use change. The precision of residential, commercial, industrial and institutional land is 

92.6%, 79.3%, 50.8%, and 63.7%, respectively. The visual map of predicted land pattern and actual land 

in 2000 is shown in Figure 7-3. The map demonstrates that the land use change predicted by the Agent-

based CA Model is similar with the actual map of development.  
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 (a) 

 

(b) 

 

 

Figure 7-3. Comparison of Predicted and Real Land Use Development.  (a) Land Use Development 

Results of Combined CA and Agents Model, Year 2000.  (b) Actual Land Use Developments in 2000 
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7.3.2 ANN-CA-Agent Model 

To simulate land use development for the year 2000, based on 1990 data, the ANN part of the model ran 

for 26 minutes. When integrated with the agent models, the model ran for four hours and 32 minutes, 

which includes data processing, calibrating the ANN and Agents model, and simulating land use change 

based on the optimization problems Z1 and Z2.  

To simulate land use change with the ANN-CA-Agents model, four scenarios are considered: (1) ANN 

with one hidden layer, (2) ANN with three hidden layers, (3) integrated agent models with ANN (one 

hidden layer), and (4)  integrated agent models with ANN (three hidden layers).  

Each of the above scenarios is subjected to a goodness of fit measure, using Eq. (4-6), as shown in Figure 

7-4. In the combined ANN and Agent-based model (scenario 3 in Figure 7-4), the precision of the LUT 

land in 2000 that changed from Type D land in 1990 can achieve 86%, which is quite acceptable. Figure 

7-4 demonstrates that the combination of the ANN and agent-based models provides higher precision than 

using solely ANN. This is particularly true in industrial land. The results of the scenarios show that 

though ANN can reach a high precision of land use simulation for land types with large size, however the 

simulation robustness for lands with small size land use change is extremely poor (2.6% in scenario 1 and 

5.8% in scenario 2). In our agent-based models, industrial firm agent in employment agent is considered 

as an important contribution to industrial land development, can help significantly improve the precision 

when combined with neural network.  
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Figure 7-4. Comparison of goodness of fit of four scenarios. (Scenario 1:ANN_L1, Scenario 2:ANN_L3, 
Scenario 3:ANN_L1+Agent, Scenario 4:ANN_L1+Agent) 

 

Table 7-7.  Confusion Matrix Comparison of the Results of the ANN-CA-Agents Model Predictions and 
Actual Land Changes a 

Cell-by-cell Comparison 
(By Land use types) 

Simulation results  Accuracy 
(%) Type 

A 
Type 
B 

Type C Type 
D 

RESL COM
L 

INDL INSL   

Actual 
results 

Type A 89261 518 2074 1334 191 129 17332 80.5 
Type B 

309 
1916
0 1342 2386 462 523 14599 

49.4 

Type 
C  

RESL 1651 659 165819 3553 525 1180 3196 93.9 
COML 524 1673 3106 44336 3057 964 887 81.2 
INDL 91 216 255 2884 7140 30 1052 61.2 
INSL 565 330 2561 1497 227 13525 1579 66.7 

Type D 4748 3670 1083 15165 4230 2507 1957 94.8 
Total Accuracy (%) 89.8 

 Accuracy of LUT Land 87.7 
a RESL = residential land; INDL = industrial land; COML = commercial and service land; INSL= 

Institutional land; Non-RESL= Nonresidential land; Non-INDL=Non industrial land; 
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Table 7-7 shows the detailed results of the confusion matrix comparing of the actual data in 2000 and the 

results of Scenario 4 (combined three hidden layer neural network and Agent-based model). The accuracy 

of the simulation of land use developments for all land types and LUT were 89.8% and 87.7%, 

respectively. This shows that the integrated ANN-CA-Agents model is sufficiently accurate to simulate 

land use change. The prediction precision of residential, commercial, industrial and institutional land is 

93.9%, 81.2%, 61.2%, and 66.7%, respectively. The actual and predicted land use patterns are shown in 

Figure 7-5. Residential and commercial lands are mainly distributed around the urban centers and spread 

along roads in the later years. The map demonstrates that the land use change predicted by the Agent-

based CA Model looks similar with the actual map of development. 
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(a) 

 

(b) 

 

Figure 7-5. Visual Maps of Predicted Land Pattern and Actual Land in 2000. (a) Predicted Land Use 
Development of ANN-CA-Agents model (b) Actual Land Use Development in Year 2000 

 

7.4  Forecasting the Allocation of Household and Employment 

Under bid-rent equilibrium, households and employment (firms) are allocated at the cell level.  To 

generate inputs for transportation models (such as FSUTMS), the allocation results of households and 

employment at the cell level, h
ikN , are further aggregated into TAZs.  In the FSUTMS model, 662 TAZs 

are assigned for Orange County, Florida.  Based on the difference between the predicted and actual 
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households/employment from 1990 to 2000, the allocation of households/employment at TAZ level can 

be divided into seven ranges: <-500, [-500, -200], [-200, -50], [-50, 50], [50, 200], [200, 500], and >500 

zones. Under the example of [200,500], the results for the predicted number of households/employment 

subtracting the actual one are within the interval of [200, 500].  Figure 7-6 correlates the percentage of 

TAZs (number of TAZs/total number of TAZ) with the above seven allocation ranges.  The figure shows 

that the predictions of the proposed CA-agent based model match well with the observed data in 2000 

because most allocation errors fall within plus or minus 50 ([-50, 50]) range in the case of households 

(~52%) and employment (~37%).  It further shows that household and employment change was corrected 

predicted for 75.7% and 69.9% of the zones when the difference range is within 200 ([-200,200]).  
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Figure 7-6. Difference between the Simulated and Observed Household/Employment from 1990 to 2000. 

 

7.5    Transportation Network Results 

Figure 7-7 displays the degree of saturation of network traffic flows in Orange County, for the year 2000. 

The results are produced by mono-transportation model and integrated model. The degree of saturation is 

categorized into four groups: 0-0.5 (blue), 0.5-0.8 (yellow), 0.8-1 (purple), and bigger than 1.2 (red). 



82 
 

 

(a) The distribution of degree of saturation in Orange County generated by FSUTMS 

 

(b) The distribution of degree of saturation in Orange County generated by LandSys-FSUTMS 

 

Figure 7-7. The Distribution of Degree of Saturation of FSUTMS and LandSys-FSUTMS 

 

According to the above figure, the road paths with high saturation (shown in purple and red) concentrate 
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in the center of study area. This is because the urban center tends to have intense land development and 

dense transportation networks. On the edge of the study area, saturation is lower, as these places have less 

travel demand. 

 

In 7-1(a), as opposed to 7-1(b), there are more paths with high saturation. This indicates that FSUTMS 

models alone without considering land use feedback predict more links with high saturation than 

LandSys-FSUTMS models. 

 

Table 7-8 lists the saturation distribution across different intervals of both FSUTMS models and LandSys-

FSUTMS models in 2000, 2012 and 2025. This suggests that with population growth, the transportation 

network expands to meet increasing travel demand. The links of transportation network increase from 

year 2000 to year 2025. Among the simulation results of the year 2000, 2012 and 2025, FSUTMS models 

produce more road links with lower saturation (degree of saturation less than 0.8). LandSys-FSUTMS 

models generate less road links with higher saturation (degree of saturation bigger than 0.8). This means 

that by considering land use and transportation feedback loop, the LandSys-FSUTMS models produce 

less road saturation than the transportation model alone. 

 

Table 7-8. The distribution of saturation under different intervals 

 Year 2000 Year 2012 Year 2025 

Total links 13862 14816 15372 

Saturation FSUTMS LandSys-
FSUTMS 

FSUTMS LandSys-
FSUTMS 

FSUTMS LandSys-
FSUTMS 

[0,0.5） 6797 6910 6909 7015 5847 6029 

[0.5,0.8） 2306 2394 2134 2514 1909 2101 

[0.8,1.2） 3075 2943 3466 3392 3655 3815 
>1.2 1684 1615 2310 1895 3961 3427 

 

 

7.6    Land Spatial Distribution Results 
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Figure 7-8 illustrates the spatial distribution of households and employments generated by FSUTMS and 

LandSys-FSUTMS models in 2012. The numbers shown in the figure are the result that the allocation of 

households and employments generated by LandSys-FSUTMS models in each TAZ minus their 

counterparts generated by LandSys models. 

 

(a) The difference value of household quantum 

 

(b) The difference value of employment quantum 
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Figure 7-8 Difference between LandSys-FSUTMS Models and LandSys Models in 2000 

 

Above figure shows that the LandSys-FSUTMS models generate higher household allocation than the 

FSUTMS models in the center of study area. This is because the LandSys-FSUTMS models consider 

updated travel costs and accessibility as input data. With the updated transportation information, 

LandSys-FSUTMS models divert traffic from central congested area and, therefore, lower travel cost. 

Generally speaking, The difference between LandSys and LandSys-FSUTMS is even larger in the year 

2025. 

  

Figure 7-8(b) illustrates that the allocation of employment shows similar characteristics to the allocation 

of household. Generally, LandSys-FSUTMS models allocate greater employment on the edge of the study 

area than FSUTMS models, and less employment in the center. This means that the integrated models 

assign less employment to the already congested areas. This is so because travel costs and accessibility 

are updated and plugged back into the land use models. Therefore, LandSys-FSUTMS models can adjust 

the spatial distribution of households and employments to estimate travel demand. 
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8.  Conclusions 

In this project, by integrating CA and agents models, GIS, and current transportation models (e.g., the 

Florida Standard Urban Transportation Model Structure, FSUTMS), we have developed a new modeling 

framework – LandSys --  to provide a more comprehensive approach for simulating the dynamic process 

of land use and transportation changes in space and over time.  Data from Orange County, Florida, is used 

as a case study for model estimation and validation. 

This project finds that, when simulating lands with small size, the robustness of ANN-based CA model 

may appear very low, and the accuracy is poor for these lands. The Agents mode that represent policy and 

micro human decision making can better simulate land use changes and improve the predicting accuracy 

when integrated with the ANN based CA model, and can overcome this low robustness.  

A well-known limitation of ANN is the “black box” used to descript the mapping relationship between 

input and output variables. Compared with using the multinomial logit model (MNL) based CA and 

Agents models, ANN can achieve greater accuracy, requires less input data, and reduces the complexity of 

checking parameters. However, MNL provides detailed information of model parameters and is therefore 

more convenient when evaluating the contribution of each factor in the interactions between land use and 

transportation. A comparison of the ANN and MNL results show that two models generates very similar 

results, which confirm the MNL model is adequate in modeling the transition rule of the CA model and is 

also transparent to policy changes. 

By representing land use types at the cell level, the MNL-CA model simulates the changes of land use 

patterns over time and space.  The agent-based model provides a flexible representation of heterogeneous 

decision makers (agents), whose behaviors are influenced by interactions with other agents and the 

natural and built environments. LandSys is therefore developed from the integrated multinomial logit 

(MNL) based CA-Agents land use model. To facilitate the travel demand analysis, the LandSys simulates 

land use change at spatial and temporal dimensions, as well as represents decision making behaviors of 
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households, employment, and developers. Future land use patterns and socioeconomic data (e.g., 

household, firms, and population) can be produced to update those inputs of transportation model (e.g., 

FSUTMS).  

 

When compared to conventional land use models, LandSys has several unique features, including: (1) 

data processing using a land use classification based on its relationship with transportation, (2) agent 

models for each agent (e.g., households, firms, and developers), using bid-rent theory to represent the 

agents’ relationships; and (3) allocation of household and firms at the cell level, as well as capturing land 

use change. Under the land development equilibrium, the model deploys two optimization sub-models to 

forecast land use change (e.g., demolition of existing developed land cells and development of new cells) 

at a manageable cell level (50m x 50m followed by employing bid-rent theory to allocate households and 

firms under the land supply-demand equilibrium.  

 

The performance of land use forecasting using LandSys was evaluated by comparing predicted and 

observed data. For travel demand-related land development, the model predicts the land use change at 

85.4% accuracy. At the cell level, the allocation of households and firms is aggregated at the TAZ level, 

which matches well with the observed data.  

 

To evaluate how land use change affects the transportation system, this project compares the performance 

of FSUTMS model with and without integrating with LandSys model.  Three major indicators of 

transportation networks were used for comparison purpose using data from Orange County, FL as case 

studies in 2000, 2012 and 2025. These three indicators include link saturation in the transportation 

network, overall vehicle miles traveled (VMT), and vehicle hours traveled (VHT).  To understand the 

effects of the existing and future transportation system on land use development, the TAZ-based 

household/employment allocation results from LandSys are also compared with and without integration 

with FSUTMS. The results show that the transportation model alone overestimates the VMT, VHT.  
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This study shows the LandSys is capable of producing accurate land use change results, is able to capture 

the decision makers’ behavior, and is sensitive to policy changes and transportation accessibility and 

travel time changes. The next step is to create a user-friendly graphical interface to integrate the LandSys 

model inside the transportation demand modeling (e.g., FSUTMS model) process, and to automate the 

land use-transportation feedback loop. The ultimate vision is to create a new function inside the FSUTMS 

using Cube Voyage so that transportation modelers can model the land use changes and integrate the land 

use model results into the transportation model, and the results of the transportation demand modeling 

results can be automatically fed back into the land use model, to achieve a fully automatic and seamless 

process.   
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