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EXECUTIVE SUMMARY
1. Introduction

To automatically classify a vehicle, the information provided in “Scheme F” need
to be interpreted and presented in a format suitable for the automatic classifiers. The
number of axles and the axle spacing are the primary inputs that are used to classify a
vehicle using certain predefined decision tree. In Florida, different vendors supply the
Florida Department of Transportation with vehicle classification equipment. Prior to the
start of this research, the classification algorithm used in each vendor-supplied equipment
was unique to that vendor. A preliminary comparative analysis by the Florida
Department of Transportation showed that different vendor algorithms produced different
error rates in vehicle classification. In order to harmonize the classification algorithms,
the Florida Department of Transportation developed a common decision tree that could
be used in all classification equipment throughout the state. However, the common
decision logic developed was deemed not to be optimum. The field evaluation of the
developed decision logic revealed many misclassifications associated with overlap in axle
spacing. Therefore, in order to optimally automate “Scheme F” guidelines, a new
approach that could minimize classification errors and establish optimum thresholds was
needed.

Another reason for the desire to improve vehicle classification stems from
national efforts of using load spectra analysis in designing pavements. Prior to 2002, the
American Association of State Highway and Transportation Officials (AASHTO) was
recommending the use of the Equivalent Single Axle Load (ESAL) approach for the
design of flexible and rigid pavements (AASHTO, 1986). In this approach, wheel loads
of various magnitudes and repetitions from mixed traffic were converted into ESAL of
18,000 pounds. The 2002 AASHTO Pavement Design Guide developed under the
National Cooperative Highway Research Program (NCHRP) Project No. 1-37A was
proposing the use of load spectra approach for the design of flexible and rigid pavements.
The load spectra approach uses the same traffic data as that used by the ESAL approach
but it does not require conversion of the loads into ESALs; instead, the data are
categorized by axle configurations and weight. In general, the traffic data collected in
compliance with FHWA guidelines will fully support the load spectra approach
requirements. Since vehicle classification data will be the major input into the 2002
Pavement Design Guide, it is important that the accuracy of vehicle classification using
“Scheme F” should be increased.

Furthermore, improving vehicle classification is needed because changes in
profile in the vehicle population have resulted in overlapping axle spacing between
certain vehicle categories as defined under “Scheme F”. This is particularly true with
larger pickups, sports utility vehicles (SUVs) and vans which comprise axle spacings
similar to single unit trucks. To reduce errors resulting from these overlaps, there is a
need to tighten the threshold margins and optimize the decision boundaries of a
classification decision tree.
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2. Objectives and Scope of the Study

The main objective of the study was to develop an optimum vehicle classification
table and decision tree specific for Florida highways that was capable of working with all
vendor supplied equipment. The second objective was to propose an optimum approach
for vehicle classification. Specifically, this study was aimed at accomplishing the
following:

e comparing vehicle classification decision trees used by different vendors’
classification equipment,

e cvaluating the existing vehicle classification table developed by the Florida
Department of Transportation more than 15 years ago,

e proposing an optimum vehicle classification table, and

e testing/validating the developed optimum classification table.

3. Methodology

The methodology used to achieve the above research objectives involved
conducting a detailed search of literature, selecting study sites, collecting quality data
from the selected sites, applying neural networks principles to develop optimum
classification thresholds, and validation of the proposed optimum thresholds. A detailed
search of literature on published and unpublished information on vehicle classification
was conducted. The background of vehicle classification schemes and algorithms was
reviewed. Reports from various studies involved in developing the guidelines used for
vehicle classification were acquired and reviewed. The study sites were selected from the
calibrated Weigh-In-Motion (WIM) sites. Among of the criteria considered in selecting
sites were the geographical location, road geometry, functional classification, and traffic
characteristics. To ensure quality, data were collected only from WIM sites that were
recently calibrated. A test vehicle was used to verify calibration of the site. A vehicle
with known axle spacing was run over the sensors several times prior to data collection.
The vehicle was run at different speeds to study the effect of vehicle speed on the
accuracy of detected axle spacing. Error analysis of the recorded axle spacing of the test
vehicle was carried out to verify calibration of the site. The ground truth data were
collected at the vicinity of WIM sites using a video camera. Synchronization of the video
camera time with the system time in the automatic data recorder (ADR) was done prior to
data collection to enable vehicle matching during data processing. Individual vehicle
records for the time when the video was logged on were downloaded from the computers
installed at the WIM sites using polling software and modem connection. The ground
truth data were compared with machine classification to identify errors in vehicle
classification. Classification using ground truth data followed the guidelines provided in
“Scheme F”. A probabilistic neural networks (PNN) model was developed, trained,
tested and used to classify the same data set. The classification error obtained from the
use of neural networks was compared to the classification error obtained from field
machine classification, which was based on FDOT decision tree. The results obtained
from the neural network were used to set the optimum axle spacing thresholds for the



classification decision tree. The validation data were collected and, in addition to the
individual vehicle records acquired, the actual axle spacings were determined from video
images. This was done in order to verify the accuracy of axle spacing, in addition to the
use of test vehicle, and to allow enough data collection from remote sites.

4, Findings

The efficacy of PNN in improving vehicle classification was evaluated in two
stages. In stage 1, the PNN acted on a data set comprised of two variables only—that is,
axle spacings and number of axles. This is the same data set that the FDOT classification
table was applied on. In the second stage, the PNN acted on the same data set but with
the overall gross vehicle weight added as a variable. It was thought that the additional of
vehicle weight would assist in improving the demarcation of the thresholds. The results
showed that the PNN classification technique has better performance than the current
FDOT table. The inclusion of the vehicle weight as a classification variable reduced the
percent of vehicle misclassified by the PNN from 6.2 percent to 3.0 percent. It is worth
noting that most FDOT traffic monitoring sites are not capable of collecting vehicle
weight; thus, the inclusion of vehicle weight in the PNN analysis was important only as
far as refining the thresholds was concerned. Once new thresholds are proposed, it won’t
be important to include the weight variable in the new and revised classification
algorithm. It should also be noted that some classes had fewer number of vehicles
observed compared to others. This is generally due to traffic distribution existing on the
roadways in which vehicles in some classes, particularly Class 7 and Class 13, are fewer
on the road.

One of the intended outcomes of this study was to develop new and improved
thresholds for the FDOT decision tree. The adjustment of the thresholds was to be based
on extensive field evaluation of the PNN and engineering judgment. Preliminarily, the
PNN gave some insights of how best the thresholds in the current FDOT look up table
could be adjusted to reduce the error rate. The word “reduce” is hereby used judiciously
as it is clear that it is almost impossible to have a 0 percent error rate because of the field
overlap of axle spacing of vehicles that are supposed to belong to different classes. There
were two guiding principles that were invoked in trying to find optimal threshold values
that would reduce the misclassification error rate. First, the research team considered the
end use of the classification data. As an input to a pavement management process,
vehicles in higher classes—generally Class 4 and above—have a more damaging loading
effect on the pavement. Thus, it was crucial for these upper classes to be better classified
than the lower classes. Second, since automatic vehicle classifiers have difficulty
distinguishing Class 3 from Class 2, FHWA reporting requirements generally allows
these two classes to be combined; hence misclassification between these classes was not
that critical.

The thresholds were calculated from the correctly classified vehicles’ axle
spacings. No change is proposed for Class 1 since no misclassification was observed in
this class. The proposed axle spacing range for Class 2 vehicles is 6.01 - 8.49 ft and for
Class 3 vehicles is 8.50 - 11.9 ft instead of 6.01-10.0 ft and 10.01 - 13.30 ft, respectively.
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The statistical analysis indicated that these new thresholds will reduce the
misclassification error rate between Class 2 and Class 3 from 7.1 percent to 2.2 percent.
No change in thresholds is proposed for Class 4 vehicles because statistical analysis
indicated that the misclassified Class 4 vehicles were vista type school buses, which are
relatively short compared to other Class 4 vehicles (buses). It was also found that the
distribution for axle spacing for Class 5 vehicles lies in the positive tail of the distribution
(Skewness = 3.09). To classify all vista type school buses as Class 4, the lower boundary
for Class 4 should be changed from 23.01 ft to 17.00 ft. This would cause 35% of Class
5 vehicles to be misclassified as Class 4. Since the number of vista school buses in the
traffic composition is lower than single unit trucks, the thresholds for Class 4 were
proposed to remain the same but allow the shorter vista style school bus be classified as
Class 5.

Furthermore, the analysis indicated that changing axle spacing threshold of Class
5 vehicles from 13.31 — 23.0 ft to 12.0 — 23.0 ft would reduce Class 5 vehicles
misclassified as Class 3 by 18.8 percent. Specifically, with the new proposed thresholds
for Class 3 and Class 5 vehicles, less than 8.2 percent of Class 5 vehicles will be
misclassified as Class 3. It should be noted here that the number of single unit trucks
(Class 5) in the traffic stream was observed to be smaller than Class 3 vehicles. To
completely eliminate the misclassification of Class 5 into Class 3, the lower boundary for
Class 5 need to be as low as possible to accommodate all short single unit trucks. This
would cause the number of Class 3 vehicles misclassified as Class 5 to increase.
Therefore, the new proposed thresholds for Class 5 and Class 3 vehicles considering the
traffic composition in the field and the classification errors allowed between these two
classes is the minimum one can statistically have based on PNN results while favoring
higher classes.

Statistical analysis of Class 6 vehicles showed that the axle spacings for this class
do not overlap with any vehicle class. Therefore, no changes in the axle spacing
thresholds for Class 6 vehicles were proposed. The sample size for Class 7 vehicles was
too small to justify any change of the thresholds. However, all 19 Class 7 vehicles
observed revealed no overlap between their axle spacings and the axle spacings for other
vehicle classes. Data analysis revealed overlaps in axle spacing for Class 8 and Class 3
(large pickups) vehicles. However, the misclassification was one-way; that is, only Class
3 vehicles were misclassified as Class 8 and not vice versa. This might be caused by the
wider range for Class 8 axle spacings. No change in axle spacing thresholds for Class 8
was proposed. Most of the trucks observed in Class 9 were correctly classified.
Therefore, the axle spacings for Class 9 should remain the same.

The analysis further indicated no misclassifications for Class 10 vehicles. However, the
FDOT decision tree allows overlaps among Class 10 (7 axles) and Class 13 (7 axles)
vehicles, which may introduce classification errors. The available data for Class 13
vehicles did not indicate classification error and thus the axle spacing thresholds for Class
10 should not change. There was no misclassification observed for Class 11 and Class 12
and therefore, the axle spacing thresholds should remain the same. The sample size for
Class 13 vehicles was not sufficient to justify any adjustment in the FDOT thresholds.
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CHAPTER 1—INTRODUCTION

1.1  Background

Federal, state, metropolitan planning organizations and various other agencies in
charge of overseeing transportation facilities use vehicle classification data for planning,
designing, operating, and maintaining highways. Classification data are used for
predicting and planning commodity flows and freight movement as well as provision of
design inputs relative to the current and predicted capacity of highways. In the planning
stage, vehicle classification data are important in conducting environmental impact
analysis. In operational activities, classification data are used to analyze alternative
highway regulatory and investment policies and for developing weight enforcement
strategies. Furthermore, vehicle classification data are crucial in analysis of highway
crashes as vehicles of different classes have different operating characteristics. In
maintenance activities, vehicle classification data are used to schedule the resurfacing and
reconstruction of existing highways based on projected remaining pavement life. The
data is required in different formats depending on its intended use by transportation
agencies. Typical formats include vehicle type, number of axles, vehicle length but other
formats desired by the responsible agency may be used.

Vehicle classification data are extremely important as transportation departments
and state legislatures grapple with the need to determine and allocate the monies (e.g.,
between private autos and large commercial vehicles) associated with maintaining the
country’s extensive highway system and to prioritize the improvements that can be
afforded (Lyles and Wyman, 1982). Common uses of classification data include the
following:

o design and management of pavements;

o scheduling the resurfacing, reconditioning, and reconstruction of highways based
on projected remaining pavement life;

o prediction and planning for commodity flows and freight movements;

provision of design inputs relative to the current and predicted capacity of

highways;

analysis of alternative highway regulatory and investment policies;

developing weight enforcement strategies;

environmental impact analysis; and

accident record analysis.

Each state can collect and analyze vehicle classification data using its own
standards. This is due to the fact that vehicle characteristics differ from one state to
another, especially since truck type patterns are heavily influenced by local economic
activities, weight limits and truck size specifications imposed by the states. For example,
multi-trailer trucks are common in most western states, while they make up a much
smaller percentage of the trucking fleet in many eastern states. Also, some trucks are
designed to carry commodities that are specific to certain local areas only, for example,



coal trucks are common in Kentucky and Pennsylvania because of coal mining in these
states (Federal Highway Administration, 2001). The Federal Highway Administration
(FHWA) Office of Highway Planning requires various states to furnish vehicle
classification data as part of the Highway Performance Monitoring Systems (HPMS)
reports (Wyman et al, 1984). All states report their vehicle classification data using a
common format, which follows the guidelines issued by FHWA and popularly known as
“Scheme F”. This is a visual classification scheme in which vehicles are visually
classified based on their body types and axle configurations.

1.2 Problem Statement

Traditionally, vehicle classification was done visually using the information
provided in “Scheme F”. Visual classification was both inefficient and inaccurate due to
inconsistency of observers. In order to increase the accuracy and efficiency, automated
vehicle classifiers were developed. To automatically classify a vehicle, the information
provided in “Scheme F” need to be interpreted and presented in a format suitable for the
automatic classifiers. Normally, the number of axles, and axle spacing are used as inputs
to the computer that classifies a vehicle using certain predefined decision tree. In Florida,
different vendors supply the Department of Transportation with vehicle classification
equipment. Prior to the start of this research, the algorithm used in each equipment was
unique to that vendor. Comparison of the algorithms for different classification
equipment revealed many discrepancies, which may be contributing to vehicle
classification errors. Appendix A shows the results of comparing algorithms used in
Florida. In order to harmonize the classification algorithms, the Florida Department of
Transportation (FDOT) developed a common decision tree that could be used in each
vendor’s equipment throughout the state. However, the decision logic developed was not
optimum. Field evaluation of the developed decision logic revealed many
misclassifications associated with overlap in axle spacing. Therefore, in order to
optimally automate the “Scheme F” guidelines, a new approach that could minimize
classification errors and establish optimum thresholds was required.

Prior to the year 2002, the American Association of State Highway and
Transportation Officials (AASHTO) was recommending the use of the Equivalent Single
Axle Load (ESAL) approach for the design of flexible and rigid pavements (AASHTO,
1986). In this approach, wheel loads of various magnitudes and repetitions from mixed
traffic were converted into ESAL of 18,000 pounds. The AASHTO’s 2002 Pavement
Design Guide being developed under the National Cooperative Highway Research
Program (NCHRP) Project No. 1-37A is proposing the use of load spectra approach for
the design of flexible and rigid pavements. The load spectra approach uses the same
traffic data as that used by the ESAL approach but it does not require conversion of the
loads into ESALs; instead, the data are categorized by axle configurations and weight.
This approach will require the input of specific data for each axle type and axle group for
three hierarchical input levels (Cottrell et al., 2003). Design Level 1 will require site-
specific traffic axle load spectra information, which includes axle loading by vehicle
classification, and vehicle classification counts at the project location. In Design Level 2,
regional factors and site-specific data will be used; the traffic data required for this level



will be similar to site-specific data but with regional coverage. The default values and
estimated site-specific data will be used for Design Level 3. In general, the traffic data
collected in compliance with FHWA guidelines will fully support the load spectra
approach requirements. Since vehicle classification data will be the major input into the
2002 Pavement Design Guide, it is paramount that the accuracy of vehicle classification
using “Scheme F”’ need to be high.

Another reason for improving vehicle classification arise from the fact that
changes in vehicle profile in the driving population have resulted in overlapping axle
spacing between certain vehicle categories as defined under “Scheme F”. This is
particularly true with larger pickups, sports utility vehicles (SUVs) and vans which
comprise axle spacings similar to single unit trucks. To reduce errors resulting from
these overlaps, there is a need to tighten the threshold margins and optimize the decision
boundaries of a classification decision tree.

1.3  Objective and Scope of the Study

The main objective of the study was to develop an optimum vehicle classification
table and decision tree specific for Florida highways and that is capable of working with
all vendor supplied data collection equipment. The study was aimed at collecting data
from major highways on rural areas. The second objective was to propose an optimum
approach for vehicle classification. Specifically, this study was aimed at accomplishing
the following tasks:

o Comparing vehicle classification decision trees used by different vendors’
classification equipment,

o Evaluating the existing vehicle classification table developed by Florida
Department of Transportation more than 15 years ago,

. Proposing an optimum vehicle classification table, and

o Testing/validating the developed optimum classification table.

1.4 Methodology

In order to achieve the objectives of the study, the following tasks were
undertaken:

o A detailed search of literature on published and unpublished information on
vehicle classification was conducted. The background of vehicle classification
schemes and algorithms was reviewed. Reports from various studies involved in
developing the guidelines used for vehicle classification were acquired and
reviewed.

o Study sites were selected from calibrated Weigh-In-Motion (WIM) sites. Among
of the criteria considered for site selection were geographical location, road
geometry, functional classification, and traffic characteristics.

o To ensure good quality, data collection was done only at the WIM sites that were
recently calibrated. A test vehicle was used to verify calibration of the site. A
vehicle with known axle spacing was run over the sensors several times during
data collection. The vehicle was run at different speeds to study the effect of



vehicle speed on the accuracy of detected axle spacing. Error analysis of the
recorded axle spacing of the test vehicle was carried out to verify calibration of
the site.

Ground truth data were collected at the vicinity of WIM sites using video camera.
Synchronization of video camera time with the system time was done prior to data
collection to enable vehicle matching during data processing. Individual vehicle
records for the time when the video was logged on were downloaded from the
computers installed at the WIM sites using polling software and modem
connection.

The ground truth data were compared with machine classification to identify
errors in vehicle classification. Classification using ground truth data followed
the guidelines provided in “Scheme F”.

A neural network model was developed, trained, tested and used to classify the
same data set. The classification error obtained from the use of neural networks
was compared to the classification error obtained from field machine
classification, which was based on FDOT decision tree.

The results obtained from the neural network were used to set the optimum axle
spacing thresholds for the classification decision tree.

Validation data were collected and, in addition to the individual vehicle records
acquired, the actual axle spacings were determined from video images. This was
done in order to verify the accuracy of axle spacing, in addition to the use of test
vehicle, and to allow enough data collection from remote sites.



CHAPTER 2—LITERATURE REVIEW ON VEHICLE
CLASSIFICATION

2.1  Background

In the past, vehicle classification could only be done visually by counting vehicles
in a traffic stream, traditionally known as manual counts. The major criterion for
classification was the vehicle’s body type. Manual classification of the traffic stream had
several advantages including ability to classify trucks on the basis of a vehicle’s body
style, for instance tank trucks, dump trucks, flat bed trucks and delivery trucks (Federal
Highway Administration 2001). Visual classification can also increase the accuracy with
which an individual vehicle is classified as being either “potentially heavy” or “not likely
to be heavy”. Additionally, a human observer can easily determine the difference
between a car pulling a light trailer and a tractor pulling a semi-trailer when these two
vehicles have the same number of axles and possibly even similar axle spacing
characteristics. However, manual classification counts have some disadvantages; they are
expensive and prone to error due to observer’s fatigue over extended periods of time,
which can cause inconsistency in concentration. Thus, substantial supervision may be
required to ensure good quality of the collected data. For instance, under high traffic
volume or multi-lane conditions, an additional observer may be required to take care of
occlusion that can increase the number of errors. This increases the cost of collecting
data. To overcome these limitations, automated classifiers were developed.

Automated classifiers are composed of two axle sensors, which must be carefully
spaced to count vehicle axles. Other components associated with the automated classifier
are:

e A detector, which receives the signals from the sensors, and amplifies and interprets
them on to a recorder;

e A recorder, which performs the basic calculation of vehicle length, number of axles,
or whatever data is being produced; and

e A processor, which manipulates the basic information data into the presentation
format.

In addition to these automated classifiers, vehicle length based classifiers and
machine vision-based equipment also are used. Vehicle length based classifiers use two
inductance loops to estimate the vehicle length. This is done by first determining the
vehicle speed, which is accomplished by calculating the difference in time for vehicle to
be detected by the two inductance loops. Since the spacing between the two inductance
loops is known, the speed is calculated by dividing this spacing to the time taken for the
vehicle to pass the first loop and the second loop. The vehicle length is then calculated
by determining the time taken by the vehicle to cross the loop divided to the calculated
vehicle speed.

Automated classifiers and vehicle length based classifiers must be placed in or on
the roadway. The installation process involves cutting the pavement. Due to the desire



by many transportation agencies to use vehicle detectors that do not have to be placed in
or on the roadway pavement, machine vision systems have been developed (Federal
Highway Administration, 2001). Most of these systems were based on video image
processing. The systems are suitable for places where accessibility to the roadway is
limited due to high traffic volume, for example on the high volume urban freeways.
They can be placed above or beside the roadway, in a location that is more accessible to
maintenance crews.

Of these classification methods, the machine vision system is the newest and is
still being tested. = However, other new technologies and methods for vehicle
classification also are under development; for instance, range sensors are tested for
vehicle classification. These sensors are thought to have advantages over video image
processing method since they are not as sensitive to lighting and other environmental
conditions as video cameras are. A study sponsored by the Louisiana Transportation
Research Center indicated that classification accuracy obtained by using a range sensor
classifier was 92% for the fifteen vehicle classes tested (Harlow and Peng, 2003).

2.2 Vehicle Classification Schemes

Different vehicle classification schemes exist. The classification schemes are
dependent upon the available equipment for collecting vehicle classification data. Most
of these equipments collect data in terms of the number of axles, axle spacing, axle
weight and the length of the vehicle. Two major types of the sensors used by these
classification equipments are axle sensor, which senses the hit of a vehicle axle; or
presence sensor, which senses the presence of a vehicle by sensing metallic parts of a
vehicle. A combination of the two sensors can also be used. Bending plates,
piezoelectric sensors and load cells are commonly used for vehicle weight detection.

Using the information from the sensors, vehicle classification can be done by
implementing certain schemes. The simplest classification scheme that a highway
agency can use has only three vehicle classes which are passenger vehicles, single unit
trucks, and combination trucks. Figure 2.1 shows such types of vehicles observed on
Florida highways. The expansion of these classes into more detailed classes has been
implemented in most of the existing vehicle classification methods. However, this
increased the difficulty of differentiating between the classes. As the number of classes
increase, also a demand of more sophisticated data collection system and detailed
decision scheme with more vehicle characteristics criteria increase. For example, in the
early 1990’s, Canada investigated the creation of a classification scheme that would have
included the type of hitch used between tractors and trailers (Federal Highway
Administration, 2001). Unfortunately, the available data collection technology could not
accurately classify vehicles by hitch type.

2.2.1 HPMS Vehicle Classification Scheme

One major effort of separating vehicles into different categories was performed by
Mactavish and Neumann (1982) in their Highway Performance Monitoring System



(HPMS) Vehicle Classification study conducted from late summer of 1980 to early fall of
1981. Five agencies, i.e, the Delaware Valley Regional Planning Commission and the
States of Arkansas, Iowa, Minnesota, and Washington, were involved in the study.
Vehicles were divided into 13 categories as follows:

Passenger Car Single Unit Truck

Combination Truck

Figure 2.1: Simplest Vehicle Classes Observed in Florida Highways

From September 1980 to July 1982, Maine Facility Laboratory, M & R Division
Maine DOT conducted an Evaluation of Vehicle Classification Equipment study for the
Federal Highway Administration (FHWA) (Lyles and Wyman, 1982) In this study,
vehicle classification schemes were sequentially developed from Scheme A to Scheme F.
The following sections give the details of these schemes.

2.2.2 Vehicle Classification Scheme A

Under this scheme, vehicles were categorized into 7 classes as shown in Table
2.1. Field evaluation revealed several problems associated with the use of this scheme.
The most noticeable shortcoming was in differentiating between standard/compact
vehicles and sub-compact vehicles due to the advent of the auto industry moving to
smaller cars. In addition, all vans and delivery trucks were compressed into one
category. This resulted in classification errors that were independent of the equipment




used. Another problem was with the differentiation between 2-axle 4-tire (in the first
category) and 2-axle 6-tire (in the fourth category) due to overlap of the axle
distributions.

Table 2.1: Details of Scheme A (Reproduced from Lyles and Wyman, 1982)

Vehicle
Category Description Decision Rule

A-1 Standard and compact passenger | 100" < Wheelbase < 144" and
vehicles  (including  pick-ups, | Length > 180"

panels, vans, and other 2-axles, 4-
tire vehicles)

A-2 Subcompact vehicles (including | Wheelbase < 100” and Length
light pick-ups) <180"

A-3 Motorcycles Not discussed

A-4 2-axle, 6-tire, single-unit trucks 2-axle and wheelbase > 12’

A-5 3 or more axle, single-unit trucks | 3-axle or 4-axle and wheelbase <
26'.

A-6 3 or 4-axle combinations 3-axle or 4-axle and wheelbase >
26’

A-7 5 or more axle combinations 5 or more axles.

2.2.3  Vehicle Classification Scheme B

Scheme B was developed as an improvement of Scheme A. This scheme
consisted of 13 vehicle categories. The scheme consisted of 13 vehicle categories and
was slightly different from the one proposed by Mactavish and Neumann (1982) in their
Highway Performance Monitoring System (HPMS) Vehicle Classification Study.
Among the differences was that, in HPMS, standard/compact cars were separated from
other 2-axle 4-tire vehicles (e.g., vans, pick-up trucks) except sub-compacts. Another
major difference was that HPMS differentiated only between 3-axle tractor 2-axle semi-
trailer (3S2) vehicles and all other five-axle combinations. This scheme provided for the
potential of more detail in differentiating buses, and for three or more axle vehicles.
Table 2.2 shows the details of Scheme B.

Several problems were associated with Scheme B, for example, separation of two-
axle buses from two-axle single unit trucks and to separate three-axle buses from three-
axle single unit trucks. This was due their similarities in axle spacing. No decision rule
was recommended for differentiating buses from other vehicles.

2.2.4 Vehicle Classification Scheme C

Scheme C was developed as an improvement of Scheme B and Scheme A. It consisted
of 19 vehicle categories as shown in Table 2.3. The scheme provided more details that
defined buses into two categories and differentiated between explicit types of trucks with
three or more axles. Two-axle buses were separated from three-axle buses. The problem




with this scheme was lack of details that could be used to distinguish between the car and
light truck vehicles with trailers.

Table 2.2: HPMS Vehicle Classification Scheme (Mactavish and Neumann, 1982)

Category Vehicle Type and Description

1 Standard and Compact Passenger Car (Standard Car): All sedans, coupes, and
station wagons manufactured primarily for the purpose of carrying passengers with
shipping weights of 3000 pounds or greater, overall lengths of 15 ft or more, and
wheelbase of 100 inches or more.

2 Subcompact Passenger Cars (Small Car): Similar to category 1 but with wheelbase
less than 100 inches.

3 Motorcycles: All two- or three- wheeled motorized vehicles.

4 Buses: All vehicles manufactured as traditional passenger carrying buses with two
axles and six tires or three or more axles.

5 Pickup, Panels, Vans and Other Two-Axle, Four-Tire Trucks (Pickup): All two-
axle, four-tire, camping vehicles, motor homes, vans, etc.

6 Two-Axle, Six-Tire, Single-Unit Trucks (SU2A6T): All trucks, camping and
recreation vehicles, motor homes, etc., having two axles and dual rear wheels.

7 Three or More Axle, Single-Unit Trucks (SU3A): All vehicles on a single frame
with three or more axles in any configuration. Included in this group are concrete
mixer trucks, heavy dump trucks, large motor homes, etc., having three axles or
more.

8 Three-Axle Combination Trucks (Comb 3A): All vehicles consisting of two units,
one of which is a power unit, which have a total of three axles.

9 Two-Axle Tractor with Two-Axle Semitrailer Trucks (Comb 2S2): Only those
vehicles consisting of a two-axle tractor, and a two-axle semitrailer.

10 Other Four-axle Combination Trucks (Comb 4A): All vehicles consisting of two or
more units having a total of four axles in any configuration except the 2S2.

11 Three-Axle Tractor with Two-Axle Semitrailer Trucks (Comb 3S2): Only those
vehicles consisting of a three-axle tractor with a two-axle semitrailer.

12 Other Five-Axle Combination Trucks (Comb 5A): All vehicles consisting of two
or more units with five axles in any configuration except the 3S2.

13 Six or More Axle Combination Trucks (Other Comb): All vehicles consisting of

two or more units with six or more axles in any configuration.




Table 2.3: Details of Scheme B (Reproduced from Lyles and Wyman, 1982)

Vehicle
Category Description Decision Rule

B-1 Standard and compact vehicles 100" < Wheelbase < 144" and
(includes most pick-ups, panels, vans Length > 180"
and other 2-axle, 4-tire vehicles)

B-2 Sub-compact vehicles (includes light Wheelbase < 100" and Length
pick-ups) <180"

B-3 Motorcycles Not discussed

B-4 Buses (option-replace buses with 4 or | None recommended
more axle, single unit trucks)

B-5 2-axle, 6-tire, single unit trucks (2A 2-axle and wheelbase > 12’
SU) (144™)

B-6 3-or more-axle, single unit trucks (3A | 3-axle or 4-axle and wheelbase
SU) <26"and 3' <2, 3 spacing <5’

B-7 3-axle, combination truck 3-axle and not classified as B-6

B-8 2-axle tractor with 2-axle semi-trailer | 4-axle and wheelbase > 26" and
(2S2) 3’ <3, 4 spacing <10’

B-9 Other 4-axle combinations 4-axle and not classed as B-6 or

B-8

B-10 | 3-axle tractor with 2-axle semi-trailer | 5-axle and 2’ < 4,5 spacing <
(3S2) 10’

B-11 | 2-axle tractor with 1-axle semi-trailer, | 5-axle and not B-10 or B-12
2-axle full-trailer (2S1-2)

B-12 | Other 5-axle combinations 5-axle and not B-10 and 3’ <

2,3 spacing < 5’
B-13 | 6-or-more axle combination trucks 6-axles.

Note: 2, 3 spacing means the spacing between axles 2 and 3

Table 2.4: Details of Scheme C (Reproduced from Lyles and Wyman, 1982)

Vehicle
Category Description
C-1 Standard and compact passenger vehicles (includes most pick-ups,
panels, vans, and other two-axle, four tire-vehicles)
C-2 Sub-compact passenger vehicles (including light pick-ups)
C-3 Motorcycles
C-4 Two-axle buses
C-5 Three-or-more axle buses
C-6 Two-axle, six-tire, single-unit trucks
C-7 Three-axle, single-unit trucks
C-8 Four-or-more axle, single-unit trucks
C-9 Three-axle, single-unit truck with two-axle trailers
C-10 Three-axle, single-unit trucks with three-axle full-trailers
C-11 Three-axle combinations
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C-12 Two-axle tractors with two-axle semi-trailers

C-13 Three-axle tractors with one-axle semi-trailers

C-14 Other four-axle combinations

C-15 Three-axle tractors with two-axle semi-trailers

C-16 Two-axle tractors with one-axle semi-trailers and two axle full-trailers
C-17 Other five-axle combinations

C-18 Six-axle combinations

C-19 Seven-or-more axle combinations

2.2.5 Vehicle Classification Scheme D

In efforts to improve Scheme C performance, another scheme was developed, and
later known as Scheme D. This scheme consisted of 32 vehicle categories as shown in
Table 2.5. In order to provide more details on the car and light truck vehicles with
trailers, two additional categories, D-2 and D-3, were added. The problem with this
classification scheme was in differentiating between standard/compact and sub-compact
cars.

Table 2.5: Details of Scheme D (Reproduced from Lyles and Wyman, 1982)

Vehicle
Category Description
D-1 Standard and compact passenger vehicles (includes most pick-ups,
panels, vans, and other two-axle, four tire-vehicles)
D-2 Standard and compact vehicles with one-axle trailers
D-3 Standard and compact vehicles with two-or-more-axle trailers
D-4 Sub-compact vehicles (including light pick-ups)
D-5 Sub-compact vehicles with one-or-more-axle trailers
D-6 Motorcycles
D-7 Two-axle buses
D-8 Three-or-more-axle buses
D-9 Two-axle, four-tire, single-unit trucks
D-10 Two-axle six-tire, single-unit trucks
D-11 Two-axle, single-unit trucks with one-axle trailer
D-12 Two-axle, single-unit trucks with two-or-more-axle trailer
D-13 Three-axle, single-unit trucks
D-14 Three-axle, single-unit trucks with one-axle trailers
D-15 Three-axle, single-unit trucks with two-or-more-axle trailers
D-16 Four-or-more-axle, single-unit trucks
D-17 Four-or-more-axle, single-unit trucks with trailers
D-18 Two-axle tractors with one-axle semi-trailer
D-19 Other three-axle combinations
D-20 Two-axle tractor with two-axle semi-trailers
D-21 Three-axle tractors with one-axle semi-trailers
D-22 Other four-axle combinations
D-23 Three-axle tractors with two-axle semi-trailers
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D-24 Three-axle tractors with three-axle semi-trailers

D-25 Two-axle tractors with 1-axle semi-trailers and 2-axle full-trailers

D-26 Other five-axle combinations

D-27 Three-axle tractors with one-axle semi-trailers and two-axle full-trailers

D-28 Other six-axle combinations

D-29 Seven-axle combinations

D-30 Three-axle tractors with two-axle semi-trailers and three-axle full-
trailers

D-31 Other eight-or-more-axle vehicles

D-32 Unknown vehicles

2.2.6 Vehicle Classification Scheme E

Scheme E was developed as an improvement of Scheme D. The categories
defined in this scheme were similar to those defined in Scheme B and HPMS categories
with the addition of combination trucks with seven-or-more axles. However, the scheme
did not provide sufficient details in the lower categories (e.g., there were no separate
category for sub-compacts and motorcycles) although it provided more details in the
higher categories than Scheme B and HPMS categories. One notable problem with this
classification scheme was that some vehicle categories, such as buses, were not included.
The scheme focused on those differentiations that could be accurately made as well as on
which categories were important. Although this scheme was never tested as stand alone
scheme, its vision on the shifting trends in some vehicle types was acknowledged; for
instance, it noted the emerging similarities between different types of automobiles, the
difficulty in making some differentiations, and the utility in making some finer decisions
among different types of trucks. The scheme was therefore offered as a compromise
between the rather simplistic schemes incorporated into most equipment that existed and
the overly detailed 32-category scheme, which, in some instances, might be ideal. Thus,
the scheme was subject to further refinement as a result of a more thorough review of
vehicle and trailer manufacturers’ specifications and from input from users of vehicle
classification data. Table 2.6 shows the details of Scheme E.

2.2.7 Vehicle Classification Scheme F

Scheme F was developed for correcting the limitations found in Scheme E and
also making changes dictated by the review of Scheme E, among which were the addition
of Class 1, motorcycles; and Class 4, buses (Wyman ef al, 1984). It was developed in the
1980’s to compromise among several factors such as (Federal Highway Administration,
2001):

o the manual (vision based) classification used before that time,

o the need to create a nationally consistent classification scheme,

e the automated counters being developed at that time, and

o the need to provide basic information on different truck types as input to a variety
of policy issues.
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Scheme F is the current and most used vehicle classification scheme. Under this
scheme, vehicles are categorized into 13 categories shown in Table 2.7.

Table 2.6: Details of Scheme E (Reproduced from Lyles and Wyman, 1982)

Vehicle
Category Description Decision Rule
E-1 Passenger cars, light trucks, vans | Two-axles and wheelbase < 10’
E-2 Heavy-duty pick-ups, delivery | Two axle and wheelbase > 10’
trucks, 2-axle 6-tire vehicles
E-3 Cars and light trucks with one- | 3-axle or 4 and 1, 2 spacing < 10’
or-two-axle trailers and 5.5' <2, 3 spacing < 22’
E-4 Three-axle SU trucks Three-axle and not E-3
E-5 Trucks and semi-trailers — 2S2 4-axles and not E-3 and 3' < 3, 4
spacing < 10’
E-6 Four-axle SU trucks 4-axle and not E-3 and 3’ < 2, 3
spacing < 5'
E-7 Other four-axle combinations 4-axle and not E-3, E-5 or E-6
E-8 Trucks and semi-trailers 5-axle and 2' <4, 5 spacing < 10’
E-9 Other five-axle combinations 5-axle and not E-8 and 3’ < 2, 3
spacing < 5'
E-10 | Trucks and semi-trailers plus | 5-axle and not E-8 or E-9
full-trailers-2S1-2
E-11 | Trucks and semi-trailers plus | 6-axle and 5, 6 spacing > 7’
full-trailers-3S1-2
E-12 | Trucks and semi-trailers — 3S3 6-axle and not E-11 and 4, 5
spacing < 6'
E-13 | Other six-axle combinations 6-axle and not E-11 or E-12
E-14 | Other seven-or-more-axle | Seven-or-more-axle
combinations

All states use classification Scheme F or one of its variants. However, regardless
of the type of the scheme used by state, Scheme F is used to report the vehicle
classification to FHWA.

Table 2.7: Vehicle Classification Scheme F (Federal Highway Administration, 2001)

Vehicle Class

Description

1

Motorcycles: All two or three-wheeled motorized vehicles. Typical vehicles in this
category have saddle type seats and are steered by handlebars rather than steering
wheels. This category includes motorcycles, motor scooters, mopeds, motor-powered
bicycles, and three-wheel motorcycles. This vehicle type may be reported at the option
of the state.

Passenger Cars: All sedans, coupes, and station wagons manufactured primarily for
the purpose of carrying passengers and including those passenger cars pulling
recreational or other light trailers.

Other Two-axle, Four-tire Single unit vehicles: All two-axle, four-tire, vehicles other
than passenger cars. Included in this classification are pickups, panels, vans, and other
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vehicles such as campers, motor homes, ambulances, hearses, carryalls, and minibuses.
Other two-axle, four-tire single unit vehicles pulling recreational or other light trailers
are included in this classification.

4 Buses: All vehicles manufactured as traditional passenger-carrying buses with two
axles and six tires or three or more axles. This category includes only traditional buses
(including school buses) functioning as passenger-carrying vehicles. Modified buses
should be considered to be trucks and be appropriately classified.

5 Two-Axle, Six-Tire, Single Unit Trucks: All vehicles on a single frame including
trucks, camping and recreational vehicles, motor homes, etc., having two axles and dual
rear wheels.

6 Three-axle Single unit Trucks: All vehicles on a single frame including trucks,
camping and recreational vehicles, motor homes, etc., having three axles.

7 Four or More Axle Single Unit Trucks: All trucks on a single frame with four or
more axles.

8 Four or Less Axle Single Trailer Trucks: All vehicles with four or less axles
consisting of two units, one of which is a tractor or straight truck power unit.

9 Five-Axle Single Trailer Trucks: All five-axle vehicles consisting of two units, one of
which is a tractor or straight truck power unit.

10 Six or More Axle Single Trailer Trucks: All vehicles with six or more axles
consisting of two units, one of which is a tractor or straight truck power unit.

11 Five or Less Axle Multi-Trailer Trucks: All vehicles with five or less axles
consisting of three or more units, one of which is a tractor or straight truck power unit

12 Six-Axle Multi-Trailer Trucks: All six-axle vehicles consisting of three or more units,
one of which is a tractor or straight truck power unit.

13 Seven or More Axle Multi-Trailer Trucks: All vehicles with seven or more axles

consisting of three or more units, one of which is a tractor or straight truck power unit.

As pointed out earlier, the classification scheme to be used is a function of the
equipment available for data collection. Therefore, depending on the available
equipment, a state decides on the scheme to use for vehicle classification as long as it is
convertible to Scheme F categories for reporting. Table 2.7 presented a tabular
description of Scheme F vehicle categories while Appendix B shows the vehicle types
defined under Scheme F by the Ohio Department of Transportation (ODOT, 2004).

In reporting information on trucks using Scheme F, the following criteria are

used:

e truck tractor units traveling without a trailer will be considered single unit trucks,

e a truck tractor unit pulling other such units in a “saddle mount” configuration will
be considered as one single unit truck and will be defined only by axles on the
pulling unit,
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e the number of axles in contact with the roadway should define vehicles.
Therefore, “floating” axles are counted only when in the down position, and
e the term “trailer” includes both semi- and full trailers.
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CHAPTER 3—PATTERN RECOGNITION TECHNIQUES FOR
CLASSIFICATION

3.1 Overview

The problem of classifying vehicles can be viewed as a pattern recognition
problem. The vehicle classes manifest a pattern which can be processed to identify the
different vehicle classes.  Pattern recognition encompasses sub-disciplines like
discriminant analysis, feature extraction, error estimation, cluster analysis (together
sometimes called statistical pattern recognition), grammatical inference and parsing
(sometimes called syntactical pattern recognition). The areas related to pattern
recognition include neural networks, artificial intelligence, vision, cognitive and
biological perception, mathematical statistics and non-linear optimization.

3.2  Pattern Classification Techniques

A number of pattern recognition techniques were reviewed to determine their
suitability for use in vehicle classification. The methods that were reviewed include
probabilistic neural networks (PNN), nearest-neighbor rule, k-nearest neighbor estimation
and support vector machines (SVM).

A probabilistic neural network is a pattern classification network that is believed
to provide a general method for pattern classification problems (Specht 1990a; 1990b;
Tsoukalas and Uhrig 1997). It is a class of neural networks that combines some of the
best attributes of statistical pattern recognition and feed-forward neural network