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EXECUTIVE SUMMARY 
 
INTRODUCTION 
 
The Florida Department of Transportation (FDOT) stores and reports traffic volume data 
collected from over 300 telemetry traffic monitoring sites (TTMS) where traffic data are 
continuously collected and true average annual daily traffic (AADT) information may be 
obtained.  The information collected over these strategically selected locations is utilized to 
convert short-term traffic counts (also known as coverage counts) collected at portable traffic 
monitoring sites (PTMSs) where no permanent traffic counters (PTCs) are installed.  In the 
current practice, TTMSs are manually classified into different groups (known as seasonal factor 
categories) based on similarities in traffic characteristics of roads and engineering judgment.  
FDOT districts then assign a seasonal factor category to each short-term traffic count site, also 
known as portable count sites (PCSs), according to the site’s geographical location, assuming 
that seasonal variability and traffic characteristics at the short-term and permanent count sites are 
similar in the same geographic area.  The final seasonal factor groups are often the product of a 
combination of statistical analysis and analyst’s knowledge and expertise. 
 
PROBLEM STATEMENT 
 
The focus of seasonal factor grouping, in short, is to assign labels representing the clusters to the 
TTMSs, and cluster analysis has been recommended by the Federal Highway Administration 
(FHWA) to identify roadway sections with similar traffic patterns [TMG01].  Seasonal groups 
are commonly constructed based on Monthly Seasonal Factors (MSFs).  Often the number of 
seasonal factor groups is unknown, and the same is true as to the group that a TTMS belongs.  
Conventional nonparametric clustering models such as Ward's Minimum-Variance method have 
been widely applied in the seasonal factor grouping.  However, these methods do not provide 
guidelines with regards to the choice of the optimal number of groups.  Even more problematic is 
a lack of specifications of definable characteristics to allow the objective assignment of short 
counts to the seasonal factor groups.  The traffic patterns are usually associated with roadways’ 
functions, land use patterns, etc., which may be the dominating factors in determining roadway 
groupings.  Such factors are not well identified or quantified in the current practice.  An 
objective method for seasonal factor grouping and assignment needs to consider these factors to 
allow the seasonal groups better reflect the unique characteristics of a site as well as to assign the 
short counts to established seasonal groups in a more rational manner. 
 
NONPARAMETRIC CLUSTERING METHODS 
 
A total of eight agglomerative clustering methods were evaluated in this study for grouping 
TTMSs.  The average linkage, centroid, and single linkage methods were found to be more 
robust to outliers than the other methods.  The study also found that the McQuitty’s (MCQ) 
method performed better than the other methods when grouping TTMSs after outliers were 
eliminated.  Although the results from analyzing the four-year MSF data with the MCQ method 
showed that the compositions of seasonal groups were not stable over time, the change in the 
spatially clustering pattern indicated that more variables should be included in the process of 
determining seasonal cluster groups.  The study also led to the finding that roadway function 
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class did not seem to play an important role in determining seasonal groups in urban areas.  
Instead, it was the spatial location of a given TTMS that mattered since TTMSs tended to be 
clustered with those in its proximity. 
 
PARAMETRIC MODEL-BASED CLUSTERING METHODS 
 
The model-based clustering was accomplished using the MCLUST software, an extension of the 
SAS software.  A total of ten models were investigated: EII, VII, EEI, VEI, EVI, VVI, EEE, 
VVV, EEV, and VEV models.  Evaluation of the performance of model-based clustering 
methods for seasonal factor grouping showed that, without additional information such as the 
spatial locations of the TTMSs, the model-based clustering methods, such as the EEV model, 
produced classifications with a negligible grouping error of 2.08% when statewide MSF data 
were used in the analysis.  However, when the geographic locations of the TTMSs were not 
considered, the resulted clusters included TTMSs located more than 400 miles apart.  It is 
unlikely in practice that TTMSs located so far apart would be grouped together.  Therefore, 
merely using the MSF data was not sufficient to determine the seasonal factor groups when the 
model-based approach was applied. 
 
By incorporating coordinates of the TTMSs into the model-based clustering, this study found 
that the EII and VII models produced relatively practical numbers of factor groups.  By further 
comparing the MSFs in the factor groups derived from these two models, the EII model was 
identified as the one with the best performance since it produced the least grouping error.  The 
results from a systematic analysis of the model-based clustering may be considered as a 
reasonable starting point for determining the seasonal factor groups in practice.  The procedure 
offers greater flexibility in classifying a TTMS since the probability for a TTMS belonging to a 
given factor group is estimated.  For example, if a TTMS is considered misclassified, it may be 
easily reassigned to the next factor group according to the sequence determined by the grouping 
probability.  Additionally, incorporating the coordinates of TTMSs in the model-based clustering 
analysis allows geographical effects to be considered in the grouping process.  The groups of 
TTMSs so derived are not merely similar in their MSF fluctuation patterns but are also spatially 
clustered together.  The results will benefit transportation professionals when assigning a 
seasonal factor group (category) to a short count site by considering spatial proximity.  The 
model-based clustering process presented in this study may also allow other characteristics such 
as land use that could not be considered in the conventional grouping approaches to be 
incorporated in the grouping process. 
 
REGRESSION ANALYSIS FOR URBAN ROADS 
 
Using the MSFs collected from the TTMS sites in Broward, Miami-Dade, and Palm Beach 
counties and demographic and socioeconomic data mainly from the census, this research 
identified several significant factors that appeared to contribute to the seasonal patterns of traffic.  
These factors included concentrations of seasonal residents, tourists (the latter through a variable 
that reflected concentration of hotels and motels), retired population between age 65 and 75 with 
high income, and retail employment.  Roadway federal functional classification was not found to 
be a factor.  Similarly, no correlation was found between the seasonal factors and traffic volume 
per lane and number of lanes. 
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REGRESSION ANALYSIS FOR RURAL ROADS 
 
The MSFs collected from the TTMSs located in FDOT District 2 and 3 were analyzed.  It was 
found that simple buffer methods with various buffer sizes did not capture the underlying causes 
behind traffic fluctuations over time on rural roads as well as in the case of urban roads.  Other 
variables will need to be identified and incorporated to better quantify the land use as well as 
socioeconomic/demographic characteristics of the roadway traffic. 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
Seasonal factors are a complex subject.  While there have been relatively more studies on various 
methods to determine seasonal groups, determining the underlying causes of season variations in 
traffic and developing models to predict seasonal groups has proven to be a significant challenge.  
So far based on literature, success in explaining or modeling seasonal factors has been limited.  
This research made contributions to the understanding of the subject by identifying plausible 
predictors for seasonal groups, further confirming the importance of geographic location in 
seasonal grouping, providing a theoretical basis for consideration of geographic locations in 
seasonal factor grouping and assignment, and developing a practical approach for assigning short 
counts to seasonal groups. 
 
This study first investigated conventional nonparametric hierarchical clustering analysis and 
parametric model-based cluster analysis methods for seasonal factor grouping.  It was found that 
spatial proximity should be appropriately considered in both grouping and assignment processes.  
The model-based clustering analyses provided a good starting point for transportation 
professionals to group TTMSs more accurately into seasonal factor categories in a systematic 
and data-driven manner by simultaneously considering a TTMS’s spatial proximity and their 
MSFs.   
 
Multiple linear regression analyses were subsequently conducted for selected urban and rural 
areas to identify possible explanatory variables for seasonal traffic fluctuations.  Seasonal 
residents, tourists, retired people between age 65 and 75 with high income, and retail 
employment were identified as the significant indicators for seasonal traffic fluctuations on urban 
roads in southeast Florida.  For the rural roads, variables such as functional classification for 
highways, percentage of seasonal households, agricultural employment, and truck factor were 
identified as potential explanatory variables.   
 
To develop a methodology to assign a seasonal factor category to a PTMS, a fuzzy decision tree 
was constructed using the TTMS groups obtained from the model-based cluster analysis and 
based on the aforementioned four variables for the tri-county urban area, i.e., Broward, Miami-
Dade, and Palm Beach counties.  The decision tree was then applied to determine the seasonal 
factor category for a given PTMS.  The decision tree was easy to visualize and apply, and the 
assignment results were self-explanatory.  For example, areas with a larger number of visitors 
and a larger number of seasonal households would expect to experience more fluctuation in 
traffic volumes. 
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A GIS based computer program was developed as part of this research to demonstrate the 
usefulness of a GIS user interface for visualization of land use, demographic, and socioeconomic 
data, as well as the characteristics of the transportation systems and traffic counts.  Buffer 
analysis, regression analysis, and cluster analysis were also supported in the program for 
advanced users who are interested in performing statistical analysis.  The statistical functions 
were provided by SAS and S-Plus. 
 
Although this study developed regression models that could potentially be used to estimate 
seasonal factors directly for a PTMS, because of the limited sample size, the predictive power of 
the models could not be determined.  Additionally, because traffic in different urban areas may 
have different seasonal patterns due to differences in climate, local economy, and demographics, 
variables identified in this study may not be directly applicable to other areas.   
 
The following recommendations were made based on the findings from this research: 
 

• To make the results from this research useful to all FDOT districts, where the seasonal 
categories are determined and assigned to PTMSs, and even to local government users 
who operate a local traffic statistics program, additional studies need to be carried out to 
determine whether the variables identified in this study for the urban areas in southeast 
Florida are also applicable to other urban areas in the state.  Due to differences in local 
land use patterns and economies, it is possible that some urban areas have a different set 
of variables that explain the patterns of traffic variations. 

 
• The regression models for estimating MSFs for rural roads currently have relatively low 

R2s.  To improve the model performance and identify better MSF predictors, further 
analyses are necessary.  They may include the development and testing of improved or 
new variables and new modeling techniques such as nonlinear regression models. 

 
• A standard procedure should be developed by FDOT based on the results from this study 

and future studies.  This standard procedure should be based on a set of statistics based 
methods for seasonal factor grouping and assignment that are more objective and data-
driven and that minimize the reliance on individuals’ experience and subjective 
judgment.  Such a standard procedure will help improve the quality of the transportation 
data used in important decision making processes. 

 
• The current prototype GIS program is a demonstration program developed for FDOT 

District 4.  It needs to be expanded to include all FDOT districts.  The program and the 
necessary data need to be delivered in a single CD-ROM, similar to the current traffic 
CD-ROM published by FDOT each year.  The data required by the program, which are 
from the U.S. Census Bureau and from urban area travel demand models, need to be 
made available from the Internet.  A possible central depository location may be the 
Florida Geographic Digital Library (FGDL) at the University of Florida.  The data should 
be updated every three to five years as more recent data become available or when census 
data are released. 

 



 xiv

• The current GIS program is implemented in the ArcView environment.  When the FDOT 
district offices and central office completely migrate to ArcGIS, this program may be re-
implemented by customizing ArcGIS with VBA (the programming language in ArcGIS).  
Alternatively, a program implemented in MapObject (also an ESRI product) may be 
developed.  The advantage of a MapObject based program is that it does not require any 
GIS software from the user and still provides the same GIS functionalities.  A MapObject 
based program will allow the GIS program to be distributed to the users on a CD and 
used in the same way as the Traffic Data CD. 
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1. INTRODUCTION 
 
One of the major responsibilities of state departments of transportation is to collect and store 
traffic data.  These data are used as inputs to numerous types of analyses, including roadway 
design, pavement design, air quality, and maintenance.  In the past, different states applied 
different approaches to analyze the data that the agencies collected from the field.  In a 1991 
article, Albright raised issues related to the varied practices in different states on traffic data 
collection and statistics reporting [ALB91].  He presented an imperative need for national traffic 
monitoring standards and guidelines.  In his 1993 article, Albright addressed the issues of pattern 
identification to validate traffic data from permanently installed and continuously operating 
traffic recoding devices [ALB93].  Subsequently, guidelines on traffic data collection and 
reporting were standardized and more permanent traffic monitoring devices were installed on 
roadways to monitor traffic. 
 
It is well known that traffic variations occur at different time scales, e.g., time of day, day of 
week, and season (such as month) of the year, as stated in the Traffic Monitoring Guide 
[TMG01], a report published by the Federal Highway Administration (FHWA).  Of the known 
temporal fluctuations of traffic stream, seasonal variation is probably the most important 
characteristic that must be accounted for in traffic monitoring.  Currently, the Florida 
Department of Transportation (FDOT) stores and reports traffic volume data collected from over 
300 telemetry traffic monitoring sites (TTMS), from which the true average annual daily traffic 
(AADT) information may be obtained.  The information collected over these strategically 
selected locations is utilized to convert short-term traffic counts (also known as coverage counts) 
collected at portable traffic monitoring sites (PTMSs) where no TTMSs are installed. 
 
In Florida, four factors are used in converting short-term traffic counts to traffic volumes for 
different purposes.  They are weekly Seasonal Factors (SF), Peak Season Conversion Factors 
(PSCF), Model Output Conversion Factors (MOCF), and Axle Correction Factors.  PSCF is used 
to convert a short-term traffic count (ADT) to peak season weekday average daily traffic 
(PSWADT) and MOCF is used to convert the PSWADT to average annual daily traffic (AADT).  
Among these factors, SF plays a key role in estimating traffic volumes since this factor is used in 
calculating not only Average Annual Daily Traffic (AADT) but also PSCF and MOCF.  It is 
crucial to properly consider and accurately interpret the temporal variation effects on collected 
traffic data in order to achieve better design decisions. 
 
1.1 Background 
 
In the current practice, the FDOT first calculates the SFs on Florida’s roadway segments for each 
week of the year at each TTMS.  The SFs are determined by interpolating between the monthly 
seasonal factors (MSFs) for two consecutive months.  The MSF for a specific month at a 
particular location is derived from dividing the monthly average daily traffic (MADT) at a given 
location with its AADT.  The TTMSs are then manually classified into different groups (known 
as categories) based on similarities in traffic characteristics of roads and engineering judgment.  
For example, there are 178 SF categories based on the 1999 traffic data.  The weekly SFs for a 
specific category are subsequently obtained by calculating the arithmetic averages of the factors 
from the TTMSs in the same group during the same period of time.  FDOT districts then assign a 
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seasonal factor category to each short-term traffic count site, also known as portable count sites 
(PCSs), according to the site’s geographical location, assuming that seasonal variability and 
traffic characteristics at the short-term and permanent count sites are similar in the same 
geographic area.  The final factor group definition is often a combination of statistical analysis 
and analyst knowledge and expertise. 
 
1.2 Problem Statement 
 
There are two important components consisted in the factoring process for seasonal factors: the 
determination of the TTMS categories and the assignment of SF categories to PCSs.  Currently 
in Florida, TTMSs are grouped according to subjective criteria, and only the geographic location 
of a short-term count site and its functional classification is considered when a SF category is 
assigned. 
 
The problem of constructing factor groups from TTMSs and estimating monthly factors with a 
given precision has attracted a lot of attention over the years.  Numerous studies have been 
conducted in the past to identify alternative approaches to reveal the truth-in-data and to reduce 
subjective judgment involved in traffic data analysis.  The focus of seasonal factor grouping, in 
short, is to assign labels representing the clusters to the TTMSs, and cluster analysis has been 
recommended by the FHWA for identifying roadway sections with similar traffic patterns 
[TMG01].  Seasonal groups are commonly constructed based on MSFs.  Often the number of 
seasonal factor groups is unknown, as is to which cluster that a TTMS belongs.  Conventional 
nonparametric clustering models such as Ward's Minimum-Variance method have been widely 
applied in the seasonal factor grouping.  However, these methods lack theoretical guidelines on 
establishing the optimal number of groups. 
 
The major difficulty in developing factors groups lies not in the aggregation of the continuous 
counters to a given group, but rather in the specification of definable characteristics to allow the 
objective assignment of short counts to the seasonal factor groups.  The traffic patterns, however, 
are usually associated with roadways’ functional classifications (such as rural, urban, interstate, 
collector, and recreational), land uses, etc., which may be important factors in determining 
roadway groupings.  These factors are not well quantified in the current practice in Florida.  By 
appropriately considering and incorporating these factors into the data collection and processing, 
it is possible to reduce the data collection effort while improving the accuracy of SF estimations. 
 
1.3 Goal and Objectives 
 
The goal of this research is to incorporate new technologies to enhance the current factoring 
process in traffic monitoring for estimate traffic volumes on Florida’s urban and rural roads.  The 
objectives of this research are described as follows: 
 

1. Identify, evaluate, and develop alternative approaches that have the potential of 
improving the current seasonal factor grouping process. 

 
2. Identify possible explanatory variables that allow more accurate assignment of short-

count sites to a given seasonal factor group. 
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3. Develop a methodology to assign established seasonal factor groups to short count sites 
based on the explanatory variables. 

 
1.4 Organization 
 
This document first summarizes various methods for incorporating seasonal variations in the 
calculation of AADT in Chapter 2, including conventional approaches such as statistical cluster 
analysis, geographic/functional assignment, and regression analysis, as well as machine learning 
techniques such as neural networks and genetic algorithms.  The existing literature on assigning 
a short count site to a seasonal group is also reviewed.  The traffic data that are used in the 
analysis are then briefly described in Chapter 3.  In Chapter 4, the performances of 
nonparametric hierarchical cluster methods and parametric model-based cluster methods for 
classifying TTMSs into seasonal factor groups are assessed.  Chapter 5 describes the land use 
characteristics identified via multiple linear regression analysis and geographical locations of a 
count stations, which may help in determining the seasonal factor category for a short-count site.  
Finally, conclusions and recommendations are provided in Chapter 6. 
 
In this study, unless explicitly stated otherwise, permanent ATR stations, telemetry traffic 
monitoring sites (TTMS), and permanent traffic count (PTC) sites all refer to permanent traffic 
monitoring devices used for continuously recording traffic flows and providing day-to-day traffic 
information throughout a year.  Portable traffic monitor sites (PTMSs), short-count stations, and 
portable count stations (PCSs) all refer to the count stations temporarily installed on roadways to 
collect coverage counts. 
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2. LITERATURE REVIW 
 
This chapter provides a summary of the research efforts in the past to enhance the factoring 
process to improve the accuracy in the estimation of traffic volume at a short count station.  As 
mentioned in the previous chapter, the factoring process consists of both grouping and assigning 
procedures.  Up to present, most of the research efforts focused on seasonal factor grouping and 
numerous approaches were proposed to obtain better groupings in the factoring process.  These 
approaches differ mainly in their data and processes.  The 2001 Traffic Monitoring Guide 
(TMG) suggests the following three alternative techniques for determining factor groups 
[TMG01]: 
 

• Cluster analysis.  A least squares-minimum distance algorithm is used to determine the 
variation patterns in the data from TTMSs.  The count sites that are determined to be 
most similar are grouped together, and the process is repeated to determine the next 
similar group.  According to TMG, this is the best approach to determine the grouping of 
permanent traffic counters since it avoids subjective factors involved in the analysis and 
is based on sound statistical procedures. 

 
• Geographic/functional assignment of roads to groups.  Roads are classified into factor 

groups on the basis of a combination of geographic location and functional roadway 
classification. 

 
• Same road application of factors.  The factor from a single PTC is assigned to all road 

sections within the influence zone of that count site.  The influence zone is a road area in 
which the characteristics of traffic volumes do not change significantly. 

 
In addition to the above three techniques, models developed based on conventional linear 
regression, neural networks, and genetic algorithms are also reported in the literature for 
grouping permanent traffic count sites.  In the following sections, the current practice in Florida 
of estimating the seasonal factor at a given short count station is first described, following by a 
discussion of numerous modeling techniques relevant to the factoring process including grouping 
and assignment procedures. 
 
2.1 Current Practice in Florida 
 
Currently, the FDOT applies the following equation to estimate the AADT at each TTMS 
[PTFH02]: 
 

AADT = ADT × SF × Axle (1) 
 
where 
 Axle = axle correlation factor that converts the counted number of axels to the number 

of vehicles; 
 ADT = average daily traffic, typically the average value of a 72-hour traffic count 

collected from Tuesday to Thursday; 
 SF = seasonal factor that reflects traffic seasonal fluctuation pattern; and 
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 AADT = estimate of typical daily traffic on a road segment for all days of the week, 
Sunday though Saturday, over the period of one year. 

 
In the current practice, a small number of TTMSs are manually grouped into clusters or factor 
groups according to the similarities in their monthly variation patterns.  Each coverage count site 
is then assigned one of these factor groups.  The associated AADT for a given coverage count 
location is then estimated with the seasonal factor computed for the assigned factor group.  By 
multiplying seasonal factor (SF) and axle correction factor with ADT, the estimated AADT is 
expected to be statistically accurate if the SF is accurate.  For example, based on the data from an 
ATR station maintained by the Iowa DOT (IDOT) in Cedar Rapids, Iowa, it was shown that a 
25% error reduction was achieved by incorporating day-of-week and month-of-year traffic 
variations into the AADT prediction from a short-term traffic count [GRA98].  The same or 
similar procedure is applied for estimating AADT at short count sties nationwide.  The drawback 
of such a factoring process is that subjective criteria are applied in the manual grouping and 
assigning procedures and the seasonal factors may not reveal the truth-in-data from the collected 
traffic data. 
 
2.2 Cluster Analysis 
 
The purpose of cluster analysis is to place TTMSs into groups such that TTMSs in a given 
cluster have similar seasonal fluctuations.  Cluster analysis is a technique that does not make 
assumptions about the number of groups or the group structure [JOH02].  Grouping is achieved 
on the basis of similarities measured as distance, i.e., dissimilarities.  As such, input to cluster 
analysis is usually data from which similarities may be measured.  In the context of seasonal 
factor grouping, input to cluster analysis is usually 12 monthly seasonal factors (MSFs) for each 
TTMS. 
 
There are several types of statistical cluster methods for grouping objects.  Among these 
methods, nonparametric methods, including agglomerative hierarchical clustering and 
nonhierarchical clustering, have been typically used in determining seasonal factor groups in the 
practice.  The parametric model-based clustering approach, however, has now become popular in 
a variety of disciplines in determining cluster membership.  The following sections describe the 
applications. 
 
2.2.1 Nonparametric Agglomerative Hierarchical Clustering Methods 
 
Nonparametric clustering classifies objects into categories based on a measure of similarity 
between clusters.  The basis of nonparametric clustering is that groups correspond to modes of an 
unknown distribution function.  Consequently, the goal is to estimate the modes and assign each 
observation to the domain of attraction of a mode.  The nonparametric agglomerative 
hierarchical cluster analysis process (refer to as the hierarchical cluster analysis hereafter) begins 
by treating each observation as a cluster by itself.  The two closest clusters determined by a 
specific similarity measure are merged to form a new cluster to replace the two old clusters.  
Merging of the two closest clusters is repeated until only a single cluster remains.  The 
nonparametric agglomerative hierarchical cluster analysis methods organize objects so that one 
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cluster may be entirely contained within another cluster and no other kind of overlap between 
clusters is allowed. 
 
In cluster analysis, similarity or closeness between two p-dimensional observations is usually 
measured by Euclidean distance: 
 

( ) ( ) ( ) ( ) ( ) ( )22 2 T
1 1 2 2x, y x y x yp pd x y x y x y= − + − + + − = − −K  (2) 

 
where x = [x1, x2, …, xp]T and y = [y1, y2, …., yp]T. Other distance measures, including 
Minkowski metric, Canberra metric, and Czekanowski coefficient, are defined as follows 
[JOH02]: 
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The Minkowski metric provides the same similarity measure as the Euclidean distance when m is 
equal to 2, and by using different values of m, the weights given to the distances may be 
manipulated.  For the Canberra metric and Czekanowski coefficients, only nonnegative variables 
may be defined.  Currently, most commercially available software packages for clustering 
analysis only utilize the Euclidean distances as the similarity measure. 
 
Nonparametric hierarchical clustering analysis is used to determine the groupings in the data.  In 
the case of seasonal factoring process, the seasonality observed at each TTMS from month to 
month is considered in the grouping process.  The basic intent of the cluster analysis is to 
identify variation patterns to give the analyst the knowledge and insight to develop grouping 
criteria to expand short counts to AADT. 
 
Various clustering methods have been employed in seasonal factor analysis.  For example, 
Sharma and Werner applied a hierarchical clustering method to group 45 PTCs in Alberta, 
Canada based on their 12 monthly factors [SHA81, SHA83].  The Scheffe’s S-method of 
multiple comparisons of group means was used to determine the optimal number of groups 
ranging from 6 to 10 obtained from the hierarchical process, each containing more than two 
counters.  The results showed that eight to nine groups were desirable.  Sharma and Allipuram 
then applied the method proposed in the previous work [SHA81] to group 61 PTCs in Alberta 
again using the data collected in 1989 and obtained a total of seven cluster groups [SHA93].  
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Sharma et al. concluded in their later work that the AADT estimation errors were more sensitive 
to the correctness of sample site assignment to a proper PTC group [SHA96]. 
 
Aunet used cluster analysis to examine the variation in Wisconsin’s traffic data [AUN00].  The 
procedure consists of the following steps: 
 

1. Examining plots of monthly traffic at each permanent count station; 
2. Examining tables of coefficient of variations (CVs) for each permanent count 

station; 
3. Examining the results of cluster analysis; and 
4. Examining geographic mapping of ATRs in preliminary groupings. 

 
The preliminary results from Aunet’s procedure applied in Wisconsin revealed that seasonal 
patterns remained stable over time.  Additionally, although significant variations existed in the 
monthly seasonal factors for the permanent count stations classified into the same group, 
seasonal factor groups could be generally defined according to roadway functional 
classifications, i.e., urban, rural, and recreational. 
 
There are numerous hierarchical clustering methods available in Statistical Analysis System 
(SAS) to determine which individual elements or clusters should be merged together [SAS99].  
The various clustering methods differ in how the Euclidean distance between two clusters is 
computed.  The SAS CLUSTER procedure provides the following algorithms for agglomerative 
hierarchical grouping [SAS99]: 
 

1. Average Linkage (AVE) 
2. Centroid Method (CEN) 
3. Maximum-likelihood for mixtures of spherical multivariate normal distributions with 

equal variances but possibly unequal mixing proportions (EML) 
4. Flexible-beta Method (FLE) 
5. McQuitty's Similarity Analysis (MCQ) 
6. Median Method (MED) 
7. Single Linkage (SIN) 
8. Ward's Minimum-Variance Method (WAR) 

 
Table 1 shows the distance definitions for these hierarchical clustering methods.  In SAS, options 
for squared and non-squared Euclidean distances may be specified. 
 
The process of cluster analysis is completely driven by the variability in the MSFs.  Two 
apparent advantages of cluster analysis are that it allows for independent determination of 
“similarity” between groups, thus making the groups less subject to bias, and that it is able to 
identify travel patterns that may not be intuitively obvious to the analyst [TMG01].  Thus, it 
helps agency staff investigate road groupings they might not otherwise examine, which in turn 
may lead to more efficient and accurate factor groups and providing new insights into travel 
patterns. 
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Table 1. Standard Hierarchical Clustering Methods 
Method Distance between Clusters 

AVE Average distance between pair of objects, each in a different cluster 
CEN Distance between centroids in two clusters 

EML Maximum-likelihood hierarchical clustering for mixtures of spherical 
multivariate normal distributions with equal variances 

FLE 
A combined method: specification of a value of -1.0 results in complete 
linkage, a value of 1.0 yields single linkage with extreme chaining, and a value 
near -0.25 approximates average linkage 

MCQ Distance between clusters is weighted using arithmetic averages 
MED Squared Euclidean distance between weighted centroids 
SIN Minimum distance between pair of objects, one in one cluster, one in the other 

WAR Increase in sum of squares within clusters 
 
Hierarchical clustering analysis also has its shortcomings in that it provides no definable 
characteristic or criteria upon which to form groups.  Consequently, although well adopted in the 
practice, this type of clustering applications suffers from the following two major weaknesses 
[TMG01]: 
 

• Lack of theoretical guidelines on establishing the optimal number of groups.  It is often 
difficult to determine how many groups should be formed.  The difficult task is to 
determine at what point the sequential merging process should stop.  Unfortunately, the 
“optimal” number of groups cannot be determined mathematically.  Consequently, the 
results of the cluster analysis may not be the ultimate answer.  Modifications are to be 
expected.  Statistical models may be used to better understand the variation of data by 
identifying the seasonal fluctuation patterns and eliminating stations with extreme 
variations.  However, the development of the final factor groups must account for 
variability and also include characteristics that define the groups to allow the assignment 
of short counts to the groups in the subsequent process.  The knowledge of other criteria, 
e.g., functional class, geography, topography, degree of urbanization, etc., and the use of 
analytical judgment are still necessary in interpreting the results. 

 
• Lack of theoretical guidelines on group assignment.  The formed groups often cannot be 

adequately defined, because the cluster procedure considers only the traffic variability at 
TTMSs, which cannot be directly applicable to the short counts.  Plotting on a map for 
the sites that fall within a specific cluster group is sometimes helpful when attempting to 
define a given group output by the cluster process.  However, in some cases, the purely 
mathematical nature of the cluster process simply does not lend itself to easily 
identifiable groups.  No criteria for assignment of short counts to the groups have been 
defined via the hierarchical cluster analysis.  This is where the descriptive analysis and 
the use of functional class, geography, or topography are needed to provide additional 
criteria for assignment formation. 
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2.2.2 Nonhierarchical Clustering Methods 
 
Nonhierarchical (also known as partitioning) clustering methods place each object in only one 
cluster.  The methods usually begin by randomly partitioning individual items into k groups to 
avoid any overt biases.  Items are then assigned to clusters with the nearest medium or mean.  
The number of clusters (k) may be either given as a priori or determined by the algorithm.  When 
k is unknown, nonhierarchical methods are generally repeated for several values of k.  The 
optimal value evaluated by the criterion associated with each nonhierarchical method is then 
selected as the desired number of groups.  Since the k clusters are generated simultaneously, the 
resulted classification is non-hierarchical.  However, a hierarchy of nonhierarchical classification 
may be constructed using the results repeatedly with several values of k [MAS89].  For this 
reason, the definition of nonhierarchical clustering is vague.  Nonhierarchical clustering refers to 
methods that are commonly known as k-mean methods.  In SAS, the CLUSTER procedure 
provides the following two models for nonhierarchical clustering: 
 

1. Density linkage, including Wong’s hybrid and kth-neareast neighbor methods; and 
2. Two-stage density linkage. 

 
Flaherty used the hierarchical clustering method and the k-means method available in the Systat 
software package for microcomputers to analyze the monthly factor data collected over a five-
year period from 28 PTCs installed in Arizona [FLA93].  The k-means algorithm in Systat was 
used to produce clusters of prescribed numbers, varying from two to nine, by maximizing the 
ratio of between-cluster variation to within-cluster variation.  This approach was analogous to a 
one-way ANOVA seeking the largest F-value by reassigning objects. 
 
The results from the hierarchical clustering analysis of Flaherty's study were inconclusive.  
Flaherty, however, claimed that the results from the nonhierarchical clustering analysis were 
more straightforward and easier to interpret.  Two count stations were found to be consistent 
outliers over the five-year period and were thus excluded from the analysis.  Traffic volumes on 
Monday, Tuesday, Wednesday, and Thursday were then randomly selected from the remaining 
26 PTCs as the surrogates for short-term traffic counts.  For comparison purposes, these 
simulated short counts were adjusted in four different ways to obtain AADT estimates, i.e., 
AADTs adjusted by the PTCs’ own monthly factors and by the appropriate group monthly 
factors derived from the cluster analysis for three, four, and five clusters.  The results of using 
these simulated factored short counts to estimate AADT were then compared on the basis of 
standard deviations and coefficients of variation. 
 
Flaherty concluded that similarity in the patterns of the monthly factors was more a function of 
geography and topography than functional classification of the highways on which the count 
stations were located and that the population of the surrounding area did not appear to be an 
explanatory factor for the factor groups.  Flaherty also found that four clusters were the best and 
the most stable of all the variations used in the analysis.  Similar to hierarchical clustering 
methods, difficulties were encountered as how to appropriately interpret the resulted groups from 
nonhierarchical clustering methods and how to conduct short count site assignments. 
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2.2.3 Model-Based Gaussian Cluster Analysis 
 
Model-based clustering assumes that each seasonal factor group may be represented by a density 
function that is a member of some parametric family, e.g., the multivariate normal (Gaussian) 
family, and that the associated parameters may be estimated from observations [FRA98].  The 
fundamental concept of model-based clustering analysis is to determine the probabilistic density 
function for the kth seasonal factor group by estimating the first two orders of statistics, i.e., the 
p-dimensional mean vector (µk) and the p×p covariance matrix (Σk).  If Σk is expressed in terms 
of its eigenvalue decomposition, i.e., T

k k k k kλ=Σ D A D , where superscript T denotes matrix 
transpose and Dk, λk, and Ak govern the orientation, the volume, and the shape for the kth 
seasonal factor group, a systematic analysis may be performed by treating these geometric 
features as different parameters.  Examples of models include λI, λkI, and λDADT, etc. 
 
In model-based methods, a maximum-likelihood criterion is used to merge groups.  Two 
approaches are commonly applied in model-based clustering analysis: the classification approach 
and the mixture approach [DUN02].  The classification approach aims at maximizing the 
likelihood over the mixture parameters and identifying the group to which each sample belongs.  
The mixture approach merely aims at maximizing the likelihood over the mixture parameters.  
Different from a discrete value indicating the cluster in the classification approach, a probability 
is obtained for a given observation that is classified to a specific group in the mixture approach, 
and the sum of the probabilities is equal to 1.  Compared to non-parametric clustering methods, 
the ability to estimate the number of groups is an important strength of the model-based 
approach.  Fraley and Raftery employed Bayesian Information Criterion (BIC) with a penalty for 
the complexity of the model subtracted from the mixture log likelihood to find the optimal 
number of clusters [FRA98].  The BIC may be used to systematically compare models with 
different parameterizations, different numbers of seasonal factor groups, or both. 
 
The background of the model-based cluster analysis for seasonal factor grouping is briefly 
described as follows [TAN02].  Assuming there are G seasonal factor groups in a given study 
area.  For each permanent count station i, the MSF for every month in a year (or a linear 
combination of these factors) and other characteristics form a p-dimensional vector, xi.  Given x 
= (x1, …, xn), where n is the number of PTCs, the density function for the ith PTC from the kth 
seasonal factor group is fk(xi⏐θk) with some unknown vector of parameters θk, where θk consists 
of a mean vector µk of length p for the mean in each dimension and a p×p covariance matrix Σk.  
Assuming fk(xi⏐θk) is multivariate normal (Gaussian), the probability density function has the 
following form: 
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Each seasonal factor group forms an ellipsoid that is centered at its means µk with its geometric 
characteristics determined by the covariance matrix Σk.  The covariance matrix may be expressed 
in terms of its eigenvalue decomposition as follows [BAN93]: 
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T
k k k k=Σ D Λ D  (7) 

 
where 
 
 Dk = orthogonal matrix of eigenvectors, which determines the orientation of Σk; and 
 Λk = a diagonal matrix with the eigenvalues of Σk on the diagonal, which specifies the 

size and shape of the density contours. 
 
Λk may be furthered decomposed as follows: 
 

k k kλ=Λ A  (8) 
 
where 
 λk = the first eigenvalue of Σk, which specified the volume of the kth seasonal factor 

group; and 
 Ak = 

T

1 , ,k pkα α⎡ ⎤⎣ ⎦L , 1 = α1k ≥ α2k ≥ … ≥ αpk > 0. 
 
Consequently, Equation (8) becomes: 
 

T
k k k k kλ=Σ D A D  (9) 

 
Dk, λk, and Ak govern the orientation, the volume occupied by the cluster in p-space, and the 
shape for the kth seasonal factor group, respectively.  By treating these geometric features as 
independent sets of parameters, a systematic analysis may be carried out by constructing models 
with different parameters.  Table 2 shows the models proposed in the context of cluster analysis 
for covariance matrices [FRA02].  In Table 2, the model identifiers code geometric 
characteristics of the model.  For example, EVI denotes a model in which the volumes of all 
clusters are equal (E), the shapes of the clusters may vary (V), and the orientation is the identity 
(I).  Clusters in this model have diagonal covariances with orientation parallel to the coordinate 
axes.  Parameters that are associated with characteristics designated by E or V may be 
determined from the data. 
 
The common heuristic agglomerative clustering algorithms, e.g., average linkage, single linkage, 
complete linkage, and Ward’s method, are each equivalent to a model-based method [KAM02].  
More specifically, under the assumption that every Σk is independently and identically distributed 
(IID) normal variants, i.e., Σk = λI (the EII model in Table 1), every seasonal factor group would 
have the same shape, volume, and orientation since Σk = Σ = λDADT, which is commonly known 
as the Ward’s method of the conventional clustering approach [KAM02].  The model for the 
composite of the clusters is usually formulated by the classification likelihood approach or the 
mixture likelihood approach.  The following sections describe the background of these two 
model-based approaches. 
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Table 2. Available Parameterizations of Covariance Matrix 
Model Identifier Distribution Volume Shape Orientation 

λI EII Spherical Equal Equal NA 
λkI VII Spherical Variable Equal NA 
λA EEI Diagonal Equal Equal Coordinate Axes 
λkA VEI Diagonal Variable Equal Coordinate Axes 
λAk EVI Diagonal Equal Variable Coordinate Axes 
λkAk VVI Diagonal Variable Variable Coordinate Axes 

λDADT EEE Ellipsoidal Equal Equal Equal 
λkDkAkDk

T VVV Ellipsoidal Variable Variable Variable 
λDkADk

T EEV Ellipsoidal Equal Equal Variable 
λkDkADk

T VEV Ellipsoidal Variable Equal Variable 
 
2.2.3.1 Classification Likelihood Approach 
 
In the classification likelihood approach, the objective is to identify the parameters θ and labels γ 
that maximize the following likelihood function: 
 

( )C 1 G 1 n
1

L ( , , ; , , )
i i

n

i
i

fγ γγ γ
=

= ∏θ θ x x θL L  (10) 

 
where γ = (γ1, …, γn)T denotes the identifying labels for the classification, i.e., γi = k for the ith 
PTC that is classified to the kth seasonal factor group.  The presence of the class labels in the 
classification likelihood introduces a combinatorial aspect that makes exact maximization 
impractical [FRA02].  Consequently, model-based hierarchical clustering methods are 
commonly implemented since they usually provide a good approximation of the optimal 
grouping and are relatively easy to compute [FRA96].  The process is to successively merge a 
pair of clusters that yields the greatest increase in maximum likelihood expressed in Equation 
(10).  The resulting partitions are suboptimal since the final results may not be global optimal. 
 
2.2.3.2 Mixture Likelihood Approach 
 
The objective function in the mixture likelihood clustering approach is to identify the parameters 
θ and τ that maximize the following likelihood function: 
 

( )M 1 G 1 G
11

L ( , , ; , , )
n G

k k i k
ki

fτ τ τ
==

= ∑∏θ θ x x θL L  (11) 

 
where τk is the probability that a PTC belongs to the kth seasonal factor group that meets the 
following constraints: 
 

0kτ ≥  (12) 
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1

1
G

k
k

τ
=

=∑  (13) 

 
In the mixture likelihood approach, it is assumed that there exists a finite set of G seasonal factor 
groups and each PTC is associated with an indicator vector zi of length G whose components are 
all zero except for one indicating the classification.  The key difference between the 
classification and mixture approaches is that in the former each PTC is assigned to a unique 
cluster, while in the latter each PTC is assigned with a probability of originating from each 
seasonal factor group.  Moreover, the mixture approach allows the uncertainties associated with 
the class membership of the observations to be estimated.  The equivalent log-likelihood function 
of Equation (11) is: 
 

( )M 1 G 1 G
1 1

( , , ; , , ) ln
n G

k k i k
i k

l fτ τ τ
= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑θ θ x x θL L  (14) 

 
Equation (14) may be optimized over τk, µk, and Σk using the expectation-maximization (EM) 
algorithm.  The EM algorithm is a general approach to maximum-likelihood estimation (MLE) in 
the presence of incomplete data.  The complete data are considered to be yi = (xi, zi), where zi = 
(zi1, …, ziG) constitutes the “missing” data and zik is equal to one for a PTC (xi) belonging to 
seasonal factor group k and zero otherwise.  Equation (14) is thus considered as the log 
likelihood function from the observed data xi.  Assuming that each zi is independent and 
identically distributed according to a multinomial distribution of one draw from G seasonal 
factor groups with unknown probabilities τ1, …, τG, the probability mass function for the ith PTC 
(i.e., xi) belonging to seasonal factor group k may be expressed as follows [DUN02]: 
 

0 0 1 0 0
1 1 1

1!( )
0! 1! 0!i k k k G kf τ τ τ τ τ τ− += =z L L
L L

 (15) 

 
Assuming the probability density function for xi|zi (i.e., xi given zi) as 
 

( ) ( )
1

, ik
G z

i i k i k k
k

f f
=

= ∏x z x µ Σ  (16) 

 
Combining Equations (15) and (16) to obtain the probability density function for yi yields 
 

( ) ( ) ( )
1

( ) , ik
G z

i i i i k i k k k
k

f f f f τ
=

= × = ∏y x z z x µ Σ  (17) 

 
Under the condition that zik is equal to one for xi belonging to seasonal factor group k and zero 
otherwise, Equation (17) may be generalized as follows: 
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G z
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For a total of n PTCs, Equation (18) may be written as 
 

( ) ( )( )
1 1

, ik
n G z

k i k k k
i k

f f τ
= =

= ∏∏y x µ Σ  (19) 

 
The resulted complete-data log likelihood is  
 

( )( )
1 1

( , , ) ln
n G

k k ik ik k k i k
i k

l z z fτ τ
= =

= ×∑∑θ x x θ  (20) 

 
Let ˆikz  denote the condition expectation of zik given xi and associated parameter values, i.e., 

1ˆ , , ,ik ik i Gz E z= ⎡ ⎤⎣ ⎦x θ θL , and *
ikz  the value of ˆikz  at a maximum of Equation (16), which is the 

conditional probability that the ith PTC belongs to group k.  Figure 1 illustrates the EM algorithm 
for clustering via Gaussian mixture models [FRA98].  The EM algorithm alternates between two 
steps: an “E-step” and an “M-step.”  During the E-step, values of ˆikz  are computed from the data 
with the current parameter estimates.  At the M-step, the complete likelihood for Equation (20) 
with each zik replaced by its current conditional expectation ˆikz  is maximized with respect to the 
parameters. 
 

Figure 1. EM Algorithm for Clustering via Gaussian Mixture Models 
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Until convergence criteria are satisfied.
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The EM algorithm has the following limitations [FRA98]: 
 

• Unless starting with reasonable initial values, the rate of convergence may be slow. 
• The number of conditional probabilities associated with each PTC equals the number of 

components in the mixture.  As a result, it is not practical for models with a large number 
of seasonal factor groups. 

• EM breaks down when the covariance matrix corresponding to one or more seasonal 
factor groups is ill-conditioned, i.e., singular or near singular. 

 
There are two issues in the clustering analysis: the selection of the clustering method, such as 
those presented in Table 2, and the determination of the number of clusters.  Bayesian 
Information Criterion (BIC), as illustrated in Equation (21), is applicable to find the maximum 
mixture likelihood [FRA98]: 
 

)log(2 nrLBIC −=  (21) 
where 

L = log-likelihood of the model; 
r = total number of parameters to be estimated in the model; and 
n = number of PTCs. 

 
The number of clusters is not considered an independent parameter for the purpose of computing 
the BIC.  Likelihood cannot be used directly to evaluate a model since the fit of a mixture model 
to a given data improves as more terms are added to the model.  In the expression of BIC, a term 
is added to the log likelihood to penalize the complexity of the model.  Consequently, the BIC 
allows smaller numbers of groups than the log likelihood does. 
 
2.3 Geographic/Functional Assignment 
 
The method documented in the Bureau of Public Roads’ Guide for Traffic Volume Counting 
Manual involves a manual ranking system.  Using this method, monthly traffic factors of 
permanent count stations and the ratio of the AADT to the average weekday traffic of the month 
are sorted in ascending order [BPR65].  For each month, a group of counters is determined so 
that the difference between the smallest and the largest factors does not exceed 0.2.  The final 
grouping of counters is manually examined to ensure as many counters as possible fall into the 
same group in each month. 
 
Bellamy described a subjective classification system for determining the grouping for a site.  
Four classes were identified as urban/commuter, low flow (< 1000 veh/day) non-recreational 
rural, rural long-distance, and recreational [BEL78].  Sharma proposed a method to classify rural 
roads based on trip purpose and trip length information collected from past origin-destination 
surveys by Alberta Transportation [SHA83, SHA86].  Traffic counters were first grouped 
according to their monthly traffic patterns by hierarchical grouping.  For counters in the same 
group, the daily and hourly traffic variations for the months of May to August were then 
examined.  Based on the daily traffic patterns collected in 1978 or 1977 from a total of 45 
counter sites, the following five predominant road uses were identified [SHA83]: commuter 
(COM), commuter-recreational (CR), commuter-recreational-tourist (CRT), tourist (TOUR), and 
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highly recreational (HREC).  The following three typical patterns of hourly volumes were also 
identified: commuter pattern, partially commuter pattern, and non-commuter pattern.  Trip 
purpose data and trip length data from past origin-destination survey were then utilized to 
investigate the effects of travel behaviors on counter grouping.  Trip purpose data were used to 
verify the temporal volume variations, which were categorized into the following two groups: 
work-business and social-recreation.  Cumulative trip length distribution information was used to 
classify roads for mainly serving regional, interregional, or long-distance travel.  Seven road 
classes were defined: commuter, commuter-recreational, commuter-recreational-tourist, rural 
long distance, non-recreational low volume, high recreational, and special.  The same procedure 
was used to examine the data from 52 sites in Alberta and the grouping was tested on the data 
from 28 sites in Saskatchewan, Canada [SHA86].  Eight road classes were consequently defined: 
regional commuter, regional recreational and commuter, interregional, long distance, long 
distance and recreational, highly recreational, rural commuter and business, and special.  Faghri 
and Hua classified roads into urban/rural, recreation/non-recreational, and recreational–
arterial/otherwise based on their physical and functional characteristics [FAG95].  To estimate 
the number of automatic traffic recorders (ATRs) needed, Faghri et al. classified count sites into 
four categories based on the value of monthly coefficient of variation (MCV): urban (MCV < 
10%), rural (10% ≤ MCV < 25%), recreational (25% ≤ MCV < 35%), and predominantly 
recreational (MCV > 35%) [FAG86].  Such classification of traffic characteristics, however, is 
difficult to obtain for large urban areas due to the dispersion and mixing of different types of 
activity centers, making it unlikely that a particular type of trips will be the dominant traffic on a 
given road. 
 
Ritchie proposed a statistical framework to analyze statewide traffic count data [RIT86].  This 
approach incorporated seasonal effect on traffic volumes by first stratifying highway system 
according to geographic region and functional classification.  The strata with similar seasonal 
patterns were combined.  Using the data collected from 1980 to 1984 in Washington, seven 
groups were obtained: rural interstates, urban roads, other rural roads in the northeastern, 
southeastern, northwestern, and southwestern parts of Washington, and central mountain passes.  
The following regression model was then calibrated to estimate seasonal factors for each group: 
 

εβ +==
i

i VOL
AADTFactorseasonal  (22) 

 
where 
 VOLi = average 24-hour short-count volumes calculated from the 72-hour Tuesday-

Thursday counts for month i; 
 ε = error term whose variance was considered as a constant; and 
 β = regression coefficient, which was interpreted as the estimated seasonal factor for 

a specific factor group for a given month. 
 
Delaware Department of Transportation (DelDOT) utilized the procedure suggested in the 
FHWA Traffic Monitor Guide (TMG) and categorized permanent count stations according to 
their monthly coefficient of variations (MCVs) into the following four groups: urban group for 
MCVs less than 10%, rural group for MCVs between 10% and 25%, recreational group for 
MCVs between 25.1% and 35.1%, and predominantly recreational group for MCV greater than 
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35.1% [FAG96].  The MCVs were determined using the following formula where Mi is the 
monthly AADT: 
 

( )

AADT

AADT
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=

−
= i

iM
 (23) 

 
Virginia Department of Transportation (VDOT) applied an approach to factor short-term vehicle 
classification counts by simultaneously considering seasonal and weekly traffic variations 
[WEI96].  VDOT first classified vehicles into the following five groups: 
 

1. Four-tire vehicles (Classes 2 and 3) 
2. Buses (Class 4) 
3. Other six-tire, two-axle vehicles (Class 5) 
4. Other single-unit vehicles with three of more axles (Class 6 and 7) 
5. Combination trucks (Classes 8-13) 

 
Two sets of 84 combined-month-and-day-of-week (CMDW) factors, which were developed for 
each day of the week and month of the year, i.e., 7 days × 12 months, were calculated for vehicle 
groups 1 and 5.  For vehicle groups 2 through 4, seven day-of-week factors and 12 separate 
monthly factors were developed and applied in pairs to reduce the mean absolute error (MAE).  
The error was the average of the absolute values of the percent differences between the estimated 
and actual AADT. 
 
Kentucky Transportation Cabinet applied a similar approach to that of VDOT to factor short-
term vehicle classification counts [STA97].  Eighty-four CMDW factors were developed for four 
different types of roadways, i.e., rural Interstates and parkways, urban Interstates and parkways, 
rural non-Interstates and non-parkways, and urban non-Interstates and non-parkways, for each of 
the 15 vehicle types.  The preliminary validation showed that more accurate AADT estimates 
were obtained when each vehicle type was factored alone and then estimates for different vehicle 
types were added to obtain the overall AADT for a given roadway segment. 
 
2.4 Regression Analysis 
 
Regression techniques may be used as a tool to analyze the relationship between seasonal 
variations in traffic volume and some predictors [FAG95].  Variables used generally include 
those that represent the physical and functional characteristics or their combinations.  Dummy 
regressors are used to represent these characteristics as the “yes/no” type of variables.  The 
regression model is commonly defined in a linear form: 
 

0 1 1 2 2sm m m mf x xα α α= + + +K  (24) 
 
where 

fsm = seasonal factor in month m; and 
xi = dummy variable that takes the value of 0 and 1 (i = 1, 2 , …). 
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Faghri and Hua concluded that urban/rural, recreation/non-recreational, and recreation-
arterial/otherwise variables were statistically significant and could provide better results than 
cluster analysis [FAG95]. 
 
Regression analysis was also often used to estimate AADT directly to avoid the use of seasonal 
factors.  For example, the following simple linear regression equation was used to estimate 
AADT [LAM00]: 
 

y A Bx= +  (25) 
 
where 

y = estimated AADT; 
x = short period count at the selected station; and 
A, B = regression coefficients. 

 
Erhunmwunsee compared AADTs estimated from multiple regression analysis with those from 
the Philips and Blake’s method based on the traffic data from the City of Milwaukee’s 24 
continuous count stations [ERH91].  A total of 12 stations were randomly selected as the fitting 
samples and the remaining stations were validation samples.  The regression analysis equation 
was defined as follows: 
 

0 1 1 2 2ij ij n ijny B B F B F B F= + × + × + + ×K  (26) 
 
where 
 y = estimated AADT; 
 Bi = regression coefficients (i = 1, 2, … n); and 
 Fij = short period count at station i on day j on month 1, 2, … n. 
 
It was determined that the period with its midpoint centered at 3 PM was the best period in a day 
to begin a short-term count and that the best month to conduct short-term counts was April, 
followed by June and October.  Erhunmwunsee also concluded that the regression method 
produced the better AADT estimates than the Philips and Blake’s method. 
 
Seaver et al. proposed a statistical procedure utilizing principal component analysis, multivariate 
regression, regression clustering, and multiple regression analysis to model ADT on rural local 
roads [SEA00].  Data collected from 80 randomly selected counties in Georgia were utilized for 
model development.  The procedure had the following steps: 
 

1. Apply principal component analysis to identify p principal components (y1, y2, …, yp) 
from n initial independent variables (x1, x2, …, xn) for each paved (Road Type 4) and 
unpaved (Road Type 5) rural roads in the metropolitan statistical area (MSA) and 
non-MSA. 

2. Apply multivariate regression to find the principal variables from the n initial 
independent variables (x1, x2, …, xn) that are correlated with the principal components 
(y1, y2, …, yp) identified in the first step. 
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3. Apply regression clustering to determine strata for each road type in both MSA and 
non-MSA by using the ADT in a county as the dependent variable and the principal 
variables identified in Step 2 as the regressors. 

4. Perform a multiple regression on the data within each cluster. 
 
The advantage of this method is that all independent variables used in the procedure for 
developing the models were obtained from the U.S. census.  The time and cost for obtaining the 
data were subsequently reduced.  The disadvantage, on the other hand, is that census may not be 
up-to-date and data verification is needed.  The statistical procedure proposed by Seaver et al. 
may be applicable to grouping PTCs into seasonal clusters for AADT estimates, provided that 
data for the independent variables at PTC level are available. 
 
Zhao and Chung performed various multiple liner regression analyses to investigate factors 
affecting AADT estimates in Broward County, Florida [ZHA01].  Geographic information 
system (GIS) technology was utilized to compile intensive land-use and accessibility measures.  
Four models were calibrated after outliers were removed.  Two variables, i.e., functional 
classification and number of lanes, were found to be the most significant predictors for 
estimating AADTs.  Other land-use variables, including direct access to expressway, 
employment size in the buffer area around a given count station, distance to spatial mean centers 
of population, and regional accessibility to employment centers, were also found to be 
significant. 
 
Davis applied the weighted least-squares regression to calibrate the following model for traffic 
counts [DAV97]: 
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where 
 yt = natural logarithm of the traffic count on day t; 
 µ = expected log traffic count on a typical day; 
 ∆t, i = 1, if the count was made during month i (i = 1, …, 12), and 0 otherwise; 
 mk, i = correction term for month i, characteristic of factor group k (k = 1, 2, or 3); 
 δt, j = 1, if the count was made on day-of-week j (j = 1, …, 7), and 0 otherwise; 
 wk, j = correction term for day-of-week j, characteristic of factor group k; and 
 εt = random error (residual). 
 
After eliminating missing and imputed data from the traffic data collected in 1992, a total of 50 
ATRs that were classified into three factor groups by the Minnesota Department of 
Transportation (MnDOT) personnel were included in the model development.  The mean-value 
(µ), monthly (mk, i), and day-of-week (wk, j) terms were estimated using re-weighted least squares 
in MINITAB with the following procedure iteratively: 
 
• Estimate mean, monthly, and day-of-weeks parameters via the GLM procedure in 

MINITAB; 
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• Compute the residual variance for each ATR in a group given the current regression 
parameter estimates; and 

• Use the variance estimates to compute separate weighting vectors for each ATR. 
 
The monthly and day-of-week terms were constants for all ATRs within a specific factor group 
k, but each ATR in the factor group was allowed to have its own mean-value parameter µ.  The 
weighted least squares approach in the MINITAB’s GLM procedure was chosen due to the 
heteroscedasticity caused by ATRs’ different day-to-day variances.  The residuals, i.e., εt’s, were 
further validated with their temporal dependency, and the following seasonal, multiplicative 
autoregressive model was obtained: 
 

ttttt a+ΦΦ−Φ+Φ= −−− 8717711 εεεε  (28) 
where 
 at = independently and identically distributed normal random variables with mean 

equal to 0 and common variance; and 
 Φ1, Φ7 = autoregressive coefficients. 
 
Once the parameters in the above autoregressive model were estimated, i.e., 1Φ̂  and 7Φ̂ , the 

residuals, i.e., ( )8717711
ˆˆˆˆ

−−− ΦΦ−Φ+Φ− tttt εεεε , were validated to confirm that the residuals 
were not significantly autocorrelated and would pass the goodness-of-fit test of being normally 
distributed. 
 
2.5 Artificial Neural Networks 
 
Artificial neural networks (ANNs) are computing techniques that attempt to simulate the 
workings of the human brain.  It is known that ANNs are superior to traditional computing 
techniques in solving pattern classification problems due to their unique properties [FAG95]: 
 

• Ability to deal with incomplete input information; 
• Ability to deal with noisy input data; and 
• Ability to learn and associate patterns from historical data. 

 
The ANN models consist of many simple processing elements, i.e., neurons, with dense parallel 
interconnections.  They may be classified according to various criteria, such as their learning 
methods (supervised versus unsupervised), architectures (feed-forward versus recurrent), output 
types (binary versus continuous), node types (uniform versus hybrid), implementations (software 
versus hardware), connection weights (adjustable versus hardwired), operations (biologically 
motivated versus psychologically motivated), etc. [JAN97].  In ANNs, feed-forward means the 
output of each processing element generally propagates from the input side to the output side.  If 
there is a feedback link that forms a circular path in a network, the network is called recurrent. 
 
Training and testing are the two stages in the development of an ANN model.  During the 
training stage, an inductive learning principle is used to learn from a set of examples called a 
training set.  Several neural network learning schemes, including supervised learning and 
unsupervised learning, have been developed.  A supervised learning ANN is first trained by a 
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selected algorithm to learn from the AADTs collected at permanent count stations.  The trained 
ANN may then be used to estimate AADTs at short count stations.  Consequently, unlike 
traditional method of estimating AADT from sample volume counts, determining ATR factor 
groups according to similarities in their temporal traffic variations and then assigning each short 
count station to one of the established factor groups is no longer a priori.  Unsupervised learning 
ANNs may be trained without any information of the desired output to determine factor groups 
after frequently occurring traffic patterns are recognized.  The following sections provide a brief 
introduction for supervised and unsupervised learning methods and their applications to grouping 
traffic patterns and/or AADT estimation. 
 
2.5.1 Supervised Learning  
 
Supervised learning involves providing an ANN with “examples” that consist of inputs and the 
corresponding outputs.  The learning algorithm attempts to adjust the weights of the connections 
between neurons to produce the desired output.  As a result, such networks are also referred to as 
mapping networks.  During the mapping process, the error in the output is propagated back to the 
previous neurons by adjusting the weights of the connections.  This is called the back-
propagation (BP) method for propagating the error, or known as the generalized delta rule 
(GDR).  Figure 2 illustrates the architecture for supervised learning and back-propagation neural 
networks where the target is the desired output.  The process begins by assigning weights with 
small random values and terminates when either the maximum number of iterations is reached or 
the sum of absolute error (SAE) is reduced to an acceptable value. 

 
 

Figure 2. Neural Network Architecture 
 
The multi-layered feed-forward network is probably the most commonly used model for 
estimating AADT.  Sharma et al. investigated the traffic volume data from 63 ATR sites located 
on the regional and rural roads in Minnesota using a multi-layered, feed-forward, back-
propagation, and supervised learning approach [SHA99].  The data were collected during a 
period between May and August in 1993.  The model consisted of three layers of neurons, i.e., 
one input layer, one output layer, and one hidden layer for feeding data from the input layer to 
the output layer.  The input was the hourly volumes of vehicles included in a sample counting 
program divided by the sample average daily traffic (SADT), which was simply the total volume 
for one or more short-period traffic counts in the sample divided by the number of sample days.  
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Therefore, the number of neurons in the input layer was equal to the total number of hourly 
volumes.  The hidden layer had half of the number of neurons in the input layer, and the output 
layer only contained one neuron, which gave the estimated value for an AADT factor.  The 
actual AADT factor for the output layer was defined as follows: 
 

Actual AADT factor = 
SADT

AADT×25.0  (29) 

 
The estimated AADT was calculated using the following equation: 
 

Estimated AADT = 4 × (SADT × output factor from ANNs) (30) 
 
The learning cycles were set at 25,000.  The results from the neural networks were compared 
with those from the traditional hierarchical grouping method proposed by Sharma and Werner 
[SHA81].  Although the comparison from their study indicated that the errors from the neural 
network model were larger than those from a traditional grouping method, the authors argued 
that short-period count sites could not be assigned 100 percent correctly to one of the factor 
groups in practice.  As a result, the neural network approach would be a better alternative to 
estimate AADT since it would not require classifying permanent count stations to groups and 
then assigning sample count sites to their associated PTC groups. 
 
Sharma et al. reached similar conclusions as those in [SHA99] regarding the accuracy of the 
AADT estimates on low-volume roads using the traditional factor approach and ANNs [SHA00, 
SHA01].  The supervised learning ANNs structure, same as that implemented in [SHA99] with 
the multi-layered, feed-forward, and back-propagation design was again utilized.  The traffic 
volume data collected from 55 ATR sites located on the rural roads in Alberta, Canada in 1996 
were investigated.  The low-volume roads referred to those for which the AADT volumes were 
between 120 and 999 vehicles.  Sharma et al. concluded again that the factor approach produced 
better AADT estimates than ANNs if the ATR sites were grouped appropriately and the sample 
sites were correctly assigned to their associated groups. 

 
Lam and Xu implemented a multi-layered feed-forward, back-propagation neural network that 
consisted of one input layer, one output layer, and one hidden layer to group the traffic flow data 
collected in 1991 from 13 count sites in Hong Kong [LAM00].  Different lengths of counts, i.e., 
four hours, six hours, eight hours, 10 hours, 12 hours, 14 hours, and 16 hours, each associated 
with several starting times in a day, were investigated.  The sum of absolute percentage errors 
(SAE) from the PTCs included in the study was calculated using the following equation for both 
methods for the 13 count stations: 
 

∑=
13

(%)
i

iErrorSAE  (31) 

 
where Errori(%) is the percentage error between the estimated and actual AADT at the ith PTC.  
An effectiveness index (Eff) was defined to measure the effect of the extra counting time under 
the assumption that the cost of traffic counts was proportional to the count duration: 
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RSAEEff
ETLC

=  (32) 

 
where 
 RSAE = reduction in SAE; and 
 ETLC = amount of extra time length of count. 
 
By comparing SAEs, Lam and Xu concluded that the neural network approach consistently 
performed better than the regression analysis approach in estimating AADT.  The 12-hour count 
period was found to be the most accurate period for AADT estimation because of the minimum 
SAE.  However, the 8-hour count was the most effective period of count with the highest Eff 
value of 5.41. 
 
Lingras et al. applied a time-delay neural network (TDNN) and an autoregression (AR) model to 
forecast daily traffic volumes at 78 PTC sites in Alberta, Canada [LIN00].  To simplify the 
analysis, the PTC sites were first classified into the following five types of road groups: 
 

1. Highly recreational 
2. Regional recreational 
3. Long distance 
4. Urban commuter 
5. Regional commuter 

 
The method suggested by Sharma and Werner [SHA81] was used to determine different groups 
of road classifications based on the traffic data collected in 1993.  After road types were 
determined, one PTC site each from groups 1, 2, and 3 and three PTC sites each from groups 4 
and 5 were selected.  Only PTC sites with continuous traffic data from 1989 to 1993, inclusive, 
were selected.  Their traffic data collected from 1989 through 1992 were then used to train the 
TDNN and calibrate AR model for each classification group.  These models were subsequently 
tested using the data collected from these selected PTC sites in 1993.  Daily traffic volumes of 
the previous 13 days (i.e., x1, x2, …, x13,) were defined as the independent variables or input 
variables to predict traffic volume for the following day (x14).  The AR equation is shown below. 
 

∑
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The TDNN had 13 input nodes corresponding to the previous 13 daily traffic volumes and one 
output to predict the traffic volume.  The average and maximum percentage errors (between the 
predicted and the actual traffic volumes) as well as the 50th, 85th, and 95th percentile errors from 
the cumulative frequency distributions were used as the model performance measures.  Lingras 
et al. concluded that TDNN models produced better predictions than AR models for all the five 
road groups since all of the error measures were smaller with the neural network approach. 
 
Theoretically, if the number of neurons in the hidden layer is large enough, supervised learning 
ANNs will be able to approximate closely any complicated non-linear function.  Current 
practices, however, utilize the ANN paradigm designed with one hidden layer to reduce the 
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intensive computing efforts in the training process.  Consequently, the performance of supervised 
learning neural networks on estimating AADT has not been truly explored. 
 
2.5.2 Unsupervised Learning  
 
Unsupervised learning, or learning without supervision, is an approach that extracts features or 
regularities from presented patterns without any information of the desired output [JAN97].  
ANNs with unsupervised learning update weights only on the basis of the input patterns and are 
trained to respond to frequently occurring patterns.  The following sections describe the 
unsupervised learning paradigms for competitive learning and the Kohonen self-organizing 
feature map. 
 
2.5.2.1 Competitive Learning and ART1 
 
In competitive learning ANNs, the number of output units is equal to the number of clusters into 
which the data are divided.  The weights of the neural connections are updated according to the 
competitive, or winner-take-all, learning rule.  Competitive learning ANNs have two 
disadvantages.  One is that the number of classification clusters has to be specified before the 
learning proceeds and the model lacks the capability to add new clusters when necessary.  In 
other words, competitive learning classifies a given pattern into exactly one of the mutually 
exclusive classes that are predetermined.  The other is that response to the same input pattern 
may differ on each successive presentation of that input pattern and the winning unit that 
responses to a particular pattern may continue to change during training.  This is usually referred 
to as the stability-plasticity dilemma.  Such unstable learning in response to prescribed input is 
due to the learning that occurs with other intervening inputs.  Consequently, the network 
adaptability, or plasticity, enables prior learning to be erased by more recent learning in response 
to a wide variety of input environments.  As a solution to the dilemma, Carpenter and Grossberg 
proposed the ART1 architecture that was capable of recognizing patterns from arbitrary binary 
input patterns [CAR88].  The ART1 neural network is a paradigm of adaptive resonance theory 
(ART) that processes binary patterns in which each element of input vector takes only a value of 
0 or 1.  The ART1 learning scheme is also capable of creating new clusters when needed. 
 
Faghri and Hua applied the ART1 neural network to group 29 ATR stations in Delaware with 
traffic data collected from 1985 through 1989 [FAG95].  ART1 had only one layer of processing 
units.  ART1 ANNs set up certain categories for the input and classified the input pattern into a 
proper category.  If an input pattern did not match any existing categories, the network would 
create a new category for it.  The ratio of a MADT to the corresponding AADT, i.e., V0, for a 
given PTC was first converted using the following formula: 
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where 
 Vn = conversion result for the ratio of MADT to AADT; 
 V0 = ratio of MADT to AADT; 
 V0

max = maximum value of the MADT to AADT ratio; and 
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 V0
min = minimum value of the MADT to AADT ratio. 

 
The 12 new ratios corresponding to the 12 months in a year were then converted to binary 
numbers and entered into each column of a 10 × 12 matrix.  This matrix was used as an input to 
the ART1 ANNs for the traffic pattern obtained from a given PTC.  Some accuracy was lost due 
to rounding because each MSF was represented by a 10 × 1 vector.  This loss of accuracy was 
considered insignificant and ignored in the study.  A value of 0.83 was determined as the 
vigilance factor after a few pre-designated count sites were correctly classified into proper 
categories.  The results from the ART1 method were compared with those obtained from both 
cluster and regression analyses.  While four seasonal categories were produced by all three 
methods, they differed in the way that the ATRs were grouped.  Cluster and regression analyses 
created categories of urban, rural, recreational arterial, and recreational collector, while the ANN 
created categories of urban or interstate, rural arterial, rural collector, and recreation.  There were 
only two ATR stations whose categories were not determined by the ART1 method.  For at least 
five ATR stations, the groups changed from year to year and from method to method. 
 
The following equation was used to measure the comprehensive performance of the three 
methods in estimating seasonal factors: 
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where 
 averagetype = average error for method type; 
 errtype(j) = dissimilarity between estimated and actual seasonal factors in month j 

for method type; 
 sftype(i, j) = estimated seasonal factor for method type at i ART in j month; and 
 sfact(i, j) = actual seasonal factor at i ART in j month. 
 
By comparing the average errors from the three grouping methods, Faghri and Hua concluded 
that the neural network method outperformed the cluster and regression methods.  The results 
indicated that ART1 networks had the ability to organize inputs into their natural groups as well 
as the capability of weeding out random seasonal fluctuations in the input patterns. 
 
2.5.2.2 Kohonen Self-Organizing Feature Map 
 
Kohonen self-organizing networks, also known as Kohonen feature maps or topology-preserving 
maps, are another competition-based network paradigm for data grouping.  The learning 
procedure of Kohonen feature maps is similar to that of competitive learning ANNs.  However, 
in addition to updating the weights for the winning units, all the weights in a neighborhood 
surrounding the winning units are updated as well.  The network consists of two layers, i.e., input 
and Kohonen layers.  The network receives the input vector as a given pattern.  If the pattern 
belongs to the kth group, the kth unit in the Kohonen layers will have an output value of one while 
the other neurons will have a value of zero. 
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Lingras compared the classification groups from Kohonen unsupervised learning ANNs and with 
those from a hierarchical grouping method using data collected from 72 PTC sites in Alberta, 
Canada [LIN95].  Five seasonal categories were specified for Kohonen ANNs.  The number of 
iterations was set to 100 since grouping stabilized after presenting the training set to the ANN 
100 times.  The findings included that the Kohonen ANNs produced results that were similar to 
the hierarchical groping method.  As a result, ANNs could be used to substitute the statistical 
techniques for grouping of traffic patterns.  Moreover, Kohonen ANNs updated the weights on 
the connections only when complete patterns were presented.  For incomplete patterns, the 
ANNs could find the categories using the least mean-square error or other similarity measures.  
This feature enabled Kohonen ANNs to classify incomplete monthly traffic patterns. 
 
2.6 Genetic Algorithms 
 
Genetic algorithms (GAs), originally called genetic plans, have received a great deal of attention 
because of their potentials to solve optimization problems [SAK02].  The GA technique is a 
stochastic search process based on the mechanism of natural selection and genetics.  In a GA, 
problem solutions are represented as chromosomes, which are made up by genes.  Starting with 
an initial population of individuals, i.e., chromosomes, genetic operators are applied to evolve 
the population by producing successively new populations with improved “fitness” of the 
individuals.  Each iteration produces a new generation of solutions.  For any given generation, 
each individual in the population is evaluated using some measure of fitness, usually the 
objective function in an optimization problem.  Genetic operators, such as selection, 
reproduction, crossover, and mutation, are then used to create the next generation of the 
population.  Selection is to select individuals from the current population based on their fitness 
values.  Reproduction involves applying crossover and mutation operators to some of the 
selected individuals to produce a new generation whose overall fitness should improve over the 
previous generation.  The crossover operator selects individuals from the population at random 
and exchange portions of the genes to produce new individuals, while the mutation operator 
randomly alters one or more genes of a selected individual.  The process continues until the 
termination condition is satisfied, which is either the best fitness value of the population stops to 
improve or a prescribed number of iteration is exceeded.  The general framework of genetic 
algorithms is presented in Figure 3, where P(t) denotes the population at generation t. 
 

Figure 3. General Framework of Genetic Algorithms 

begin 
 t := 0 
 initialize P(t) 
 evaluate P(t) 
 while (not termination condition) do 
 begin 
  t := t + 1 
  select P(t) from P(t - 1) 
  alter P(t) 
  evaluate P(t) 
 end 
end.
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GA-based methods have several advantages: 
 

• GA formulations do not require the calculation of gradient matrices or other higher order 
derivative matrices or their approximations. 

 
• A GA-based solution method directly operates its search process, e.g., transformation 

through genetic operators and selection based on fitness.  Therefore, there is no need to 
formulate a system of governing equations that represents or simulate mathematically the 
relationship between various parameters and unknowns.  This is particularly attractive for 
practical applications where it is difficult to establish mathematical formulation to 
accurately and effectively simulate complex problems. 

 
• Constraint conditions are relatively easy to incorporate into a GA solution process.  

Constraint conditions may be simply defined as a part of the environmental conditions or 
by assigning large penalty numbers to individuals that violate certain constraints thus 
reducing their surviving possibility in the selection process.  This may be especially 
suitable to problems where constraints are complicated and cannot be properly defined. 

 
GAs have been a very active research field for the past several decades and results have been 
widely used in various application fields.  However, GAs also have two main disadvantages: 
 

• GAs are stochastic algorithms whose search methods are based on the natural evolution 
principle.  Although a sufficiently large number of “individuals” may result in a nearly 
optimal solution to an optimization problem, the GA technique does not guarantee global 
optimal solutions. 

 
• GAs may require extremely large amount of computer CPU time when dealing with 

large-scale problems. 
 
Lingras utilized a GA to group PTCs and compared the classifications with those from the 
traditional hierarchical grouping method developed by Sharma and Werner [LIN01].  The 
monthly traffic patterns collected between 1987 and 1991 from PTC sites on Alberta highways 
were used.  The number of genes in a chromosome was set to equal to the number of seasonal 
patterns that needed to be classified.  Each chromosome corresponded to a classification scheme.  
A gene was randomly assigned with an initial value between 1 and m, where m is the desired 
number of groups.  Solutions of two to 15 factor groups with the following object function were 
investigated: 
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where 
 ∆1 = maximum possible within-group error; 
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 ∆m = sum of within-group error for m groups of seasonal patterns; 
 Pi = seasonal traffic pattern i; 
 d() = a distance function to measure the dissimilarity between patterns; 
 xj = seasonal traffic pattern j in factor group Xi; and 
 n = total number of seasonal patterns. 
 
The behaviors of both GAs and hierarchical methods were also compared for 20, 30, 40, and 50 
groups.  Galib, a program available at http://lancet.mit.edu/ga/, was used to perform the GA 
analysis.  The classification schemes for different numbers of groups with the highest values of 
∆1/∆m from 1,000 generations of evolution were compared with those from the traditional 
hierarchical clustering approach.  The results indicated that the hierarchical grouping method 
performed better when the number of groups was greater than 14.  However, GAs performed 
better when the number of groups was less than nine.  Since the initial grouping patterns were 
randomly assigned, the results were verified by repeating the experiment for five factor groups 
22 times.  The within-groups errors varied between 680 and 730, which were consistently and 
significantly lower than the hierarchical grouping error of 861.  The genetic approach was also 
applied with different numbers of generations ranging from 100 to 1,000 with an interval of 100 
for five factor groups.  The results showed that the GAs errors were less than the hierarchical 
groping error after 400 generations. 
 
2.7 Assignment of Count Sites 
 
There is considerable vagueness in the current practice of assigning count sites to seasonal factor 
groups.  Currently, assigning short-count sites to factor groups and determining the precision of 
short count estimates are generally accomplished by considering the physical proximity of short 
count sites to a PTC site and based on engineering judgment [TMG01].  If the true factor group 
for a site is known, it was reported that traditional short-counts could provide estimates of mean 
daily traffic with the PI95 (precision achievable with 95% confidence) between 10 and 23 
percent [DAV96a].  Inappropriately assigning a site to a factor group may result in a great 
decline in precision.   
 
North Carolina Department of Transportation (NCDOT) implemented a data management 
system developed with GIS to assign each short count site to one of the seven seasonal groups 
based on the most recent data at that site [MCD99].  Short count stations that had at least three or 
four 48-hour sampling traffic counts available were used to identify the seasonal group that was 
highly correlated over these short count stations’ day and month variations.  In other words, 
statistical correlation and their associated p-values were used to determine the best seasonal 
group for a given short count site. 
 
Davis and Guan employed Bayesian theorem to assign a given site to a known seasonal factor 
group with the highest posterior probability [DAV97].  The probability was defined as follows: 
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where 
 f(z1, …, zN) = a likelihood function measuring the probability of obtaining the count 

sample had the site belonged to a given seasonal factor group; 
 z1, …, zN = a sequence of N daily traffic counts at a short-count site; 
 G1, …, Gn = a total of n different factor groups; and 

αk = probability that the given site belongs to Gk prior classification. 
 
The prior classification probability, i.e., αk, was assumed to equal to 1/n, indicating complete 
prior uncertainty as to which group a short count site belonged.  The linear regression model 
described in Section 2.4 was used as the likelihood function in the posterior classification 
probabilities, which is again given below: 
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It was further assumed that ε1, …, εN, were normally distributed random errors with a mean 
value of 0 and a covariance matrix σ2V, where σ2 was the common unconditional variance of yt, 
and V is a N × N matrix of correlation coefficients such that the element in row s and column t, 
Vs,t, was the correlation coefficient for ys and yt.  The approach was developed based on the 
assumption that short-term count sites should be assigned to one of the seasonal factor groups 
that had a similar monthly and daily variation pattern.  The model was validated using data from 
48 ATR stations for 1991 and 50 for 1992.  This data-driven approach was shown to be able to 
produce mean daily traffic estimates that were near ±20 percent of actual values based on 14 well 
selected sampling days from particular months and days of the week.  Although the method did 
not provide significant improvements in precision over what may be achieved when the 
appropriate seasonal factors were known, reliance on subjective judgment was reduced in the 
process.  A potential problem with the Bayesian assignment approach proposed by Davis and 
Guan, however, is that longer period of data collection at short count sites is needed.  The 
approach is also complicated and time consuming to implement. 
 
2.8 Other Issues 
 
Two important issues need to be considered in seasonal factor modeling, i.e., data quality and 
precision.  Missing or erroneous data due to machine failures, system errors, or vandalism are 
often encountered in the analysis of traffic data.  Data imputation generally refers to editing and 
correction of data that are missing or inconsistent.  The following sections first discuss the 
effects of data imputation and available approaches to identify and correct such data.  The 
precision analysis recommended in TMG to validate the number of count stations within a given 
factor group is also described. 
 
2.8.1 Data Imputation 
 
There have been studies to investigate the effect of missing traffic data on AADT estimates.  
However, to our best knowledge, previous research efforts have not yet considered the effect of 
missing data on seasonal factor estimates and consequently no conclusions have been reached.  
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Using continuous traffic data collected in 1994 from 21 permanent count stations, eight 
classification stations, and six weigh-in-motion stations in Florida, Wright et al. investigated the 
effect of the following three levels of missing data on AADT estimates [WRI97]: 
 

• 5% of days of data missing at random; 
• 20% of days of data missing at random; and 
• 50% of days of data missing at random. 

 
A given percentage (i.e., 5%, 20%, or 50%) of days in 1994 were randomly selected and 
excluded from the calculations of AADT and CV for a specific count site.  This random 
sampling procedure was repeated for 1,000 times, each producing an AADT estimate and its 
associated CV.  The simulated AADT and CV, i.e., the average value of the 1,000 AADTs and 
CVs, were then compared with the respective statistics from the full data set for each count site.  
The same process was applied to randomly eliminate weekly data up to 8 consecutive weeks.  
The authors concluded that random missing data did not significantly bias the estimation of 
AADT.  The authors also examined the effect of holidays and special days on AADT under the 
following three conditions: 
 

• All days of data used; 
• Data with all specific holidays removed; and 
• Data with all holiday period days removed. 

 
Wright et al. concluded that the effect of holidays and special days was negligible on overall 
AADT estimates.  No further investigation was performed to examine the effects of missing or 
erroneous data on seasonal factors. 
 
There are at least two approaches that may be potentially suitable for data imputation.  They are 
factoring approach and time series analysis.  For example, the Pennsylvania Department of 
Transportation (PennDOT) implemented a factoring approach to perform data imputation.  The 
routine used in the PennDOT’s automatic traffic data management system identifies missing or 
erroneous data when any of the following four criteria are met [CHU98]: 
 

1. Volumes at 1 a.m. are larger than volumes at 1 p.m.; 
2. Same volumes are collected for four consecutive hours or longer; 
3. Zero volumes are collected for eight consecutive hours or longer; and 
4. Other data are missing. 

 
Using data from a particular count site, a lookup table with values determined according to the 
proportions of volumes at a given time of day and day of the week for each vehicle class will be 
created.  The values from the lookup table are suggested to replace the missing or erroneous data. 
Time series analysis, such as autoregressive integrated moving average (ARIMA) multivariate 
models and seasonal exponential smoothing models, may also be implemented to repair imputed 
data.  To be more concise, ARIMA models are linear estimators regressed on past values of the 
modeled time series (the autoregressive terms) or past prediction errors (the moving average 
terms) [WIL98].  On the other hand, seasonal exponential smoothing models are linear 
estimators that place exponentially decayed weights on past values.  The rate of this decay is 
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determined by a set of smoothing parameters that are set to minimize the mean squared error of 
the one-step forecasts. 
 
Kopanezou and Trivellas considered seasonal and weekly periodical variations and changes 
during holidays or special event days in their time series analysis to forecast daily traffic 
volumes [KOP89].  Traffic volumes collected in 1985 from a permanent count station was used 
for the model development purpose.  The following ARIMA multivariate time series model was 
developed: 
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where 
 Zt = estimated daily traffic on a given day t; 
 );( wxf t  = autoregressive function in the ARIMA model; 
 Nt = moving average function in the ARIMA model; 
 x1t = a dummy variable: 1 if day t falls in the months of January, February, 

March, or October, and zero otherwise; 
 x2t = a dummy variable: 1 if day t falls in the months of April, May, September, 

November, and December, and zero otherwise; 
 x3t = a dummy variable: 1 if day t falls in the months of June, July, and August, 

and zero otherwise; 
 x4t = a dummy variable: 1 if day t is a holiday or special even day; 
 B = backward-shift operator; and 
 αt = white noise, which is identically and normally distributed with mean zero 

and variance σ2. 
 
The classification of the monthly factor was obtained by utilizing the least significant difference 
(LSD) multiple comparisons methodology.  The MADT was first calculated and sorted in 
ascending order.  The hypothesis test using the Fisher multiple pair-wise comparisons method 
was subsequently performed to identify the monthly groups.  The nonlinear least square routine 
from the statistical package RATS was used to estimated the time series model parameters, i.e., 
w1, w2, w3, w4, θ1, θ2, θ3, and θ.  The model was then evaluated using the data collected from 
January through April at the same PTC sites in 1986.  The results indicated that time series 
techniques could provide highly accurate and inexpensive short-term forecasts. 
 
2.8.2 Precision Analysis 
 
Precision analysis for seasonal factors is to determine if the number of ATR locations in each 
factor group is adequate to achieve the desired level of accuracy for the composite group factors 
[TMG01].  By assuming the permanent count stations in a given seasonal group being randomly 
selected, the confidence intervals may be estimated as: 
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n
ctd n 1,2 −= α  (42) 

 
where 
 d = precision as a percentage to the mean factor for a given month; 
 c = coefficient of variation of the seasonal factors in a group; 
 n = number of ATRs in a given group; and 
 1,2 −ntα  = t statistic at 100(1 - α) percent confidence interval and n – 1 degrees of 

freedom. 
 
The reliability levels recommended by TMG are 10 percent precision and 95 percent confidence 
interval for each individual seasonal group, excluding recreational groups.  The number of ATRs 
needed is usually five to eight per seasonal group but may vary from group to group. 
 
French et al. conducted precision analysis using seasonal factor data collected in 1998 and 1999 
from 63 permanent count stations operated by PennDOT and found only one deficient group out 
of the ten traffic pattern groups used by the agency [FRE01].  Currently, there is no explicit 
guideline from the TMG for computing growth factors to estimate AADTs and consequently no 
precision analysis is recommended [TMG01].  PennDOT applied the following procedure, which 
is similar to the approach for seasonal factor analysis, to estimate the number of sites needed for 
each of the 42 growth factor categories [FRE01]: 
 

• Calculate growth factor for each ATR in each growth factor category; 
• Calculate the mean and standard deviation from the growth factors in a given category; 

and 
• Apply the same approach as that for seasonal factor groups to estimate precision level. 
 

2.9 Summary 
 
Several approaches that have been developed to incorporate seasonal effects in the calculation of 
total traffic volumes on a given roadway segment have been described.  For models developed 
based on artificial intelligence technologies such as neural networks and genetic algorithms, it 
may be difficult to interpret resulted seasonal patterns, especially when they do not agree with 
engineering judgment.  Although ANNs have been shown to be effective at representing 
complex nonlinear relationships, it is difficult to determine the relationships between variables.  
It is also possible to over-train a network, resulting in a memorization of the training data rather 
than a generalization of the relationship.  Consequently, it has been recommended to use a large 
database for training purpose and to use proper judgment on when to stop training [SMI97].  
However, such requirements generally are difficult to meet since installing and maintaining a 
large number of PTC sites is unlikely.  Moreover, the process of determining seasonal groups 
cannot be automated if human judgment cannot be formulated and included in the process. 
 
The theoretical backgrounds for the nonparametric hierarchical clustering methods described in 
Section 2.2.1 are relatively easy to understand.  These models have been generally implemented 
in the practice for grouping TTMSs via popular commercial statistical software packages such as 
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SAS.  The parametric model-based clustering models described in Section 2.2.3 are less familiar 
to transportation professionals.  Although model-based clustering methods require more 
knowledge of statistics, they allow parameters measured in different scales, such as the 
geographical locations of the TTMSs, to be simultaneously considered in the grouping process 
without additional transformation.  The computation engine for performing model-based 
clustering analysis has recently become available to the general public. For these reasons, the 
nonparametric hierarchical clustering and hierarchical model-based clustering methods were 
selected to group TTMSs for estimating MSFs in this study. 
 
Seasonal variations in traffic are results of patterns in human activities, which are commonly 
influenced by land use patterns.  The land use and travel behavior aspects of seasonal factors 
have not been adequately studied in the existing literature.  By appropriately considering and 
incorporating roadways’ functional classifications, land use, and other relevant factors into data 
collection and processing, it is possible to reduce the data collection effort while improving the 
accuracy of SF estimations.   
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3. TRAFFIC COUNT DATA 
 
This chapter provides a general background of the traffic data used in this study.  American 
Association of State Highway and Transportation Officials (AASHTO) recommends five types 
of traffic count data to be collected, edited, summarized, and reported during a year.  They are 
coverage counts, long-term pavement performance (LTPP) counts, project-related counts, special 
count request, and data obsolescence counts [AAS92].  Following the AASHTO guidelines, 
FDOT maintains one of the most comprehensive traffic count programs in the country.  The 
FDOT Transportation Statistics Office releases traffic data collected at every traffic count site on 
the State Highway Systems (SHS) on a Florida Traffic Information (FTI) CD-ROM.  The CD 
provides access to nine traffic reports: 
 

• AADT Report 
• Historical AADT Report 
• AADT Forecast 
• 200 Highest Hour Report 
• Hourly Continuous Count Report 
• Annual Vehicle Classification Report 
• Weekly Axle Factor Category Report 
• Peak Season Factor Category Report 
• Volume Factor Category Summary Report 

 
Traffic data collected from 68 counties in Florida, including hourly traffic counts at each 
permanent count station, are stored in four Microsoft (MS) Access files on the FTI CD.  Three 
out of the four MS-Access files are named in the format of Traffic_XX_YY.mdb, each 
containing the traffic data from those count stations in counties whose numbers fall into the 
range between XX and YY.  Table 3 shows the database tables and the corresponding attributes 
stored in a Traffic_XX_YY.mdb file. 
 
Table 3. Fields in Traffic_XX_YY.mdb 

Table Name Attributes 
county COUNTY, NAME, DISTRICT 

HISTAADT CO_SITE, COUNTY, SITE, YEAR, PTADTADJ, ASCDIR, ASCADTADJ, 
DSCDIR, DSCADTADJ, CLKFACT, CLPKDIRF, CLTBPCT, AADTFLG 

TMSCNT COUNTY, SITE, BEGDATE, DIR, HR1, HR2, HR3, HR4, HR5, HR6, 
HR7, HR8, HR9, HR10, HR11, HR12, HR13, HR14, HR15, HR16, HR17, 
HR18, HR19, HR20, HR21, HR22, HR23, HR24, TOTVOL, TYPE 

TMSDESC COUNTY, SITE, SECTION, LOCATION, FUNCL, SITETYPE, COMM 
 
For this study, the last MS-Access file, i.e., Traffic_CD.mdb, contains the most critical data.  
Table 4 shows the data attributes contained in the Traffic_CD.mdb file.  The monthly adjustment 
factors and day-of-week adjustment factors in the DIRECTIONAL_VOLUME table were 
utilized in this study.  Monthly factors include JANV, FEBV, MARV, APRV, MAYV, JUNV, 
JULV, AUGV, SEPV, OCTV, NOVV, and DECV, each for one of the 12 months.  Day-of-week 
factors, on the other hand, include SUNV, MONV, TUEV, WEDV, THUV, FRIV, and SATV, 
each for one day in a week.  These data represent, in vehicle axle counts, the ratios of the 
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accumulated monthly totals and day of week totals to the corresponding AADT at permanent 
count stations.  At a permanent traffic count site, AADT is the total volume of traffic on a 
highway segment for one year, divided by the number of days in the year.  AADTs for either of 
the two directions as well as combined two-way volumes are recorded in the 
DIRECTIONAL_VOLUME table.  To reveal the “truth-in-data,” the data were used directly 
without any further adjustment or imputation whenever possible. 
 
Table 4. Fields in Traffic_CD.mdb 

Table Name Attributes 
ALL_SITES_AADT COUNTY, SITE, YEAR, ASCDIR, ASCAADT, DSCDIR, 

DSCAADT, SITETYPE 
ANNUAL_VEHICLE_ 
CLASSIFICATION 

YEAR, COUNTY, SITE, CLASS, DESCRIPTION, 
PERCENTAGE 

AXLE_ADJ_CAT AFCAT, DESCR 
COUNTY COUNTY, NAME, DISTRICT 
DIRECTIONAL_ 
VOLUME 

COUNTY, SITE, YEAR, DIR, SUNV, MONV, TUEV, WEDV, 
THUV, FRIV, SATV, JANV, FEBV, MARV, APRV, MAYV, 
JUNV, JULV, AUGV, SEPV, OCTV, NOVV, DECV 

FUNCLASS_CODE FUNCLASS, DESCR 
HI200_STATS COUNTY, SITE, RANK, HRKFACT, HRDFACT, HIDIR, 

LODIR, HIVOL, LOVOL, TOVOL, HOURNO, BEGDATE 
PEAKSEASON YEAR, SFCAT, WEEK_NUMBER, DATES, VALUE, 

PEEK_WEEKS 
PKSEAS_MOCF SFCAT, MOCF 
SEASONAL_ADJ_CAT SFCAT, DESCR 
SITETYPE_CODE SITETYPE, DESCRIPTION 
STMS_STATIONS SFCAT, YEAR, VTTMSNO, EXCLUDE, COUNTY, SITE 
SVFCAT SFCAT, YEAR, SUNV, MONV, TUEV, WEDV, THUV, FRIV, 

SATV, JANV, FEBV, MARV, APRV, MAYV, JUNV, JULV, 
AUGV, SEPV, OCTV, NOVV, DECV, KFCTR, DFCTR, 
K100FCTR 

TMSDESC COUNTY, SITE, SECTION, LOCATION, FUNCL, SITETYPE, 
COMM 

TMS_SUMMARY COUNTY, SITE, YEAR, AADT, AADTFLG, KFCTR, KFLG, 
DFCTR, DFLG, TFCTR, TFLG, TRKPCT, HVYTRKPCT, 
MEDTRKPCT, DHTRK, DHMEDTRK, DHHVYTRK, 
VALID_DAYS, K100FCTR 

VALID_DATA COUNTY, SITE, HOURS, DAYS, WEEKS, MONTHS 
VEEKLY_AXLE_NEW YEAR, AFCAT, WEEK_NUMBER, DATES, VALUE, COUNTY 
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4. EVALUATION OF CLUSTERING METHODS 
 
This chapter describes the processes of and findings from employing nonparametric 
agglomerative hierarchical clustering methods and parametric model-based clustering methods to 
group the TTMSs located on Florida’s urban and rural roads. 
 
4.1 Nonparametric Agglomerative Hierarchical Clustering Methods 
 
The performance of agglomerative hierarchical clustering methods for determining seasonal 
factor groups is evaluated in the section.  In the following subsections, the hierarchical clustering 
methods available in SAS are first introduced, followed by the study data and procedure used in 
the evaluation.  The results from the hierarchical cluster analysis are then discussed.  Finally the 
performances on the methods evaluated are summarized. 
 
4.1.1 Clustering Methods in SAS 
 
In current practices, seasonal factor groups are usually determined by a conventional hierarchical 
cluster analysis according to various similarities measures.  These methods merge TTMSs into 
groups according to their similarities.  A variety of similarity measures are used in cluster 
analysis.  The following agglomerative hierarchical clustering methods are available in SAS 
Version 8 for quantifying the distance (or dissimilarity) between two clusters [SAS99]: 
 

1. Average Linkage (AVE) 
2. Centroid Method (CEN) 
3. EML 
4. Flexible-beta Method (FLE) 
5. McQuitty's Similarity Analysis (MCQ) 
6. Median Method (MED) 
7. Single Linkage (SIN) 
8. Ward's Minimum-Variance Method (WAR) 

 
Each of the above clustering methods utilizes a different formula to estimate the distance 
between two clusters and tends to create clusters of certain types.  For example, average linkage 
tends to join clusters with small variances and is slightly biased toward producing clusters with 
the same variance.  Ward’s method tends to join clusters with a small number of observations 
and is strongly biased toward producing clusters with roughly equal number of observations.  
The EML method is similar to Ward's minimum-variance method but is somewhat biased toward 
unequal-sized clusters based on practical experience.  In SAS, the penalty option is used to adjust 
the degree of bias toward unequal-sized clusters for the EML method.  The value specified as the 
penalty should be greater than zero.  In this study, four additional penalty values other than the 
default value, which is 2.00, were applied in the cluster analysis to test the parameter’s 
sensitivity to the results.  These penalty values were 1.00, 1.25, 1.50, and 1.75.  Additionally, 
two values, -0.25 and -0.50, were specified for the beta option for the flexible-beta method.  A 
total of 13 methods were thus tested to evaluate the agglomerative hierarchical clustering 
methods. 
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In the following subsections, the process of and findings from the cluster analyses of the MSFs 
from the 21 TTMSs in District 4 of the FDOT, Florida with the 13 aforementioned clustering 
methods are described.  The pseudo F (PSF) statistic was used to determine the number of 
clusters in the data.  The resulted clusters from each method employed were then examined to 
validate their performance.  The method with the optimal performance was then employed to 
investigate the historical clustering patterns. 
 
4.1.2 Study Data 
 
The traffic data from the TTMSs located within the FDOT District 4 (covering Broward, Indian 
River, Martin, Palm Beach, and St. Lucy counties) were investigated.  The data source was the 
1997-2000 FDOT Traffic Count Information CDs published by FDOT.  Each CD contains the 
MSFs for 1997, 1998, 1999, and 2000.  For 1999 and 2000, detailed hourly traffic count data are 
recorded on the CD.  For 1997 and 1998, however, only monthly seasonal factors are available.  
The AADTs for these TTMSs in the four-year period vary from 2,593 to 228,518.  Table 5 
shows the number of available TTMSs in the study area in different years.  Over the four-year 
period, only 19 stations consistently recorded MSF information.  By including two more TTMSs 
located on the Florida Turnpike in the district, the MSFs from a total of 21 TTMSs were 
analyzed. 
 
Table 5. Number of TTMSs in FDOT District 4 from 1997 to 2000 

Year 1997 1998 1999 2000 
Number of TTMSs* 29 31 27 29 

* Excluding TTMSs located on the Florida Turnpike section (District 8) 
 
4.1.3 Evaluation Procedure 
 
The process entailed the following steps to evaluate agglomerative hierarchical clustering 
methods: 
 

1. Verify seasonal factors at each TTMS; 
2. Perform preliminary cluster analyses to identify outliers; 
3. Perform cluster analyses and evaluate the factor groups using the data without outliers; 

and 
4. Select the optimal clustering method to verify if seasonal groups are temporally stable. 

 
The following subsections explain each of the steps in detail. 
 
4.1.3.1 Data Verification 
 
Before applying cluster analysis to determine seasonal groups, the historical MSFs recorded on 
the FDOT Traffic Count Information CDs were examined.  The purpose was to identify possible 
outliers in the dataset by examining the temporal patterns in the data from the four consecutive 
years at the same TTMS.  Although the days with missing data had already been excluded in the 
calculation of MADT, extremely low daily volumes in a given month that were most likely 
caused by equipment failures and other unknown reasons had not been eliminated from the data.  
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Consequently, the MADTs were higher than expected.  Higher MADTs could also have been the 
result of excluding days with low traffic volumes, e.g., on weekends. 
 
Figure 4 illustrates problems with the temporal stability of the multi-year MSFs at one of the 
TTMSs, Station No. 860214.  The figure shows a susceptible high MSF value in September 
2000.  The CV1 (coefficient of variation) for the MSFs at the station for September was 8.296% 
while the same statistics for the other months ranged from 0.558% to 2.663%.  Figure 5 
illustrates the daily volumes in September in 1999 and 2000.  The volumes from the two 
different years were aligned together by the day of the week.  As suggested by Figure 5, it is 
evident that the MSF in year 2000 is likely to be overestimated due to missing data since the 
higher volumes that tended to occur near the end of the month were excluded from the 
calculation of MADT, resulting in a lower than expected MSF. 
 
To identify probable data outliers, the monthly CV for the multi-year MSFs at each TTMS was 
calculated first.  The daily volumes were then examined for those months when their CVs were 
greater than or equal to 3%.  The 3% threshold value was selected by observing the resulted 
monthly CVs from the 21 TTMSs.  Since daily volumes were available only for 1999 and 2000, 
the MSFs in these two years may be verified.  Potential outliers identified were replaced with the 
median MSF of the respective month that was determined from the multi-year data by assuming 
the MSFs in the 1997 and 1998 datasets being accurate. 

Figure 4. MSF vs. Month at Station 820614 in 2000 
 

                                                 
1  Defined as the standard deviation divided by the mean MSF and multiplied by 100 to get a percentage. 
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Figure 5. Daily Volume versus Day of the Week2 at Station 820614 in 1999 and 2000 
 
4.1.3.2 Preliminary Cluster Analysis 
 
After the MSFs were verified, the year 2000 MSFs were analyzed with the various clustering 
methods to identify outliers.  The pseudo F (PSF) statistic was used in the study as the criterion 
to determine the number of clusters in the data.  The relatively large PSFs, i.e., a local peak in the 
graph of the PSFs plotted against the number of clusters, indicate a stopping point.  The PSF for 
a given level is calculated as follows [SAS99]: 
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2  M for Monday, T for Tuesday, W for Wednesday, R for Thursday, F for Friday, S for Saturday, and U for 

Sunday. 

0

10000

20000

30000

40000

50000

60000

W R F S U M T W R F S U M T W R F S U M T W R F S U M T W R

Day of the Week

D
ai

ly
 V

ol
um

e
1999
2000



 

 40

T is the sum of squared Euclidean distances from each observation to the overall mean, while PG 
is the Euclidean distance measured from the observations in a given cluster to its cluster mean 
[JOH02].  The resulted clusters were examined after the preliminary cluster analyses.  The 
TTMSs belonging to a single member cluster were treated as outliers and excluded from the 
evaluation process since their monthly fluctuation patterns were significantly different from the 
others. 
 
4.1.3.3 Evaluation 
 
The 13 clustering methods were applied again to the year 2000 data after the TTMS outliers were 
eliminated.  The resulted clusters from each method were evaluated based on the pooled estimate 
of common variance, which was simply the arithmetic average of the monthly MSF variances for 
the TTMSs in the same group.  The spatial locations of the TTMSs clustered in the same 
seasonal factor groups by the method with the least pooled variance were examined to verify if 
they were logical and reasonable.  The method(s) that yielded reasonable results was then used to 
cluster the MSFs for the data from other years. 
 
4.1.3.4 Temporal Stability 
 
Outliers were first identified and excluded by performing a preliminary cluster analysis using the 
method(s) that derived the least pooled variance from the year 2000 data.  The remaining TTMSs 
were than analyzed again to verify if cluster groups were stable from year to year. 
 
4.1.4 Results and Discussions 
 
All the clustering methods revealed that Stations 860306, 890259, and 940144 were outliers 
during the preliminary analysis step.  As a result, these stations were excluded in the subsequent 
analysis.  Additionally, methods such as AVE, CEN, and SIN were more robust to outliers than 
the other hierarchical methods.  The results suggested that the AVE, CEN, and SIN methods 
might be preferable for screening out outliers.  The 13 clustering methods were then applied 
again to analyze the data from a total of 18 TTMSs.  Table 6 presents the resulted PSFs obtained 
after excluding the outliers. 
 
In Table 6, the cells with relatively large PSFs, which suggested a possible stopping point from 
merging groups further, are highlighted.  Table 6 indicates that different penalty values did not 
alter the results from the EML method, since they resulted in the same PSFs.  Moreover, 
regardless of what beta value was specified, the same stopping point was obtained by the FLE 
method.  To confirm that the same PSFs represented the same clustering groups, the resulting 
tree structure diagrams that indicated the disjoint clusters at a specified level from the EML and 
FLE methods were examined.  They were found to be identical.  Therefore, the default value in 
SAS may adequately serve the purpose of constructing seasonal factor groups.  Table 6 also 
shows that almost all methods indicated that the optimal number of clusters was five.  From 
practical experience, it is also unlikely to have fewer than two or more than seven seasonal factor 
categories [TMG01].  For these reasons, the pooled variances were calculated only for those 
clusters that were numbered between two and seven even if the PSF criterion suggested more 
than one optimal number of clusters for a method such as the MED method. 
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Table 6. PSFs at Different Hierarchical Levels for Various Clustering Methods 
EML FLE Number 

of 
Cluster 

AVE CEN 
1 1.25 1.5 1.75 2 -0.25 -0.5 

MCQ MED SIN WAR

17 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90
16 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
15 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20
14 8.60 8.20 8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.60 8.20 8.20 8.60
13 8.30 8.30 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.30 8.30 7.20 8.40
12 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50 4.70 8.50
11 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 5.40 8.80
10 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 8.70 9.00 6.10 9.00
9 9.20 9.00 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.00 4.30 9.20
8 9.60 8.40 9.60 9.60 9.60 9.60 9.60 9.60 9.60 9.60 7.70 5.10 9.60
7 10.30 7.80 10.30 10.30 10.30 10.30 10.30 10.30 10.30 10.30 8.20 5.90 10.30
6 10.50 8.40 10.50 10.50 10.50 10.50 10.50 10.50 10.50 9.40 5.60 6.30 10.50
5 10.70 8.40 10.70 10.70 10.70 10.70 10.70 10.70 10.70 9.70 6.90 3.90 10.70
4 8.90 10.90 9.60 9.60 9.60 9.60 9.60 8.90 9.60 8.90 7.40 4.50 9.60
3 6.60 6.60 9.30 9.30 9.30 9.30 9.30 7.70 9.30 6.40 8.60 6.60 9.30
2 5.40 5.40 10.20 10.20 10.20 10.20 10.20 7.20 10.20 7.20 8.20 5.40 10.20

 
In order to compare the resulting clusters from different methods, the pooled variances were also 
computed for the CEN, MED, and SIN methods for which five was not the optimal number of 
clusters.  For simplicity, the 13 clustering methods were categorized into five method groups 
according to their clustering results as follows: Group 1 – AVE, EML, FLE, and WAR; Group 2 
– CEN; Group 3 – MCQ; Group 4 – MED; and Group 5 – SIN.  Table 7 shows the calculated 
pooled variance for each group at different levels of the hierarchy.  The shaded cells indicate the 
pooled variance for the number of clusters recommended by the PSF criterion.  The cells shaded 
with horizontal lines indicate more outliers, i.e., single TTMS in a cluster, which were detected 
and eliminated from the calculation of pooled variance.  The “crossed-out” cells were thus 
discarded due to the difference in sample size.  Table 7 indicates that the Group 3 method, i.e., 
the MCQ method, produced the least pooled variance at five clusters and was consequently 
defined as the optimal clustering method. 
 
Table 7. Pooled Variance for Various Clustering Groups 

Number of Clusters Method Group 3 4 5 6 
1   4.37  
2  4.92 4.78  
3   4.18  
4 7.4  4.22  
5 6.09  5.08 4.02 

The spatial dispersion patterns of the TTMS clusters from the MCQ method were then examined.  
Figure 6 illustrates the seasonal factor groups determined by the MCQ method for five cluster 
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groups.  Each TTMS is labeled with a number between 1 and 5 to indicate its seasonal factor 
category. 
 
As illustrated in Figure 6, the two TTMSs on the Florida Turnpike were assigned to Category 1.  
Category 2 included the TTMSs that were located on the major roads close to Florida Turnpike 
but on the west side of it.  Category 3 included the two TTMSs that were located on the major 
roads far west in Palm Beach County.  The two TTMSs located on the major roads near the 
boundary between Palm Beach and Martin counties were assigned to Category 4.  The last 
category covered nearly all of the rest of the TTMSs, including four located on the Interstate 95 
and six on major roads that were on the east side of Florida Turnpike and/or I-95, whichever 
were further west.  The spatially clustering patterns shown in Figure 6 suggested that it was not 
appropriate to merge the TTMSs on the Florida Turnpike section with those located on the 
regular major roads or interstate highways.  Additionally, roadway functionality did not seem to 
play an important role in determining seasonal groups.  It was the spatial location of a given 
TTMS that matters since a TTMS tended to be clustered with those in its proximity.  Since the 
seasonal groups determined by the MCQ method were logical and reasonable, the method was 
thus implemented to analyze the MSFs collected from 1997 through 1999. 
 
The three TTMSs that were previously excluded from the year 200 data were identified as 
outliers for the data from 1997 through 1999.  The three stations were thus excluded from the 
three-year dataset.  Figures 7 to 9 illustrate the seasonal factor groups determined by the MCQ 
method for years 1997, 1998, and 1999, respectively, after the outlier stations were eliminated.  
The resulted numbers of seasonal groups were seven, six, and six for Figures 7, 8, and 9, 
respectively. 
 
Figures 7 to 9 show that the MCQ method did not consistently assign a TTMS to the same group 
from year to year.  However, the change in the grouping patterns during the four-year period 
revealed a gradual shift in spatial clustering patterns from north-south direction to east-west 
direction.  For example, although Figure 7 does not show any significant spatially clustered 
pattern among the TTMSs in 1997, Figure 8 shows that two relatively larger groups, i.e., Groups 
5 and 6, were formed at the north and south sides of the district.  Figure 9 shows that the spatially 
clustering patterns began to shift from the north-south direction to the east-west direction, similar 
to what was illustrated in Figure 6 from the year 2000 data.  One of the probable reasons for such 
a shift could be because the traffic first began to circulate in the major activity centers within 
each county in 1997.  The traffic interchanging between different counties became increasingly 
significant with time, which resulted in increased utilization of the interstate freeways, including 
I-95 and Florida Turnpike.  Similar seasonal fluctuation patterns were thus observed for the 
TTMS along the freeways.  After the freeways became congested around 1998 and 1999, traffic 
began to shift to local streets.  Since the land use and developments along the east and west sides 
of the I-95/Florida Turnpike were different, two distinguished seasonal patterns were thus 
formed. 
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Figure 6. Seasonal Cluster Groups Determined by the MCQ Method (Year 2000) 
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Figure 7 Seasonal Cluster Groups Determined by the MCQ Method (Year 1997). 
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Figure 8 Seasonal Cluster Groups Determined by the MCQ Method (Year 1998). 
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Figure 9 Seasonal Cluster Groups Determined by the MCQ Method (Year 1999). 
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4.1.5 Summary 
 
A total of eight agglomerative clustering methods were evaluated.  The average linkage, 
centroid, and single linkage methods were found to be more robust to outliers than the other 
methods.  The study also found that the McQuitty’s (MCQ) method performed better than the 
other methods on grouping TTMSs after outliers were eliminated.  Although the results from 
analyzing the four-year MSF data with the MCQ method showed that the compositions of 
seasonal groups were not stable over time, the change in the spatially clustering pattern indicated 
that more variables should be included in the process of determining seasonal cluster groups.  
The study also found that roadway functionality did not seem to play an important role in 
determining seasonal groups.  It was the spatial location of a given TTMS that mattered since 
TTMSs tended to be clustered with those in its proximity.  Based on data from FDOT District 4, 
the PSF statistic was found to be a good measure to determine the number of clusters after 
potential outliers were excluded.  Engineering judgment is still necessary in determining the 
grouping via hierarchical clustering analysis.  These methods, however, provide a starting point 
for the FDOT staff to fine tune the seasonal factor groups. 
 
4.2 Parametric Model-Based Hierarchical Clustering Methods 
 
This section presents the process and findings from a model-based clustering analysis of the 12 
MSFs, each corresponding to a given month in a year, from 129 permanent count stations on 
rural roads in Florida.  In the following sections, the model-based cluster methods available in 
MCLUST, an extension of the SAS software, are first presented.  The study data are then briefly 
described, followed by the analysis procedures adopted in this study [FRA02].  The results from 
the model-based clustering are discussed.  Finally, a summary is provided. 
 
4.2.1 Clustering Methods in MCLUST 
 
The model-based clustering was accomplished using the MCLUST software developed by the 
University of Washington [FRA02].  A total of ten models, each specified with a unique set of 
geometric features of the covariance matrix as described in Table 2, were implemented to 
analyze the 129×12 MSF matrix.  They were EII, VII, EEI, VEI, EVI, VVI, EEE, VVV, EEV, 
and VEV models.  The definitions of these models are described in Section 2.2.3.  As previously 
mentioned, the covariance matrix for the parameters in a given cluster may be decomposed into 
matrices that determine the orientation, volume, and shape of a distribution.  The models 
incorporated in MCLUST allowed the characteristics of distribution to vary between clusters or 
maintain the same for all clusters.  The MCLUST software was designed as an extension to the 
S-Plus program in either a Windows or UNIX environment.  The S-Plus program must be 
installed to allow the execution of the MCLUST module. 
 
4.2.2 Study Data 
 
In this study, the 2002 traffic data from the TTMSs located in Florida rural areas were analyzed.  
Again, the data were obtained from the Traffic Count Information CD distributed by the FDOT.  
After excluding those with incomplete data, the MSFs from a total of 129 TTMSs were retrieved 
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and stored in a 12-element matrix, one element for each month (i.e., 129×12).  The geographical 
coordinates were also retrieved for each count station from the 2002 FDOT Traffic CD. 
 
4.2.3 Evaluation Procedure 
 
The analysis process entailed the following steps to evaluate model-based clustering: 
 

• Apply model-based strategy for clustering 2 to 100 groups using the models listed in 
Table 2; and 

• Add the coordinates of each TTMS in the data matrix and perform the model-based 
clustering again. 

 
First, the model-based strategy adopted in MCLUST for clustering was used.  Three explicit 
procedures [FRA02] were employed in model-based clustering strategy in this study.  The first 
procedure involved the application of model-based agglomerative hierarchical clustering to 
approximately maximize the unconstrained classification likelihood (also known as the VVV 
model) to create the initial count site classifications for the expectation-maximization (EM) 
algorithm.  The second procedure implemented the Expectation-Maximization (EM) algorithm 
beginning with the classification from hierarchical agglomeration since reasonably good 
partitions were commonly produced from the first procedure and no other information about the 
groupings was available.  The Bayesian Information Criterion (BIC) was then calculated.  These 
three procedures were iteratively executed for numbers of seasonal factor groups ranging from 
two to 100 and the resulted BIC statistics were used to determine the optimal number of clusters. 
 
In the second step, another data matrix (129×14) with the geographical location of each 
permanent count station in terms of X and Y coordinates as the additional characteristics was 
analyzed using the same procedure.  The purpose was to investigate the incorporation of the 
spatial locations of permanent count stations in the grouping analysis.  The clusters obtained 
from each method were then examined to evaluate its performance with the assistance of GIS. 
 
4.2.4 Results and Discussions 
 
Figures 10 and 11 illustrate the BIC values for different numbers of groups ranging from 2 to 
100 for the 129×12 and 129×14 data matrices, respectively, for the various models.  The BIC 
values from the VVV model were not included because the model produced no factor group for 
the 12- (12 MSFs) matrix and only one factor group for the 14-component (12 MSFs plus two 
coordinates) matrix.  The figures show that models including VII, VEI, EVI, VVI, EEV, VEV, 
and VVV did not provide feasible solutions for every number of groups specified.  The reason 
was that non-positive definite covariance matrices were encountered in the EM iterations.  A 
matrix is positive definite if all of its eigenvalues are positive.  For symmetric matrices such as 
covariance matrices, positive definiteness is assured if the matrix and every principal sub-matrix 
have a positive determinant.  As described earlier, the EM algorithm breaks down when the 
covariance matrix corresponding to one or more seasonal factor groups is singular or near 
singular.  Since there may exist two or more permanent count stations with nearly the same 
MSFs, linear dependency was unavoidable.  However, both figures reveal that feasible solutions 
were obtained for every number of groups from the EII, EEI, and EEE models. 
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Figure 10. BICs for 12-Component Data 
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Figure 11. BICs for 14-Component Data 

 
Table 8 provides the optimal number of groups and the associated BIC values for the various 
models.  The tolerance for relative convergence of the likelihood was 10-6.   The original default 
value for the tolerance was 10-5 in the MCLUST software.  A smaller tolerance value was 
applied here in an attempt to derive better results.  Table 8 shows that the EEV and VVV models 
produced the best BIC values for the 12- and 14-component matrices, respectively.  Additionally, 
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more seasonal factor groups were obtained from the 14-component matrices from the EII and VII 
models. 
 
Table 8. Optimal Numbers of Groups and BICs for Various Models (tolerance = 10-6) 

Comp  EII VII EEI VEI EVI VVI EEE EEV VEV VVV
Group 9 8 8 11 6 6 3 20 2 NA 12 BIC -9313 -9249 -9313 -9226 -9517 -9408 -8733 -4149 -8911 ⎯ 
Group 38 15 9 9 5 4 2 2 2 2 14 BIC -39518 -40194 -16070 -16006 -16233 -16196 -15486 -15708 -15746 -14946

 
To further explore the performance of model-based clustering for the ten models, the mean MSF 
and the thresholds defined as ±10% of the mean MSF of each cluster were calculated.  The 
threshold is currently applied by the FDOT to determine if TTMSs are satisfactorily classified.  
As shown in Table 9, the total numbers of cases for TTMSs classified into a given group with 
their MSFs exceeding the upper and lower thresholds for a given month were calculated for the 
optimal number of groups.  The fist measure of effectiveness (MOE) was the cumulative number 
of months that exceeded the thresholds.  The second MOE was the total number of TTMSs from 
the months that exceeded the thresholds.  The results given in Table 9 showed that five of the 
240 (i.e., 20×12) months exceeded the thresholds for the EEV model for the 12-component 
matrix.  It appeared that the EEV model was superior to the other models when only the 12 MSF 
data from the rural roads in Florida were used in the analysis.  For the 14-component matrix, the 
EII model produced groupings with a negligible misclassification error.  Although there tended 
to be more misclassifications in terms of frequencies when the locations were considered in the 
grouping process, the magnitude varied among different datasets and models since the optimal 
numbers of groups also generally increased. 
 
As previously mentioned, the mixed model that simultaneously considered MSFs and 
coordinates of locations estimated the probability that a TTMS belonged to the kth seasonal factor 
group.  Consequently, the final membership of a TTMS in a group was based on the maximum 
probability.  To visualize the spatial distribution of the groups, a geographical centroid was 
determined for each factor group.  A circle was then drawn on a map to show the area that was 
approximately occupied by a given seasonal factor group.  The radius was the distance between 
the centroid and the TTMS in the group that was farthest from the centroid.  Figure 12 illustrates 
the three MSF groups from the 12-component matrix for the EEV model, which produced the 
optimal BIC value among the 10 models investigated.  The results showed that the EEV model 
would produce clusters that included TTMSs located more than 400 miles apart.  It is unlikely in 
practice that TTMSs located so far apart would be grouped together.  Therefore, merely using the 
MSF data with the model-based approach was not sufficient to determine the seasonal factor 
groups. 
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Table 9. Frequencies and Percentages of Possible Misclassifications 
Comp 

 
Possible 

Misclassification EII VII EEI VEI EVI VVI EEE EEV VEV VVV 

Count 10 15 9 14 19 19 26 5 18  MOE 11 
% 9.26% 15.63% 9.38% 10.61% 26.39% 26.39% 72.22% 2.08% 75.00% ⎯ 

Count 15 19 29 23 47 77 103 8 176  
12 

MOE 22 
% 0.97% 1.23% 1.87% 1.49% 3.04% 4.97% 6.65% 0.52% 11.37% ⎯ 

Count 30 43 11 17 24 20 16 16 14 14 MOE 1 
% 6.58% 23.89% 10.19% 15.74% 40.00% 29.17% 66.67% 66.67% 58.33% 58.33% 

Count 56 76 36 35 99 107 198 208 192 184 14 
MOE 2 % 3.62% 4.91% 2.33% 2.26% 6.40% 6.91% 12.79% 13.44% 12.40% 11.89% 

1. MOE 1: Cumulated number of months with observations exceed the corresponding 10% thresholds of average MSFs 
2. MOE 2: Cumulated number of TTMS with MSFs exceed the 10% thresholds of average MSFs 
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Figure 12. Twenty-Group EEV Classifications from 12-Component Matrix 
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Figure 13 shows a more spatially clustered pattern of the TTMSs from the VVV model when the 
coordinates of the TTMSs were included in the analysis.  Although the VVI model produced the 
optimal BIC for the 14-component matrix, it was impractical to use only two seasonal factor 
groups (see Table 9) because high variations in MSFs were introduced.  The EII and VII models, 
which produced more groups, were subsequently investigated.  Figures 14 and 15 show the 
grouping results for the 14-component matrix from the EII and VII models, respectively.  Since 
spatial coordinates were incorporated to determine the grouping, TTMSs tended to be clustered 
with those in their proximity.  Moreover, in comparison with the VII model, the radii of the 
groups from the EII model were relatively consistent.  This was because the equal volume of the 
covariance matrix was assumed in the EII model.  Based on the results presented in Table 9 and 
Figures 12 through 15, it may be concluded that the EII model is the best model to implement for 
grouping the TTMSs in the rural areas of Florida.  The TTMSs that were classified into the same 
groups had relatively similar seasonal fluctuation patterns and were also located close to each 
other. 
 
4.2.5 Summary 
 
The results from evaluating the performance of model-based clustering methods for seasonal 
factor grouping showed that, without additional information such as the spatial locations of the 
TTMSs, the model-based clustering methods such as the EEV model could produce 
classifications with a negligible grouping error of 2.08% when statewide MSF data were used in 
the analysis.  However, the TTMSs in the same group were also scattered spatially, in some 
cases over 400 miles apart.  By incorporating coordinates of the TTMSs in the model-based 
clustering, it was found that the EII and VII models produced practical numbers of factor groups.  
By further comparing the MSFs in the factor groups derived from these two models, the EII 
model was identified as the one with the best performance since it produced the least grouping 
error. 
 
The results from the systematic analysis of the model-based clustering described here may be 
considered as a reasonable starting point for determining the seasonal factor groups in practice.  
The procedure provides practitioners with greater flexibility in classifying a TTMS since the 
probability for a TTMS belonging to a given factor group is estimated.  For example, if a TTMS 
is considered misclassified, it may be easily reassigned to the next factor group according to the 
sequence determined by the grouping probability.  Moreover, incorporating the coordinates of 
TTMSs in the model-based cluster analysis allows geographical effects to be considered in the 
grouping process and groups of TTMSs to be derived that not only share similar MSF patterns 
but are also located close to each other.  The results will benefit transportation professionals in 
assigning a seasonal factor group (category) to a short count site by considering spatial 
proximity.  The model-based clustering process presented in this study will also allow other 
characteristics such as land use that could not be considered in the conventional grouping 
approaches to be incorporated into the grouping process. 
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Figure 13. Two-Group VVV Classifications from 14-Component Matrix 
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Figure 14. Thirty-Eight -Group EII Classifications from 14-Component Matrix 
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Figure 15. Fifteen-Group VII Classifications from 14-Component Matrix 
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5. SEASONAL FACTOR GROUP ASSIGNMENT 
 
In this chapter, factors that may be helpful in identifying the seasonal factor group for a short-
term traffic count site are described.  The factors considered in this study may be classified into 
two major groups: land use and geographical location.  In Section 5.1, the land use factors that 
have well-known effects on travel patterns are first identified via conventional multiple linear 
regression analysis on the MSFs collected at a given month at TTMSs located on selected urban 
roads in Florida.  The parameters identified as significant factors may be used to determine the 
seasonal factor category to which a short count site belongs, assuming that these factors have 
similar effects on the seasonal variability and traffic characteristics at the short-term and 
permanent count sites.  Section 5.2 describes the process and findings from using the same 
analysis approach described in Section 5.1 on the MSFs collected at the TTMSs on selected rural 
roads in Florida.  Section 5.3 presents a fuzzy decision tree method for assigning seasonal factor 
categories to short-count sites. 
 
5.1 Urban Area Regression Analysis 
 
5.1.1 Introduction 
 
This section presents the results from applying multiple linear regression analysis on the MSFs 
for a given month that were collected from the TTMSs on selected urban roads in Florida.  The 
urban roads were defined as those in an urban area in Florida.  The “urban” shape file from the 
2002 Traffic Information CD was used to identify the TTMSs that were located on the urban 
roads.  A total of 71 urban areas were included in the GIS theme file, as shown in Table 10. 
 
Table 10. Florida Urban Areas 

Arcadia Fort Myers Lehigh Acres Pahokee Stuart 
Avon Park Fort Pierce Live Oak Palatka Sun City Center 
Belle Glade Fort Walton Beach Marathon Panama City Tallahassee 

Beverly Hills Gainesville Marco Pensacola Tampa 
Bonita Springs Homosassa Springs Mariana Perry Tavares 

Brooksville Immokalee Melbourne Plant City Titusville 
Clermont Inverness Miami Punta Gorda Vero Beach 
Clewiston Jacksonville Middleburg Quincy West Palm Beach
Crestview Key Largo Mount Dora Ruskin Winter Haven 
Dade City Key West Naples Sarasota Yulee 

Daytona Beach Lady Lake North Port Sebastian Zephyrhills 
Defuniak Springs Lake City Ocala Sebring 

Deland Lake Wales Orange City Spring Hill 
Deltona Lakeland Orlando St. Augustine 

Fernandina Beach Leesburg Ormond Beach Starke 

 

 
As previously stated, SF groups are currently assigned to short-term traffic count sites based on a 
site’s geographical location and its functional roadway classification in Florida.  While spatial 
proximity is possibly a reasonable assumption, there have not been adequate studies to determine 
if it is the only factor in determining seasonal groups.  A more objective and data-oriented 
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approach needs to be developed in order to explain the underlying causes of seasonal fluctuation 
patterns in traffic data and to allow a sound process of assigning seasonal factors to short period 
counts based on factors in addition to spatial proximity.  In the following sections, the 
development of multiple linear regression models for estimating seasonal factors is described.  
The method has the potential to reduce the subjective nature in the current practice by either 
allowing seasonal factors to be estimated directly for each short-count station or helping assign 
seasonal groups to short counts. 
 
There is little documented evidence in the literature regarding land use variables as predictors for 
seasonal traffic patterns.  Although some studies have pointed to trip characteristics as important 
to seasonal traffic patterns, it is unclear how such characteristics are related to the basic patterns 
of land use and demographic and socioeconomic characteristics.  Since traffic is the result of 
human activities, however, land use and demographic and socioeconomic characteristics are 
likely to be influential in the nature of the activities, thus travel and traffic patterns.  One of the 
objectives of this study was to investigate which land use, demographic, and socioeconomic 
characteristics associated with TTMS are important in determining MSFs.  The quantification of 
the impact of these characteristics was determined using GIS techniques and multiple linear 
regression analysis. 
 
5.1.2 Study Data 
 
The study area was the Southeast Florida tri-county urban area, which encompasses Broward, 
Miami-Dade, and Palm Beach counties.  It had a population of five million according to the 2000 
census.  In a large urban area, the types of transportation facilities and the land use patterns are 
complex.  Consequently, the traffic patterns are more varied.  Some important characteristics of 
the area are its tourist-oriented economy and seasonal residents, who live in northern states for 
most of the year and come to Florida to spend the winter months.  The retired population 
(defined as population aged 65 and over) is also important.  Table 11 illustrates the demographic 
characteristics of the tri-county area population and households (HHs) based on the 2000 census.  
Although the retired population in the entire tri-county area did not seem to be particularly large 
in terms of percentage, their total number was close to one million.  If their spatial distribution 
was not random but clustered, the difference in their trip making could possibly produce an 
impact on the seasonal variations locally. 
 
Table 11. Tri-County Demographics in 2000 

 Population Population over 65 (%) HHs Seasonal HHs (%)* 
Miami-Dade 2,253,362 13.33 777,378 4.03

Broward 1,623,018 16.09 654,787 7.62
Palm Beach 1,131,184 23.2 474,295 11.64
Tri-County 5,007,564 16.45 1,906,460 7.15

Florida 15,982,378 17.56 6,341,121 8.12
* Ratio of seasonal households to permanent households 
 
For this study, the dependent variables were the 12-month MSFs, which were obtained from the 
continuous traffic count data collected at 27 TTMSs in the study area and published by FDOT in 
the 2000 Traffic Information CD.  Among the 27 TTMSs used in the regression analysis, 10 
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were on freeways, 12 on principal arterials, three on minor arterials, and two on collectors.  
Figure 16 illustrates the distribution of the 27 TTMSs. 
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Figure 16. TTMSs in the Tri-County Urban Area 

 
Potential independent variables used in regression analysis were those likely to have a causal 
relationship with seasonal factors.  They described the demographic and socioeconomic 
characteristics of an area where a TTMS was located.  They were selected based on two major 
considerations: (1) whether the source data were readily available or could be collected easily 
and economically for both base and forecast years; and (2) whether variables could be quantified.  
The independent variables prepared to develop the multiple regression models could be classified 
generally into the following categories: 
 

• Roadway characteristics; 
• Aggregate demographic and socioeconomic variables in the surrounding area of count 

stations; 

A
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• Geographic spatial location dummy variables from the cluster analysis. 
 
The data used to compile these variables included the following: 
 

• Population, number of occupied hotel/motel rooms, industrial employment, commercial 
employment, service employment, total employment, and school enrollment at TAZ level 
estimated by county planning departments for their 1999 transportation models. 

• Population, number of retired householders by different income groups, number of 
seasonal households, number of total households, and number of total housing units from 
the 2000 census at census tract level. 

• Employment data for the year 2000 from a commercial employment database purchased 
by FDOT.  The data included, for each business establishment, the business name, 
address, location, business type (identified by a SIC code), number of employees, etc. 

• Street network with federal functional classification. 
 
The independent variables are described in the following subsections. 
 
5.1.2.1 Roadway Characteristic Variables 
 
Variables in this category are summarized in Table 12.  The data were obtained from the 2000 
FDOT Traffic Information CD and the Roadway Characteristics Inventory (RCI) database.  Four 
variables, DFR, DPA, DMA, and DCO, were dummy variables that indicated the type of road 
where a TTMS was located. 
 
Table 12. Roadway Characteristic Variables for Urban Roads 

Variable Description 
L Number of lanes 

AADTPL AADT per lane 
DFR Equals 0 if TTMS not located on urban freeway; 1 otherwise 
DPA Equals 0 if TTMS not located on urban principle arterial; 1 otherwise 
DMA Equals 0 if TTMS located on urban minor arterial; 1 otherwise 
DCO Equals 0 if TTMS not located on urban collector; 1 otherwise 

 
5.1.2.2 Demographic and Socioeconomic Variables 
 
It is well known that socioeconomic conditions affect the travel behavior of trip makers.  The 
variables in this category were designed to reflect the socioeconomic characteristics of the 
population in areas around a count station.  The use of buffer methods was based on the 
assumption that traffic at a count station was affected by trips generated in or attracted to the area 
within a certain distance of that count station.  Traffic may be made up by local and regional 
(through) traffic, although this depends on the definition of local or immediate impact area.  
Buffer methods will not be able to account for the characteristics of all the traffic generators in 
the region, which is a limitation of the buffer methods.  However, in the absence of more 
accurate yet simple practical methods, buffer methods appear to be a reasonable tool for this 
application. 
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The variables were compiled using three different buffer methods: 
 

• Buffer Method 1.  A circular buffer around each count station was created.  The buffer 
radii varied according to the functional classification of the roadway segments that each 
count station was located [ZHA01] to reflect the service area size of different types of 
roads.  The buffer radii were one mile for principle arterials, 0.5 mile for minor arterials, 
0.25 mile for collector, which were based on the common spacing of roads of different 
function classes.  A larger buffer zone implied that the MSFs for a count station were 
impacted by the characteristics of a larger surrounding area.  It was difficult to determine 
the impact area of a freeway, and radii of one through ten miles with a one-mile 
increment were tested. 

 
• Buffer Method 2.  This method was similar to Buffer Method 1 but differed in the way in 

which buffers were created for count stations located on freeways.  Instead of creating a 
circular buffer around a count station on a freeway, where there may or may be any 
access from the local roads to the freeway section, buffers were created around the 
intersections of freeway ramps and local streets within 10, 15, and 20 miles of the count 
station with the buffer radii varying according to the functional classifications of the 
streets connected with the ramps, as in the first buffer method. 

 
• Buffer Method 3.  Instead of circular buffers, linear buffers were created around the 

roadway segments where the count stations were located.  The buffer width was 
determined based on the functional classifications of the roadway segments as in Buffer 
Method 1, while the length of the buffer was defined by the two intersecting streets on 
either side of the count station with the same or higher functional classification.  For 
freeways, the buffers were created in the same manner as in Buffer Method 2. 

 
Using the above three buffer methods, the following independent variables were compiled. 
 
Percentage of retired households by different income levels 
 
Retired households were defined as households with a retired householder and were categorized 
into groups based on the age of the retired householder, which were further divided into 
subgroups by household income level.  Table 13 defines the five groups of retired households 
and their income levels.  The Group 1 variables were percentages of households (HHs) with 
retired householders aged 65 and over at four income levels defined in the 2000 census.  This 
group of variables was calculated as: 
 

Number of Retired HHs of Low Income Level
Number of Total HHs

RHP1_LI =  (44) 

 
Number of Retired HHs of Medium Low Income Level_

Number of Total HHs
RHP1 MLI =  (45) 

 
Number of Retired HHs of Medium High Income Level_

Number of Total HHs
RHP1 MHI =  (46) 
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Table 13. Variables for Retired Households with Different Income Levels 
Group Variables Age* Income Level Definition Notes 

1 

RHP1_LI 
RHP1_MLI 
RHP1_MHI 
RHP1_HI 

≥ 65 

Low Income level – $0 - $24,9999 
Medium Low Income Level – $25,000 - $44,999 
Medium Low Income Level – $45,000 - $99,999 
Medium Low Income Level – $100,000 and over 

2000 census definition 

2 
RHP2_LI 
RHP2_MI 
RHP2_HI 

≥ 65 
Low Income Level – 0 - $20,000 
Medium Income Level – $20,000 - $40,000 
High Income Level –  $40,000 and over 

U.S. standard definition 

3 
RHP3_LI 
RHP3_MI 
RHP3_HI 

65 to 74 Same as Group 2 income level definition U.S. standard definition 

4 RHP4_LI 
RHP4_HI 65 to 74 

Miami-Dade County 
    Low income – under $35,966 
    High income –$35,966 and over 
Broward County 
    Low income – under $41,691 
    High income –$41,691 and over 
Palm Beach County 
    Low income – under $45,062 
    High income –$45,062 and over 

Countywide median HH income 

5 

RHP5_LQ 
RHP5_MLQ 
RHP5_MHQ 
RHP5_HQ 

≥ 65 Similar to Group 4 but with four income levels 
instead of two 

Countywide median income 
quartiles 

* Age of Retired Householder 
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Number of Retired HHs of High Income Level_
Number of Total HHs

RHP1 HI =  (47) 

 
The second group of variables was similar to the first group, but differed in the income level 
definition.  Group 2 variables were RHP2_LI, RHP2_MI, and RHP2_HI, which represented the 
ratios of retired households of the three income levels to the total households.  The third group of 
variables, RHP3_LI, RHP3_MI, and RHP3_HI, was similar to the Group 2 variables except that 
only retired households with householders aged between 65 and 75 were considered.  The fourth 
group of variables, RHP4_LI and RHP4_HI, was the percentages of households with 
householders aged 65 to 75 and with low or high income level defined based on countywide 
median income.  The Group 5 variables, RHP5_LQ, RHP5_MLQ, RHP5_MHQ, and RHP5_HQ, 
were, respectively, the percentages of households with retired householders aged 65 or older and 
with household income falling into the low, medium low, medium high, and high quartiles of 
median household income. 
 
Population Density  
 
Variable POPD was the population density around a count station inside its buffer zone. 
 
Seasonal Household Percentage  
 
Variable SHP represented the seasonal households as a percentage of permanent households in a 
buffer zone around a count station. 
 
Hotel/Motel Rooms 
 
HMP3 and HMP4 reflected the number of hotel and motel rooms and hotel population, 
respectively, around a count station and were calculated as follows, where the coefficient of 1.61 
was the average hotel room occupancy factor based on data from Miami-Dade County and was 
applied to all three counties in the study area: 
 

Total Occupied Hotel/Motel Rooms
Total Occupied Hotel/Motel Rooms + Total HHs

HMP4 =  (48) 

 
Total Occupied Hotel/Motel Rooms 1.61

Total Occupied Hotel/Motel Rooms 1.61 Total Population
HMP3 ×=

× +
 (49) 

 
The total households and total population in the above formulae were to deal with cases when 
there were no hotels/motels in a buffer zone around a count station.  Moreover, including the 
total households and population in the denominators also allowed the relative significance of 
tourist population to be reflected. 
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School Enrollment 
 
SED was the size of school enrollment in a buffer area around a count station, and SEP was 
school enrollment as a percentage of population plus school enrollments. 
 
Employment Variables 
 
Fifteen variables describing employment in a buffer area surrounding a count station are listed in 
Table 14. 
 
Table 14. Employment Variable Definitions for Urban Roads 

Variable Description 
INDD Number of industrial workers per acre in a buffer zone around a count station 
COMD Number of commercial workers per acre in a buffer zone around a count station 
SERD Number of service workers per acre in a buffer zone around a count station 

COMSERD Number of commercial plus service workers per acre in a buffer zone around a 
count station 

INDP1 Industrial workers as a percentage of total workers 
INDP2 Industrial workers as a percentage of total workers plus population 
COMP1 Commercial workers as a percentage of total workers 
COMP2 Commercial workers as a percentage of total workers plus population 
SERP1 Service workers as a percentage of total workers 
SERP2 Service workers as a percentage of total workers plus population 

COMSERP1 Commercial/service workers as a percentage of total workers 
COMSERP2 Commercial/service workers as a percentage of total workers plus population 

EMPD Number of workers per acre in a buffer zone around a count station 
RETAILP Retail workers as a percentage of total retail workers plus population 
HOTELP Hotel workers as a percentage of total hotel workers plus population 

HOTELCAMP Hotel/RV-camp workers as a percentage of hotel/RV-camp workers plus 
population 

 
5.1.2.3 Geographic Spatial Location Dummy Variables 
 
From cluster analyses described in Chapter 4, it was determined that count stations that belonged 
to the same seasonal factor groups tended to locate in the same general geographic areas [LI03].  
This suggested that if geographic boundaries could be identified to define areas with similar 
seasonal traffic patterns, they could be used as a basis to assign established seasonal groups to 
short counts.  To test the strength of the location variables representing different geographic area 
where a count station was located, six dummy variables, DG1 through DG6, were created for the 
six seasonal groups obtained from the cluster analyses. 
 
5.1.3 Multiple Linear Regression Analysis 
 
Using the three buffer methods, a total of 16 datasets were compiled.  Before regression analyses 
were carried out, the variables were screened to eliminate those that were highly correlated.  For 
instance, the income variable with the highest correlation with MSFs was selected and the others 
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were eliminated from the datasets.  Stepwise regression was applied in the variable selection 
procedure.  Significant levels were set at 0.05 for regressors to enter and stay in a model.  
Multicollinearity among independent variables was checked based on variance inflation factors 
(VIFs), which should be less than 10. 
 
First, the location dummy variables were excluded to test the explanatory powers of the land use 
variables.  For the different buffer sizes tested for freeways, Buffer Method 1 with a five-mile 
buffer size was found to yield a model with the highest adjusted R2, while Buffer Method 2 and 3 
with a buffer size of 15 miles gave the best results.  Regardless of which buffer method was used 
to compile the socioeconomic variables, the significant variables and the adjusted R2 did not vary 
significantly across the three models.  For most of the months, the Buffer Method 1, which was 
also the simplest method among the three buffer methods, gave the highest adjusted R2.  No good 
models were found for May, October, and November.  Moreover, no models were found for 
December regardless which buffer method was used.  The models with the highest R2 based on 
the three buffer methods are presented in Table 15.  The shaded cells indicate highest adjusted R2 

among all three models for the given month. 
 
Table 16 summarizes the variables of the three sets of models with the signs of their coefficients 
indicated in the parentheses.  As the ratio of AADT to MADT, a higher MSF indicates a lower 
MADTA and vice versa.  A positive sign of a coefficient indicated that an increase in the 
corresponding variable would result in a larger MSF thus relatively fewer trips and a negative 
sign a smaller MSF thus more traffic.  It may be seen that the variables and their signs were 
mostly consistent across the three sets of models.  Presence of hotels/motels in an area was a 
major traffic-inducing factor in the warm winter months (January through April) in southeast 
Florida, which was the high season for visitors and for local residents to recreate.  Therefore, the 
coefficients for variables HMP3 and HMP4 are negative for these months.  It is likely that out-
of-town visitors began to increase in October, but the effects of tourists did not become 
significant until January, possibly due partly to the fact that the holiday season travel by local 
residents were also peaking.  According to model sets 1 and 2, HMP3 also had the highest R2 for 
six months (see Table 17), indicating it was the most significant factor among all the variables 
for these months.  Hotel/motel presence also contributed to the decrease in traffic in the summer 
months of June through October, which were the low season for visitors.  Concentration of 
seasonal residents (SHP) also affected traffic volume in a similar fashion as hotels/motels, 
increasing traffic in February, March, and April while decreasing traffic in the summer months 
of May through September. 
 
Retired population between 65-75 years of age with the highest income (RH5_HQ) seemed to 
have a strong presence in January and absence in July.  This group of population has high 
disposable income and relative better health compared to older retired population, which allow 
them to leave the state for vacation during the summer months and return in the winter months. 
 
The retail employment variable, RETAILP, was significant in the months of July and August 
according to model sets 1 and 2 and also in June according to model set 3.  It had a negative 
effect on traffic volume in the summer.  It appeared that people reduced their shopping activities 
in the summer months, which were also the months for vacations, especially July and August. 
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Table 17 provides the partial R2’s and the significance levels of the variables in the three model 
sets.  The numbers in parentheses indicate the particular months for which the models contained 
the corresponding variable.  Besides HMP3, which had the largest R2s for majority of the 
months, other variables except HOTELP also had reasonable R2s for certain months, particularly 
SHP, RH5_HQ, and RETAILP. 
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Table 15. Best Models Based on Three Buffer Methods for Urban Roads 

Month Model Set 1 
(Buffer Method 1 with 5-mile Radius Buffer of Freeway Count Stations) Adj. R2 MSE 

Jan MSF1 = 1.0313 – 0.2959 × HMP3 – 0.2552 × RH5_HQ 0.7911 0.00051583 
Feb MSF2 = 0.9913 – 0.2765 × SHP – 0.3096 × HMP3 0.8017 0.00062068 
Mar MSF3 = 0.98137 – 0.22859 × SHP – 0.2542 × HMP3 0.7681 0.00051201 
Apr MSF4 = 1.0021 – 0.1581 × SHP – 0.1060 × HMP3 0.6342 0.00028149 
May MSF5 = 0.9969 + 0.1421 × SHP 0.3726 0.00026545 
Jun MSF6 = 0.9996 + 0.2216 × SHP + 0.2687 × HMP3 0.7748 0.00051171 
Jul MSF7 = 1.0036 + 0.1659 × HMP3 + 0.1954 × RETAILP + 0.1709 × RH5_HQ 0.9033 0.00027782 

Aug MSF8 = 0.9832 + 0.2093 × SHP + 0.1838 × HMP3 + 0.1332 × RETAILP 0.8677 0.00035661 
Sep MSF9 = 1.0227 + 0.1189 × SHP + 0.2663 × HMP3 0.6746 0.00097553 
Oct MSF10 = 1.0062 + 0.2034 × HMP3 0.3060 0.00066651 
Nov MSF11 = 0.9792 + 1.1637 × HOTELCAMP 0.2053 0.00049519 
Dec MSF12 = no model - - 

 Model Set 2 
(Buffer Method 2 with 15-mile Service Area for Count Stations on Freeways) Adj. R2 MSE 

Jan MSF1 = 1.0306 – 0.2535 × HMP3 – 0.2979 × RH5_HQ 0.7637 0.00058340 
Feb MSF2 = 0.9894 – 0.2775 SHP – 0.2936 × HMP3 0.7551 0.00076649 
Mar MSF3 = 0.9790 – 0.2046 × SHP – 0.2664 × HMP3 0.7362 0.00058246 
Apr MSF4 = 1.0013 –0.1549 × SHP – 0.1121 × HMP3 0.6520 0.00026780 
May MSF5 = 0.9983 + 0.1369 × SHP 0.3400 0.00027924 
Jun MSF6 = 1.0018 + 0.1964 × SHP + 0.2847 × HMP3 0.7547 0.00055723 
Jul MSF7 = 1.0042 + 0.1534 × HMP3 + 0.1879 × RETAILP + 0.1954 × RH5_HQ 0.8955 0.00030026 

Aug MSF8 = 0.9833 + 0.2412 × SHP + 0.1674 × HMP3 + 0.1256 × RETAILP 0.8794 0.00032522 
Sep MSF9 = 1.0166 + 0.2351 × SHP + 0.2044 × HMP3 + 1.5102 × HOTELP 0.7467 0.00075935 
Oct MSF10 = 1.0050 + 0.2151 × HMP3 0.3405 0.00081076 
Nov MSF11 = no model - - 
Dec MSF12 = no model - - 
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Table 15. Best Models Based on Three Buffer Methods (Cont.) 

 Model Set 3 
(Buffer Method 2 with 15-mile Service Area for Count Stations on Freeways) Adj. R2 MSE 

Jan MSF1 = 1.0508 – 0.2830 × HMP4 – 0.6967 × RH5_HQ 0.6460 0.00087407 
Feb MSF2 = 0.9987 – 0.3535 × SHP – 0.3505 × HMP4 0.6292 0.00062068 
Mar MSF3 = 0.9898 – 0.2715 × SHP – 0.3525 × HMP4 0.7233 0.00061090 
Apr MSF4 = 1.0080 – 0.2081 × SHP – 0.1590 × HMP4 0.7006 0.00023037 
May MSF5 = 0.9940 + 0.3068 × RH5_HQ 0.3224 0.00028666 
Jun MSF6 = 0.9414 + 0.2633 × SHP + 0.3183 × RETAILP 0.6272 0.00084718 
Jul MSF7 = 0.9763 + 0.3523 × RETAILP + 0.5156 × RH5_HQ 0.7346 0.00076260 

Aug MSF8 = 0.9554 + 0.3268 × SHP + 0.3654 × RETAILP 0.7518 0.00035661 
Sep MSF9 = 1.0138 + 0.3572 × SHP + 0.3185 × HMP4 0.5997 0.00120000 
Oct MSF10 = 1.0004 + 0.2642 × HMP4 0.3054 0.00085396 
Nov MSF11 = no model - - 
Dec MSF12 = no model - - 

 



 

 69

Table 16. Variables and Their Signs for TTMSs on Urban Roads 
Variable Description Model Set 1 Model Set 2 Model Set 3 

HMP3 Ratio of occupied hotel rooms to occupied 
hotel rooms plus households 

Jan, Feb, Mar, Apr 
(-); Jun, Jul, Aug, 

Sep, Oct (+) 

Jan, Feb, Mar, Apr 
(-); Jun, Jul, Aug, 

Sep, Oct (+) 
 

HMP4 Ratio of hotel population to hotel 
population plus population   Jan, Feb, Mar, Apr 

(-); Sep, Oct (+) 

SHP Ratio of seasonal households to permanent 
households 

Feb, Mar, Apr (-); 
May, Jun, Aug, Sep 

(+) 

Feb, Mar Apr (-); 
May, June Aug, Sep 

(+) 

Feb, Mar, Apr (-); 
Jun, Aug, Sep (+); 

RH5_HQ Percentage of retired householders of the 
highest income quartile Jan (-); Jul (+) Jan (-); July (+) Jan (-); May, Jul, 

(+) 

RETAILP Retail workers as a percentage of total retail 
workers plus population Jul, Aug (+); July, Aug, (+) Jun, Jul, Aug (+) 

HOTELP 
Ratio of hotel employment to the sum of 
hotel employment and population in buffer 
area 

 Sep (+)  

HOTELCAMP Hotel/RV camp workers as a percentage of 
hotel/RV camp workers plus population Nov (+)   
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Table 17. Partial R2’s and Significance Levels of Variables from the Three Models 
Model 1 Model 2 Model 3 Variable Description R2 Pr > |t| R2 Pr > |t| R2 Pr > |t| 

Constant Model Constant  < 0.0001  < 0.0001  < 0.0001

HMP3 Ratio of occupied hotel rooms to occupied 
hotel rooms plus households 

(1) 0.7196
(2) 0.6942
(3) 0.6669
(4) 0.0873
(6) 0.6834
(7) 0.0695
(8) 0.6898
(9) 0.5807

(10) 0.3327

< 0.0001 
< 0.0001 

0.0002 
0.0200 

< 0.0001 
0.0019 
0.0030 
0.0026 
0.0016 

(1) 0.6689 
(2) 0.6570 
(3) 0.6663 
(4) 0.0915 
(6) 0.6928 
(7) 0.0671 
(8) 0.0442 
(9) 0.6308 

(10) 0.3659 

0.0008 
0.0005 
0.0003 
0.0152 
0.0001 
0.0061 
0.0052 
0.0207 
0.0008 

– – 

HMP4 Ratio of hotel population to hotel population 
plus population – – – – 

(1) 0.1646 
(2) 0.5053 
(3) 0.6172 
(4) 0.1420 
(9) 0.1463 

(10) 0.3321 

0.0002
0.0021

< 0.0001
0.0018
0.0051
0.0017

SHP Ratio of seasonal households to permanent 
households 

(2) 0.1228
(3) 0.1190
(4) 0.5750
(5) 0.3967
(6) 0.1087
(8) 0.1333
(9) 0.1189

0.0005 
0.0013 
0.0023 
0.0004 
0.0017 
0.0009 
0.0051 

(2) 0.1170 
(3) 0.0901 
(4) 0.5873 
(5) 0.3654 
(7) 0.0807 
(8) 0.7031 
(9) 0.0804 

0.0017 
0.0065 
0.0028 
0.0008 
0.0074 
0.0002 
0.0064 

(2) 0.1524 
(3) 0.1274 
(4) 0.5817 
(6) 0.1431 
(8) 0.1858 
(9) 0.4842 

0.0033
0.0020
0.0002
0.0042
0.0002
0.0034

RH5_HQ Percentage of retired householders of the 
highest income quartile 

(1) 0.7196
(7) 0.0876

< 0.001 
0.0228 

(1) 0.1131 
(7) 0.0285 

0.0017 
0.0139 

 

(1) 0.3485 
(5) 0.5087 
(6) 0.0935 

0.0012
0.0002
0.0058

RETAILP Retail workers as a percentage of total retail 
workers plus population 

(7) 0.8222
(8) 0.0598

< 0.0001 
0.0023 

(6) 0.8120
(8) 0.1460

0.0001
0.0027

(6) 0.5127
(7) 0.6615
(8) 0.5851

< 0.0001
< 0.0001
< 0.0001

HOTELP Ratio of hotel employment to the sum of hotel 
employment and population in buffer area – – (9) 0.0647 0.0169 – – 

HOTELCAMP Hotel/RV camp workers as a percentage of 
hotel/RV camp workers plus population (11) 0.2358 0.0102 – – – – 
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No significant factors were identified for the months of November and December, possibly 
because these were the times when out-of-town visitors and seasonal residents began to stream 
into Southeast Florida and, at the same time, travel by the locals also increased due to the holiday 
seasons.  Therefore, no single factor was dominant.  Lacking other land use variables to predict 
seasonal factors for these two months, the location dummy variables were introduced into the 
models.  The results are given below, with the variables’ partial R2s and significance presented in 
Table 18. 
 
Buffer Method 1 

MSF11 = 0.9859 - 0.1001×SHP + 1.4776×HOTELCAMP + 0.0203×DG4 – 0.0460×DG5 
 (adj. R2 = 0.6399, MSE = 0.00022438) 
MSF12 = 0.9951 - 0.1455×SHP - 0.0581×DG2 + 0.0306×DG4 – 0.0871×DG5 
 (adj. R2 = 0.7226, MSE = 0.00040620) 

 
Buffer Method 2 

MSF11 = 0.9876 - 0.1044×SHP + 1.4131×HOTELP + 0. 0228×DG4 – 0.0626×DG5 
 (adj. R2 = 0.6046, MSE = 0.00024638) 
MSF12 = 0.9930 - 0.1314×SHP + 0.0557×DG2 + 0.0283×DG4 – 0.0890×DG5 
 (adj. R2 = 0.7003, MSE = 0.00043874) 

 
Buffer Method 3 

MSF11 = 0.9936 – 0.0486×DG5   
 (adj. R2 = 0.2408, MSE = 0.00047304) 
MSF12 = 0.9680 + 0.0291×DG1 – 0.0355×DG2 + 0.0420×DG4 – 0.0730×DG5 
 (adj. R2 = 0.7011, MSE = 0.00043763) 

 
Again, the sign of the variable representing the season population was negative and seemed to 
indicate that seasonal residents began the annual migration in November.  Location dummy 
variables DG2 and DG5 appeared to be stronger predictors than the other location dummy 
variables.  DG5 indicated locations on the Florida Turnpike.  The negative sign of DG5 indicated 
an increase in traffic on the turnpike in November and December, possibly due to the increase in 
holiday related travels.  Count stations in the seasonal group represented by DG2 were not in 
spatially proximity of each other, and the land use in the surrounding areas also varied 
significantly.  Note that the sign of this variable was inconsistent across models.  As a result, it 
was difficult to interpret the meaning of this dummy variable.  Dummy variable DG4 represents 
two locations on causeways leading to Miami Beach where tourists and retired population 
concentrate.  The positive sign seemed to indicate that in November and December, traffic on 
causeways slight decreased.  No good explanation could be offered regarding DG4.  
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Table 18. Partial R2’s and Significance Levels for November and December Models 
Buffer Method 1 Buffer Method 2 Buffer Method 3 Variable Description Partial R2 Pr > |t| Partial R2 Pr > |t| Partial R2 Pr > |t|

Constant Model constant < 0.0001 < 0.0001 < 0.0001

SHP Ratio of seasonal households to permanent 
households 

(11) 0.1028
(12) 0.1070

0.0007 
0.0040 

(11) 0.1124
(12) 0.0996

0.0091
0.0101 – – 

HOTELP  (11) 0.2381 < 0.0001 (11) 0.1782 0.0002 – – 
DG1 Dummy variable – located inland  – – – – (12) 0.0919 0.0098

DG2 Dummy variable – located inland mostly 
near the western urban boundary (12) 0.2499 < 0.0001 (12) 0.2499 0.0001 (12) 0.2499 0.0089

DG4 Dummy variable – located on causeways to 
Barrier Islands (including Miami Beach) 

(11) 0.0844
(12) 0.0796

0.0218 
0.0122 

(11) 0.1048
(12) 0.0682

0.0155
0.0236 (12) 0.0766 0.0026

DG5 Dummy variable – located on Florida 
Turnpike 

(11) 0.2700
(12) 0.3287

0.0004 
< 0.0001 

(11) 0.2700
(12) 0.3287

< 0.0001
< 0.0001

(11) 0.2700
(12) 0.3287

0.0055
0.0002
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5.1.4 Summary 
 
Using the MSFs collected from the TTMS sites in Broward, Miami-Dade, and Broward counties 
and demographic and socioeconomic data mainly from the census, this research identified 
several significant factors that contributed to the seasonal patterns of traffic.  These factors 
included the seasonal movement of part-time residents and tourists (through variables that reflect 
concentration of hotels and motels), retired people between age 65 and 75 with high income, and 
retail employment.  Roadway federal functional classification was not found to be a factor, likely 
because in large urban areas major roads were used by travel for mixed purposes and no single 
purpose use was dominant.  Similarly, no correlation was found between the seasonal factors and 
traffic volume per lane and number of lanes.  While the results cannot be generalized for other 
urban areas, they do point to the possibility of determining seasonal factors based on 
fundamental causes – land uses, demographics, and socioeconomics, which are important 
determinates of travel demand. 
 
5.2 Rural Area Regression Analysis 
 
Regression analyses were also performed on data from TTMSs in selected Florida rural areas.  
The objective was to identify possible factors that influenced seasonal factors in Florida rural 
areas.  The differences between the regression analyses for the urban and rural areas mainly lied 
in the variable definition and buffer methods that were used to determine the variable values.  In 
this section, the study area, variables investigated in the regression analyses, and the regression 
results are described. 
 
5.2.1 Study Area Selection 
 
Rural roads were defined as those that were not located in an urban area.  Table 19 shows the 
number of TTMSs located on the rural roads in each of the FDOT districts.  The GIS coverage 
files that were available from the 2002 FDOT Traffic Information CD were utilized to classify 
TTMSs into urban and rural count stations.  As shown in Table 19, FDOT Districts 2 and 3 had 
relatively more rural TTMSs, which allowed more samples to be considered in the subsequent 
regression analysis.  Therefore, these two districts were selected as the study area, where there 
were 73 TTMSs located on the rural roads with MSFs for every month in a year. 
 
Table 19. Number of Rural Counties and TTMSs 

District 1 2 3 4 5 6 7 8 Total 
Number of TTMSs 23 30 43 9 16 1 5 2 129 

 
5.2.2 Study Data 
 
The independent variables prepared to calibrate the multiple regression models for the rural 
TTMSs included roadway characteristics, demographic and socioeconomic variables, and other 
variables that described the location and accessibility of the TTMSs.  The following sections 
describe the independent variables that were compiled for each TTMS on the rural roads in 
FDOT Districts 2 and 3. 
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5.2.2.1 Roadway Characteristic Variables 
 
Variables in this category are given in Table 20, where Variables Fc1, Fc2, Fc6, Fc7, and Fc8 
were dummy variables indicating the type of road where a TTMS was located.  Variables DirNS 
and DirEW were dummy variables specifying the orientations of a given roadway’s alignment.  
The data were retrieved from the 2002 FDOT Traffic Information CD and the FDOT’s Roadway 
Characteristics Inventory (RCI) database. 
 
Table 20. Roadway Characteristic Variables for Rural Roads 

Variable Description 
Lanes Number of lanes 
Tfctr Truck factor 
Fc1 1if TTMS was located on freeway; 0 otherwise 
Fc2 1 if TTMS was located on principal arterial; 0 otherwise 
Fc6 1 if TTMS was located on minor arterial; 0 otherwise 
Fc7 1 if TTMS was located on major collector; 0 otherwise 
Fc8 1 if TTMS was located on minor collector; 0 otherwise 

DirNS 1 if roadway runs in the north-south direction; 0 otherwise 
DirEW 1 if roadway runs in the east-west direction; 0 otherwise 

 
5.2.2.2 Demographic and Socioeconomic Variables 
 
Most of the demographic and socioeconomic data for rural area were retrieved from the 2000 
Census with the exception of the employment data, which were from a proprietary database 
purchased by FDOT.  This assured the data availability to all FDOT districts.  Two buffer 
methods were used to compile the data for the demographic and socioeconomic variables.  The 
first buffer method employed a set of buffer sizes that varied according to the functional 
classifications of the roadway segments on which the TTMSs were located.  A circular buffer 
around each count station was created to define the impact area and the associated demographic 
and socioeconomic data were then aggregated.  Two sets of buffer radii were used as shown in 
Table 21. 
 
Table 21. Buffer Sizes Based on Functional Classification 

Data Set Variable Description Buffer Size (miles)
Fc1 Rural Principal Arterial ⎯ Interstate 15 
Fc2 Rural Principal Arterial ⎯ Other 12 
Fc6 Rural Minor Arterial 8 
Fc7 Rural Major Collector 3 

1 

Fc8 Rural Minor Collector 1 
Fc1 Rural Principal Arterial ⎯ Interstate 10 
Fc2 Rural Principal Arterial ⎯ Other 8 
Fc6 Rural Minor Arterial 5 
Fc7 Rural Major Collector 2 

2 

Fc8 Rural Minor Collector 1 
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As mentioned in the previous section, a larger buffer zone implied that the MSFs for a count 
station were impacted by the characteristics of a larger surrounding area.  For the TTMSs on the 
rural roads larger buffer sizes than those used in the development of the urban models were 
applied to incorporate land use effects from distant developments. 
 
The second buffer method defined the impact area based on the average travel time to workplace 
from Census 2000.  Since trips to and from work are one of the major activities that determine 
the traffic generated or attracted by an area, the average travel time to workplace may suggest 
how far people need or are willing to travel to work.  Based on Census 2000, the average travel 
time to workplace for the counties in FDOT Districts 2 and 3 was 28 minutes.  To reduce the 
computation complexity, a 30-minute average travel time was assumed and the corresponding 
travel distances from a given TTMS following the road network were calculated based on the 
posted speed limits to estimate its impact area.  Using the above two buffer methods, the 
following independent variables were compiled and three datasets were created: 
 
Rural Population 
 
Variable Pop was the population in the buffer zone around a TTMS. 
 
Population Density 
 
Variable Popden was the population density in the buffer zone around a TTMS. 
 
Population by Age Groups 
 
The population in a buffer zone of a TTMS was divided into six age groups to capture the 
potential effects it might have on seasonal traffic patterns.  The variables are given in Table 22. 
 
Table 22. Population Age Group Variables 

Variables Description 
Ageunder5 Population density aged 5 and under 
Age5_17 Population density aged between 5 and 17 
Age22_65 Population density aged between 22 and 65 
Age18_64 Population density aged between 18 and 64 
Age5_21 Population density aged between 5 and 21 
Age18_21 Population density aged between 18 and 21 
Age65up Population density aged 65 and over 
Punder5 Population aged 5 and under as a percentage of total population 
P5_17 Population aged between 5 and 17 as a percentage of total population 
P22_65 Population aged between 22 and 65 as a percentage of total population 
P18_64 Population aged between 18 and 64 as a percentage of total population 
P5_21 Population aged between 5 and 21 as a percentage of total population 
P18_21 Population aged between 18 and 21 as a percentage of total population 
P65up Population aged 65 and over as a percentage of total population 
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Households and Seasonal Household Percentage 
 
The Ruhh variable represented the number of households within a buffer area.  Sshh was the total 
while Sshden the density of seasonal households located in a buffer area.  Variable P_Shhphh 
was the seasonal households as a percentage of permanent households and P_Shhthh the 
seasonal households as a percentage of total households in the buffer zone around a count 
station. 
 
Hotel/Motel Rooms 
 
Hrooms was the number of hotel/motel rooms in the buffer zone around a count station. 
 
Employment Variables 
 
Table 23 defines the 13 employment variables developed in this study. 
 
Table 23. Employment Variable Definitions for Rural Roads 

Variable Description 
T_Employ Number of total employment within a buffer zone 
T_Empden Employment density around a count station 

He_Te Hotel employment as a percentage of total employment 
C_Employ Employment for crop production as a percentage of total employment 
Ag_Emplo Employment for livestock production as a percentage of total employment 

Craged Employment for agricultural (crop and livestock) production as a percentage of 
total employment 

E_Ce Employment density not including crop employment 
E_Craged Employment density not including crop and livestock employment 

Co_Te Commercial employment as a percentage to total employment 
In_Te Industrial employment as a percentage to total employment 
Se_Te Service employment as a percentage to total employment 

Pop_Pe ( )_ population in a buffer total employment populationPop Pe = ×  

Emp_Pe ( )_ employment in a buffer total employment populationEmp Pe = ×  
 
Income Variables 
 
Variable A_Income was the arithmetic average of the average income at the census block group 
level in the buffer zone around a TTMS.  Aincahh was the average income weighted by the 
number of households of the area, as given by the following equation: 
 

Average income HHs Number of total HHsAincahh = ×∑  (50) 
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5.2.2.3 Other Variables 
 
The following variables described the network density, accessibility to areas of different interest 
from the TTMSs, and TTMS locations. 
 
TTMS Relative Locations 
 
Fifteen variables described the distance from a TTMS to coastlines, metropolitan areas, state 
borders, and highway interchanges.  Table 24 defines the variables in this category. 
 
Table 24. Position Variables 

Variable Description 
Distcoast Shortest distance between a TTMS and the coast line 
Sqdcoast Square root of DISTCOAST  

Ra_Distsq 21 Distcoast  

Dist1 
population of a given metropolitan areaMaximum of 

distance between a TTMS and the metropolitan area
 

Distmetr Shortest distance between a TTMS and the closest metropolitan area 
Sqrdistmet Square root of Distmetr 
Ra_Distmet 21 Distmetr  

Distbor Shortest distance from a TTMS to the state line between Florida and Georgia 
or Alabama 

Sqdbor Square root of Distbor 
Ra_Disborsq 21 Distbor  

Interdist Distance from a TTMS to the closest highway interchange 
Sqrinterdi Square root of Interdist 

Ra_Interdistsq 21 Interdist  

Indexd1 ( )2
Population for a metropolitan area

Distance from the TTMS to a metropolitan area
∑  

Indixdist2 1 Indexd1  
 
Ramp Access 
 
Ramp was a dummy variable indicating whether a TTMS lied on a roadway segment with direct 
access to Interstate I-10.  A value of 1 indicated a direct connection to a ramp and 0 otherwise. 
 
Roadway Coverage 
 
Variable Rlength was the sum of the lengths of all roadway segments within the buffer of a 
TTMS.  Variable Rdensity represented roadway density and was calculated for each buffer as 
follows: 
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( )Length of the roadway segment Number of lanes Buffer areaRdensity = ×∑  (51) 
 
Geographic Locations 
 
Six dummy variables, G2, G3, G5, G6, G7, and G8, were defined based on the results from the 
model-based cluster analysis that considered both seasonal traffic fluctuations and locations of 
TTMSs.  The results from the EII model with six seasonal factor groups were selected to define 
these dummy variables.  The model and the number of groups were selected because of the 
relatively larger area covered by the six factor groups, as indicated by the circles drawn around 
the group centroids (see Figure 17).  

Figure 17. The Spatial Extent of the Six Factor Groups Used to Compile Location 
Parameters 

 
5.2.3 Multiple Linear Regression Analysis 
 
Three datasets were compiled, each based on a specific set of buffer sizes as described in Section 
5.2.2.2.  Stepwise regression was applied in the variable selection procedure.  Significant levels 
were set at 0.05 for regressors to enter and stay in a model.  Multicollinearity among independent 
variables was checked based on VIFs, which should be less than 10.  The dummy variables for 
geographical locations were first excluded to test the explanatory power of the land use 
variables.  The results based on the three data sets after excluding the geographical location 
variables are shown in Tables 25 through 27, respectively, where the models with the highest 
R2’s among the three model sets are highlighted.  The results showed that other explanatory 
variables needed to be considered in the calibration process because much lower R2’s were 
obtained from the TTMSs located on rural roads than those on urban roads, except for May, 
September, and December. 
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The same regression analysis was performed again by including the geographic location dummy 
variables G2, G3, G5, G6, G7, and G8 in the calibration process.  The results are shown in 
Tables 28 through 30, where the models with the highest R2’s among the three model sets 
calibrated using the three data sets are highlighted.  Tables 28 to 30 show that improved R2’s 
were obtained from the models for April, July, and September when compared with the models 
in Tables 25 to 27.  However, the improvements did not appear to be significant.  Table 31 
summarizes the variables of the three sets of models with the signs of their coefficients indicated 
in the parentheses.  It may be seen that the variables and their signs were mostly consistent 
across the three sets of models. 
 
Table 32 provides the partial R2 and significance level for each of the variables entered into the 
models.  A higher R2 is indicative of the explanatory power of a variable.  Variables that 
appeared in multiple months and multiple models such as Age65up, E_Ce, Fc1, He_Te, 
P_Shhthh, and Tfctr were likely to be important to explaining seasonal traffic patterns.  For 
instance, traffic on I-10 increased in March and July, as suggested by at least two models, which 
could be associated with spring break and summer vacation traffic.  The truck factor variable, 
Tfctr, indicated that in November and December traffic volume went up, which was likely a 
result of increased freight activities for the holiday season.  Variable Age65up, which represented 
retired population, seemed to indicate that traffic in the colder months picked up but dropped in 
hotter months, possibly because many of them spent time in the winter in Florida but moved 
back to the north in the spring.  The hotel employment variable, He_Te, might have suggested 
that traffic increased in March, possibly because of spring breakers.  P_Shhthh, which 
represented seasonal households, seemed to suggest that traffic increased in the spring and 
summer but decreased in the fall and winter.  This is the opposite of what happens in Southeast 
Florida.  However, the explanation might lie in the difference between the seasonal populations 
in south and north Florida.  While the seasonal residents in south Florida are more likely to be 
retired people and “snow birds”, the seasonal residents in north Florida might be mostly 
agricultural workers.  
 
To better understand what affect the seasonal change in traffic as well as the variables that have 
been identified, more information and detailed analysis is needed regarding the economic 
activities in north Florida. 
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Table 25. Models for Buffer Size 1 without Geographical Location Variables 
Month Model Set 1 (Buffer size = 15, 12, 8, 3, 1) Adj. R2 MSE 

Jan MSF1 = 1.15311 – 0.00483 × Age65up – 0.46272 × Ag_Emplo 0.0941 0.00427 
Feb MSF2 = 1.07552 – 0.00564 × Age65up – 0.09376 × Hrooms 0.1605 0.00315 
Mar MSF3 = 0.94826 – 1.04928 × He_Te – 0.04729 × Fc1 + 0.01058 × Sqdcoast 0.3153 0.00141 
Apr MSF4 = 0.97266 + 0.00245 × Age65up – 0.00193 × P_Shhthh + 0.04064 ×Fc1 – 55.84843 × Dist1 0.4191 0.00108 
May MSF5 = 0.94323 – 0.00283 × P_Shhthh + 0.85691 × He_Te + 0.001 × E_Ce + 0.00188 × Tfctr 0.5402 0.00082 
Jun MSF6 = 0.85688 + 0.00216 × E_Ce + 0.0000021 × A_Income + 0.07653 × Hrooms 0.2755 0.00241 
Jul MSF7 = 0.94707 + 0.00253 × E_Ce – 0.0875 × Fc1 – 0.00428 × P_Shhthh + 1.26438 × He_Te 0.4066 0.00420 

Aug MSF8 = 1.027 – 0.58599 × Punder5 + 0.82631 × He_Te – 0.00124 × P__Shhthh 0.1568 0.00133 
Sep MSF9 = 1.03839 + 0.12371 × Fc1 + 0.00327 × P__Shhthh – 0.0011 × E_Ce 0.5255 0.00245 

Oct MSF10 = 0.99876 – 0.00125 × E_Craged – 0.00023887 × Ra_Disborsq + 0.00247 × P_Shhthh + 
0.05087 × Fc1 + 0.47028 × Ag_Emplo 0.4909 0.00164 

Nov MSF11 = 1.07546 + 0.00184 × E_Craged – 0.00241 × Tfctr 0.2438 0.00267 

Dec MSF12 = 1.09384 – 0.00012146 × Rdlength + 0.00334 × P_Shhthh – 0.00392 × Tfctr – 0.00151 × 
E_Ce 0.4935 0.00370 
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Table 26. Models for Buffer Size 2 without Geographical Location Variables 
Month Model Set 2 (Buffer size = 10, 8, 5, 2, 1) Adj. R2 MSE 

Jan MSF1 = 1.13830 + 0.00299 × P_Shhthh – 0.01019 × Sqdbor 0.1005 0.00414 
Feb MSF2 = 1.05738 – 0.00412 × Age65up  0.10811 0.00345 

Mar MSF3 = 0.96247 – 0.00021148 × Rdlength – 0.00501 × Sqdbor + 0.00210 × Age65up + 0.1179 × 
Sqdcoast – 0.45976 × He_Te 0.3747 0.00129 

Apr MSF4 = 0.98425 – 0.00193 × P_Shhthh + 0.03965 ×Fc1 – 46.43197 × Dist1 0.4191 0.00108 
May MSF5 = 0.94983 – 0.00235 × P_Shhthh + 0.00209 × Tfctr + 0.00057520 × E_Ce 0.5493 0.00084 
Jun MSF6 = 0.88358 + 0.00467 × Age65up + 0.00000160 × A_Income – 0.03557 × Fc1 0.2213 0.00260 
Jul MSF7 = 0.97191 + 0.00133 × E_Ce – 0.09289 × Fc1 – 0.00585 × P_Shhthh 0.3604 0.00420 

Aug MSF8 = 0.96903 – 0.00221 × Tfctr 0.1692 0.00131 
Sep MSF9 = 1.02284 + 0.12868 × Fc1 + 0.0504 × P__Shhthh  0.4771 0.00270 

Oct MSF10 = 1.01150 + 0.00212 × P_Shhthh + 0.04887 × Fc1 – 0.00029792 × Ra_Disborsq – 
0.00074420 × E_Craged 

0.4217  0.00186 

Nov MSF11 = 1.05344 + 0.00188 × P_Shhthh – 0.00098311 × E_Craged – 0.00221 × Tfctr 0.2481 0.00266 
Dec MSF12 = 1.10180 + 0.00368 × P_Shhthh – 0.00638 × Tfctr – 0.00564 × Age65up 0.5581 0.00322 
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Table 27. Models for Buffer Size 3 without Geographical Location Variables 
Month Model Set 3 (Buffer size = 30-minute driving time) Adj. R2 MSE 

Jan MSF1 = 0.99803 + 55.24827 × Indixdist2 – 0.00379 × Age5_17 0.1358 0.00410 
Feb MSF2 = 1.08452 – 0.03208 × Dir – 0.00452 × E_Ce – 0.01380 ×  Sqdbor + 0.00452 × P_shhthh 0.2562 0.00280 

Mar MSF3 = 0.96420 – 0.04575 × Fc1 – 0.00139 × Distborder + 0.64524 × Craged + 0.00285 
P_shhthh 0.3832 0.00129 

Apr MSF4 = 0.95770 – 0.03698 × Fc1 + 0.52329 × Craged – 44.31749 × Dist1 – 0.00123 × Distbor + 
0.0000353 × Sshh 0.4724 0.00099 

May MSF5 = 0.95615 + 0.00000190 × T_Employ – 0.00359 × P_Shhthh 0.3216 0.00127 
Jun MSF6 = 0.92787 + 0.06376 × Fc1 + 0.00000324 × T_employ 0.1921 0.00273 
Jul MSF7 = 0.93106 + 0.00000378 × T_Employ – 0.11981 × Fc1 – 0.00354 × P_Shhthh 0.2873 0.00510 

Aug MSF8 = 0.96874 – 0.00222 × Tfctr 0.1792 0.00133 
Sep MSF9 = 1.01432 + 0.4287 × Fc1 + 0.00218 × Interdist 0.4444 0.00291 
Oct MSF10 = 1.06765 – 1.03873 × Craged + 0.06055 × Fc1 – 0.00000227 × T_Employ 0.2974 0.00228 
Nov MSF11 = 1.06032 + 0.00000255 × T_Employ 0.1086 0.00319 
Dec MSF12 = 1.13767 + 0.00359 × P_Shhthh – 0.00008806 × Tfctr 0.3695 0.00465 
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Table 28. Models for Buffer Size 1 with Geographical Location Variables 
Month Model Set 1 (Buffer size = 15, 12, 8, 3, 1) Adj. R2 MSE 

Jan MSF1 = 1.15311 – 0.00483 × Age65up – 0.46272 × Ag_Emplo 0.0941 0.00427 
Feb MSF2 = 1.07552 – 0.00564 × Age65up – 0.09376 × Hrooms 0.1605 0.00315 
Mar MSF3 = 0.94826 – 1.04928 × He_Te – 0.04729 × Fc1 + 0.01058 × Sqdcoast 0.3153 0.00141 
Apr MSF4 = 0.97266 + 0.00245 × Age65up – 0.00193 × P_Shhthh + 0.04064 ×Fc1 – 55.84843 × Dist1 0.4191 0.00108 
May MSF5 = 0.94323 – 0.00283 × P_Shhthh + 0.85691 × He_Te + 0.001 × E_Ce + 0.00188 × Tfctr 0.5402 0.00082 
Jun MSF6 = 0.85688 + 0.00216 × E_Ce + 0.0000021 × A_Income + 0.07653 × Hrooms 0.2755 0.00241 
Jul MSF7 = 0.94707 + 0.00253 × E_Ce – 0.0875 × Fc1 – 0.00428 × P_Shhthh + 1.26438 × He_Te 0.4066 0.00420 

Aug MSF8 = 1.027 – 0.58599 × Punder5 + 0.82631 × He_Te – 0.00124 × P__Shhthh 0.1568 0.00133 
Sep MSF9 = 1.02050 + 0.13117 × Fc1 + 0.00342 × P__Shhthh – 0.06591 × G2 0.5488 0.00233 

Oct MSF10 = 0.99876 + 0.47154 × E_Craged – 0.00023885 × Ra_Disborsq + 0.00247 × P_Shhthh + 
0.05087 × Fc1 + 0.47029 × E_Ce 0.4909 0.00164 

Nov MSF11 = 1.07546 + 0.00184 × E_Craged – 0.00241 × Tfctr 0.2438 0.00267 

Dec MSF12 = 1.09384 – 0.00012146 × Rdlength + 0.00334 × P_Shhthh – 0.00392 × Tfctr – 0.00151 × 
E_Ce 0.4935 0.00370 

 



 

 84

Table 29. Models for Buffer Size 2 with Geographical Location Variables 
Month Model Set 2 (Buffer size = 10, 8, 5, 2, 1) Adj. R2 MSE 

Jan MSF1 = 1.13830 + 0.00299 × P_Shhthh – 0.01019 × Sqdbor 0.1005 0.00414 
Feb MSF2 = 1.05738 – 0.00412 × Age65up 0.10811 0.00345 

Mar MSF3 = 0.96247 – 0.00021148 × Rdlength – 0.00501 × Sqdbor + 0.00210 × Age65up + 0.1179 × 
Sqdcoast – 0.45976 × He_Te 0.3747 0.00129 

Apr MSF4 = 0.98425 – 0.00193 × P_Shhthh + 0.03965 × Fc1 – 46.43197 × Dist1 0.4191 0.00108 
May MSF5 = 0.94983 – 0.00235 × P_Shhthh + 0.00209 × Tfctr + 0.00057520 × E_Ce 0.5493 0.00084 
Jun MSF6 = 0.88358 + 0.00467 × Age65up + 0.00000160 × A_Income – 0.03557 × Fc1 0.2213 0.00260 
Jul MSF7 = 0.97191 + 0.00133 × E_Ce – 0.09289 × Fc1 – 0.00585 × P_Shhthh 0.3604 0.00420 

Aug MSF8 = 0.96903 – 0.00221 × Tfctr 0.1692 0.00131 
Sep MSF9 = 1.01894 + 0.13317 × Fc1 + 0.00476 × P__Shhthh + 0.06712 × G2 0.5271 0.00244 

Oct MSF10 = 0.99524 + 0.00255 × P_Shhthh + 0.05127 × Fc1 – 0.00074420 × E_Craged + 0.20532 × 
E_Ce 0.3729 0.00202 

Nov MSF11 = 1.05344 + 0.00188 × P_Shhthh – 0.00098311 × E_Craged – 0.00221 × Tfctr 0.2481 0.00266 
Dec MSF12 = 1.10180 + 0.00368 × P_Shhthh – 0.00638 × Tfctr – 0.00564 × Age65up 0.5581 0.00322 
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Table 30. Models for Buffer Size 3 with Geographical Location Variables 
 Model Set 3 (Buffer size = 30-minute driving time) Adj. R2 MSE 

Jan MSF1 = 0.99803 + 55.24827 × Indixdist2 – 0.00379 × Age5_17 0.1358 0.00410 
Feb MSF2 = 1.08452 – 0.03208 × Dir – 0.00452 × Et_Ce – 0.01380 × Sqdbor + 0.00452 × P_shhthh 0.2562 0.00280 
Mar MSF3 = 0.96420 – 0.04575 × Fc1 – 0.00139 × Distbor + 0.64524 × Craged + 0.00285 × P_shhthh 0.3832 0.00129 

Apr MSF4 = 0.95770 – 0.03698 × Fc1 + 0.52329 × Craged – 44.31749 × Dist1 – 0.00123 × Distbor + 
0.0000353 × Sshh 0.4724 0.00099 

May MSF5 = 0.95615 + 0.00000190 × T_Employ – 0.00359 × P_Shhthh 0.3216 0.00127 
Jun MSF6 = 0.92787 + 0.06376 × Fc1 + 0.00000324 × T_employ 0.1921 0.00273 
Jul MSF7 = 0.93106 + 0.00000378 × T_Employ – 0.11981 × Fc1 – 0.00354 × P_Shhthh 0.2873 0.00510 

Aug MSF8 = 0.96587 + 0.00223 × Tfctr + 0.03931 × G2 0.2231 0.00125 
Sep MSF9 = 1.01125 + 0.14626 × Fc1 + 0.00202 × Interdist + 0.00202 × G2 0.4942 0.00265 

Oct MSF10 = 1.06982 – 0.97332 × Craged + 0.07556 × Fc1 – 0.00000317 × T_Employ + 0.07422 × 
G2 0.3887 0.00199 

Nov MSF11 = 1.06032 + 0.00000255 × T_Employ 0.1086 0.00319 
Dec MSF12 = 1.13767 + 0.00359 × P_Shhthh – 0.00008806 × Tfctr 0.3695 0.00465 
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Table 31. Variables from the Three Models and the Signs of Their Coefficients 
Variable Description Model 1  Model 2 Model 3 

Employment Variables 

Craged Employment for agricultural (crop and livestock) production 
as a percentage of total employment   (+) Mar, Apr 

(–) Oct 

Ag_Emplo Employment for livestock production as a percentage of 
total employment 

(–) Jan 
(+) Oct   

E_Ce Employment density not including crop employment (–) Sep, Dec 
(+) May, Jun, Jul (+) May, Jul, (–) Feb 

E_Craged Employment density not including crop and livestock 
employment 

(–) Oct 
(+) Nov (–) Oct, Nov  

He_Te Hotel employment as a percentage of total employment (+) May, Jul, Aug 
(–) Mar (–) Mar  

T_Employ Number of total employment within a buffer zone   
(–) Oct 
(+) May, Jun, 
Jul, Nov 

Population Variables  

Age65up Population density within the ages 65 and up (+) Apr 
(–) Jan, Feb 

(+) Jun 
(–) Feb, Mar, 
Dec 

 

P5_17 Population density within the ages 5 to 17   (–) Jan 
A_Income Arithmetic average of the average income  (+) Jun (+) Jun  

Punder5 Population within the ages 5 and under as a percentage of 
total population (–) Aug   

Roadway Characteristics 
DirNS Roadway runs in the north  – south direction   (–) Feb 

Fc1 1if TTMS located on freeway; 0 otherwise (+) Apr, Sep, Oct 
(–) Mar, Jul 

(+) Apr, Sep, 
Oct 
(–) Jun, Jul 

(+) Jun, Sep, 
Oct 
(–) Mar, Jul, 
Apr 

Rdlength The sum of the length of all roadway segments contained in 
the buffer of each TTMS (-) Dec (–) Mar  
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Variable Description Model 1  Model 2 Model 3 

Tfctr Truck factor (–) Nov, Dec 
(+) May 

(–) Aug, Nov, 
Dec 
(+) May 

(–) Aug, Dec 

Seasonal Household Variables 

Hrooms The number of hotel/motel rooms around a count station (+) Jun 
(–) Feb   

P_Shhthh The seasonal households as a percentage of total households
(+) Sep, Oct, Dec 
(–) Apr, May, Jul, 
Aug 

(+) Jan, Sep, 
Oct, Nov, Dec 
(–) Apr, May, 
Jul 

(+) Feb, Mar, 
Dec 
(–) May, Jul 

Sshh The number of seasonal households   (+) Apr 
Location Variables 

Dist1 Max of ratio of Population of a metropolitan area to the 
distance from the TTMS to the Metropolitan area (–) Apr (–) Apr (–) Apr 

Distbor Shortest distance from a TTMS to the state line between 
Florida and Georgia or Alabama     (–) Mar, Apr 

Indexdist2  
1

Metropolitan Population
Distance from the TTMS to the metropolitan area

−
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑    (–) Jan 

Interdist Distance from a TTMS to the closest highway interchange     (+) Sep 

Sqdbor Square root of shortest distance from a TTMS to the state 
line between Florida and Georgia or Alabama   (–) Jan, Mar  (–) Feb 

Sqdcoast Square root of shortest distance between a TTMS and the 
coast line (+) Mar (+) Mar   

Radistbodsq 21 borDist  (–) Oct (–) Oct  
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Table 32. Partial R2 and Significance Level of Parameters in the Three Rural Model  
Model 1 Model 2 Model 3 Variable Month Par. R2 Pr. > F Month Par. R2 Pr. > F Month Par. R2 Pr. > F 

A_Income 6 0.0674 0.0151 6 0.0516 0.0323  
1 0.0517 0.0465 Ag_Emplo 10 0.0722 0.0021 

 

Age5_17  1 0.0542 0.0365 
1 0.0675 0.0264 2 0.0939 0.0084 
2 0.0942 0.0083 3 0.0669 0.0120 
4 0.0389 0.0316 6 0.1454 0.0009 Age65up 

 12 0.0798 0.0006 

 

3 0.0733 0.0067 
4 0.1032 0.0024 Craged 

 

10 0.1722 0.0003 
Dir  2 0.0623 0.0332 

Dist1 4 0.1377 0.0001 4 0.1264 0.0007 4 0.0613 0.0141 
3 0.1428 0.0004 Distbor  
4 0.0747 0.0046 

5 0.0719 0.0013 5 0.0593 0.0036 2 0.0642 0.0264 
6 0.1731 0.0003  
7 0.1830 0.0002 7 0.1319 0.0016 
9 0.0307 0.0344 

E_Ce 

12 0.0398 0.0202 
 

 

10 0.1672 0.0003 10 0.0915 0.0012 E_Tcraged 11 0.1063 0.0049 11 0.0555 0.0303 
 

3 0.1381 0.0012  3 0.1381 0.0012 
4 0.169 0.0003 4 0.1132 0.0005 4 0.169 0.0003 

 6 0.0568 0.0288 6 0.1386 0.0008 
7 0.0996 0.0026 7 0.1011 0.0034 7 0.1105 0.0041 
9 0.3314 <.0001 9 0.3314 <.0001 9 0.3314 <.0001 

FC1 

10 0.0925 0.0011 10 0.1406 0.0004 10 0.0645 0.0176 
3 0.1482 0.0003 3 0.064 0.0084 
5 0.079 0.0016 
7 0.0494 0.0169 He_Te 

8 0.0536 0.0410 

 
 

2 0.0896 0.0071 Hrooms 6 0.0652 0.0131 
 

Indixdist2  1 0.1107 0.0040 
Interdist  9 0.1277 0.0001 

1 0.0548 0.0462 2 0.1055 0.0020  
 3 0.0531 0.0162 

4 0.1058 0.0021 4 0.1723 0.0003    
5 0.3085 <.0001 5 0.3913 <.0001 5 0.1034 0.0018 
7 0.1075 0.0009 7 0.1522 <.0001 7 0.0547 0.0215 
8 0.0581 0.0291 9 0.1545 <.0001 
9 0.1832 <.0001 10 0.1404 0.0011 

10 0.0598 0.0132 11 0.1496 0.0007 

 
P_Shhthh 

12 0.1402 0.0001 12 0.3235 <.0001 12 0.0729 0.0079 
Punder5 8 0.0802 0.0152       
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Radisborsq 10 0.1345 0.0005  
Rdlength 12 0.2708 <.0001  

Shh  4 0.0822 0.0016 
1 0.0901 0.0083 2 0.0732 0.0143 Sqdbord  
3 0.0905 0.0052  

Sqdcoast 3 0.0575 0.0164 3 0.0478 0.0282  
5 0.2179 <.0001 
6 0.0776 0.0170 
7 0.1540 0.0003 

10 0.0805 0.0057 
T_Employ 

 

11 0.1193 0.0028 
5 0.1064 0.0007 5 0.0984 0.0005  

 8 0.1808 0.0002 8 0.1808 0.0002 
11 0.0945 0.0053 11 0.0743 0.0095  Tfctr 

12 0.0709 0.0030 12 0.1732 <.0001 12 0.2461 <.0001 
 
5.2.4 Summary 
 
It appears that the buffer methods used on rural TTMSs were not adequate to capture the effects 
of land use and the spatial structure of activities that cause significant traffic fluctuations over 
time on rural roads.  For example, the effect of through traffic, which was not originated or 
destined in local buffer areas, might not have been well reflected in the variables compiled for 
the area surrounding a given TTMS.  Because the higher the function class of a road is, the more 
significant through traffic will be, especially on rural roads, the through traffic may be a 
significant factor.  New variables may also need to be developed to better quantify the impact of 
land use as well as socioeconomic/demographic factors on roadway traffic.  However, the 
regression models did indicate that variables such as functional classification and percentage of 
seasonal households were significant with relatively high impacts on seasonal traffic patterns.  
These variables could be used to assist in assigning factor groups to PTMSs. 
 
5.3 Grouping and Assignment Procedures 
 
This section first presents a procedure to appropriately group TTMSs into SF categories.  The 
groupings were originally created via model-based cluster analysis and then fine-tuned to better 
reflect the spatial fluctuations in the estimation of traffic volumes.  Based on the grouping results 
and the four land use attributes (as discussed in Sections 4.2 and 5.1) observed at the TTMSs for 
each SF group, a fuzzy decision tree was constructed and applied to determine the SF category 
for a given PTMS.  Application of the grouping and assignment procedures to the tri-county area 
of southeast Florida was also described. 
 
5.3.1 Grouping Procedure 
 
As described in Section 4.2, the results from the parametric model-based clustering analysis 
(e.g., the EII model) may be used as a starting point to determine seasonal factor categories by 
simultaneously considering the spatial proximity and seasonal traffic fluctuations.  The grouping 
procedure is summarized as follows: 
Step 1: Perform model-based clustering analysis to determine initial seasonal factor groups. 
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Step 2: Examine individual seasonal factor groups to identify any TTMSs that do not belong 
to their original groups because of a different seasonal pattern. 

Step 3: Reassign or create new groups as necessary for the TTMSs identified in Step 2 based 
on their seasonal profiles. 

 
For illustration purposes, consider the Tri-County area in the southeast Florida region, which 
include Broward, Miami-Dade, and Palm Beach counties.  The model-based clustering analysis, 
which considered the locations of the TTMSs, produced four seasonal factor groups in the tri-
county area based on the 2002 statewide monthly seasonal factor data.  As shown in Figure 18, 
these groups were Factor Groups 1, 3, 7, and 21, which were renumbered as 1, 2, 3, and 4, 
respectively, in the discussion that follows.  These new numbers are plotted in red outside the 
circles that indicate the spatial extent of each group in Figure 18.  Figures 19 to 22 show the 
MSFs for the TTMSs in the same group along with the mean MSFs and thresholds defined as 
±10% of the mean MSFs for the four factor groups. 
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Figure 19. MSFs, Group Means, and ±10% Thresholds from the Group Mean for 
TTMSs in Factor Group 1 

 

Figure 20. MSFs, Group Means, and ±10% Thresholds from the Group Mean for 
TTMSs in Factor Group 2 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

JANV FEBV MARV APRV MAYV JUNV JULV AUGV SEPV OCTV NOVV DECV

Month

M
SF

860163 860214 860215

860298 930010 970413

979933 -10% Average

+10%

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

JANV FEBV MARV APRV MAYV JUNV JULV AUGV SEPV OCTV NOVV DECV

Month

M
SF

860150 860176 860186 860222

860306 860331 870031 870096
870108 870258 879930 970403

-10% Average +10%



 

 93

Figure 21. MSFs, Group Means, and ±10% Thresholds from the Group Mean for 
TTMSs in Factor Group 3 

 

Figure 22. MSFs, Group Means, and ±10% Thresholds from the Group Mean for 
TTMSs in Factor Group 4 
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The results as shown in Figure 19 indicated that it was inappropriate to classify TTMS 860215 to 
Factor Group 1 since the MSFs for March and September fell outside the ±10% thresholds.  
Similarly, TTMSs 860306 and 930087 for Factor Groups 2 and 3, respectively, might not have 
been correctly classified.  Consequently, these TTMSs were removed from the original factor 
groups determined by the model-based analysis.  After examining their MSF patterns and 
locations, a new factor group, Group 5, was created for TTMSs 860215 and 860306 since the 
MSFs at these two count stations had similar seasonal fluctuations and they also were not far 
from each other (see Figure 18).  The MSFs at TTMS 930087, on the other hand, suggested a 
much different seasonal variation and a unique factor group.  Consequently, a new group, i.e., 
Group 6, was created for this isolated count station.  TTMS 970430 of Group 4 was excluded 
from the remaining analysis due to a noticeably different MSF pattern observed at this location 
even though its MSFs were still within the thresholds of the group mean.  Being the gateway to 
Key West and two national parks and surround by farm lands, this TTMS was situated at a 
unique location where there significant agricultural activities as well as tourist traffic, which was 
not typical of a location in an urban area. 
 
As shown in Table 17 in Section 5.1.3, SHP (ratio of seasonal households to permanent 
households), HMP3 (ratio of occupied hotel rooms to occupied hotel rooms plus households), 
RETAILP (retail workers as a percentage of total retail workers plus population), and RH5_HQ 
(percentage of retired householders of the highest income quartile) were identified as important 
factors in explaining the variations in the MSFs for the TTMSs in the tri-county area.  They were 
subsequently used to further examine the four TTMSs that were manually classified or excluded.  
Table 33 shows the SHP, HMP3, RETAILP, and RH5_HQ values for the three manually 
classified TTMSs, i.e., 860215, 860306, and 930087. 
 
Table 33. Land Use Variables at TTMSs 860215, 860306, and 930087 

Group TTMS SHP HMP3 RETAILP RH5_HQ 
860215 0.5392 0.2074 0.0900 0.1262 5 860306 0.3051 0.3080 0.0540 0.0685 

6 930087 0.5346 0.3897 0.7244 0.3414 
 
As indicated in Table 33, the two TTMSs, i.e., 860215 and 860306, which were manually 
reclassified to form Group 5, shared similar land use and socioeconomic/demographic 
characteristics in addition to being in spatially proximity.  Consequently, the reclassification 
appeared to be reasonable.  Group 6 appeared to be also necessary based on the traffic and land 
use characteristics observed for TTMS 930087, since it had relatively higher HMP3 and 
RH5_HQ than Group 5. 
 
Table 34 shows the land use characteristics of the TTMSs that were originally classified to 
Group 4.  A relatively higher SHP, HMP3, and RH5_HQ were observed at TTMS 970430.  
Similar to the profile of MSFs, these variables suggested a higher seasonal fluctuation for the 
traffic volumes observed at this specific TTMS.  In other words, these statistics also supported 
the elimination of TTMS 970430 from Group 4. 
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Table 34. Land Use Variables at TTMSs 870188, 870193, and 970430 
TTMS SHP HMP3 RETAILP RH5_HQ 
870188 0.0034 0.0000 0.0285 0.0528 
870193 0.0085 0.0061 0.0851 0.0645 
970430 0.0183 0.0129 0.0458 0.0156 

 
After the questionable TTMSs were removed from the original groups, the mean MSFs for 
Groups 1 and 2 were nearly identical (see Figure 23).  Since these two groups of TTMSs were 
adjacent to each other spatially, Group 1 and Group 2 were combined to form a new Group 1. 
 

Figure 23. Intermediate MSF Group Means 
 
There were five final groups categorized for the tri-county area as given in Table 35.  Figure 24 
shows the mean MSFs for these groups.  These five finalized SF categories were subsequently 
assigned to the PTMSs in the tri-county area.  The assignment procedure is described in the next 
section. 
 
Table 35. Lookup Table for SF Groups in Tri-County Area 

Grouping Group Number 
Original 1 2 3 4 5 6 

Final 1 1 2 3 4 5 
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Figure 24. Five Final MSF Group Means 
 
5.3.2 Seasonal Factor Assignment Procedure 
 
A data-driven procedure was developed in this study to assign a seasonal factor category to a 
given PTMS.  As mentioned in Section 5.1, for the urban areas in Southeast Florida, four 
significant factors that contributed to seasonal traffic patterns haven been identified and it has 
been suggested that the seasonal group of a PTMS could be determined based on its 
characteristics measured by these four variables.  These four factors are: 
 

1. Ratio of seasonal households to permanent households (SHP); 
2. Hotel population or visitors (HMP3); 
3. Ratio of retail employment to retail employment plus population (RETAILP); and  
4. Percentage of retired households with high income (RH5_HQ). 

 
Because the characteristics of any given PTMS may vary from those of the TTMSs, a method is 
needed to determine which seasonal group is the most appropriate for a given PTMS based on 
the four identified criteria.  This was achieved through the application of fuzzy logic, an artificial 
intelligence technique, and a decision tree. 
 
In fuzzy logic, membership in a given class may be partial.  As an example, consider the 
following definitions for “short” people and “tall” people.  Assume a person shorter than five 
feet is considered a “short” person and a person taller than six feet is a “tall” person.  Applying 
these criteria, there is no difficulty in classifying a person into the “short person” class or the 
“tall person” class when this person has a height under five feet or above six feet.  However, if 
the person’s height falls in between five and six feet, then there is a “fuzziness” in the concept of 
“short” and “tall” and this person may be considered as both short and tall although the degree of 
“shortness” or “tallness” may vary depending on the person’s height.  In other words, such a 
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person may have a membership in both classes of “short person” or “tall person”.  If the person 
is closer to five feet, we may say this person’s membership of the “short person” class is greater 
than that of the “tall person” class, and vice versa, and 5.5 feet may be considered as the break 
point where a person may be considered as equally short and tall. 
 
Before assigning seasonal groups to PTMSs, the membership definitions for the five seasonal 
factor groups must be determined first based on the four land use variables.  Once membership 
definitions (i.e., membership functions) are determined, a PTMS’s membership of a particular 
seasonal group may be estimated with a probability (degree of belonging).  Therefore, while a 
PTMS may have multiple memberships in several seasonal groups because it shares similar 
characteristics with a number of seasonal groups, its final membership or the seasonal group to 
be eventually assigned to it will depend on with which seasonal group the PTMS shares the most 
similarity.  This is indicated by the highest probability value associated with its membership in 
this seasonal factor group.  This fuzzy logic approach was implemented as a binary-split fuzzy 
decision tree, where the four land use variables, i.e., SHP, HMP3, RETAILP, and RH5_HQ, were 
sequentially considered to determine the membership of a PTMS.  An overview for fuzzy 
decision tress is given in the next section, followed by a description of the assignment process 
that was developed to assign a specific SF category to each PTMS in the tri-county area. 
 
5.3.2.1 Overview of Fuzzy Decision Tree 
 
Decision trees are a specific decision analysis technique for analyzing various options or 
decisions for which risks and uncertainties exist.  Using decision trees to reach a decision is 
effective since all choices may be examined, discussed, and challenged.  Additionally, it helps 
make the best decisions on the basis of the existing information.  A decision tree is commonly 
used to determine the classification of an instance.  The input to construct a decision tree is 
known as a training dataset.  The dataset contains records with several attributes, including a 
distinguished attribute called the class label.  The goal of classification is to build a concise 
model in terms of the attributes from the records in the training dataset.  The resulting model is 
then used to predict class labels for those without a class label. 
 
Crisp decision tree techniques have been shown to be interpretable, efficient, problem-
independent, and able to treat large-scale applications [OLA03].  However, they are also 
recognized as highly unstable classifiers with respect to minor perturbations in the data.  The 
fuzzy sets formalism in fuzzy logic, instead of classifying an element being a member of a set or 
not, allows degrees of membership so that an element may simultaneously be a member of two 
or more fuzzy sets.  Over the past few years, research has shown that fuzzy logic may introduce a 
promising improvement in enhancing stability and hence lead to better interpretability of 
decision tree induction [QUI86, JAN98, OLA03]. 
 
A fuzzy decision tree is a symbolic decision tree that incorporates the approximate reasoning 
provided by fuzzy representation [JAN98].  It combines the advantages of being popular in the 
real-world applications of learning from examples and high knowledge comprehensibility of 
decision tress as well as the ability of fuzzy representation to deal with inexact and uncertain 
information.  As opposed to a classical decision tree, which gives only one class as the end 
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result, a fuzzy decision tree associates a set of probabilities for a given object with several or all 
classes.  The following is a mathematical description of the fuzzy decision trees. 
 
Assume that a sample set S consists of elements from mutually exclusive classes P and N.  The 
probabilities for an object randomly selected from set S that belongs to P and N are p/(p + n) and 
n/(p + n), respectively, where p and n are the numbers of items for classes P and N in the sample 
set S.  In Information Theory, a bit represents a binary digit and may assume a value of 0 and 1, 
with 0 representing one item and 1 the other.  Therefore, a binary digit may be used to 
distinguish two items.  Thus, k bits may have 2k possible values and therefore may distinguish 2k 
items.  In other words, n items may be distinguished using log2(n) bits.  In addition, the optimal 
length of code to identify an object with probability x is log2(1/x), i.e., -log2(x) bits.  For 
example, for an object x with a probability of 1/2, the optimal length code to identify x is 
log2(1/2), i.e., 1.  This is equivalent to distinguish two items by categorizing every x element into 
a set and all the elements other than x into the other set.  The expected number of bits needed to 
encode the members that are randomly drawn from S for class P or N is known as entropy and is 
given as follows [QUI86]: 
 

 ( ) 2 2S log logp p n nE
p n p n p n p n

= − −
+ + + +

 (52) 

 
Entropy measures the impurity of S.  This is the information necessary to classify an example 
instance without any aids such as a decision tree.  The class of an example instance is determined 
from scratch and no additional information is added to assist in the classification.  The expected 
reduction in entropy due to introducing an attribute A to split the set S into subset S1 and S2, 
known as information gain, is defined as follows, where || represents the number of elements in 
the corresponding set: 
 

 
2

1

S
(S, ) (S) (S )

S
k

k
k

Gain A E E
=

≡ −∑  (53) 

 
In classical set theory, a set may be defined by a two-valued characteristic function, i.e., U → {0, 
1} where U is the universe of discourse.  In fuzzy set theory, however, a fuzzy subset of the 
universe of discourse U is described by a membership function, µv(V): U → [0,1], which 
represents the degree to which µ ∈ U belongs to the set v.  A fuzzy linguistic variable is an 
attribute whose domain contains linguistic values known as fuzzy terms, which are labels for the 
fuzzy sestets.  For example, consider the continuous attribute SHP of the TTMSs located in the 
tri-county area.  This demographic attribute becomes a fuzzy linguistic variable when two 
linguistic terms, e.g., low and high, are used as domain values and there exists an overlap (i.e., 
fuzziness) between these two terms. 
 
Figure 25 illustrates the associated fuzzy sets and probable memberships for the SHP fuzzy 
variable.  The figure shows that when the SHP value for a given TTMS is less than SHP1, a 
count station is considered to have a low SHP value.  When the SHP value is larger than SHP2, a 
count station is considered to have a high SHP value.  However, when the SHP value falls 
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between SHP1 and SHP2, the count station will have two membership probabilities for the low 
and high classes, respectively, depending on where the SHP value fell. 
 

Figure 25. Fuzzy Subsets and Memberships for SHP Attribute 
 
Fuzzy sets are generally described with convex functions peaking at 1.  The two parameters 
defining the membership function are: α, which is the location of the cut-point (or the break 
point) and corresponds to the split threshold, and β, which is the degree of spread, i.e., width, 
that defines the transition region on the attribute [OLA03].  For a given SHP that is less than α – 
β/2 or larger than α + β/2, the membership function is 1.  In other words, the object is 100% 
classified to the low or high fuzzy subsets.  On the other hand, a given SHP value may be 
classified to both the low and high subsets with different degrees, i.e., µLow and µHigh, where the 
sum of memberships is equal to 1.  Piecewise linear functions similar to the one illustrated in 
Figure 25 are the most widely used discriminator functions to fuzzily split an observation into 
fuzzy sets.  This membership function would fuzzily partition a fuzzy variable such as SHP into 
two overlapping subsets, i.e., low and high. 
 
Figure 26 shows the split of a tree node corresponding to a fuzzy set S into two fuzzy sestets S1 
and S2 based on the chosen attribute A at the node S where ai is the ith item in the data set; A1(ai) 
and A2(ai) denote the memberships for item ai for fuzzy subsets S1 and S2, respectively; and µS, 
µS1

, and µS2
 denote the cumulative memberships for fuzzy sets S, S1 and S2, respectively.  Note 

that µS(ai) is equal to 1 when set S is at the root and that the sum of A1(ai) and A2(ai) is equal to 
1. 

 
Figure 26. Node Partition in a Fuzzy Decision Tree 
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The cumulated memberships for fuzzy subsets S1 and S2 are calculated as follows: 
 
 ( ) ( ) ( )

1 1S i S i ia a A aµ µ= ×  (54) 

 ( ) ( ) ( )
2 2S i S i ia a A aµ µ= ×  (55) 

 
In the following section, a procedure developed to create a fuzzy decision tree for assigning a 
specific SF category to a PTMS is described. 
 
5.3.2.2 Construction of Fuzzy Decision Tree 
 
The fundamental concept of utilizing the fuzzy decision tree technique is to select each split of a 
subset so that the data in each of the descendant subsets are composed of less SF categories in 
the parent subset.  The purpose is to develop an objective classification rule that may determine 
the category of a given PTMS.  The steps to create a fuzzy decision tree for assigning the five SF 
categories (or classes), i.e., c1, …, c5, to PTMSs are as follows: 
 

Step 1. Sort the TTMSs by the values of each of the fuzzy variables to generate sequences 
of ordered values, a1, …, aN; where N is the number of TTMSs in the study area; 

Step 2. For each attribute a, calculate the average distance of data points as the overlapping 
width as follows: 
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=

= −
− ∑ ; (56) 

 
Step 3. Select a specific attribute a, e.g., SHP, for the TTMSs in the study area as the 

current fuzzy variable, and denote the sample set as S; 
Step 4. For each data point between a1 + β/2 and aN - β/2, generate candidate cut point as 

the average of two adjacent data points, i.e., 
 

 1

2
i ia aα ++= ; (57) 

 
Step 5. For each α, calculate the information gain, i.e., EF(S) – EF (A, α, S), according to 

the following equations: 
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where 

EF(S) = fuzzy class entropy in S; 
EF (A, α, S) = class information entropy for attribute A in respect to a given α 

calculated with the probability of fuzzy partition, i.e., the 
proportion of examples in S that belongs to class cj; 

EF(Sk) = fuzzy class entropy in Sk, k = 1, 2; 
p(cj, S) = fuzzy proportion of examples in S; 
p(cj, Sk) = fuzzy proportion of examples in Sk, k = 1, 2; 
A1, A2 = membership functions for fuzzy sets S1 and S2; 
cj = the jth SF category; 
j = SF category number, j ∈ 1, …, 5; 
N = the total number of TTMSs; 

Sk jc
FN  = sum of the memberships for elements belong to class cj in 

fuzzy set Sk in Sk, k = 1, 2; 
S
FN  = sum of the memberships for elements in fuzzy set S; 
Sk
FN  = sum of the memberships for elements in fuzzy set Sk, k = 1, 2; 

and 
S1, S2 = fuzzy sets (tree branches) 1 and 2. 

 
Step 6. Select α that gives the maximum information gain; repeat Steps 1 to 5 for other 

fuzzy variables; 
Step 7. Select the variable, which produces the maximum information gain, to generate two 

child branches and nodes; 
Step 8. Calculate the truth level for each branch as follows: 
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η =  (68) 

 
 If η1 ≤ λ or η1 ≤ λ, where λ is 0.1, delete the corresponding branches.  Otherwise, 

calculate the truth level of each branch belonging to the jth class as follows: 
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 (69) 

 
 If ( )1 1maxk

j jµ γ= ≥  or ( )1 2maxk
j jµ γ= ≥ , where γ is 0.9, terminate the corresponding 

branch as a leaf and assign this leaf as the class cj. 
 

Step 9.  Repeat Steps 3 to 8 to create additional branches. 
 
As mentioned previously, four fuzzy attributes were considered in the construction of fuzzy 
decision tree.  They were SHP, HMP3, RETAILP, and RH5_HQ.  In Step 1, the values of fuzzy 
variables are sorted to produce N ordered sequences.  The average distance of data points was 
then used as the overlapping width (β) for each of the fuzzy variable.  Generally speaking, wide 
overlaps mean high uncertainty.  Since the true nature of fuzziness for a given attribute is 
unknown, the data obtained from the field was utilized to heuristically estimate β [PEN01].  The 
method for approximating the width parameter was assumed to incorporate the characteristics of 
uncertainty of the associated fuzzy variable in the process of modeling membership functions.  
As a result, the β value associated with each fuzzy variable remained a constant during the 
construction of fuzzy decision tree. 
 
In Step 4, every pair of adjacent data points, i.e., ai and ai+1, within the interval of [a1 + β/2, aN - 
β/2] suggested a potential partition to create a cut point (α).  This was because a cut point 
between ai and ai+1 would not lead to a partition that had the maximum information gain in 
classification if these two data points belonged to the same class [PEN01].  The resulted partition 
allowed at least one data point to completely classify to each fuzzy subset.  This was to ensure a 
valid classification based on the observed values for a given fuzzy variable. 
 
In Step 5, the corresponding information gain for a candidate α was calculated for the current 
fuzzy variable.  In Step 6, the α value that gave the maximum information gain for a specific 
fuzzy variable was identified and the process moved to determining α for the other fuzzy 
variables by repeating Steps 1 to 5.  The attribute that produced the maximum information gain 
was then selected as the variable to fuzzily split set S into sets S1 and S2 in Step 7. 
 
In Step 8, the branches split from the attribute that yielded the maximum information gain was 
evaluated to determine if the sum of the memberships for every element that were classified to a 
given branch, i.e., ηk, where k ∈ {1, 2}, was significant enough (i.e., > λ).  If not, the 
corresponding branch was eliminated to assure the simplicity of the decision tree.  Otherwise, the 
sum of the memberships for the elements that belonged to a given class on each branch, i.e., µkj, 
where k ∈ {1, 2} and j ∈ {1, 2, 3, 4, 5}, was then calculated.  If the maximum was greater than γ, 
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the tree was terminated at this node and no additional split was processed.  Otherwise, repeat 
Steps 3 through 8 until the stopping criterion was met.. 
 
5.3.2.3 SF Category Assignment 
 
After the decision tree was constructed, the membership of a given entity to each decision node 
was calculated.  Figure 27 shows the conceptual fuzzy decision tree constructed using the five SF 
categories and the four fuzzy attributes of the 26 TTMSs in the tri-county area.  The leaf nodes 
of the tree indicate the seasonal groups that have been classified.  The tree describes how a 
seasonal group may be determined based on the values of the four land use variables.  For 
instance, SF category 4 was characterized by a higher value of hotel population but a lower value 
of retail employment.  SF category 3 was associated with a smaller hotel population, a lower 
seasonal household percentage, and a higher percentage of high-income retired households.  
However, SF category 2 could not be distinguished from SF category 1 using the decision tree 
illustrated in Figure 27.  In this case, some engineering judgment must be exercised to determine 
whether a count station belongs to SF category 1 or 2.  Based on the results of modal-based 
cluster analysis results, it may be reasonable to assign a count station to SF category 1 or 2 
depending on to which group it is closer spatially.  Note that the low and high values for the 
same fuzzy attribute at different nodes were different because they were determined based on the 
values of the attributes of the remaining samples that were to be classified. 
 

 
Figure 27. Conceptual Fuzzy Tree for Classification of TTMS Groups 
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Figure 28 shows the fuzzy decision tree in more detail with α and β calculated for each node and 
the number of samples that were fully or fuzzily classified to the low and high sets.  The figure 
shows that HMP3 yielded the maximum information gain when α was equal to 0.1384.  
Consequently, this attribute was placed at the root node, HMP3_1.  Two branches, HMP3_1L 
and HMP3_1R, were grown from the root.  At the HMP3_1 node, no TTMSs had a HMP3 value 
that fell within the fuzzy interval, i.e., F (fuzziness) is zero.  According to the membership 
function derived in the process, 23 out of the 26 TTMSs were 100% classified to HMP3_1L and 
the remaining three TTMSs were classified to HMP3_1R.  In other words, the HMP3 attribute 
was low at 23 TTMSs and high at three TTMSs. 
 
The second attribute identified in the process was SHP when α was equal to 0.0313.  Five 
TTMSs were partially partitioned into the SHP_2L and SHP_2R branches at the SHP_2 node 
according to the estimated memberships, i.e., F was equal to 5.  In total, eight and 20 TTMSs 
were classified to the SHP_2L and SHP_2R branches, respectively.  The TTMSs on the SHP_2L 
branch could be interpreted as those with lower HMP3 and lower SHP.  Similarly, lower HMP3 
and higher SHP were observed of the TTMSs on SHP_2R. 
 
The third attribute identified in the process was HQ, a short form of RH5_HQ, when α was equal 
to 0.0485.  At the HQ_3 node, five TTMSs from SF category 1 and one TTMS from SF category 
4 were 100% classified to the HQ_3L and HQ_3R branches, respectively.  Additionally, the 
process identified two TTMSs with their RH5_HQ values in the overlapping area of the low and 
high subsets.  The figure shows that the decision tree did not grow beyond the HQ_3 node and 
two classes, i.e., 1 and 3, were identified.  The results showed that it might be appropriate to 
assign SF category 1 to PTMSs with low HMP3, SHP, and RH5_HQ attribute values.  On the 
other hand, SF category 3 may be appropriate for PTMSs with similar HMP3 and SHP values 
but a high RH5_HQ value. 
 
The retail attribute was the fourth fuzzy variable included in the decision tree.  When α was 
equal to 0.0707, four TTMSs in SF category 1 and ten TTMSs in both categories 1 and 3 were 
completely classified to Retail_4L and Retail_4R, respectively, at the Retail_4 node.  Six TTMSs 
were fuzzily partitioned. 
 
The HMP3 attribute was selected again in the process as the fifth fuzzy variable.  When α was 
equal to 0.0397, ten TTMSs from either SF category 1 or 3 were completely classified to 
HMP3_5L.  No additional information gain could be achieved by further classifying the tree 
beyond this node and the growing of the decision tree was consequently terminated.  Figure 28 
also shows that three TTMSs were classified to HMP3_5R while three TTMSs were fuzzy.  
Furthermore, the last attribute identified in the process was the retail attribute.  When α was 
equal to 0.4072, TTMSs from SF categories 4 and 5 were explicitly partitioned into two separate 
branches. 
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Figure 28. Fuzzy Decision Tree for Assigning SF Categories 
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Tables 36 through 40 give the results of classifications at nodes 1 through 5 (HMP3_1, SHP_2, 
HQ_3, RETAIL_4, and HMP3_5).  Table 36 lists the land use characteristics of the TTMSs in 
categories 4 and 5 after they were classified to the right branch of the HMP3_1 node.  It may be 
seen that Category 5 was characterized by a high percentage of hotel/motel population, seasonal 
households, high-income retired households, and high ratio of retail employment to retail 
employment plus population.  However, RETAIL was the variable that distinguished category 4 
from category 5. 
 
Table 36. Land Use Characteristics of TTMSs in Categories 4 and 5 Sorted by HMP3 

Site Cluster HMP3 RETAIL SHP RHP5_HQ 
930087 5 38.97 0.7244 53.46 34.14 
860306 4 30.80 0.0540 30.51 6.85 
860215 4 20.74 0.0900 53.92 12.62 

 
All the TTMSs in categories 1, 2, and 3 were 100% classified to the left branch of the HMP3_1 
node because they had much lower hotel/motel population.  Next, they were split again at the 
SHP_2 node based on the seasonal household percentages.  Table 37 gives the TTMSs in this 
group, sorted by their SHP values.  The 15 TTMSs above the shaded area were considered to 
have a high percentage of seasonal households and were classified to the right branch of the 
SHP_2 node.  The four TTMSs below the shaded area were considered to have a low percentage 
of seasonal households and were classified to the left branch of the SHP_2 node.  The five 
TTMSs in the shaded area fell in the fuzzy range and had partial memberships in both the high 
and low value groups. 
 
Table 38 shows how the four TTMSs that were fully classified and the five TTMSs that were 
partially classified to the left branch of the SHP_2 node were classified into left and right braches 
of the HQ_3 node.  One TTMS above the shaded area was considered to have a high percentage 
of high-income retired households; four had a low percentage; and three in the shaded area had 
partial memberships in both the high and low groups. 
 
Tables 39 and 40 illustrate how the TTMSs were classified into high and low groups at the 
RETAIL_4 and HMP3_5 nodes in a similar manner.  Again, the TTMSs above the shaded area 
belonged to the high value group, those below the shaded area belonged to the low value group, 
and those in the shaded area had partial memberships in both. 
 
Keep in mind that the sequence of the variables that were used to classify the TTMSs was not 
determined based on which remaining attribute presented largest value differences, but was 
obtained by maximizing information gain at each step in the process. 
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Table 37. Land Use Characteristics of TTMSs in Categories 1, 2, and 3 after the SHP_2 
Node 

Site Cluster HMP3 SHP RETAIL RHP5_HQ 
860150 1 4.10 34.1292 0.1565 1.4351 
860214 1 4.58 26.2125 0.0506 6.3984 
860176 1 5.95 16.9673 0.1023 1.9245 
970413 1 0.00 15.4343 0.0423 13.3286 
930217 2 2.70 14.0361 0.1090 7.1229 
930010 1 3.84 14.0116 0.1425 6.2669 
860331 1 3.36 13.1698 0.0823 3.8843 
860163 1 2.65 11.3742 0.0967 5.5310 
970417 2 0.74 10.0141 0.0860 5.8071 
970416 2 3.09 9.1122 0.1126 6.4103 
870031 1 2.14 8.1126 0.0512 6.7755 
870108 1 6.02 6.6136 0.0821 2.7479 
930101 2 0.69 4.9795 0.1565 2.6759 
970403 1 0.89 4.4534 0.0634 2.3952 
860186 1 1.44 4.2436 0.0727 2.3015 
870258 1 0.80 3.9788 0.0176 0.9370 
879930 1 0.14 3.7500 0.0687 1.5245 
860298 1 0.97 3.4925 0.1228 1.4752 
979933 1 0.79 3.2608 0.0800 3.0345 
860222 1 6.94 2.9888 0.1720 4.4286 
870096 1 0.75 1.0011 0.0454 2.4563 
870193 3 0.61 0.8521 0.0851 6.4546 
870188 3 0.00 0.3386 0.0285 5.2755 

 
Table 38. Land Use Characteristics of TTMSs in Categories 1 and 2 after the HQ_3 

Node 
Site Cluster RHP5_HQ HMP3 SHP RETAIL 

870193 3 6.4546 0.6100 0.8521 0.0851 
870188 3 5.2755 0.0000 0.3386 0.0285 
860222 1 4.4286 6.9400 2.9888 0.1720 
979933 1 3.0345 0.7900 3.2608 0.0800 
870096 1 2.4563 0.7500 1.0011 0.0454 
879930 1 1.5245 0.1400 3.7500 0.0687 
860298 1 1.4752 0.9700 3.4925 0.1228 
870258 1 0.9370 0.8000 3.9788 0.0176 
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Table 39. Land Use Characteristics of TTMSs in Categories 1 and 2 after the Retail_4 
Node 

Site Cluster RETAIL HMP3 
860222 1 0.1720 6.9400 
860150 1 0.1565 4.1000 
930101 2 0.1565 0.6900 
930010 1 0.1425 3.8400 
860298 1 0.1228 0.9700 
970416 2 0.1126 3.0900 
930217 2 0.1090 2.7000 
860176 1 0.1023 5.9500 
860163 1 0.0967 2.6500 
970417 2 0.0860 0.7400 
860331 1 0.0823 3.3600 
870108 1 0.0821 6.0200 
979933 1 0.0800 0.7900 
860186 1 0.0727 1.4400 
879930 1 0.0687 0.1400 
970403 1 0.0634 0.8900 
870031 1 0.0512 2.1400 
860214 1 0.0506 4.5800 
970413 1 0.0423 0.0000 
870258 1 0.0176 0.8000 

 
Table 40. Land Use Characteristics of TTMSs in Categories 1 and 2 after the HMP3_5 

Node 
Site Cluster HMP3 SHP RETAIL RHP5_HQ 

860222 1 6.9400 2.9888 0.1720 4.4286 
870108 1 6.0200 6.6136 0.0821 2.7479 
860176 1 5.9500 16.9673 0.1023 1.9245 
860150 1 4.1000 34.1292 0.1565 1.4351 
930010 1 3.8400 14.0116 0.1425 6.2669 
860331 1 3.3600 13.1698 0.0823 3.8843 
970416 2 3.0900 9.1122 0.1126 6.4103 
930217 2 2.7000 14.0361 0.1090 7.1229 
860163 1 2.6500 11.3742 0.0967 5.5310 
860186 1 1.4400 4.2436 0.0727 2.3015 
860298 1 0.9700 3.4925 0.1228 1.4752 
970403 1 0.8900 4.4534 0.0634 2.3952 
979933 1 0.7900 3.2608 0.0800 3.0345 
970417 2 0.7400 10.0141 0.0860 5.8071 
930101 2 0.6900 4.9795 0.1565 2.6759 
879930 1 0.1400 3.7500 0.0687 1.5245 
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Table 41 shows the final memberships of the 26 TTMSs included in the development of fuzzy 
decision tree on the end braches of the decision tree, i.e., HQ_3L, HQ_3R, Retail_4L, HMP3_5L, 
HMP3_5R, Retail_6L, and Retail_6R.  The table shows that TTMS 860222 from SF category 1 
and TTMS 870188 from SF category 4 were the TTMSs that were fuzzily partitioned since the 
memberships in both of the HQ_3L and HQ_3R columns were non-zero.  The HQ_3R 
membership of TTMS 860222 was not significant, i.e., the land-use attributes observed for 
TTMS 860222 resembled more closely those on HQ_3L than those on HQ_3R.  Similarly, TTMS 
870188 was more likely to be classified to HQ_3R.  In other words, the TTMSs could be 
explicitly spilt into two subsets, i.e., SF categories 1 and 4, after three land-use attributes were 
incorporated in the decision tree.  The results suggested assigning SF category 1 to the PTMSs 
with lower HMP3, SHP, and RH5_HQ values.  For the PTMSs with similar HMP3 and SHP but 
higher RH5_HQ values, SF category 4 might be a better choice. 
 
The fuzzy decision tree presented in Figure 28 was subsequently applied to determine the SF 
categories for the PTMSs in the tri-county area.  For the PTMSs that were partitioned to multiple 
terminated nodes in the decision tree, the seasonal category with the highest membership was 
selected.  For those that were classified to HMP3_5L, the SF category was determined by 
considering the distance between the TTMS group and the location of the PTMSs.  Figure 29 
shows the assignment results. 
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Table 41. Fuzzy Decision Tree Memberships for 26 TTMSs in the Tri-County Area 
SF Category Site HQ_3L HQ_3R Retail_4L HMP3_5L HMP3_5R Retail_6L Retail_6R Sum 

860150    0.4133 0.5867   1 
860163    1    1 
860176     1   1 
860186   0.4265 0.5735    1 
860214   1     1 
860222 0.4726 0.0954   0.432   1 
860298 0.3252   0.6748    1 
860331   0.0735 0.8401 0.0864   1 
870031   1     1 
870096 1       1 
870108   0.0809  0.9191   1 
870258 0.0874  0.9126     1 
879930 0.1990  0.4594 0.3416    1 
930010    0.5867 0.4133   1 
970403   0.7684 0.2316    1 
970413   1     1 

1 

979933 0.4369  0.0890 0.4741    1 
930101    1    1 
930217    1    1 
970416    1    1 2 

970417    1    1 
870188 0.1680 0.8320      1 3 870193  1      1 
860215      1  1 4 860306      1  1 

5 930087       1 1 
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Figure 29. SF Category Assignment Result 
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6. A PROTOTYPE GIS APPLICATION 
 
A prototype software program, FloridaSFAP (Florida Seasonal Factor Analysis Program) was 
developed to support seasonal factor analyses.  The program was implemented with a GIS user 
interface.  It supports visualization of land use, demographic, socioeconomic, transportation, and 
traffic data, as well as cluster and regression analyses with SAS and S-Plus programs.  The 
program combines various data sources that are commonly available to transportation 
professionals.  The user may retrieve data from the Census 2000, FDOT Roadway 
Characteristics Inventory (RCI) database, Traffic Information CD, and the employment data 
purchased by FDOT.  For demographic and socioeconomic data, five geographic structures are 
available in the program: county, metropolitan planning organization (MPO) jurisdiction, census 
block group, census tract, and traffic analysis zone.  Census data at block group level are 
available for all counties, and include population, permanent and seasonal households, income 
groups, age groups, income groups, etc.  TAZ data are only available for urban areas that have 
established Florida Standard Urban Traffic Model Structure (FSUTMS) models, and include 
households, population, number of occupied hotel/motel rooms, industrial employment, 
commercial employment, service employment, total employment, and school enrollment at TAZ 
level.  These data are typically either compiled based on census data or are estimated by county 
planning departments or MPOs.  The data developed for the 1999 transportation models for 
Broward, Miami-Dade, and Palm Beach counties were included in the software developed for 
this research.  The employment database reflects the 2001 employment and covers the entire 
Florida. 
 
The program was developed within ArcView®, an Environmental System Research Institute 
product, and was customized with Avenue, an ArcView script language, and VisualBasic®.  To 
allow people with limited knowledge of ArcView or GIS to use the program, it was designed as a 
menu-driven program.  Several customized tools were also developed to allow the user to 
interact with the statistical analysis programs for SAS and S-plus.  The top-level graphic user 
interface in FloridaSFAP is illustrated in Figure 30.  The menus to the right of the Window menu 
are customized menus, which are not part of the standard ArcView menu.  The functions 
provided by the customized menus are: 
 

• Study Area – define study area, select spatial analysis units, and specify folder for the 
TTMS and PTMS data from the FDOT Traffic Information CD. 

• Count Stations – display for selected TTMSs and PTMSs their site identifiers, seasonal 
factor groups, functional classes, traffic volumes, number of lanes, buffer size, and the 
values of the four land use variables. 

• Seasonal Groups – allows the user to examining and modify the existing seasonal factor 
groups.  Queries may be made regarding seasonal traffic profiles and land use variables 
of selected TTMSs and seasonal factor group statistics.  

• Land Use – display maps that show the aerial photograph and demographic and 
socioeconomic data distribution in the study area; 

• Network – display the transportation network with functional classification in the study 
area. 
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• Advanced – provide the user with access to customized tools including buffer analysis, 
regression analysis, hierarchical cluster analysis, and model-based cluster analysis, and 
display the results. 

• Clear – clear the map area of previous display results. 
 

 
Figure 30. Top-Level Menu in FloridaSFAP 

 
In the following sections, the design of the user interface and the functions of the program are 
described. 
 
6.1 Study Area Menu 
 
The Study Area menu, as shown in Figure 31, provides the user the options to select a study area 
previously defined or to create a new one for which seasonal factor analysis is desired.  Selecting 
“Existing Study Area” will cause a dialog box shown in Figure 32 to be displayed for the user to 
select a previously defined study area. 
 

 
 

Figure 31. Study Area Menu 
 

 
 

Figure 32. Selection of an Existing Study Area 
 
If “New Study Area” is selected, the dialog box as shown in Figure 33 will open for user to 
specify the file location for the data from the Traffic Information CD, the study area, and the 
spatial units that will be used in subsequent analysis.  After specifying the folder for the traffic 
data on the Traffic Information CD, the user has the options to select the TTMSs and PTMSs that 
are located on roadway segments in either a rural or urban area, or both, for analysis.  The spatial 
unit may be district, MPO, county, or route.  For example, with the choice of district as the 
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spatial unit, the dialog box in Figure 34 will be displayed, which allows the MSFs for the TTMSs 
and PTMSs located within multiple FDOT districts to be retrieved from the Traffic Information 
CD.  Figures 35 and 36 show the dialog boxes from which the user may select MPOs or counties 
to define the study area. 
 

 
Figure 33. Selecting Dataset Dialog Box 

 

 
Figure 34. District Selection Dialog Box 
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Figure 35. MPO Selection Dialog Box 
 

 
 

Figure 36. County Selection Dialog Box 
 
Figure 37 shows the five road types that the user may select if the spatial unit is specified as 
route.  They are Interstate, U.S. Highway, State Road, County Road, and Toll Road.  The user 
may choose multiple routes of different types.  After the necessary information is provided, the 
program creates two theme files for the TTMSs and PTMSs located in the study area, which are 
represented as points on the map with their MSFs as the attributes.  Figure 38 shows the TTMSs 
and PTMSs retrieved from the Traffic Information CD for the tri-county area in southeast 
Florida. 
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Figure 37. Select Routes Dialog Box 
 

 
 

Figure 38. TTMSs and PTMSs in the Tri-County Area 
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6.2 Count Station Menu 
 
The Count Station menu, as illustrated in Figure 39, displays the information in the buffer area of 
TTMSs, PTMSs, or any location selected by the user.  The user may select a specific traffic 
count station for display by either clicking the count site on the map or typing in the COSITE 
number, which is the count station identifier (see Figure 40).  The user may also point and click 
on any point on a roadway to display the information in the buffer area for that location (see 
Figure 41).  For this operation, the tool button labeled as “A” must remain pressed.  If the user 
chooses to first zoom in on a roadway, the “A” tool button must be pressed (see Figure 42) to 
resume the selection process to display the information for other locations. 
 

 
 

Figure 39. Count Station Menu 
 

 
 

Figure 40. Dialog Box to Select a Count Station for Display 
 

 
 

Figure 41. Select Any Location 
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Figure 42. Function Button to Continue Selecting Other Locations for Display 
 
Figures 43 to 45 illustrate the information that is displayed for a selected TTMS, PTMS, and any 
location on a roadway, respectively.  The information includes group number, functional 
classification, buffer size, AADT, number of lanes, percentage of seasonal households, hotel 
population, retail employment ratio, and percentage of high-income retired households.  For 
PTMSs and any location on a roadway, the program will also display the information for the 
closest three TTMSs in the buffer area. 
 

 
 

Figure 43. Buffer Information for a Selected TTMS 
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Figure 44. Buffer Information for a Selected PTMS and Three Adjacent TTMSs 
 

 
 

Figure 45. Buffer Information for a Selected Location and Three Adjacent TTMSs 
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6.3 Seasonal Groups Menu 
 
The Seasonal Groups menu, as shown in Figure 46, allows the user to perform the following 
tasks relevant to the seasonal factor groups: modifying the grouping by removing a TTMS from 
one group, adding it to another, or creating new groups; graphing the MSF profile for a specific 
TTMS or for multiple TTMSs that are either selected by the user or are in a given group.  The 
menu allows the information for specific variables, e.g., industrial employment, to be displayed 
for all buffers of the TTMSs in the study area.  Display of contours for seasonal groups may also 
be requested. 
 

 
 

Figure 46. Seasonal Group Menu 
 
Figure 47 shows the dialog box for modifying seasonal groups.  The user may click the Show 
Clusters button to display the current seasonal factor groups, which may be produced from 
model-based cluster analysis, hierarchical cluster analysis, or other methods.  To modify the 
groups, click Select Stations button to select one or more TTMSs (hold down the Shift key to 
select multiple TTMSs) and then the “Modify” button to enter the new group number (s). 
 

 
 

Figure 47. Dialog Box for Cluster Modification 
 
The TTMS Profile function on the Seasonal Groups menu is designed to display the annual MSF 
profile, as shown in Figure 48, for a selected TTMS.  The Group Profile function will display the 
group statistics for a selected group, which include the group means of the MSFs, the user 
specified thresholds of the group average, and the minimum and maximum ranges of individual 
TTMS profiles.  Figure 49 illustrates a profile for a given group with ±10% thresholds.   
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Figure 48. Seasonal Profile for a Selected TTMS 
 

 
 

Figure 49. Group Profile and Statistics 
 
Figure 50 shows the MSF group means for all seasonal factor categories in the study area when 
the “Group Means” function as shown in Figure 46 is executed.  Figure 51 shows the dialog box 
if the “Selected TTMSs Profiles” function is selected.  From this dialog box, the user may select 
TTMS stations in the study area, followed by a click on the “OK” button to visualize these 
stations’ seasonal traffic patterns.  Clicking the Show TTMS Buffers button will display the 
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information for a specific variable (see Figure 52 for available variables) for all buffers in the 
study area (see Figure 53).  Clicking the Display Contour button will display the contours for the 
seasonal groups in the study area (see Figure 54). 
 

 
 

Figure 50. Group Means 
 

 
 

Figure 51. TTMS Selection Dialog Box for MSF Profile 
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Figure 52. Available Variables for Buffer Information in All Buffers 
 

 
 

Figure 53. Information for All Buffers 
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Figure 54. Contours for Seasonal Groups 
 

6.4 Land Use Menu 
 
The Land Use menu, as shown in Figure 55, provides options of displaying several typically 
available land use variables on a GIS map.  Currently, 23 land use variables may be displayed.  
They are: 
 
Aerial Photos.  The program displays the one-meter resolution digital aerial photos.  Currently, 
however, only the aerial photos for the Broward County are included. 
 
Set Spatial Unit.  As shown in Figure 56, the user may select different spatial units to display 
land use data.  The available units are MPO, county, census tract, census block groups, and TAZ.   
 
Population, Density, Seasonal Household, Median Income, and Retired Population.  These 
five menu entries display the distribution of population, population density, seasonal households, 
median household income, and retired population data for the selected spatial unit.  Figure 57 
shows a map displaying the population density per acre by TAZ. 
 
Employment.  The employment data retrieved and geocoded from InfoUSA are classified into 
15 categories according to the SIC code of a business establishment.  The description for each 
category and the responding SIC code is given in Table 42. 
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Figure 55. Land Use Menu 
 

 
 

Figure 56. Select Spatial Unit for Display Land Use Data 
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Figure 57. Displaying Population Density for FDOT District 4 by TAZ 
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Table 42. Description for Employment Category 
SIC Description Category 

1 Agricultural Production-Crops Agricultural Production-Crops 
2 Agricultural Production-Livestock Agricultural Production-Livestock 
7 Agricultural Services Agricultural Services 
8 Forestry Agricultural Services 
9 Fishing Hunting & Trapping Agricultural Services 
10 Metal Mining Mining 
12 Coal Mining Mining 
13 Oil & Gas Extraction Mining 
14 Mining & Quarrying-Nonmetallic Miner Mining 
15 Building Construction-General Contractor Construction 
16 Building Construction-General Contractor Construction 
17 Construction-Special Trade Contractor Construction 
20 Food & Kindred Products Manufacture Manufacturing 
21 Tobacco Products Manufacturing Manufacturing 
22 Textile Mill Products Manufacturing Manufacturing 

23 Apparel & Other Finished Products 
Manufacturing Manufacturing 

24 Lumber & Wood Prods Except Furniture 
Manufacturing Manufacturing 

25 Furniture & Fixtures Manufacturing Manufacturing 
26 Paper & Allied Products Manufacturing Manufacturing 
27 Printing Publishing & Allied Industry Manufacturing 
28 Chemicals & Allied Products Manufacturing Manufacturing 

29 Petroleum Refining & Related Industry 
Manufacturing Manufacturing 

30 Rubber & Miscellaneous Plastics Manufacturing Manufacturing 
31 Leather & Leather Products Manufacturing Manufacturing 

32 Stone Clay Glass & Concrete Products 
Manufacturing Manufacturing 

33 Primary Metal Industries Manufacturing Manufacturing 
34 Fabricated Metal Products Manufacturing Manufacturing 

35 Industrial & Commercial Machinery 
Manufacturing Manufacturing 

36 Electronic & Other Electrical Equipment Manufacturing 
37 Transportation Equipment Manufacturing Manufacturing 

38 Measuring & Analyzing Instruments 
Manufacturing Manufacturing 

39 Miscellaneous Industries Manufacturing Manufacturing 
40 Railroad Transportation Transportation 
41 Local/Suburban Transit & Highway Passenger Transportation 
42 Motor Freight Transportation/Warehouse Transportation 
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SIC Description Category 
43 United States Postal Service Transportation 
44 Water Transportation Transportation 
45 Transportation by Air Transportation 
46 Pipelines Except Natural Gas Transportation 
47 Transportation Services Transportation 
48 Communications Transportation 
49 Electric Gas & Sanitary Services Transportation 
50 Wholesale Trade-Durable Goods Wholesale 
51 Wholesale Trade-Nondurable Goods Wholesale 
52 Building Materials & Hardware Retail 
53 General Merchandise Stores Retail 
54 Food Stores Retail 
55 Automotive Dealers & Service Station Retail 
56 Apparel & Accessory Stores Retail 
57 Home Furniture & Furnishings Stores Retail 
58 Eating & Drinking Places Retail 
59 Miscellaneous Retail Retail 
60 Depository Institutions Insurance & Real Estate 
61 Non-depository Credit Institutions Insurance & Real Estate 
62 Security & Commodity Brokers Insurance & Real Estate 
63 Insurance Carriers Insurance & Real Estate 
64 Insurance Agents Brokers & Service Insurance & Real Estate 
65 Real Estate Insurance & Real Estate 
67 Holding & Other Investment Offices Insurance & Real Estate 
70 Hotels Rooming Houses & Camps Hotels & Camps 
72 Personal Services General Services 
73 Business Services General Services 
75 Auto Repair Services & Parking General Services 
78 Motion Pictures General Services 
80 Health Services General Services 
81 Legal Services General Services 
82 Educational Services General Services 
83 Social Services General Services 

87 Engineering & Accounting & management 
Services General Services 

88 Private Households General Services 
89 Miscellaneous Services General Services 
79 Amusement & Recreation Services Recreation Services 
84 Museums Art Galleries & Gardens Recreation Services 
86 Membership Organizations Recreation Services 
91 Executive Legislative & General Government Public Administration 
92 Justice Public Order & Safety Public Administration 
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SIC Description Category 
93 Public Finance & Taxation Policy Public Administration 
94 Administration-Human Resource Programs Public Administration 
95 Admin-Environmental Quality Programs Public Administration 
96 Administration of Economic Programs Public Administration 
97 National Security & International Affair National Security 

 
6.5 Network Menu 
 
As illustrated in Figure 58, the Network menu allows the user to display the functional 
classifications of the roadways in the study area.  An example of a street network with functional 
classification information is given in Figure 59. 
 

 
 

Figure 58. Network Menu 
 

 
Figure 59. Functional Classifications for Roadways 
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6.6 Advanced Menu 
 
The Advanced menu, as shown in Figure 60, allows the user to perform several advanced 
analyses, including cluster analysis, buffer analysis, regression analysis, and model-base cluster 
analysis.  The Cluster Analysis function allows the user to perform hierarchical cluster analysis 
using different methods available in the SAS program.  Currently, eight clustering methods are 
available in the program and the user may specify which model to use in the Select Method 
dialog box, where Average Linkage is the default (see Figure 61).  To run cluster analysis in 
SAS, the user needs to specify the number of clusters desired for hierarchical cluster analysis.  
An example output for six clusters is shown in Figure 62. 
 

 
 

Figure 60. Advanced Menu 
 

 
 

Figure 61. Clustering Methods 
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Figure 62. Cluster Results from SAS 

 
The Create Buffer function allows the user to compile data for the buffer area of a TTMS.  The 
data may be visualized and incorporated into regression analysis.  Figure 63 shows the dialog 
box for the user to specify the buffer size for different roadway types.  The values displayed are 
the default values.  These values also universally apply to the entire study area. 
 

 
Figure 63. Dialog Box for Specifying Buffer Size 
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The user may also choose data at either the TAZ or Census block group level, as shown in Figure 
64.  The result of this function will be a map displaying the buffers created for the study area (see 
Figure 65). 
 

 
Figure 64. Data Source for Data Compilation 

 

 
Figure 65. Example for Creating Buffer 
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The program also allows the user to perform regression analysis as described in Sections 5.1 and 
5.2 with the Regression function.  The user may select multiple variables from the list of 
available regressors (see Figure 66) and view the output (see Figure 67). 
 

 
Figure 66. Selection of Regressors for Regression Analysis 

 

 
Figure 67. Regression Analysis Results from SAS 
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The Run S-PLUS menu allows the user to select one of the 10 parametric cluster methods 
available in MCLUST as previously described in Section 2.2.3.  Figure 68 shows the Model-
Based menu.  The check box provides the user with the option to include the geographical 
coordinates of the TTMSs to be simultaneously considered with the MSF patterns during the 
grouping process.  The user is expected to choose a method such as the EEI method, which is 
recommended.  Clicking the OK button will automatically trigger S-Plus, attach MCLUST, and 
then run the model specified.  Selecting the Display Results entry (see Figure 60) will display the 
dialog box shown in Figure 69 to let the user choose the grouping results to be displayed after the 
S-Plus run is completed and the grouping results are saved in a dBase file.  As shown in figure 
69, the dialog box will show the optimal number of groups for a given run.  The user may select 
the number of groups to view.  The Display Contour option will display the grouping results 
with circles drawn to show the area occupied by each seasonal factor group.  The radius is 
determined by the distance between the centroid of the TTMS in the group and the TTMS in the 
group that is farthest from the centroid.  Figure 70 shows an example of contours for the model-
based cluster analysis.  The check box for Display Profile will allow the MSF profile and the 
10% thresholds of the group average to be displayed. 
 

 
Figure 68. Models Available in MCLUST 
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Figure 69. Show Results Dialog Box 
 

 
Figure 70. Group Contours 
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7. CONCLUSIONS AND RECOMMENDATIONS 
 
Seasonal factors are a complex subject.  While there have been relatively more studies on various 
methods to determine seasonal groups, determining the underlying causes of season variations in 
traffic and developing models to predict seasonal groups has proven to be a significant challenge.  
So far based on literature, success in explaining or modeling seasonal factors has been limited.  
This research made contributions to the understanding of the subject by identifying plausible 
predictors for seasonal groups, further confirming the importance of geographic location in 
seasonal grouping, and providing a theoretical basis for consideration of geographic locations, 
and developing a practical approach for assigning short counts to seasonal groups. 
 
This study first investigated conventional nonparametric hierarchical clustering analysis and 
parametric model-based cluster analysis methods for seasonal factor grouping.  The results from 
the hierarchical clustering analyses suggested that spatial proximity should be appropriately 
considered in both grouping and assignment processes.  The model-based clustering analyses 
provided a good starting point for transportation professionals to more accurately group TTMSs 
into seasonal factor categories in a systematic and data-driven manner by simultaneously 
considering a TTMS’s spatial proximity and their MSFs.  This grouping approach was 
incorporated in this study to reduce the time and effort in grouping TTMSs for seasonal factor 
categories. 
 
Multiple linear regression analyses were subsequently conducted for selected urban and rural 
areas to identify possible explanatory variables for seasonal traffic fluctuations.  The regression 
models considered the effect of spatial proximity by introducing the locations of the count 
stations into the models.  The regression models calibrated with the MSFs collected from the 
TTMSs located on the urban roads in southeast Florida explained significantly more variations in 
the data than the rural models did.  One possible explanation for such a discrepancy between the 
urban and rural models is that more detailed and accurate land use, socioeconomic, and 
demographic data were available for urban areas.  Additionally, the buffer method employed in 
this study is unable to describe adequately the land use, socioeconomic, and demographic 
characteristics of through traffic, which is not originated or destined in local buffer areas.  The 
higher the function class of a road is, the more significant through traffic will be, especially on 
rural roads.  Seasonal residents, tourists, retired people between age 65 and 75 with high income, 
and retail employment were identified as the significant indicators for seasonal traffic fluctuation 
on urban roads in southeast Florida.  For the rural roads, variables such as functional 
classification for highways, percentage of seasonal households, agricultural employment, and 
truck factor were identified as potential explanatory variables.   
 
To develop a methodology to assign a seasonal factor category to a PTMS, a fuzzy decision tree 
was constructed using the TTMS groups obtained from the model-based cluster analysis and 
based on the aforementioned four variables, i.e., ratio of seasonal households to permanent 
households (SHP), hotel population to hotel population plus households population (HMP3), 
retail workers as a percentage of total retail workers plus population (RETAILP), and percentage 
of retired households of the highest income quartile (RH5_HQ) for the tri-county urban area, i.e., 
Broward, Miami-Dade, and Palm Beach counties. The decision tree was then applied to 
determine the seasonal factor category for a given PTMS.  The fundamental assumption for such 
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an application is that the socioeconomic/demographic variables would have the same or very 
similar effect on traffic fluctuations at the TTMS and PTMS locations on urban roads.  The 
decision tree is easy to visualize and apply, and the assignment results are self-explanatory.  For 
example, areas with a larger number of visitors and a larger number of seasonal households 
would expect to experience more fluctuation in traffic volumes.  It needs to be pointed out, 
however, that there was still fuzziness in the assignment results due to the fact that the four land 
use variables did not completely explain the traffic variations, that the sample size was limited, 
that TTMSs might not have reflected all representative land use patterns, and the membership of 
a PTMS in a given seasonal factor group might be less than 1 (partial membership).  For these 
reasons, the assignment methodology and results do not entirely replace the transportation 
analyst, who should examine the results, check the data, and determine if the assignment is 
reasonable.  Some additional data collection (e.g., monthly short counts) may also be necessary 
to verify the assigned seasonal factor category if the traffic volume is high and the impact of 
estimated AADT on transportation projects is significant. 
 
A GIS based computer program was developed as part of this research to demonstrate the 
usefulness of a GIS user interface for visualization of land use, demographic, and socioeconomic 
data, as well as the characteristics of the transportation systems and traffic counts.  Buffer 
analysis, regression analysis, and cluster analysis were also supported in the program for 
advanced users who are interested in performing statistical analysis.  The statistical functions 
were provided by SAS and S-Plus. 
 
Although this study developed regression models that could potentially be used to estimate 
seasonal factors directly for a PTMS, because of the limited sample size, the predictive power of 
the models could not be determined.  Additionally, because traffic in different urban areas may 
have different seasonal patterns due to differences in climate, local economy, and demographics, 
variables identified in this study may not be directly applicable to other areas. 
 
The following recommendations were made based on the findings from this research: 
 

• To make the results from this research useful to all FDOT districts, where the seasonal 
categories are determined and assigned to PTMSs, and even to local government users 
who operate a local traffic statistics program, additional studies need to be carried out to 
determine whether the variables identified in this study for the urban areas in southeast 
Florida are also applicable to other urban areas in the state.  Due to differences in local 
land use patterns and economies, it is possible that some urban areas have a different set 
of variables that explain the patterns of traffic variations. 

 
• The regression models for estimating MSFs for rural roads currently have relatively low 

R2s.  To improve the model performance and identify better MSF predictors, further 
analyses are necessary.  They may include the development and testing of improved or 
new variables and new modeling techniques such as nonlinear regression models. 

 
• A standard procedure should be developed by FDOT based on the results from this study 

and future studies.  This standard procedure should be based on a set of statistics based 
methods for seasonal factor grouping and assignment that are more objective and data-
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driven and that minimize the reliance on individuals’ experience and subjective 
judgment.  Such a standard procedure will help improve the quality of the transportation 
data used in important decision making processes. 

 
• The current prototype GIS program is a demonstration program developed for FDOT 

District 4.  It needs to be expanded to include all FDOT districts.  The program and the 
necessary data need to be delivered in a single CD-ROM, similar to the current traffic 
CD-ROM published by FDOT each year.  The data required by the program, which are 
from the U.S. Census Bureau and from urban area travel demand models, need to be 
made available from the Internet.  A possible central depository location may be the 
Florida Geographic Digital Library (FGDL) at the University of Florida.  The data should 
be updated every three to five years as more recent data become available or when census 
data are released. 

 
• The current GIS program is implemented in the ArcView environment.  When the FDOT 

district offices and central office completely migrate to ArcGIS, this program may be re-
implemented by customizing ArcGIS with VBA (the programming language in ArcGIS).  
Alternatively, a program implemented in MapObject (also an ESRI product) may be 
developed.  The advantage of a MapObject based program is that it does not require any 
GIS software from the user and still provides the same GIS functionalities.  A MapObject 
based program will allow the GIS program to be distributed to the users on a CD and 
used in the same way as the Traffic Data CD. 
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