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EXECUTIVE SUMMARY 

 
The departments of transportation (DOTs) and the Federal Highway Administration 

(FHWA) have moved away from an allowable stress design (ASD) to a load and resistance 

factor design (LRFD) based on probability of failure for deep foundations.  In the case of driven 

piles, LRFD  factors vary significantly from design methods (e.g., American Association of 

State Highway and Transportation Officials (AASHTO, 2004):  Standard Penetration Test (SPT): 

=0.45) to construction monitoring ( = 0.65 — Pile Driving Analyzer (PDA), Embedded 

Data Collector (EDC)).  Complicating the construction effort, are the number of piles monitored 

(e.g., 10% versus 100%), as well as the type of monitoring (e.g., high strain rate:  EDC, PDA; 

static load test, etc.).  Of great interest are quantifying the influence of number of piles within a 

group, number of piles monitored, as well as spatial variability, on a pile group’s resistance 

uncertainty and associated LRFD  factors. 

The effort started with a discussion of probability of failure (POF) of a bridge and defines 

failure in terms of redundant and non-redundant systems.  It was found that the number of piles 

in a pier may have a large impact on POF at the pier level.  Therefore, it was decided to establish 

the LRFD Φ based on the POF of the whole pier which includes the total number of piles within 

the group as well as the distribution of monitored and unmonitored piles within the group.  

Next, to establish an LRFD , total uncertainty — which included spatial variability (i.e., 

monitored versus unmonitored) and method error (e.g., SPT, EDC/PDA versus static load test) 

— was investigated.  The work started with spatial group uncertainty of a single pile resistance 

(side plus tip) from SPT data and was then extended through kriging (considering different 

weights for adjacent borings) to group layouts (e.g., double, triple, quads, etc.) to assess group 

uncertainty CVR.  Subsequently, the kriging group work was carried over to assessing 
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uncertainty, i.e., spatial and method error (predicted versus static load test) for high strain rate 

field measurements.  The effort developed charts identifying the uncertainty (variance) reduction 

(e) for a specific group based on number and geometric configuration of piles monitored within 

a group, total piles within the group, and number of pile groups at the site.  Unfortunately, no 

simple analytical expression for variance reduction in terms of pile group layouts could be 

developed and the approach had limited flexibility in the sense of assuming all piles had similar 

embedment depths or blow counts (i.e., also similar resistances) and the group design load was 

unknown apriori. 

To overcome these problems associated with the spatial uncertainty, the use of hammer 

blow count data in combination with high strain rate measurements was introduced to assess a 

pile group’s resistance uncertainty.  Generally, good correlations were observed with static 

capacity by using Federal Highway Administration (FHWA) Gates dynamic formula 

(Paikowsky, 2004) or high strain rate test assessments.  As with prior work, the uncertainty of 

the pile group was expressed in terms of the uncertainties of monitored (CVεm: high strain rate 

data:  EDC, PDA, etc.) and unmonitored piles (hammer blow count measurements).  In terms of 

the unmonitored piles within a group, their uncertainty (CVεh) was assessed by linear correlation 

between blow count data and EDC/PDA capacities.  Subsequently, the total group resistance Rg, 

and its associated uncertainty in terms of the coefficient of variation CVR, was assessed.  Using 

the group uncertainty CVR with a representative reliability of the group (e.g.,  = 3), a relatively 

simple LRFD  expression was developed for a driven pile group depending on number of 

monitored and unmonitored piles in the group, and uncertainty of monitoring method (CVm) as 

well as uncertainty of blow count regression (CVεh).  The applicability of the developed LRFD  

expression was evaluated on two separate sites with driven prestressed concrete piles.  

Interestingly, full monitoring gave LRFD  values similar to literature (i.e., AASHTO, 2009, 
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Florida Department of Transportation, 2009); however of great importance and not reported in 

the literature is the influence of pile group size and uncertainty of monitoring approach (i.e., 

CVεm, and CVεh).  Finally, the proposed expression will allow different considerations, such as 

different degrees of method uncertainties (e.g., due to employing end of drive (EOD) versus 

beginning of redrive (BOR): variability of pile capacities; equipment, as well as site and soil 

conditions. 
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CHAPTER 1 
INTRODUCTION 

 

1.1  Background 
 

The recommended load and resistance factor design (LRFD) Φ factor for the design of 

driven piles using in situ Standard Penetration Tests (SPT) varies from 0.35 to 0.45 (e.g., 

AASHTO Table 10.5.5.2.3-1 –Tomlinson versus Meyerhof).  The value of Φ is a combination of 

uncertainty of design methods (i.e., Tomlinson versus Meyerhof) and number of borings as well 

as their locations relative to the pile.  In the case of high strain rate field monitoring (e.g., Pile 

Driving Analyzer (PDA), Embedded Data Collector (EDC)), LRFD Φ factor increases to 0.65 

according to FDOT Structures Design Guidelines if PDA and CAPWAP are used for approxi-

mately 10% of the piles during driving.  In general, increasing LRFD Φ from 0.45 to 0.65 could 

potentially result in a 40% saving in pile length cost in uniform soil deposit without 

consideration of reduced driving times, equipment needs (e.g., bigger crane for longer piles), etc.   

Recently, the Florida Department of Transportation (FDOT) funded the development of 

wireless pile monitoring, i.e., EDC, focusing on reducing pile monitoring cost/time and 

improved safety.  Specifically, the technology uses:  1) wireless communication, which 

eliminates the need for personnel to climb (safety) pile leads (in some instances > 80 ft.) for gage 

attachment to the pile; 2)dual location of the instrumentation, which improves the “real time” 

assessment of dynamic stresses (e.g., pile damage during hard driving), static tip resistance (end 

bearing piles) for every hammer blow, as well as separation of side from tip resistance 

(dynamically and statically); and finally, 3)the wireless system, the instrumentation of which 

uses technologies developed for other mass markets (e.g., automotive, ITT, etc.) leading 

potentially to a larger number of monitored piles, e.g., 100% . 
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Of great interest is the appropriate LRFD Φ resistance value based on the number of piles 

monitored within a group.  Obviously, monitoring every pile should increase Φ, but if the predic-

tion method is non-conservative (e.g., biased) LRFD Φ should be less than one, whereas, for a 

conservative method Φ may be greater than one.  In addition, if the designer/contractor decides 

to monitor just 50% of the piles, what are the recommended LRFD Φ factors given the soil/rock 

strength variability (coefficient of variation CV and spatial correlation, i.e., covariance)?    

Current design practices suggested by AASHTO (2009) (Table 1-1) use pre-defined values 

of Φ depending on number of piles monitored, type of monitoring, and whether static load 

testing is performed.  For example, Φ = 0.75 if all piles are monitored and Φ = 0.80 if 2% of the 

piles are monitored plus one static load test is performed.  The table does consider older moni-

toring approaches (e.g., Gates, Φ = 0.40) based on hammer energy and measured blow counts.  

Evidently, all of the approaches do not explicitly account for the spatial heterogeneity that gener-

ally exists between individual piles (monitored and unmonitored) in a group, number of piles 

Table 1-1.  AASHTO 10.5.5.2.3-1 (2009) 

Condition/Resistance Determination Method 
Resistance 

Factor 

Nominal bearing 
resistance of single pile–
dynamic analysis and 
static load test method 

Driving criteria established by successful static load test of at 
least one pile per site condition and dynamic testing of at least 
two piles per site condition, but no less than 2% of the 
production piles 

0.8 

Driving criteria established by successful static load test of at 
least one pile per site condition without dynamic testing 

0.75 

Driving criteria established by dynamic testing conducted on 
100% of production piles 

0.75 

Driving criteria established by dynamic test with signal 
matching at beginning of redrive (BOR) conditions only of at 
least one product pile per pier, but no less than the number of 
tests provided in Table 10.5.5.2.3-3   

0.65 

Wave equation analysis, without pile dynamic measurements 
or load test, at end of drive (EOD) conditions only 

0.4 

Federal Highway Administration (FHWA)-modified Gates 
dynamic pile formula (EOD conditions only) 

0.4 

Engineering News-Record (as defined in Article 10.7.3.8.5) 
dynamic pile formula (EOD condition only) 

0.1 
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monitored within a group, and if combined methods were used (i.e., high strain rate with hammer 

blow counts, etc.).  Also, due to the typical dimensions of driven piles and expected vertical 

loads, piles are generally combined in a group underneath a rigid pile cap to form a foundation.  

For such a pile group foundation, if there are none, some, or all individual piles monitored, it will 

result in different pile group resistance uncertainties and, hence, different design LRFD 

resistance factors Φ of the group.  Typically, the larger the number of piles monitored, the 

smaller the coefficient of variation of group resistance CVR, thus leading to higher Φ for the 

group. 

1.2  Scope of Research 
 

The present work attempts to address the shortcomings of current assessment of LRFD Φ 

during construction by exploring a geostatistical approach, as well as combining monitored data 

with secondary information such as Standard Penetration Test / Cone Penetrometer Test 

(SPT/CPT) or hammer blow count data.  In what follows, a brief discussion will be given on the 

general aspects of measurement bias and uncertainty as well as the probability of failure 

(reliability), the latter being perhaps the most fundamental parameter in reliability based design 

(Chapter 2).  The work then proceeds to an investigation of the uncertainty of single driven pile 

resistances based on SPT/CPT data and the FB-Deep design method (Chapter 3).  Further, 

geospatial kriging approaches are presented for pile groups with nearby SPT/CPT data (Chapter 

4) and for partially or fully monitored pile groups (Chapter 5).  Finally, the work focuses on 

correlation between monitored pile resistances and hammer blow count data.  The latter is found 

to significantly simplify the geospatial approach and make it more flexible in the sense that less 

restrictive assumptions are required (Chapter 6).  Although different chapters are related to each 

other and a consistent nomenclature is used, deviations may occur and all variables are defined in 

their respective chapters. 
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CHAPTER 2 
GENERAL ASPECTS OF DEEP FOUNDATION 

RELIABILITY ASSESSMENT 
 

2.1  Estimation Bias and Uncertainty 
 

Ideally, pile resistance measurements would be obtained from static load tests on each and 

every pile, as they represent a direct replication of pile behavior under service with sufficiently 

non-transient (e.g., excluding impact loads) conditions.  The static load test measurements are 

generally considered as the “true” values.  However, static load tests are costly and time-

consuming.  Consequently, faster and cheaper methods (SPT/CPT, EDC, PDA, etc.) have been 

developed to predict the resistance measured in a top down static load test.  Any prediction 

method may be biased as well as imprecise, i.e., contain uncertainty.  Bias generally refers to 

systematic errors between the predictor and true measure (e.g., load test) which remain after unit 

conversion (e.g., from SPT blow counts to resistance) and may be corrected for by a 

deterministic relationship (i.e., a formula).  Imprecision or uncertainty of the method relates to a 

random prediction error (variance 2)  which remains after bias correction and is due to purely 

random components of the measurement process (e.g., instrument errors, imperfections in pile 

geometry, etc.).  

A bias correction formula applied after unit conversion is equivalent to improving 

(correcting) the unit conversion formula itself.  Figure 2-1 shows scatterplots of predicted values 

(a) before bias correction P and (b) after bias correction P versus true values T.  It may be seen 

that P is a good predictor of T in the sense that the prediction error ε = P  T is zero on average. 

The residual scatter of the data points about the 45° line represents the random prediction error 

(uncertainty) and is described by the variance 2
 of the residuals ε. 
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Figure 2-1.  Scatterplots of predicted values:  (a) before bias correction P; and (b) after bias 

correction P versus true values T. 
 
 

From this it is seen that “bias correction” is equivalent to finding the relationship between 

P and P  (e.g., P = a + b P , P = ln(P ), etc.) as indicated in Figure 2-1.  For this purpose, both 

the type of relationship (e.g., linear, logarithmic, etc.) as well as its coefficients (e.g., a and b) 

need to be investigated.  Once P is known, 2
 is obtained as the variance of the random 

prediction error (ε = P – T ) distribution.  The random prediction error 2
 may be a constant or 

depend on T; for example, if σε is directly proportional to T, then the coefficient of variation of 

error (CVε = σε,/ = standard deviation divided by mean) is a constant. 

Note that different bias relationships may apply to different combinations of prediction 

method, construction methods, and soil conditions.  Sufficient predicted versus true data pairs are 

required to define bias relationships and values of 2
 for the largest possible number of 

prediction-construction-soil scenarios. Once bias is corrected for, P is known to be equal to T 

except for some random error of variance 2
  which allows for subsequent (geo-) statistical 

treatment. 

(b) 

45° P 

T 

(a) 

P

T 

P = f(P ) 
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2.2.  Probability of Failure 
 

The probability of failure (POF) and reliability index β are related by definition through 

the normal cumulative distribution function as illustrated in Figure 2-2.   
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Figure 2-2.  Probability of failure (POF) versus reliability index β.  Here, pf = G(β)     
where G() is the normal cumulative distribution function. 

 
 

The POF pb of a whole bridge is determined by the POFs and the level of redundancy of its 

individual components.  Limiting our attention to foundation failure only (i.e., not considering 

failure of other structural bridge components), then pb becomes a mere function of the individual 

POFs pri of each of its nr piers.  The level of redundancy expresses how many piers must 

simultaneously fail in order to cause the whole bridge to fail.  Full redundancy means that all 

piers must fail for the bridge to fail; this is not a reasonable assumption for bridges, but may be 

so for other structures.  For such a case, 

1

r r
n n

b ri ri
p p p


   (2.1) 
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where  denotes the product operator (i.e., successive multiplication of terms) and the last term 

is obtained if pri = pr for all i, i.e., if all pier POFs are the same.  In the case of no redundancy, 

failure of a single pier or multiple piers causes the whole bridge to fail.  This is more likely to be 

the case with bridges and pb is obtained as 

   
1

1 1 1 1r rn n

b ri ri
p p p


       (2.2) 

where the last term is again the case where all piers have the same POF pr.  The term 1  pri 

represents the probability of pier i not failing and, hence, the term  
1

1rn

rii
p


 is the probability 

of none of the piers to fail.  The term   
 rn

i rip
1

11  represents the probability that one or more 

piers fails and, hence, the bridge fails.  An intermediate level of redundancy would be the 

scenario of bridge failure caused by simultaneous failure of two, three or more piers, which may 

be required to occur at adjacent locations or not.  The laws of combination / permutation may be 

used to establish a general equation for this situation which will contain Equations 2.1 and 2.2 as 

limiting cases.  For cases when bridge failure requires failure of more than a single pier, 

additional complexity may be added by the fact that failure of one pier may increase the POF of 

other (e.g., immediately adjacent) piers through load redistribution.  This behavior may be 

captured by making use of conditional POF’s, i.e., values of pri which depend on the number and 

locations of previously failed piers. 

The very same discussion of bridges applies to the relationship between POFs of a pier and 

the individual piles beneath the pier.  Let pier i consist of nli piles, then Equations 2.1 and 2.2 

may be rewritten as 

1

li li
n n

ri lj lj
p p p


   (2.3) 
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if all piles must fail for the pier to fail, and 

   
1

1 1 1 1li lin n

ri lj lj
p p p


       (2.4) 

if failure of one or more piles cause pier failure.  Here plj is the POF of the j-th pile, which is 

equal to pl if it is the same for all piles.  Note that indices “b”, “r” and “l ” are used for bridge, 

pier and pile, respectively, and “i” and “j” are running indices for piers and piles, respectively.  

Equations 2.3 and 2.4 may be substituted into Equations 2.1 and 2.2 to obtain a relationship 

between individual pile and bridge POF for full and no redundancy.  Generally in bridge design, 

very stiff pile caps introduce a high level of redundancy among individual piles while almost no 

redundancy exists between individual piers.  For this situation and assuming all pile POFs are 

equal to pl and that all piers have the same number nl of piles such that all pier POFs are equal as 

well, we get by substituting Equation 2.3 (full redundancy) into Equation 2.2 (no redundancy) 

 1 1
rnn

b lp p   l  (2.5) 

Overall, it may be observed that a high level of redundancy of piers leads to a decreased 

POF of a bridge and a higher level of redundancy of piles leads to a decreased POF of a pier 

(Equations 2.1 and 2.3).  This decrease becomes stronger with more elements that must fail 

simultaneously for the system to fail.  On the other hand, a low level of redundancy of piers leads 

to increased POF of a bridge and so is of piles for a pier (Equations 2.2 and 2.4).  This is due to 

the fact that failure of a single (or a few) out of many elements causes the system to fail.  The 

larger the total number of elements involved and the smaller the number of elements whose 

simultaneous failure causes the system to fail, the larger the increase in POF.  Figure 2-3 

illustrates this by graphically representing the relationship of Equation 2.5 for three different 

values of pl (102, 103 and 104).  It is seen that for the typical values of pl, the selected nl has a 
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dominant influence on pb over nr , i.e., the number of piles in a pier is an important magnitude.  

For nl = 1, however, it is seen that pb < pl, while for nl > 1, pb > pl up to rather large values of nr 

(not shown here).  For bridges founded on multiple pile piers with a target POF assigned to 

individual piles, the POF of the whole bridge is seen to be very conservative (i.e., very much 

smaller than the target value). 
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Figure 2-3.  Contour lines of –log10(pb) as a function of pl, nl, and nr from Equation 2.5. 
 
 

As a consequence, it is fundamental to know what structural level (e.g., pile, pier, bridge) a 

certain POF or reliability β that the analysis is considering.  Ideally, it may be desired to design a 

bridge such that a maximum allowable POF at the entire bridge level is met (or for a whole 

highway between points A and B).  However, the number of structural elements involved at 

pl = 102 pl = 103 pl = 104 

nl [-]
 nl [-] nl [-]

 

n r
 [-

] 
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bridge level is quite large and generally outside the geotechnical field.  Based on the latter and 

the fact that design loads are typically given at the bridge pier level (rather than bridge level), it 

is understood in what follows that values of POF β and, hence Φ, always correspond to the pier 

level (i.e., for entire pile groups). 
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CHAPTER 3 
SPATIAL UNCERTAINTY OF FB-DEEP SPT/CPT 

CAPACITY ASSESSMENT 
 

3.1  Background 
 

For different combinations of soil conditions (e.g., sand, clay, etc.) and the type of 

borehole data available (e.g., SPT or CPT), FB-Deep uses a series of simple relationships to 

estimate total resistances of driven piles.  Since it is assumed that a pile is driven at a particular 

boring location (data along center line of pile), values of Φ only consider the uncertainty of the 

estimation method.  However, a pile may be driven at a random location at a site (i.e., without 

collocated data) over which several SPT/CPT soundings may have been obtained.  Quantifi-

cation of Φ in this case requires accounting for spatial variability, the effect of which is 

investigated in the present chapter.  For this purpose, the effect of method uncertainty is 

neglected, however, it may be added back in without loss of applicability.  For simplicity, a 

single geological layer is assumed, which allows for deriving closed form solutions and 

facilitating some insight into spatial upscaling of side friction and end bearing separately, as well 

as in combination (side-tip correlation).  Note, however, that the results are only applicable to the 

FB-Deep methods identified. 

3.2  Theory 
 

Figure 3-1 shows a schematic of a driven pile of length L and diameter D along the center 

line of which SPT or CPT data are available.  Following the linear model implemented in 

FB-Deep, mean unit side friction fs is estimated by 

 


Ln

i
i

L
s dzzN

L

S
SN

n
f

L

01

)(
1

 (3.1) 
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where Ni is the number of blow-counts per depth interval for SPT or the mean driving force over 

a depth interval for CPT.  The term nL represents the number of depth intervals over the pile 

length L and S is a constant conversion factor from SPT or CPT data to unit side friction. 

 
 

Figure 3-1.  Schematic of driven pile (circular or square) with SPT or CPT data available  
along center line (dashed) for use in FB-Deep method. 

 
 

Without loss of generality, depth intervals may be considered arbitrarily short leading to 

the integral form of Equation 3.1 (i.e., line averaging) on the far right-hand-side, where z is the 

vertical coordinate as indicated in Figure 3-1.  From this, predicted pile side friction resistance Rs 

results as 

0

( )
L

s sR DL f DS N z dz     (3.2) 

For predicting unit tip resistance qt (in a single layer), a linear FB-Deep model uses 
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where n8D and n3.5D are the number of depth intervals over distances 8D and 3.5D immediately 

above and below the center of the pile tip as illustrated in Figure 3-1.  Term T is a constant 

conversion factor between SPT or CPT data and unit tip resistance.  Predicted tip resistance Rt 

results as 









 





DL

L

L

DL

t
t dzzNdzzN

DTqD
R

5.3

8

2

)(
5.3

8
)(

644


 (3.4) 

Summing Equations 3.2 and 3.4 leads to the total pile resistance R as 

3.5

0 8

8
( ) ( ) ( )

64 3.5

L L L D

L D L

T
R D S N z dz N z dz N z dz





  
     

   
    (3.5) 

which is a weighted integral of N over 0  ≤  z  ≤ (L + 3.5D) and can be written equivalently as 





DL

dzzNzgDR
5.3

0

)()(  (3.6) 

where 
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
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53for            
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8for      
64

80for              

)(  (3.7) 

Regarding N as a spatially random function in a geostatistical sense with mean μN, variance 

2
N  and spatial covariance function CN, then the mean μR and variance 2

R of total pile resistance, 

R may be found.  Taking the mean (expectation) of Equation 3.6 gives 
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NNN

DL

NR T
D

SDL
TD

SLDdzzgD 
44

)(
25.3

0







  



 (3.8) 

where the last two terms on the right-hand-side represent the means μRs and μRt of Rs and Rt, 

respectively. 

The variance of the weighted sum in Equation 3.6 is known as 

2

5.3

0

5.3

0

12121
222 )()()( dzdzzzCzgzgD

DL DL

NR  
 

   (3.9) 

which is the sum of CN for all possible location pairs over 0 ≤ z ≤ (L + 3.5D) weighted by the 

product of the respective values of g(z) at both locations.  Note that for side friction only, T = 0 

and the integral in Equation 3.9 reduces to the form used for variance reduction of the line shaft 

approximation in previous work (Klammler 2010a and b).  In order to eventually obtain values of 

LRFD  for a desired reliability through the AASHTO equation, it is of interest to express the 

coefficient of variation CVR = σR/μR of R as a function of the coefficient of variation CVN = σN/μN 

of N or 

NR CVCV   (3.10) 

Using Equations 3.8 and 3.9, the dimensionless conversion factor α is obtained as 

3.5 3.5

1 2 1 2 1 2

0 0
2

( ) ( ) ( )

4

L D L D

Ng z g z C z z dz dz

DT
LS

 

 
 

  
 

 
 (3.11) 

where 2
N N NC C   is the spatial covariance function of N normalized to unit sill (which makes 

it the spatial correlation function). 
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Combining Equations 3.7 and 3.11 α may be written as 

 
 6543212
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which is proportional to the sum of the following six integrals: 
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 (3.13) 

Using Equation 3.13 with Equation 3.9, it may be seen that I1 and I2 correspond to the respective 

variances of the side and tip resistance along the pile; I3 corresponds to the average below the tip; 

and I4, I5, and I6 correspond to the respective covariances.  As mentioned above, for side friction 

only T=0 and only I1 remains non-zero.  Furthermore, the sum I2 + I3 + 2I6 corresponds to the 

variance of Rt while the sum I4 + I5 corresponds to the covariance between Rs and Rt.  Thus, by 

splitting up the integral in Equation 3.9 (e.g., as done in Equation 3.13) different variance and 

covariance components may be isolated.  For example, I4 = I41 + I42 may be written with 
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8 8
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With this, the integrals in I1, I2, I3, and I41 are of the form 1 2 1 2( )
b b

N

a a

A C z z dz dz   , while I42, I5 

and I6 are of the form 1 2 1 2( )
b c

N

a b

B C z z dz dz   , where a, b and c are variable integration limits.  

Assuming that CN is of the spherical type 

31 1.5 0.5     for  1
( )

0                          for  1
N

h h h
C h

h

     


 (3.15) 

where h = |z1 – z2|/av and av is the vertical correlation length of N, the integral of type A has been 

solved in Appendix B of Final Project Report BD-545-76.  Although mathematically simple, use 

of Equation 3.15 in the sequel requires lengthy algebraic manipulations and numerous case 

distinctions due to the separate definition of CN on the intervals h < 1 and h < 1. Therefore, the 

exponential covariance function 

3( ) h
NC h e   (3.16) 

is used in the analytical development hereafter.  For direct numerical integration of Equation 

3.11, however, both Equations 3.15 and 3.16 will be evaluated.  As shown in Final Project 

Report BD-545-76 (Figures 3-1 and 3-2) in a closely related context, differences between 

Equations 3.15 and 3.16 when used with same av are negligible for all practical purposes.  

Moreover, the decision whether Equation 3.15 or 3.16 (or some other covariance model) is most 

adequate is mostly based on limited data (experimental variogram) and, hence, rather arbitrary or 

subjective. 

Integral A will be solved here using Lab = |a – b|/av by transforming the double integral in 

dz1 and dz2 into a single integral in dh giving 

 
0

2 ( )
abL

ab NA L h C h dh   (3.17) 
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That is, instead of effectively pairing up all possible locations z1 and z2 over Lab in the double 

integral, Equation 3.17 uses the frequency of occurrence of each separation distance h between 

all possible location pairs on Lab (see Figure 3-2) which is equal to 2(Lab – h) as apparent in the 

integrand of Equation 3.17.  Combining Equations 3.16 and 3.17 and knowing that 

 1
2

 kx
k

e
dxxe

kx
kx  gives 

 

 
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


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L

L
A 31

3

1
1

3

2
 (3.18) 

This result may be validated against results of numerical integration shown in Figure 3-2 (for 

D/ah = 0) of Final Project Report BD-545-76 (note that their  = 2
abA L here). 

 
 

Figure 3-2.  Illustration of how the double integral in A may be converted into a single  
integral using the frequency of occurrence of location pairs  

on Lab, which are separated by distance h. 
 
 

Integral B may be solved using Lab as above and Lbc = |b – c|/av, where Lbc ≤ Lab is assumed 

without loss of generality (the order of integration in all double integrals above may be switched 

without affecting the results).  The double integral in dz1 and dz2 may be transformed into a 

single integral in dh giving 

 
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Instead of effectively pairing up all possible location z1 and z2 in the double integral, Equation 

3.19 uses the frequency of occurrence of each separation distance h between all possible location 

pairs of one point on Lab and the other point on Lbc.  This is illustrated in Figure 3-3 and the 

coefficients inside the integrands of Equation 3.19 indicate that separation distances between 

zero and Lbc occur h times, between Lbc and Lab they occur Lbc times, and between Lab and 

Lab+Lbc they occur Lab + Lbc – h times.  Location pairs of h > Lab + Lbc cannot occur. 

 
 

Figure 3-3. Illustration of how the double integral in B may be converted into a single integral  
using the frequency of occurrence of location pairs between  

Lab and Lbc, which are separated by distance h. 
  
 

Combining Equations 3.16 and 3.19 gives after some manipulations 

 

 33 31
1

9
ab bcab bc L LL LB e e e         (3.20) 

 
which shows the convenient fact that the condition Lbc ≤ Lab established for building Equation 

3.19 becomes irrelevant (Lab and Lbc may be switched in Equation 3.20 without affecting B). 

Using Equations 3.18 and 3.20, the integrals of Equations 3.13 and 3.14 may be found 

using L = L/av, D = D/av and the following equivalences:  Lab = L in A for I1; Lab = 8D in A for 

I2; Lab = 3.5D for A in I3; Lab = 8D in A for I41; Lab = L – 8D and Lbc = 8D in B for I42; Lab = L 

and Lbc = 3.5D for B in I5; and Lab = 8D and Lbc = 3.5D in B for I6.  Substituting the results into 

Equation 3.12 gives 

a b c 

Lab Lbc 

h ≤ Lbc 

Lbc ≤ h ≤ Lab 

Lab ≤ h ≤ Lab + Lbc 
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where RLD = L/D = L/D and RTS = T/S.  As to be expected, α is not a function of T and S 

separately, but of their ratio RTS.   

3.3  Example of FB-Deep Spatial Uncertainty of a Pile/shaft in Sands 
 

For SPT data in sand, for example, FB-Deep uses S = 0.019 and T = 1.07 (for output in tsf) 

such that RTS = 56.3.  With this, Equation 3.21 becomes 
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 (3.22) 

Assuming a typical situation with a pile of L = 30 ft., D = 1 ft. and av = 5 ft., such that 

L=6, D = 0.2, and RLD = 30 the terms in Equation 3.22 become 

3 2 2 12

7 5 6

12 11
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4.54 .96 10 2.03 10 1.12 10

2.34 10 5.06 10
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 
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 
         
 
     

5  (3.23) 

which shows that, under this and similar situations, only the first three terms in the brackets are 

significant.  Interesting to note is also that none of the significant terms depends on the actual 
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shape of the spatial covariance function (i.e., the exponential function in this case), but merely 

contain L and D expressing how many times L and D contain av.  With this an approximation of 

Equation 3.22 may be written in a rational form as 

 2

0.668 23.0 0.679

14.1

L D

L D

  
 

 
 (3.24) 

Figures 3-4 and 3-5 graphically represent results of Equations 3.22 and 3.24 for L/D ≥ 8.  

The dashed line in Figure 3-4 is from Equation 3.22, where T was previously set to zero in 

Equation 3.21.  Term T = 0 means that end bearing is excluded from consideration and the 

problem is based on side friction along a vertical line only (“line shaft approximation”).  The 

dashed line appears to act as an upper bound for the continuous lines of T > 0, however, this is 

not generally true for other values of S and T.  The approximations in Figure 3-5 are seen to be 

valid for L/av > 1.5, which is reasonable for practice.  Figures 3-6 and 3-7 are analogous to 

Figures 3-4 and 3-5, with the exception that a spherical covariance model (Equation 3.15) is used 

instead of an exponential covariance model (Equation 3.16) and that graphs are obtained from 

numerical integration of Equation 3.11.  In order for Equation 3.24 to be also a good approxi-

mation for the spherical covariance model, 1/2 from Equation 3.24 must be multiplied by 1.07.  

Note also that Figures 3-4 through 3-7 may be directly plugged into quadrant charts developed in 

previous work (Final Project Report BD-545-76) which allows for direct determination of 

required pile length L for given D, μN, CVN, reliability  and design load Qdes.  The correspon-

ding design situation would be of possessing exhaustive sample data of N over a site associated 

with a random pile location. 
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Figure 3-4.  1/2 from Equation 3.22 for exponential covariance function (Equation 3.16). 

Continuous lines from bottom up are for L/D = {8, 10, 15, ≥ 30}.  Dashed  
line is for T = 0, i.e., side friction only (“line shaft approximation”). 
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Figure 3-5.  1/2 from Equation 3.22 (continuous) and its rational approximation  
from Equation 3.24 (dashed) valid for L/av > 1.5.  Lines from  

bottom up are for L/D = {8, 10, 15, ≥ 30}. 
 



 

 22

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L/a
v
 [-]


1

/2
 [-

]

SPHERICAL

 

Figure 3-6.  1/2 from numerical integration of Equation 3.11 for spherical covariance function 
(Equation 3.15).  Continuous lines from bottom up are for L/D = {8, 10, 15, ≥ 30}.  

Dashed line is for T = 0, i.e., side friction only (“line shaft approximation”). 
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Figure 3-7. 1/2 from numerical integration of Equation 3.11 (continuous) and a rational 
approximation as 1.07 times  from Equation 3.24 (dashed).  Approximation valid  

for L/av > 1.5 with L/D ≥ 15 and for L/av > 3 with L/D > 15.  
Lines from bottom up are for L/D = {8, 10, 15, ≥ 30}. 
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CHAPTER 4 
PILE GROUP SPATIAL UNCERTAINTY  

WITH NEARBY SPT/CPT DATA 
 

4.1  Background 
 

The previous chapter considers exhaustive borehole (i.e., SPT or CPT) data available at a 

site where the influence of spatial variability on total pile resistance is investigated.  The pile was 

considered to be randomly located or, equivalently, located beyond the spatial correlation range 

from available data.  The present chapter expands on this by assuming SPT/CPT data from a 

limited number of borings, where spatial correlation between a “nearby” boring and the 

foundation may be present.  Moreover, the analysis is generalized to allow for one or more piles 

in a group with tip resistance neglected until the next chapter for simplicity.  As such, results are 

equally applicable to single or groups of drilled shafts with local strength data available from a 

number of borings which is the scenario providing the terminology used in the remainder of this 

chapter.  A detailed discussion and analysis of worst case scenarios for unknown horizontal 

correlation lengths is illustrated by an example calculation at the conclusion of the chapter. 

4.2  Notation  
 

The term q(x) denotes a spatially variable (random) function for local ground (i.e., soil or 

rock) strength with x being a spatial coordinate vector.  The term q(x) — or in short q — is 

described by a mean μq, variance 2
q and a spatial covariance function Cq(h) — or in short Cq —

with h being a spatial separation vector between two locations x1 and x2.  Variable Cq may be 

anisotropic with a range ah in all horizontal directions and a range av in the vertical direction.  A 

normalized spatial covariance function qC (hi) = Cq(hi)/
2
q of unit sill and unit isotropic range 

may be defined by using    22
vvhhi ahahh   where hh and hv are the horizontal and vertical 
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separation vector components, respectively, between two locations.  The term fs with mean μs 

and variance 2
s is a random function used to describe the mean unit side friction over the lateral 

surface of area As of a single shaft of diameter D and embedment length L.  Similarly, ff with 

mean μf and variance 2
f is a random function used to represent the mean unit side friction over 

the lateral surface area Af of all ns shafts of diameter D, length L and fundamental center-to-

center separation distance Ds in the foundation or group.  Finally, Rn and CVR denote the 

foundation or group nominal resistance (defined as the mean of the random foundation resistance 

R) due to side friction and the respective coefficient of variation as a measure of uncertainty used 

in determining the LRFD resistance factor Φ. 

4.3  Multiple Shaft Foundations  
without Conditioning Data 

 
As opposed to single shaft foundations, failure of multiple shaft foundations in a group 

from axial loads may occur in one of two different forms:  (1) along the set of disjoint lateral 

surfaces encompassing all of the individual shafts; or (2) along a single surface enclosing all 

shafts of a foundation or group (block failure).  For Ds /D > 2 block failure may not be expected 

to occur (Zhang et al. 2001) and scenario (1) will be investigated in the present work with results 

presented for a typical value of Ds/D = 3.  As in Klammler et al. (2010a), it is assumed in this 

section that the geostatistical parameters of q (i.e., μq,
2
q and Cq) within a geostatistically 

homogeneous site (or subzone thereof) are well known which may be the case due to exhaustive 

rock core sampling, SPT/CPT soil testing, etc.  Equation 4.1 describes the simple relationship 

between ff and R 

ff fAR   (4.1) 
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where Af = ns LDπ is considered deterministic, i.e., with negligible uncertainty compared to ff.  

Rand ff are random variables linked to q by the spatial upscaling (arithmetic averaging) process 

1

f

f
f A

f q dA
A

   (4.2) 

By taking the expectation and variance of Equation 4.2, the parameters μf and 2
f  are found as 

(Journel and Huijbregts 1978) 

qf    (4.3) 

2
2

1 22

f f

q
f q

f A A

C dA dA
A


     (4.4) 

where a variance reduction factor αqf  between local strength q and mean foundation unit side 

friction  ff  may be defined as 

qssf
q

s
sf

q

f
qf 







 
2

2

2

2

 (4.5) 

which links the variability in local strength q to the uncertainty in foundation or group resistance 

R by CVR = 1/ 2
qf CVq (“CV” being the notation for coefficient of variation of the variable in the 

index).  Term αsf  in Equation 4.5 denotes an intermediate variance reduction factor between 

single shaft unit side friction fs and the foundation unit side friction ff.  Furthermore, αqs 

quantifies the variance reduction between local strength q and fs as studied by Klammler et al. 

(2010a).  The double integral in Equation 4.4 is nothing but the summation of the normalized 

covariance values between all possible combinations of point pairs on the ns lateral shaft surfaces 

(i.e., the sum of all elements in the variance–covariance matrix between all possible point pairs) 

and may be evaluated numerically by discretizing each shaft surface into a large enough number 

of points (Journel and Huijbregts 1978).  Calculations may hereby be accelerated by recognizing 
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that center-to-center separation distances between different shaft pairs are limited to a certain 

pattern (e.g., 3D for all shaft pairs on a side of a quadruple square foundation and 3 2D  for 

shaft pairs on a diagonal).  Thus, normalized covariances sC (hs) = 2( )s s sC h  between upscaled 

single shaft resistances fs (with hs representing the horizontal separation distance between shaft 

centers) may be determined for these separation distances by using Equation 4.6 (Journel and 

Huijbregts 1978) to populate a respective variance–covariance matrix between all individual 

shafts in a foundation through 

1 2

2

1 22
1 2

( )
s s

q
s s q

s s s A A

C h C dA dA
A A


 

    (4.6) 

where As1 and As2 are the lateral surface areas of two horizontally offset shafts.  Equation 4.6 is, 

in fact, a generalization of Equation 4.4 (normalized to 2 ,s i.e., unit sill) which is obtained by 

setting As1 = As2 = Af , i.e., the total of all shafts’ lateral surfaces.  For As1 = As2 = LDπ, i.e., a 

single shaft’s lateral surface or zero separation between two shafts, Equation 4.6 reduces to the 

upscaled variance of fs for single shafts as in Klammler et al. (2010a). 

Figure 4-1 shows an example of a quadruple square configuration (hereafter called “Q”) 

with respective shaft separation and variance–covariance matrices.  The matrix in Figure 4-1c is 

based on numerical integration of Equation 4.6 where a spherical covariance function Cq is used 

with parameters L/av = 5 and D/ah = 0.1.  Based on the same principle of Equation 4.6, the 

average of all the elements in the variance–covariance matrix of all shafts directly results in the 

respective variance reduction factor sf defined in Equation 4.5.  The shape of sC from Equation 

4.6 is not easily described analytically; however, its horizontal correlation range is known to be 

equal to ah + D corresponding to the minimum horizontal separation distance between shaft 

centers for which all location pairs between shafts are beyond ah and, thus, uncorrelated.  Based 
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on this, an approximation to ,sC i.e., Equation 4.7, is proposed in the form of a spherical 

covariance function of range ah + D, which avoids the numerical integration of Equation 4.6 and 

allows for a quick and direct population of the respective shaft variance–covariance matrix as 

shown in Figure 4-1d. 

3

1 1.5 0.5     for  1
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0                                                  for  1

s s s
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h h h
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

 

 (4.7) 

 

 
 
Figure 4-1.  (a) Example of quadruple “Q” square configuration with (b) respective shaft separa-

tion matrix in multiples of D, and (c) and (d) are variance–covariance matrices in multiples of  
the upscaled single shaft variance 2.s   Part (c) is from numerical evaluation of Equation 4.6, 

while Part (d) assumes a spherical covariance function of range ah + D to approximate the 
horizontal covariance function Cs (Equation 4.7).  A spherical covariance function for  

q and L/av = 5 and ah/D = 10 are used.  Bold italic numbers indicate shaft  
numeration and are used to label rows and columns of the matrices. 

      (b) 1 2 3 4 

      1 0 3 4.2 3 

      2 3 0 3 4.2 

      3 4.2 3 0 3 

      4 3 4.2 3 0 

           

(c) 1 2 3 4  (d) 1 2 3 4 

1 1 0.68 0.48 0.68  1 1 0.60 0.45 0.60 

2 0.68 1 0.68 0.48  2 0.60 1 0.60 0.45 

3 0.48 0.68 1 0.68  3 0.45 0.60 1 0.60 

4 0.68 0.48 0.68 1  4 0.60 0.45 0.60 1 

1 

2 3 

4 

(a) 

D 
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In addition to the quadruple configuration of Figure 4-1a, Figure 4-2 illustrates further 

multiple shaft configurations considered in this work (D1, T1 and T2).  In analogy to Figure 4-1, 

for every configuration considered here and associated shaft separation distances, the variance–

covariance matrices may be constructed using Equation 4.6 or 4.7 and αsf may be found by 

averaging of all matrix elements.  The averaging of the matrix elements may be summarized by 

the following equations where the type of foundation is indicated in the subscripts.  Extensions to 

other group configurations not considered herein are straightforward. 

,

, 1

, 2

,

0.5 (0) 0.5 ( )

0.33(0) 0.44 ( ) 0.22 (2 )

0.33 (0) 0.67 ( )

0.25 (0) 0.5 ( ) 0.25 ( 2 )

sf D s s s

sf T s s s s

sf T s s s

sf Q s s s s s

C C D

C D C D

C C D

C C D C D

   

    

   

     

 (4.8) 

 

 
 

Figure 4-2.  Further examples of multiple shaft configurations with rigid pile caps  
and possible center borings (crosses). 

 
 

For the exact solution of Equation 4.6, values of sC and αsf in Equation 4.8 are a function of 

L/av, D/ah and Ds /D.  For a typical value of Ds /D = 3 and using Equations 4.5 and 4.8, Figure 

4-3 graphically represents the outcome of the exact solution of 1/ 2
qf for different shaft 

configurations (single shafts “S ” from Klammler et al. 2010b is included for reference).  Using 

the approximation of Equation 4.7 (not shown for clearness of charts) instead of Equation 4.6 

D

Ds Ds 

D1

T

T
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results in maximum errors in 1/ 2
qf (and hence CVR for a given CVq) of approximately ±5 %.  

Errors are close to zero for D/ah < 0.05, D/ah ≈ 0.15 and D/ah > 0.5.  For 0.05 < D/ah < 0.15 

errors are negative (i.e., unconservative, which may be avoided by multiplication of 1/ 2
qf by 1.05 

in this range), while for 0.15 < D/ah < 0.5 errors are positive.  Maximum positive and negative 

errors of the approximation also decrease as Ds /D increases and unconservative errors do not 

exceed 5% down to a theoretical value of Ds /D = 1 (results not shown). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-3.  1/ 2
qf as a function of L/av for single and multiple shaft configurations of Figures 4-1 

and 4-2 with Ds /D = 3.  Thick graph corresponds to line shaft approximation 1/ 2
0 .  

 
 

The top graphs (case of D/ah = 0) in Figure 4-3 are all identical; in this case the variance 

reduction is independent of the number and arrangement of shafts and equal to variance 

reduction α0 for averaging over a vertical line of length L (termed “line shaft approximation” in 

Klammler et al. 2010a and b) 

T2
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 (4.9) 

This is seen to be the common worst case scenario (maximum αqf  and CVR) for all configurations 

in the case of potentially unknown ah.  For D/ah > 0.5 correlation between individual shafts is 

zero and sf from shaft to foundation level becomes equal to 1/ns.  Based on the assumption of 

lognormality for foundation resistance and computed CVR, determination of LRFD resistance 

factor Φ may be achieved along the lines of Klammler et al. (2010a) by the following AASHTO 

(2004) formulae: 

   
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 (4.10) 
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The term CVQ hereby denotes the coefficient of variation of the random load and β is a 

user selected reliability index depending on the importance of a structure (admissible probability 

of failure).  The remaining dimensionless parameters in Equations 4.10 and 4.11 may be chosen 

according to AASHTO (2004) for load cases I, II, and IV where dead load factor γD = 1.25, live 

load factor γL = 1.75, and the Federal Highway Administration (FHWA) recommended values of 

dead-to-live load ratio QD /QL = 2, resistance bias factor λR = 1.06, dead load bias factor λQD = 

1.08, live load bias factor λQL = 1.15, dead load coefficient of variation CVQD = 0.128 and live 

load coefficient of variation CVQL = 0.18.  It is worthwhile noting that Φ from Equation 4.10 is 
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based on CVR of the whole foundation and, as such, assures a target probability of failure of the 

whole foundation and not just of a single shaft of the group (which would not be the actual 

design goal). 

4.4  Single and Multiple Shaft Foundations  
with Conditioning Data 

 
Knowing the exact locations of each foundation in the design process allows for collection 

of additional boring data inside or near the footprint (e.g., at the center as indicated by crosses in 

Figures 4-1 and 4-2 and considered hereafter) of a foundation to decrease uncertainty in 

predicted foundation resistances.  In order to incorporate the influence of such collocated boring 

data, spatial correlation (conditioning) between data and the foundation is explored.  The 

geostatistical tool used for this purpose is ordinary kriging (Journel and Huijbregts 1978), which 

delivers a predicted mean unit side friction ff with an error variance 2
fk between ff and its true 

counterpart ff .  The resulting problem may be studied in a two-dimensional (horizontal) plane 

where each of nb borings on a site is represented by a point associated to a data value equal to the 

mean qbi (i = 1, 2… nb) of the local strength observations in that boring (assuming that all 

borings are of approximately same length L).  The foundation is represented by its horizontal 

cross section centered on one of the borings as illustrated by Figure 4-4.   

 

 
 

Figure 4-4.  Typical plan view of borehole (crosses) and foundation locations (e.g., quadruple 
shaft foundation for a bridge site).  Not to scale. 

 
 

For a full ordinary kriging solution, the horizontal covariances among all the borings 

themselves and between all the borings and the foundation would be required in order to 
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determine a specific kriging weight wi (Σwi = 1) for each boring.  The term ff  as given by 

Equation 4.2 is then predicted in the well known form by 

1

bn

f i bi
i

f w q



  (4.12) 

with a variance 2
fk of the prediction error ff – ff as 
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22 )(2)(  (4.13) 

where Cb is the horizontal covariance function of qb (i.e., a vertically upscaled version of Cq 

according to Equation 4.6) between boring locations xi and xj, and Cbf  is the horizontal 

covariance function between qb and ff with xf denoting the (center) location of the foundation.  It 

is hereby assumed that the borings are sampled at intervals smaller than av such that additional 

sampling in a boring would only deliver highly redundant (i.e., correlated) information. With 

this, each boring may be considered as continuously sampled over depth and the actual numbers 

of samples per boring become irrelevant (i.e., do not appear in Equations 4.12 and 4.13).  The 

three terms on the right-hand-side of Equation 4.13 are the variance 2
f of ff (Equation 4.4), the 

variance 2
f  of ff  and twice the covariance ( , )f fC f f between ff and ff whose negative sign 

reflects the benefit of conditioning data on prediction uncertainty.  All terms may be directly 

obtained from Equation 4.6 with respective choices of A1 and A2.   

In typical design situations, nb borings at a site may consist of n1 largely spaced borings 

from preliminary site investigation (i.e., previous to definition of foundation locations) and n2 

subsequent borings at potential foundation locations.  In such cases, it may be reasonable to 

assume that no correlation exists between the borings at a site (i.e., Cb(xi-xj) = Cb(0) for i = j and 

equal to zero otherwise), except for when a preliminary boring happens to be in the vicinity of a 

future foundation location where a collocated boring is also obtained.  In such a case, it is 
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conservative to consider full correlation between such nearby pairs of borings and reduce them to 

one “effective” boring by averaging (a non-simplified ordinary kriging solution would do the 

same).  Thus, a conservative “effective” number of uncorrelated borings is obtained as nbe ≤ nb 

(e.g., in Figure 4-4 nb = 8 and nbe = 6).  With the further assumption that only the collocated 

boring (i = 1) presents possible spatial correlation with ff (i.e., Cbf  (xi-xf) = Cbf (x1-xf) for i = 1 and 

zero otherwise, a very simple ordinary kriging system may be constructed for determination of 

the kriging weights wi as represented by Equation 4.14.  The term w1 represents the weight for 

the collocated boring, w2 = (1 – w1)/(nbe – 1) the equal weights for all other borings (wi = w2 for 

i>1), and μ is a Lagrangian operator. 
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Solving for w1 and w2 gives 
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 (4.15) 

 
where r = Cbf (x1-xf)/Cb(0) is a normalized covariance between qb1 (collocated boring) and ff 

(foundation).  With Equation 4.15 and qbm = 1/nbe Σqbi denoting the mean of all i = 1, 2,…, nbe, 

effective borehole data Equation 4.12 may be written as 
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 1 1f b bmf rq r q     (4.16) 

For r = 0, the collocated boring has no more predictive power than the other borings 

and ff =qbm, while for r = 1 the collocated boring is a perfect predictor such that ff   = qb1.  

Substituting Equation 4.15 into Equation 4.13 under the above assumptions about Cb and Cbf, 

simplifying and dividing by 2
q gives 
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as a respective variance reduction factor which accounts for limited data through nbe and data 

conditioning through r.  Theoretically perfect prediction with r = 1 is possible only if the 

foundation is reduced to a vertical line (identical to the collocated boring), such that αqf = α0 

correctly leading to αqfk = 0.  For the opposite case of r = 0 (no conditioning to nearby data or 

random/unknown foundation location) and the conservative line shaft approximation (αqf = α0) 

Equation 4.17 reduces to a respective expression developed in Klammler et al. (2010b) for the 

presence of a limited number of test borings.  Finally, Equation 4.17 is seen to correctly reduce 

to αqfk = αqf of the previous section for r = 0 and nbe >> 1, i.e., no data conditioning and 

exhaustive data set available. 

Equations 4.16 and 4.17 are directly valid for any type of single or multiple shaft 

foundation and required values of α0 and αqf may be readily obtained from Figure 4-3 and/or 

Equation 4.9.  What remains to be determined is the correlation parameter r, which is obtained 

from Equation 4.6 with A1 being a vertical line of length L (collocated boring) and A2 being the 

total lateral foundation surface Af.  As such, Equations 4.16 and 4.17 are generally valid for 

arbitrary boring locations inside or nearby the foundation footprint.  For the particular (but quite 
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typical) case of a boring at the center of the footprint (i.e., x1 = xf), results from numerical 

integration of Equation 4.6 are graphically represented in Figure 4-5 as a function of ah /D for 

various shaft configurations.  As to be expected, spatial correlation in the vertical direction only 

has a small influence on the horizontal correlation parameter r with this influence becoming 

quite insignificant for L/av > 1.  The latter is also the range encountered in practical applications 

for which Figure 4-5 is valid (L/av < 1 would be reflected by a non-stationary variogram over the 

foundation depths and would be handled by subtraction of a deterministic trend function such 

that L/av > 1 is again the case for the random residuals). 
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Figure 4-5.  The term r = Cbf (0)/Cb(0) as a function of ah /D for L/av > 1 (continuous),  
L/av = 0 (dashed) and different shaft configurations (Ds = 3D). 

 
 

For given foundation types (S, D1, T1, T2 or Q), dimensions (D and L; Ds = 3D) and site 

conditions (qb1, qbm, CVq, av and ah) Figure 4-5 with Equations 4.16 and 4.17 can be used to find 

a nominal resistance Rn equal to 

n f fR A f   (4.18) 

A respective coefficient of variation CVR results as 
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permitting evaluation of Equation 4.10 to find Φ.  However, as already discussed in the previous 

section, the horizontal correlation range ah is a potentially unknown parameter due to a generally 

limited number of borings (i.e., horizontal information) at a site.  One way of dealing with this 

problem is to adopt hypothetical values of ah within a reasonable practical range and 

conservatively choose to design according to the worst case scenario, i.e., where the resulting 

design load or the product RnΦ are a minimum.  The equations for (numerically) minimizing RnΦ 

are given above; however, results will depend on a large number of case specific parameters such 

as foundation type nbe, qb1/qbm, CVq, β and many more in Equations 4.10 and 4.11. 

Of interest is a simpler and more general method to conservatively minimize RnΦ by 

minimizing each factor Rn and Φ, separately.  From Equation 4.16 it is immediately seen that Rn 

is minimized to Rnw by equating ff  to the lower value between qb1 and qbm. 

),min( 1 bmbfnw qqAR   (4.20) 

On the other hand, knowing that Φ for any value of β is a monotonically decreasing function in 

CVR, Φ is minimized by maximizing CVR to CVRw as 

bmfq
nw

qfkw

Rw qACV
R

CV


  (4.21) 

where αqfkw is obtained by maximizing Equation 4.17 as a function of ah.  This is best done 

numerically for different parameter combinations of foundation type nbe and L/av.  Knowing 

from Figure 4-3 that αqf in Equation 4.17 may be well approximated by kα0 where k is primarily a 

function of ah/D and, hence, r (not so much of L/av) an equation of the form 



 

 37

0 









be
qfkw n

B
A  (4.22) 

is sought to approximate αqfkw.  For Ds = 3D and with maximum errors in CVRw of approximately 

1% on the unconservative and 5% on the conservative side, respective values of the coefficients 

A and B for each foundation type indicated in the index are obtained by trial and error fitting to 

exact numerical results as:  AS = 0.17, BS = 0.98; AD = 0.30, BD = 0.90; AT 1 = 0.10, BT 1 = 0.90; 

AT 2= 0.21, BT 2 = 0.95; AQ = 0.18, BQ = 0.97.  Hereby, it may be consistently observed that the 

worst case scenarios for each individual foundation type occur for maximum values of ah where 

r is still zero or small (Figure 4-5), i.e., where spatial averaging on Af is limited and correlation to 

data in the footprint is equal or close to zero.  Results of (A + B/nbe)
1/2 of different foundation 

types are graphically illustrated in Figure 4-6 (continuous) together with a previous solution for 

no center boring from Klammler et al. (2010b) for comparison (dashed).  Finally, it is noted that 

the worst case scenario of Equation 4.22 is independent of D, which contributes to maintaining 

the design process as simple as possible. 
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Figure 4-6.  Performance of different shaft configurations under the worst case scenario of 
Equations 21 and 22 for unknown ah in the presence of a center boring.  Dashed line for 

comparison from Klammler et al. (2010b) without a center boring. 

S

D QT 2

T 1



 

 38

4.5  Discussion of Results 
 

The results developed above are valid for both single and multiple shaft foundations with 

unknown or known foundation locations.  In the latter case, nearby data may be considered to 

decrease resistance prediction uncertainty through spatial correlation (conditioning) where 

particular results given are for borehole data at the center of a foundation’s footprint.  Equations 

4.16 and 4.17 are general in the sense that they encompass all of these scenarios and correctly 

collapse to the solution of Equations 4.6 and 4.8 for nbe >> 1 and no data conditioning.  

However, explicit results for this particular scenario as summarized in Figure 4-3 are still 

valuable as input for the more general formulation, since it provides the parameter αqf  for 

Equation 4.17.  In Figure 4-3, the expected general tendency may be confirmed that the variance 

reduction monotonically increases as both L/av or D/ah grow, i.e., as the degree of spatial 

averaging increases.  In the same way, it may also be observed that increasing the number (ns ) of 

shafts in a foundation lowers resistance uncertainty.  However, a direct comparison between 

different shaft configurations is not straightforward as equal values of L and D lead to different 

values of Af and, hence, nominal resistances for each case.  In other words, different types of 

foundations are typically designed with different shaft dimensions.  An exception to this are the 

triple shaft configurations “T1” (row) and “T2” (triangle) which perform identically for D/ah ≥ 

0.5 (no correlation between individual shafts) and where “T1” slightly outperforms “T2” for 

0<D/ah < 0.5 due to the larger horizontal spreading of shafts in “T1”.  Under the common 

practical situation of unknown horizontal correlation range ah, Figure 4-3 indicates that a 

respective worst case scenario exists by adopting D/ah = 0 which reduces all foundation types to 

the same line shaft approximation of Klammler et al. (2010a and b).  Finally, independent of 

foundation type, shaft diameter, and correlation ranges, a general conclusion may be drawn from 

Figure 4-3 that vertical averaging may be very efficiently explored up to L/av ≈ 4 (steep portions 
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of curves), while for L/av > 4 the benefits of increasing shaft length on uncertainty reduction (in 

absolute terms) become small. 

As reflected by Equations 4.17 or 4.22, the latter conclusion remains valid in the presence 

of a center boring in the footprint of a single or multiple shaft foundation.  Moreover, a center 

boring has the benefit of leading to considerably more favorable worst case scenarios for 

unknown ah as reflected by Figure 4-6 where continuous graphs correspond to results from 

Equation 4.22 and the dashed line represents (1 + 1/nbe)
1/2 as derived in Klammler et al. (2010b) 

for an unknown foundation location (i.e., no center boring).  This remains true even if no actual 

data conditioning between the center boring and the foundation exists (i.e., r = 0, such as 

considered for unknown foundation location) which is due to the mere fact that data was 

collected inside the foundation footprint and used in Equation 4.16.  Figure 4-6 demonstrates that 

for a given number of borings nbe, the benefit of a center boring is a 50% reduction in CVR.  

Provided a center boring is available, Figure 4-6 also illustrates the performance of different 

shaft configurations in terms of resistance uncertainty.  As above, a direct comparison is not 

straightforward due to generally different shaft dimensions for each configuration, but assuming 

equal L/av (i.e., α0 in Equation 4.22) some observations may be made.  Independent of nbe, the 

configuration “T1” (triple row) performs clearly best among all foundation types considered. 

“T1” is followed by “S” (single), “Q” (quadruple) and “T2” (triple triangle) which show similar 

behaviors and, finally, “D1” (double).  The perhaps unexpectedly good performance of “T1” 

may be attributed to the fact that the center boring falls exactly into the footprint of the center 

shaft, which reduces uncertainty substantially.  In other words, data conditioning starts at lower 

ah (compare Figure 4-5) when horizontal averaging is still more effective as well.  Another 

interesting observation from Figure 4-6 is that prediction uncertainty may be efficiently reduced 

up to nbe ≈ 4 (steep portions of graphs), while for nbe > 4 the benefit of additional borings on 
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uncertainty reduction decreases.  This fact is very important for sites which are not statistically 

homogenous, i.e., where (horizontal) division into sub-zones is required for separate 

geostatistical treatment such that the nbe for each sub-zone become smaller (e.g., 5 instead of 15).  

Moreover, in the (actual or potential) presence of smooth horizontal trends over a site, nbe may 

be limited without significantly inflating uncertainty to a small number of nearest borings which 

are used for design of a foundation (“moving window approach,” Journel and Rossi 1989).  This 

may avoid making crucial decisions about the presence and shape of horizontal deterministic 

trend functions.  Finally, in the presence of vertical layering and/or nested variogram structures, 

the approach of Klammler et al. (2010a) remains valid which is based on separate treatment of 

individual layers and/or variogram components with subsequent addition of predictions and 

prediction variances. 

4.6  Practical Example 
 

In order to demonstrate the application of the results presented, the 17th Street Bridge case 

study of Klammler et al. (2010a) is extended by considering a triangle (“T2”) foundation with 

L= 9 m, D = 0.4 m and the presence or not of a center boring.  A total of 136 local rock strength 

measurements from 6 borings is available, where qbm = 2.28 MPa with CVq = 0.50.  A spherical 

covariance function is adopted with correlation ranges of av = 1.5 m and ah = 4.5 m for 80% of 

2
q plus av = ∞ and ah = 4.5 m for the remaining 20% (i.e., 20% of the variability in q is only 

contained in the horizontal direction — “random areal trend.”  For the purpose of illustrating the 

present approach, the 6 borings are assumed spatially uncorrelated among each other such that 

neb = 6. 

In a first design step with unknown foundation location or before obtaining data from a 

center boring Rn = Af qbm = 77.31 MN, where Af = 3·0.4·π·9 = 33.91 m2.  Assuming ah and, 
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consequently, D/ah = 0.4/4.5 = 0.09 are known, Figure 4-3 immediately gives a variance 

reduction factor for the first variogram component with L/av = 9/1.5 = 6 of αqf1 = 0.312 and for 

the second variogram component with L/av = 9/∞ = 0 of αqf2 = 0.842.  Applying a result of 

Klammler et al. (2010a) αqf1 and αqf2 may be combined to a total variance reduction factor by 

taking the weighted average αqf = 0.8αqf1 + 0.2αqf2 = 0.22 such that further CVR = 0.221/2 · 0.5 

=0.23 and Φ = 0.63 from Equation 4.10 (ΦRn = 48.71 MN).  In case ah is not reliably known, 

the same chart of Figure 4-3 gives worst case values of α01 = 0.352
 and α02 = 1 by using D/ah = 0.  

By the same relationships from above this leads to α0 = 0.30, CVR = 0.27 and a reduced Φ = 0.56 

(ΦRn = 43.29 MN).  These results are very similar to those obtained for a single shaft in 

Klammler et al. (2010a) which may be attributed to the reduced shaft diameter for the triple 

configuration in order to achieve equal Rn. 

In a more advanced stage of the design process, data from a center boring at a foundation 

location may be available.  Assuming that ah is known and that the mean local strength observed 

in the center boring is qb1 = 1.70 MPa, respective values of r1 = 0.87 (continuous line for 

L/av=6> 1) and r2 = 0.77 (dashed line for L/av = 0) are obtained from Figure 4-5 which may be 

combined by the same process of variance weighted averaging to a total value of r = 0.8r1+0.2r2 

= 0.85.  Equations 4.16 and 4.18 then give ff = 0.85 · 1.70 + 0.15 · 2.28 = 1.79 MPa and 

Rn=33.91 · 1.79 = 60.70 MN.  Furthermore, Equation 4.17 may be evaluated with all 

parameters known from above as 1/ 2
qfk = [0.30(0.152/6 – 0.852) + 0.22]1/2 = 0.07.  Equation 4.19 

then gives CVR = 0.07 · 0.5/(1 – 0.25 · 0.85) = 0.044 which translates into Φ = 0.98 by Equation 

4.10 such that ΦRn = 59.49 MN.  This is significantly larger than 48.71 MN obtained above in 

the absence of a center boring and with known ah = 4.5 m even though Rn is 25% smaller. 
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Under the same scenario of a center boring, but with ah unknown, Figure 4-7 graphically 

represents results of the design variables (with Af qbm normalized to unity) as a function of ah /D 

and for four different values of qb1/qbm which reflects the previous results for qb1/qbm = 0.75 and 

ah /D = 4.5/0.4 = 11.15.   

 

 
 

Figure 4-7.  Worst case scenarios for example problem and different values of qb1/qbm. Exact 
results are shown in the graphs, while approximate results are given in the text inserts. 

 
 

Most interesting to notice are the minima in ΦRn (thick continuous lines), which can be 

explored in design as worst case scenarios for unknown ah.  While for qb1/qbm close to or above 

one, these minima are mainly conditioned by minima in Φ (i.e., prediction uncertainty) and 

consistently occur near the point where correlation between center boring and foundation starts; 

for qb1/qbm significantly smaller than one, the minima may occur for very large values of ah /D, 
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thus being conditioned by small values of Rn without significant prediction uncertainty 

(CVR≈0).  In the above case of qb1/qbm = 0.75, for example, ΦRn=0.73Afqbm = 56.44 MN is 

obtained being only slightly smaller than 59.49 MN for ah = 4.5 m from above.  As evident from 

Figure 4-7, the potential increase in ΦRn due to a known ah becomes larger as qb1/qbm grows.  

Considering only worst case scenarios, however, benefits in ΦRn due to larger qb1/qbm (i.e., 

stronger ground at the foundation location) are not very significant in the present case.  An 

improvement upon the minima in ΦRn of Figure 4-7 can be possible by explicitly taking into 

account the spatial correlation structures between all borings (i.e., improving on the conservative 

assumption that two nearby borings are fully correlated) and by allowing for correlation between 

more than a single boring with the foundation.  However, this would quickly lead to an increased 

computational complexity, since an ordinary kriging system has to be solved for every value of 

ah/D instead of the simplified Equations 4.16 and 4.17.  Even evaluation of worst case scenarios 

as in Figure 4-7 based on Equations 4.16 and 4.17 may soon become a tedious task without 

computational aid and even more conservative worst case scenarios are indicated inside the 

charts based on the approximate Equations 4.20, 4.21 and 4.22.  For the example problem with 

qb1/qbm = 0.75, this results in Rnw = 0.75Afqbm = 57.99 MN, αqfkw = (0.21 + 0.95/6)·0.30 = 0.11, 

CVRw = 0.111/2·0.5 / 0.75 = 0.22, Φw = 0.65 and ΦwRnw = 37.69 MN, which presents a relatively 

large decrease in admissible load with respect to 56.44 MN from above based on simultaneous 

minimization of the product ΦRn rather than of each factor separately.  However, as illustrated by 

Figure 4-7, this conservative difference decreases quickly as qb1/qbm approaches or exceeds unity.  

This indicates that an additional mathematical effort to directly minimize the product ΦRn may 

be quite compensating, especially for qb1/qbm < 1. 
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CHAPTER 5 
UNMONITORED, PARTIALLY AND FULLY MONITORED 

PILE GROUPS – KRIGING APPROACH 
 

5.1  Background  
 

The present chapter further generalizes the kriging approach from Chapter 4 for the 

particular scenario of partially monitored (including unmonitored and fully monitored) pile 

groups.  Total pile resistance Rp (i.e., side + tip) is hereby considered as a spatially random 

variable, as this avoids individual treatment of side and tip resistances with subsequent addition 

(problem of side-tip correlation).  Note, this data is generally available from high strain rate pile 

monitoring systems and is generally used to set pile lengths, blow counts, etc.  For this develop-

ment, the following assumptions are considered: 

 Data used are total pile resistances such that each pile represents a point location in the 

horizontal plane (no more horizontal and vertical averaging over pile surfaces); 

 Different numbers and configurations of piles may be monitored in a group; and 

 The number and configuration of monitored piles may be different from group to group. 

5.2  List of Variables for Chapter Five 
 

To assist with the description of monitored and unmonitored pile variables, uncertainties, 

etc., the following variable descriptions are provided: 

i Index from 1 to ng denoting pile groups; i = 1 denotes pile group to be designed such 
that indexation of i changes depending on what pile group is being designed (refer to 
Figure 5-2). 

j, k Indices from 1 to npi denoting piles in group i; piles from j, k = 1 to nmi are monitored, 
while piles from j, k = nmi + 1, nmi + 2, …, npi are unmonitored (refer to Figure 5-1). 

ng Number of pile groups in a site (homogeneous subzone), where at least one pile is 
monitored. 

npi Number of piles in pile group i. 

nmi Number of monitored piles in pile group i. 
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Ds Fundamental center-to-center pile separation distance within a group (e.g., 3 times pile 
diameter) 

Rp Random function in the horizontal plane representing true total (side + tip) pile 
resistance. 

Rpε Rp plus random measurement error of monitoring method (result of measurements). 
2
  Variance of random measurement error of monitoring method. 

ε 
2 2

p  . 

μp Mean of Rp(ε). 
2
p  Variance of Rp. 

2
p  Variance of Rpε (

2 2
p   ). 

CVRp Coefficient of variation of p/μp of Rp. 

C(h) Spatial covariance function of Rp (isotropic). 

Cε(h) Spatial covariance function of Rpε (isotropic). 

(h) Variogram of Rp. 

γε (h) Variogram of Rpε. 

ah Horizontal correlation length. 

h Spatial lag separation distance. 

hjk Spatial lag separation distance between piles j and k within a pile group. 

Rpij Total (side + tip) true (e.g., from static load test) pile resistance of the j-th pile in the 
i-th pile group. 

Rpεij Total (side +tip) monitored pile resistance of the j-th pile in the i-th pile group 
(containing measurement error). 

Rmi Mean of monitored pile resistances in group i. 

Rm1 Mean of monitored pile resistances in group i = 1. 
2
mi  Variance about Rmi for 2

  = 0. 

2
1m  Variance about Rm1 for 2

  = 0. 

m1 
2 2

1 .m p   

Rg1 Mean pile resistance of pile group i = 1 to be designed. 
2

1g  Variance about Rg1. 

g1 
2 2

1 .g p   

1gR  Unbiased (ordinary kriging) estimate of Rg1. 

1g wR  Worst case estimate of Rg1 for unknown ah. 
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Rn Nominal LRFD resistance given by np1 1gR or np1 1 .g wR  

wi Ordinary kriging weights of all Rmi. 

W1 Weight of Rm1 against μp. 

W1min Minimum value of W1 for unknown ah. 

W1max Maximum value of W1 for unknown ah. 

 Lagrangian operator. 
2

1mg  Covariance between Rm1 and Rg1. 

mg1 
2 2

1 .mg p   

2
e  Variance of estimation error 1 1g gR R  . 

e 
2 2 .e p   

αew Worst case value of αe for unknown ah. 

CVRg1 Coefficient of variation of estimation error 1e gR = 1/ 2
e CVRp for finding Φ. 

CVRg1w Worst case value of CVRg1w for unknown ah. 

Φ LRFD resistance factor for pile group i = 1 (Q < 1 ( )g wR ). 

Φw Worst case Φ for unknown ah. 

Q Mean of random design load for pile group i = 1. 

Qw Worst case Q for unknown ah. 

β LRFD reliability index. 
 

5.3  Predicting Pile Group Resistance from  
Monitored Piles Using Kriging 

 
It is common practice in pile driving that once the minimum tip elevation is reached (e.g., 

for lateral load requirements) then final unmonitored pile lengths are set by the hammer blow 

count.  If all piles are driven to the (approximately) same number of hammer blows per foot with 

approximately the same embedment depth, then the total pile resistance Rp may be considered as 

a random function in the horizontal plane.  Randomization of Rp is due to uncertainties of the 

“hammer blow count approach” (or spatial variability of Rp for constant embedment depth), 

which may or may not depend on the spatial soil properties.  As such, Rp may or may not be 

spatially correlated and sampled values of Rp are available as Rpεij at monitored pile locations, 
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where the subscript “ε” indicates the presence of a random measurement error of the monitoring 

method.  The magnitude (variance) of this measurement error is denoted by 2.   If the hammer 

blow count is used as the common property of all piles, then the actual pile embedment depths 

are irrelevant. 

An arbitrary number of piles may be monitored within a pile group as indicated by the 

black circles in the examples of Figure 5-1.  Also, one or more pile groups may be present within 

a site (or homogeneous subzone thereof).  The index i is used to denote the individual pile groups 

as shown in Figure 5-2, where i = 1 always indicates the pile group under consideration, i.e., the 

one for which the allowable design load Q is to be found.  The numbering of the other pile 

groups may be arbitrary.  The total number of pile groups present with at least one pile 

monitored is ng (subscript “g” for group level).  Each pile group may consist of a different 

number of piles, which is denoted by npi (subscript “p” for pile level and index “i” showing the 

group number). 

 
Figure 5-1.  Examples of an (a) 3  3 (npi = 9) and a (b) 4  4 (npi = 16) pile group  
with monitoring configurations (black circles) and pile numbering using index j. 

The lower numbers may be arbitrarily assigned to the monitored piles, while  
the higher numbers may be arbitrarily assigned to the unmonitored piles. 
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Figure 5-2.  (a) Example of pile groups and monitoring configurations (black circles) for ng = 4 

(Term i=1 is used for the pile group under consideration, while i > 1 may be arbitrarily  
assigned to the other pile groups); (b) Simplified model corresponding to Equation 5.9. 

 
 

Rpij stands for the total true (i.e., without measurement error, e.g., from static load test) 

resistance of the j-th pile in the i-th pile group.  The numbering of piles within a group may be 

arbitrary with the exception that the lower indices are assigned to monitored piles, while the 

higher indices are assigned to unmonitored piles.  Using nmi as the number of monitored piles in 

the i-th group (subscript “m” for monitored and index “i” again for group number), this means 

that j = 1, 2, …, nmi indicate monitored piles, while j = nmi + 1, nmi + 2, …, npi indicate 

unmonitored piles (compare Figure 5-1). 

The true pile resistance mean Rg1 in the pile group of interest (i = 1) is given by 
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and the nominal LRFD pile group resistance Rn is equal to np1Rg1.   As np1 is known, it is the goal 

to predict Rg1 as well as the corresponding coefficient of variation CVRg1 to determine LRFD Φ 

and allowable design load Q of the group.   For this prediction we use the mean resistances Rmi of 

all monitored piles in each individual pile group (i.e., every pile group possesses its own value of 

Rmi) given by 





min

j
ijp

mi
mi R

n
R

1

1
  (5.2) 

Mean μp and variance
2
p of Rpε for all pile groups may be obtained as 
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where the product ngnmi may be identified as declustering weights, similar to those of cell 

declustering (Isaaks and Srivastava 1989).  Variogram analysis of all available data Rpεij leads to 

the variogram γε (h) of Rpε and to the spatial covariance function Cε (h) = 
2
p – γε (h).  The 

spatial covariance including the measurement error Cε (h) is assumed to be isotropic, i.e., Cε (h) is 

the same in all horizontal directions.  Due to the random (and typically spatially uncorrelated) 

measurement error, the spatial covariance function C(h) of true pile resistance Rp is known to be 

identical to Cε(h), except for a nugget variance of 2
 at the origin.  This is illustrated in Figure 

5-3 and means that C(h) = Cε (h) for h > 0 and C(0) = Cε (0)  2.   Note that the issue of zonal 

anisotropies between the horizontal and vertical directions (e.g., random layering or random 

areal trends) is no longer relevant as the vertical direction is eliminated from the problem (no 

more vertical upscaling). 
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Figure 5-3.  Difference between Cε (h) and C(h).  Cε (h) and C(h) are identical  

except for Cε (0) = 
2
p and C(0) = 

2
p . 

 
 

Using ordinary kriging, Rg1 may be predicted from known Rmi as 

1
1
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g i mi
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where the sum of the kriging weights 1
1




gn

i
iw .  Under the assumption that C(h) = 0 between 

different pile groups (i.e., possible spatial correlation only within pile groups), wi are found from 

the ordinary kriging system, 
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where hjk is the lag distance between the j-th and k-th piles in the i-th group and μ is the 

Lagrangian operator.  Equation 5.7 represents nothing but the mean value of C(h) between all 

possible pairs of monitored piles, which is identical to the mean of all elements in the variance–

covariance matrix between all monitored piles in group i.  In analogy, Equation 5.8 is nothing 

but the mean value of C(h) between all possible pairs of a monitored pile in the 1st group and 

every pile (both monitored and unmonitored) in the 1st group.  As such, for the example of 

Figure 5-1a, Equation 5.7 corresponds to averaging over the darkly shaded portion of the 

variance–covariance matrix depicted in Figure 5-4 while Equation 5.8 corresponds to averaging 

over both the darkly and lightly shaded portions. 

In order to simplify Equation 5.6 and to arrive at a closed form solution, it is assumed in 

Equation 5.7 that spatial correlation within the groups is large enough, such that  

C(hjk) ≈ C(0)= 2
p can be used for i  > 1 leading to Figure 5-2b and 
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  Monitored Unmonitored 

 j 1 2 3 4 5 6 7 8 9 

M
on

it
or

ed
 1 C11 C12 C13 C14 C15 C16 C17 C18 C19 

2 C21 C22 C23 C24 C25 C26 C27 C28 C29 

3 C31 C32 C33 C34 C35 C36 C37 C38 C39 

4 C41 C42 C43 C44 C45 C46 C47 C48 C49 

U
nm

on
it

or
ed

 

5 C51 C52 C53 C54 C55 C56 C57 C58 C59 

6 C61 C62 C63 C64 C65 C66 C67 C68 C69 

7 C71 C72 C73 C74 C75 C76 C77 C78 C79 

8 C81 C82 C83 C84 C85 C86 C87 C88 C89 

9 C91 C92 C93 C94 C95 C96 C97 C98 C99 

 
Figure 5-4.  Variance–covariance matrix between all piles of the example in Figure 5-1a (npi = 9 
and nmi = 4).  Index j is bold and Cjk is short for C(hjk).  The mean of all elements in the darkly 

shaded portion corresponds to Equation 5.7.  The mean of all elements in the darkly  
and lightly shaded portions corresponds to Equation 5.8.  The mean  

of all 9  9 elements corresponds to Equation 5.16. 
 
 
This is equivalent to increasing the uncertainty about the data values from all pile groups, except 

the one of interest (i = 1).  As a consequence, this results in a larger uncertainty about the final 

group resistance estimate as well as a higher kriging weight for Rm1 (whose variance is not 

increased).  Equation 5.9 may be expanded into the following set of equations: 
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Note that wi = w2 for i  > 1.  Solving for w1, w2 and μ gives 
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where m1 = 
2 2

1 ,m p  mg1 = 
2 2

1 ,mg p  and ε = 
2 2 .p    Substituting Equation 5.11 into 

Equation 5.5 results in 
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From Isaaks and Srivastava (1989), the ordinary kriging variance (i.e., estimation error variance) 

may be expressed as 
2 2 2
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where e = 
2 2 2 2

1 1,e p g g p      and 
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Equation 5.16 is nothing but the mean value of C(h) over all possible pairs of piles (both 

monitored and unmonitored) in the 1st pile group.  For the example of Figure 5-1a, this is 

equivalent to the averaging of all elements of the variance–covariance matrix in Figure 5-4. 

5.4  Discussion of Results 
 
5.4.1  No Pile Monitored in Group of Interest (nm1 = 0) 
 

It may occur that none of the piles in a group is monitored, such that nm1 = 0.  This leads to 

the non-existence of the first rows in Equations 5.6, 5.9 and 5.10 and to 
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in Equations 5.11 and 5.15.  This means that all the available data from other ng – 1 pile groups 

is evenly weighted and 1gR
= μp;  αe collapses to the form for the scenario where limited data is 

available and none of them is nearby for conditioning;  ng has to be larger than one in this case, 

as no data is available from the first pile group.  Limits for αε = 0 and ng >> 1 + αε are easily 

found from Equation 5.18. 

 
5.4.2  One Pile Monitored in Group of Interest (nm1 = 1) 
 

In case a single pile is monitored in the group of interest, such that nm1 = 1, Equations 5.14 

and 5.15 become 
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since αm1 = 1.  If in addition np1 >> 1 (i.e., a single pile monitored out of many piles in a group), 

then mg1 ≈ 0 and Equation 5.13 yields 1gR
≈ μp, which reflects a low degree of monitoring and 

uniform weighting of data from all pile groups.  Equation 5.20 then becomes αe ≈ αg1 + (1 + 

αε)/ng.  In the presence of a single pile group, i.e., ng = 1, αe = αg1 + 1 + αε - 2mg1.  Note that W1 

is not a function of ng in this case (this can be shown to be generally the case when the same 

number and pattern of piles is monitored in each group) and that it decreases as αε increases.  

That is, the larger the measurement errors, the more uniformly kriging weights are distributed 

over all data and 1gR ≈ μp.  For αε = 0, Equation 5.20 yields αe = αg1 + 1/ng - mg1[mg1(ng - 1)/ng + 

2/ng] and for ng >> 1  ,
2

1 1 (1 ).e g mg       

 
 
5.4.3  All Piles Monitored in Group of Interest (nm1 = np1 ) 
 

Here, m1 = mg1 = αg1 and Equations 5.14 and 5.15 become 
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For ng = 1 this gives αe = αε /np1, while for ng >> 1 + αε one finds W1 = αm1/(αm1 + αε /np1) 

and αe = αεαm1/(np1αm1 + αε).  In the theoretical scenario of no measurement error (αε = 0) 

Equations 5.21 and 5.22 reduce to W1 = 1 and αe = 0. 
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In case αε >> 1, αe has to become very large, independent of the particular scenario and all 

other parameters.  Moreover for ng = 1, i.e., in the presence of a single pile group, 1gR = 1mR = μp 

always independent of W1. 

 
5.4.4  Single Pile Group without Spatial Correlation (ng = 1 and ah = 0) 
 

In this case, only monitored data from the pile group of interest is considered, except for 

CVRp which may be based on all monitored data at a site.  Thus, Equation 5.13 becomes  

1 1g mR R   independent of ah, which may be unconservative for pile groups where Rm1 > μp.  In 

the hypothetical case that both ng = 1 and ah = 0 (such that αg1 = αmg1 = 1/np1 and αm1 = 1/nm1), 

Equation 5.15 reduces to the simple form,  

11

11

pm
e nn




   (5.23) 

This nicely illustrates how αe grows with αε and np1 and how it decreases with nm1.  However, as 

seen later in Figures 5-9b and 5-10b (top continuous graphs of each color), the case of ah = 0 is 

not a universal worst case scenario.  

5.5  Worst Case Scenarios of Unknown ah 
 

The behavior of W1 from Equation 5.15 is graphically illustrated by the dashed lines in 

Figures 5-5 through 5-10, where black, blue and red correspond to αε = 
2 2

pCV CV = {0, 0.1, 

0,3}.  Black circles in the pile groups indicate the monitored piles and Ds is an arbitrary 

fundamental pile separation distance (center-to-center; e.g., Ds = 3 times pile diameter).  From 

top to bottom, the dashed lines correspond to ng = {1, 5, 100}, i.e., the larger ng the larger the 

weight on μp in Equation 5.14.  Moreover, it may be observed that W1 possesses a minimum 

value W1min and a maximum value W1max at ah /Ds >> 1.  The latter may be generally expressed as 
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while a simple equation for the former may only be found for the configurations of Figures 5-5 

through 5-8 where W1min consistently occurs at ah /Ds < 1.  Since in these cases W1min occurs 

when there is no more correlation between individual piles in the group, Equations 5.7, 5.8 and 

5.16 simplify leading to g1 = mg1 = 1/np1, m1 = 1/nm1 and 
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Figure 5-5.  Terms W1 (dashed, except for (a), where W1 does not exist as no pile is monitored in 
the group) and e (continuous) as functions of ah /Ds from Equations 5.14 and 5.15 for a double 

pile group.  Black circles indicate monitored piles.  Colors black, blue and red correspond to αε = 
{0, 0.1, 0.3}, respectively.  For each color and line type there are three graphs corresponding to 
ng = {1, 5, 100} from top to bottom, except for (a) where ng = {2, 5, 100}.  Graphs for W1 and 

different ng are identical whenever nm1 = 1 (compare Equation 5.19). 



 

 58

 

 
 

Figure 5-6.  Analogous to Figure 5-5 for tripe pile groups in a line and  
different monitoring configurations. 
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Figure 5-7.  Analogous to Figure 5-5 for tripe pile groups in a triangle and  
different monitoring configurations. 
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Figure 5-8.  Analogous to Figure 5-5 for 2  2 pile groups and  
different monitoring configurations. 
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Figure 5-9.  Analogous to Figure 5-5 for 3  3 pile groups and  
different monitoring configurations. 

 
 

 
 

Figure 5-10.  Analogous to Figure 5-5 for 4  4 pile groups and  
different monitoring configurations. 
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In more complex configurations of Figures 5-9 and 5-10, minima in W1 may occur at 

different locations and are best determined graphically.  In case ah is not available for explicit 

computation of W1, a worst case prediction 1g wR
may hence be defined as 

   1 1max 1 1max 1min 1 1minmin 1 , 1g w m p m pR W R W W R W           (5.26) 

In other words, 1g wR
 = W1maxRm1 + (1-W1max)μp if Rm1 ≤ μp, and 1g wR

 = W1minRm1 + (1-W1min)μp, 

if Rm1 > μp.  This shows that for an increasing degree of monitoring (i.e., nm1 → np1) W1min 

approaches ng + (nm1 - 1)(1 + αε)/[(ng + nm1 - 1)(1 + αε)] which is one for αε = 0, such that the 

worst case prediction 1g wR
approaches Rm1.  With nm1 = 1, Equation 5.25 collapses to 

W1min=1/[np1(1 + αε)], while for large ng it may be found that W1min = nm1/[np1(1 + αε)]. 

For computation of LRFD Φ (e.g., through AASHTO, Equation 4.10, assuming log-normal 

distributions of load and resistance), CVRg1 is required which may be found from Equation 5.15 

by CVRg1 = 1/ 2
e CVRp, where CVRp = p /μp.  For ng = 1, Equation 5.15 collapses to 

e=g1+m12mg1, while for large ng, e ≈ g1  
2

1 1 .mg m    Although a mathematical 

model for C(h), e.g., spherical or exponential, may be adopted to find closed form expressions of 

Equations 5.7 through 5.16 by simple algebraic manipulations, this process is extremely lengthy, 

needing to be repeated for every single combination of pile group type and monitoring 

configuration.  Useful (i.e., sufficiently short /simple) results for practical application are not 

expected.  Instead, in the same way as W1 from Equation 5.14, Equation 5.15 is evaluated 

numerically and results are investigated graphically for several example configurations in 

Figures 5-5 through 5-10 (continuous lines).  From top to bottom, the lines correspond to 

ng={1,5, 100}, i.e., the larger ng the smaller αe and the larger will be Φ.  Black, blue and red 
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again correspond to αε = 
2 2

pCV CV = {0, 0.1, 0.3} where larger values of αε clearly lead to 

larger uncertainty and αe. 

It may be observed that, in general, an increase in the number nmi of monitored piles leads 

to a more substantial reduction in αe than a comparable increase in the number ng of pile groups. 

This is, the number of data available outside the pile group of interest is less important than the 

number of data available within the pile group of interest.  This is further reflected by the fact 

that as ah /Ds grows, αe becomes increasingly independent of ng.  It is also observed that it is 

advantageous to locate monitored piles near the center of pile groups (compare Figures 5-6a and 

5-6b) as well as not immediately adjacent to each other (compare Figures 5-6c and 5-6d as well 

as Figures 5-8b and 5-8c).  Worst case values ew for unknown ah are seen to mostly occur at 

ah/Ds ≤ 1, i.e., when no correlation is present between individual piles.  However, exceptions are 

when ng is large and nm1 is small, such that “humps” in the graphs become evident at ah /Ds ≈ 2. 

Unfortunately, these humps become more pronounced as αε > 0 and ew is best determined 

graphically. 

5.6  Practical Example 
 

To better illustrate the outcome and implications of the previous section, an example is 

worked.  Consider a bridge site with five pile groups (ng), where for the group of interest (i=1, or 

group 1) the number of piles monitored (nm1) are 1, 2, or 3, and the mean of the monitored pile 

resistance (Rm1) of group 1 is 1.6 MN as given,  

μp  =  2 MN 
CVRp  =  0.5 
Rm1  =  1.6 MN 
ε  =  0 
C(h) is spherical with ah /Ds =  3 
ng  =  5 
Square pile group with nm1 =  1, 2, 3 
Reliability index β  =  3 
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Given in Table 5-1 are the results where italic numbers are read from the respective 

figures.  It may be observed that Φ consistently grows as nm1 increases.  However, the variable of 

ultimate interest, the design load Q(w), also depends on the ratio Rm1/μp and general conclusions 

are hence more difficult to make.  Finally, it is noted that the present worst case investigation is 

based on a separate minimization of 1gR
and Φ.  In cases where the two minima do not occur at 

equal values of ah /Ds (e.g., in the present scenario 1g wR
is obtained at ah /Ds >> 1 and αew at 

ah/Ds ≈ 1), a more favorable worst case design load Qw may be obtained by direct (numerical) 

minimization of the product Φ 1gR
as a function of ah /Ds (as shown in Chapter 4).  This is 

equivalent to assuming different possible values of ah and finding respective values of Q from 

which the minimum is chosen as Qw.  It is recalled that the resistance Q represents the entire pile 

group. 

Table 5-1.  Summary of Results from Practical Example. 

nm1 Fig. W1 1gR
 αe CVRg1 Φ Q W1min 1g wR

αew CVRg1w Φw Qw 

- - - MN - - - MN - MN - - - MN 
1 5-7a 0.60 1.76 0.28 0.26 0.59 4.16 0.25 1.6 0.31 0.28 0.54 3.46 
2 5-7b 0.79 1.68 0.13 0.18 0.72 4.84 0.58 1.6 0.18 0.21 0.67 2.28 
2 5-7c 0.89 1.64 0.08 0.14 0.80 5.26 0.58 1.6 0.17 0.21 0.67 2.28 
3 5-7d 0.94 1.62 0.04 0.10 0.89 5.78 0.82 1.6 0.08 0.14 0.80 5.12 
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CHAPTER 6 
UNMONITORED, PARTIALLY AND FULLY MONITORED PILE  

GROUPS – REGRESSION APPROACH 
 

6.1  Background 
 

The previous two chapters consider estimation of driven pile group resistance and 

uncertainty based on SPT/CPT data (for side friction only) and directly monitored data (EDC, 

PDA; side + tip resistance).  Fundamental assumptions in both cases are that SPT/CPT estimates 

of local strength in the former case and monitored pile resistances in the latter case may be 

regarded as random functions in space.  As such, the approach in Chapter 5 requires some 

common characteristic of all monitored and unmonitored piles (e.g., equal embedment depths or 

blow counts).  This may be in accordance with design practice if other load scenarios other than 

pure axial load are dominant (e.g., lateral loading requiring minimum embedment depth).  In 

general, however, piles are driven until a desired design resistance is reached with the number of 

hammer blow counts, i.e., blows/ft, etc., varying from pile to pile.  Beside this, the use of 

SPT/CPT data (i.e., Chapter 4) from the design phase prior to any (test) for pile 

driving/monitoring introduces more complexity. 

Due to the conceptual limitations (i.e., equal pile capacity/blows) of Chapter 5 and added 

complexity of SPT/CPT data of Chapter 4, the present chapter seeks an alternative solution based 

on two modifications:  (1) Blow count data during pile installations is incorporated as an 

additional piece of information to more closely emulate construction practice; and (2)spatial 

correlation between monitored pile resistances is neglected to avoid conceptual limitations 

(approach more flexible/adaptive to different design situations) and to make results more 

designer friendly.  As such, Chapters 5 and 6 may be regarded as two particular simplifications 

of a general co-kriging approach, which would consider monitored pile resistances and pile blow 

count data as primary and secondary variables, respectively.  While Chapter 5 neglects the 
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collocated secondary variable (blow counts are ignored), Chapter 6 neglects spatial correlation of 

the primary variable (spatial correlation of monitored resistances is ignored).  Since blow count 

data is known to be well correlated with “true” resistances from static load tests (and, hence, also 

with monitored pile resistances), the loss of information (increase in uncertainty) through 

neglecting spatial correlation of monitored resistances is quite insignificant (see Appendix for an 

illustrative example).  Before developing the approach, an overview is given of different 

relationships which have been used between blow counts and pile capacities. 

6.2  Examples of Relationships between  
Blow Count and Pile Capacities 

 
Relationships between static pile capacity R and hammer blow counts measured during 

pile driving go back to the earlier 1800s.  Generally, the early relationships were linear and the 

later representations were nonlinear (Paikowsky 2004).  For instance, one of the most popular 

capacity estimations is the Engineering News-Record (ENR) formula by Wellington (Paikowsky 

2004), 

( )
h He W H

R
FS s C




 (6.1) 

where WH is the weight of the hammer ram expressed in the same units as R; eh the energy loss 

of the hammer; H the height of fall of the ram (i.e., its stroke); s the pile permanent set; and C the 

energy loss per hammer blow.  Values H, s and C are in inches, where C = 1 inch for drop 

hammers and C = 0.1 inches for all other hammers.  FS is a factor of safety, generally ranging 

from 2 to 6. 

Another popular approach is the FHWA Gates relationship (Paikowsky 2004) expressed as 

1.75 log (10 ) 100u HQ W H N   (6.2) 
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where Qu is the ultimate pile resistance in kips; WH the weight of the hammer ram in pounds; H 

the height of fall of the ram (i.e., its stroke) in feet; and N the driving resistance in blows/inch. 

Both approaches are generally used where high strain rate measurement devices  are not 

employed (Paikowsky 2004).  Their characterization of a Delmag D22 (60kip-ft) hammer with 

various blow counts is shown in Figure 6-1 (ENR:  FS = 4, eh = 0.85).  Evident from Figure 6-1, 

both approaches are nonlinear; however, the ENR results could be approximated as linear.  Also, 

both approaches differ the most at low and high blow counts, but both methods would be 

characterized as linear in a log-log plot.   

 
 

Figure 6-1.  Comparison of ENR and FHWA-Gates for Delmag D22. 
 
 

National Cooperative Highway Research Program (NCHRP) Report 507 (Paikowsky 

2004) evaluated both approaches with a database of measured versus predicted static resistances. 
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Shown in Table 6-1 (AASHTO, 2009) under “Dynamic Equations” are both ENR and FHWA-

Modified Gates summary statistics (bias, standard deviation and ratio CV).  As evident, the ENR 

appears more conservative (higher bias) with more scatter (CV) versus the FHWA-Modified 

Gates.   Also note the high strain rate predictions approaches (e.g., PDA-CAPWAP) have lower 

coefficient of variation than the simpler Dynamic Equation approaches (ENR, FHWA-Gates), 

e.g., PDA/CAPWAP (CV = 0.453), ENR (CV = 0.910) and FHWA-Gates (CV = 0.502).  

 

Table 6-1.  Summary Statistics for ENR and FHWA-Modified Gates (AASHTO, 2009; Note: 
“COV” in this table is equivalent to “CV” in the rest of the report) 

 
 
 

The present chapter aims at discussing the statistical implications of using blow count data 

for estimating static pile resistances and using linear relationship between blow count and 

capacity.  This is in agreement with a preliminary data analysis from two different sites (four 

piles).  However, a generalization to include non-linear relationships is straightforward (see 

Section 2.1 on estimation bias) and is one of the advantages of the approach. 
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6.3  List of Variables for  
Chapter 6 

 
For developing Chapter 6, the following variables have been used and are collected 

together for accessibility:  

Φ LRFD resistance factor. 

β Reliability index. 

Q Nominal design load. 

CVQ Coefficient of variation of design load distribution. 

np Total number of piles in group of interest. 

nm Number of monitored piles in group of interest. 

n0 Number of previously driven piles in group of interest. 

L Pile embedment depth in general. 

Nh Number of hammer strikes per meter pile advance (blow count). 

Nhi Blow count of i-th pile at production depth. 

Rm Monitored total (side + tip) pile resistance. 

mR  Prediction of Rm using Nh. 

Rmi Monitored total (side + tip) pile resistance of the i-th pile at production depth. 

Rp Nominal total (side + tip) pile resistance. 

Rg Nominal total (side + tip) resistance of the pile group of interest. 
2
g  Variance of pile group resistance distribution. 

CVg g /Rg. 

R0 Combined nominal resistance of all previously installed piles in the group of interest. 
2
0  Variance of combined resistance of all previously installed piles in the group of 

interest. 

CV0 0 /R0. 

CVεm Coefficient of variation of error between predicted total (side + tip) pile resistances Rm 
from monitoring (e.g., from EDC or PDA) and true total pile resistances (e.g., from 
static load test). 

CVεh Coefficient of variation of error between predictions of monitored total (side + tip) pile 
resistances mR and monitored pile resistances Rm. 

2
ln m  Variance of natural logarithms of Rm. 

R2 Coefficient of determination of a linear regression model in general. 
2
lnR  Coefficient of variation of the linear regression model of the log-transformed data. 
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i Index denoting different piles in the group of interest. 

a, b, c(), d(), e, f, g, h, A, B, C, X are auxiliary variables used in intermediate equations. 

6.4  The Regression Approach 
 

Typically, a nominal design load Q with a respective coefficient of variation CVQ is given 

in combination with a desired level of reliability β.  These values are defined for a whole pile 

group consisting of np piles, an arbitrary number nm of which may be monitored (side + tip 

resistance, e.g., through EDC or PDA).  For a chosen monitoring method, the measurement error 

with respect to true pile resistances (e.g., from static load tests) is known and expressed by a 

constant coefficient of error variation CVεm (i.e., measurement errors are proportional to 

resistance).  While driving monitored piles, both monitored pile resistances Rm and the number of 

hammer strikes, Nh per meter pile advance (i.e., blow count) are recorded as functions of depth L.  

This is illustrated by an example in Figure 6-2 using data from a 30-in.  70-ft. pile at Bent 7 at 

Caminida Bay, Louisiana.  Figure 6-2a shows depth profiles of Rm and Nh as recorded in the field 

where Rm was obtained with Case’s (i.e., Jc) Equation.  Figure 6-2b is a general comparison, i.e., 

cloud of data points (scatter plot) of Rm versus Nh for all depths.  This further allows for linear 

correlation/regression analysis of raw data and of the log-data (i.e., after taking the natural 

logarithms; Caminida pile 7 example of Figure 6-2c).  Other, e.g., non-linear, relationships may 

also be considered at this stage as an additional bias correction before regression analysis (see 

Section 2.1).  From the raw data scatter plot a linear regression relationship was found between 

the arbitrary blow count Nh (within the range of data points) and the associated expected (or 

predicted) value mR of Rm as 

m hR a bN    (6.3) 
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where a and b are the regression coefficients.  Since the scatter of the data points about the 

regression line is seen to be approximately proportional to Nh, the scatter plot of log-data is used 

to find a constant coefficient of error variation CVεh between mR and Rm, i.e., between monitored 

resistances predicted from blow counts (Equation 6.3) and the truly monitored resistances from 

EDC or PDA.  Assuming the distributions of Nh and Rm are approximately log-normal, CVh may 

be found from the following equation: 

 2 2
ln lnexp 1 1h mCV R

       (6.4) 

with 2
ln m being the variance of ln(Rm) and 2

lnR the coefficient of determination of the log-

regression relationship (e.g., R2 in Caminida pile 7 shown in Figure 6-2c). 

 
Figure 6-2.  Example data from driving of a single pile (pile 7) at Caminida. (a) Depth profiles of 

monitored resistance Rm and blow count Nh; (b) Scatter plot and linear regression between Nh  
and Rm; and (c) Scatter plot and linear regression between ln(Nh) and ln(Rm). 

(a) 

(b) 

(c) 
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Designating all np piles in a group by different values of an index i, which ranges from 1 to 

nm for monitored piles and from nm + 1 to np for unmonitored piles, the total resistance of the 

group may be written as 

  
 


m p

m

n

i

n

ni
himig bNaRR

1 1

 (6.5) 

where Rmi are the monitored pile resistances to which the monitored piles are driven, and Nhi are 

the blow counts to which the unmonitored piles are driven.  The variance 2
g about Rg is then 

        
 


m p

m

n

i

n

ni
hihmimmimg bNaCVRCVRCV

1 1

2222
  (6.6) 

such that CVg = g /Rg.  Note, the first summation represents the uncertainty of monitored piles in 

terms of static resistance, and the second summation represents the uncertainty of unmonitored 

piles.  To represent the uncertainty of the unmonitored piles in terms of static resistance, it must 

first be expressed in terms of the monitored piles (2nd term in 2nd summation) and then in terms 

of static load tests (1st term in 2nd summation).  Subsequently, the LRFD Φ (AASHTO equation; 

assuming log-normal load and resistance distributions) may be found after all piles in a group are 

driven and a, b (Equation 6.5) and CVεh found from data analysis (Equations 6.3 and 6.4) from 

one or more monitored piles.  With this, LRFD leads to a nominal design load of Q = ΦRg. 

However, as initially stated, it is a more typical design scenario to determine Rg for a given 

Q.  Under purely axial load, it is also reasonable to assume that all piles should have the same 

nominal resistance Rp such that Equation 6.5 and 6.6 become Rg = np Rp and  

2
g = 2

pR [np
2
mCV  + (np – nm) 2

hCV ].  This leads to 






















 22 1

1
h

p

m
m

p
g CV

n

n
CV

n
CV   (6.7) 



 

 73

which is independent of Rp and LRFD Φ (to be obtained from CVg and AASHTO equation).  

Consequently, Rg = Q/Φ or Rp = Rg /np may be directly determined.  Knowing this, the monitored 

piles in a group are driven until Rm = Rp is reached and the unmonitored piles are driven until mR  

= Rp is reached, or from Equation 6.3, until a blow count of Nh = (Rp – a)/b. 

Useful in the sequel (and perhaps for various other purposes) will be an approximation to 

the full AASHTO equation (black lines in Figure 6-3) as a linear form Φ ≈ c  dCVg, where 

c=e + fβ and d = g + hβ.  Optimizing the constants e through h gives 

gCV)31.080.0(082.025.1    (6.8) 

which is depicted through red lines in Figure 6-3 and is valid for the range CVg ≥ 0.05, Φ > 0.4 

and 2 ≤ β ≤ 4.  For the common requirement of β = 3, Equation 6.8 becomes 

gCV73.11  (6.9) 

0 0.2 0.4 0.6 0.8 1
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
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-)

 = 2

 = 4

 
 

Figure 6-3.  Term Φ (with λR = 1 and for β = {2, 2.5, 3, 3.5, 4}) as a function of CVg from full 
AASHTO equation (black) and linear approximations (red) from Equation 6.8  

for the range CVg ≥ 0.05, Φ > 0.4 and 2 ≤ β ≤ 4.  Lines for β = 3 are bold. 
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Another good approximation may be of the form Φ ≈ 1/(c + dCV2
g), where c and d  are again 

(linear) functions of β.  However, except for elimination of the square root in Equation 6.7, no 

significant advantages of the latter approximation over Equation 6.8 are found.  Combining 

Equations 6.7 and 6.8 leads to the following compact expression for Φ as a function of group 

size np, degree of monitoring nm /np as well as the prediction errors CVεm and CVεh, 



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In general, it may happen that not all piles are driven to the same nominal resistance.  For 

example, monitored test piles may be driven prior to design of the remaining piles and to larger 

depths for more reliable site exploration.  In this case, n0 denotes the number of previously 

driven piles such that np – n0 is the number of remaining piles in the group for which a uniform 

nominal pile resistance Rp is sought.  The expression 



0

1
0

n

i
miRR  is then the known sum of the 

monitored resistances of the previously driven piles, which is associated with a known variance 

 
0

22
0

1

.
n

m mi
i

CV R


    Equations 6.5 and 6.6 remain valid in the forms 

  ppg RnnRR 00   (6.11) 

   2 2 2 2 2
0 0g p m p m h pn n CV n n CV R 

          (6.12) 

CVg is now a function of Rp and Φ may not be found directly as above.  However, it is known 

from Equation 6.8 that 

g
g

dCVc
R

Q
  (6.13) 

is a good approximation from which by substituting Rg and CVg = g /Rg from Equations 6.11 

and 6.12, a quadratic equation in Rp is obtained.  Defining the auxiliary variable 
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X= (np–n0)Rp/R0 as the multiple of R0 that the piles still to be driven have to contribute, an 

equation in the form of AX2 + BX + C = 0 may be written where 
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 (6.14) 

and CV0 = 0/R0.  With this, X and Rp are found as 

A
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The relevant solution for the present purpose is characterized by Rg > Q.  The second solution of 

the quadratic system leads to Rg < Q and most likely corresponds to the relevant situation, where 

the upper tail of the resistance distribution overlaps the lower tail of the load distribution (i.e., the 

opposite of a regular design situation). 

Knowing required values of Rm = Rp for monitored piles and Nh = (Rp  a)/b for 

unmonitored piles, expected pile embedment depth (and possibly uncertainties) may be 

determined from available depth profiles of Rm and Nh.  An optimization of the degree of pile 

monitoring (e.g., nm /np in Equation 6.10) versus cost of monitoring, pile construction, driving, 

etc., is most easily obtained by assuming different scenarios of nm /np and comparing expected 

costs.  Results are expected to heavily depend on site specific conditions (e.g., degree of 

heterogeneity and layering) and no general guideline may be given at this point. 
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Before any pile monitoring data is available at a site, CVεh given in Equation 6.10 must be 

assessed.   A number of potential solutions are viable:  (1) collect existing data for a variety of 

site conditions (e.g., soil types and hammers) to define the possible worst case values of CVεh to 

be used if site specific monitoring data is not available for regression analysis; and (2) collect 

explicit site specific blow count versus monitored capacities from which CVεh may be established.  

Due to the large number of individual blow count versus monitored capacities with depth for an 

individual pile, two to three monitored piles per site would be sufficient to establish CVεh for a 

given site.  Equally important and more expensive in obtaining is the evaluation of CVεm or the 

uncertainty between the static load test capacity and the monitored pile capacity.  The latter may 

be a function of soil type and evaluation time (e.g., end of drive (EOD) versus beginning of 

redrive (BOR), etc.).  For instance, Table 6-1 suggests a value of 0.339 at BOR for all soils in the 

U.S.  For Florida silts, sands, and limestone, a value of 0.25 will be used (Section 6.5).  Also 

note, the site exploration data, e.g., SPT or CPT, are used to set the design embedment pile 

lengths with a computed uncertainty and LRFD Φ, whereas in construction, pile monitoring and 

measured blow counts will be used to assess a different  LRFD Φ (Equation 6.10) and associated 

uncertainty and final installed pile length. 

6.5  Practical Example 
 

In order to apply the theoretical development from above, data from pile driving at 

Caminida Bay, Louisiana (piles 1 and 7) and SR 810, Dixie Highway (piles 1 and 8) over 

Hillsboro Canal in Broward County, Florida, are analyzed.  While Figure 6-2 already represents 

data from Caminida pile 7 as an example to illustrate the above development, Figure 6-4 contains 

the depth profiles of monitored resistances and blow counts of the other three piles.  It is noted 

that the scales of monitored resistances and blow counts are different (the two variables possess 

different dimensions), which disallows a direct comparison of magnitudes in Figures 6-2a and 
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6.4.  However, this is of actual interest for the present problem.  Figures 6-2a and 6-4 demon-

strate that the fluctuations in monitored resistances and blow counts seem to be positively 

correlated to some degree (i.e., “peaks” and “valleys” mostly coincide for both).  This supports 

the suggestions in Section 6.2 that blow count may be a reasonable predictor for monitored 

resistances.  This is further analyzed in Figure 6-5 containing combined scatter plots of Rm 

against Nh from all four piles with corresponding linear regression fits (compare Figures 6-2b 

and 6-2c which represent the same for a single pile). 

   

(a) (b) (c) 

 
Figure 6-4.  Depth profiles of monitored resistances Rm and blow counts Nh for:   

(a) Caminida pile 1; (b) Dixie pile 1; and (c) Dixie pile 7. 
 
 

The data of both sites and all four piles is seen to form a single cloud indicating that the 

relationships between Rm and Nh at Caminida and Dixie are basically the same.  This may be a 

reflection of similar site conditions or of Nh actually being a convenient predictor for Rm even 

under variable conditions between sites.  Moreover, the data cloud is relatively narrow around 

the regression line and application of Equation 6.4 with 2
ln m = 0.92 and 2

lnR = 0.77 (Figure 6-5b)  
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(a) (b) 

 
Figure 6-5.  Combined scatter plots and linear regression fits of monitored resistance Rm versus 

blow count Nh data from Caminida piles 1 + 8 and Dixie piles 1 + 7:   
(a) Raw data; and (b) log-transformed data. 

 
 
gives CVεh = 0.48.  The coefficients a and b of Equation 6.3 result from Figure 6-5a as 0.030 and 

0.017, respectively.  Repeating the same analysis only for piles 1 and 8 at Caminida gives 

CVεh=0.44 and only for piles 1 and 7 at Dixie CVεh = 0.45 (regression charts not shown).  

Respective values of a and b are also similar. 

For the resulting CVεh = 0.48, a value of CVεm = 0.25 and β = 3.  Figure 6-6 graphically 

represents LRFD Φ as a function of the degree of monitoring in groups of different pile numbers.  

Using the relative portion of piles monitored (Figure 6-6b), it is observed that larger pile groups 

have consistently larger Φ which is due to the larger amount of averaging (variance reduction) 

among a larger number of individual piles (positive and negative measurement error cancel out 

to a larger degree).  In turn, smaller pile groups present a larger increase in Φ with additional 

monitoring.  Note that results only depend on np and nm /np, but not on the actual geometric 

arrangement of piles in a group.  The continuous lines in Figure 6-6b are approximations 

obtained from Equation 6.10 and show excellent agreement with exact results from the full 
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AASHTO equation indicated by dots.  This is a consequence of the fact that all data points in 

Figure 6-6 lie within the range established for the approximate Equations 6.8 and 6.9. 

    

(a) (b) 

 
Figure 6-6.  LRFD  as a function of degree of monitoring for different numbers of piles in a 

group (see legend) using CVm = 0.25, CVh = 0.48 and  = 3.  (a)  = f (nm) and  
(b)  = f(nm/np).  Dots are from full AASHTO equation, while  

continuous lines are from Equation 6.10. 
 
 

Figure 6-7 displays the effect of variable CVεh on Φ for different values of np and nm /np. 

Evidently, Φ consistently decreases as CVεh increases and vice-versa.  The influence of CVεh, 

however, decreases gradually as the degree of monitoring increases and it has to become zero for 

full monitoring (nm /np = 1).  Moreover, averaging of prediction errors over a larger number of 

piles makes the sensibility of Φ to changes in CVεh smaller for larger pile groups (graphs closer 

together).  Effects of CVεm on Φ are of the same nature as those of CVεh, however, they do not 

depend so much on nm /np and correspond more to a vertical shifting of the curves in Figure 6-7. 
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Figure 6-7.  Term  as a function of degree of monitoring nm /np for np = {4, 9, 16} and CVh = 

{0.30, 0.48, 0.80} (see legend).  Continuous lines are identical to those in Figure 6-6b. 
 
 

Assuming a nominal load Q = 15 MN of a group of nine piles, four of which it is intended 

to monitor, Figure 6-6 or Equation 6.10 give Φ = 0.75 leading further to Rg = 15/0.75 = 20 MN 

and Rp = 20/9 = 2.22 MN.  This means that the four monitored piles are driven until a monitored 

resistance of 2.22 MN is reached, while the unmonitored piles are driven until a blowcount of 

Nh= (Rp – a)/b = (2.22 – 0.030)/0.017 = 129 blows/m is reached, for which the expected 

monitored resistance is again 2.22 MN (regression relationship, Figure 6-5a).  If it is further 

assumed that one pile of the group has already been installed to a monitored resistance  

R0 = 3 MN (CV0 = CVεm = 0.25 for n0 = 1), then the problem is to find Rp for the eight remaining 

piles (three monitored plus five unmonitored).  For this purpose, Equations 6.14, 6.15 and 6.16 

(with c= 1 and d= 1.73 as obtained for β = 3; Equation 6.9) may be used to find Rp = 2.11 MN 

which is smaller than 2.22 MN from above, as to be expected.  For R0 = 2.22 MN, i.e., when the 

first pile happened to be driven to the uniformly distributed nominal pile resistance, then  

Rp = R0 =2.22 MN is also correctly obtained.  In case R0 = 1.5 MN, i.e., the first pile was driven 
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too short, then Rp = 2.34 MN is required for each of the other eight piles.  This example also 

illustrates the flexibility of the regression approach in being conceptually appropriate for a 

variety of design situations. 
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CHAPTER 7 
SUMMARY AND CONCLUSIONS 

 
 

The final length of a driven pile is proportional to its load and resistance factor design 

(LRFD)  factor which is a function of:  (1) uncertainty of the capacity assessment approach, 

e.g., SPT, PDA, EDC; (2) spatial variability issues, i.e., change of properties from monitored to 

unmonitored pile; and (3) target reliability or probability of failure of pile group that the pile is 

located within.  Recommended LRFD Φ factor for the design of driven piles using in situ SPT 

testing vary from 0.35 to 0.45 (e.g., AASHTO Table 10.5.5.2.3-1 – uncertainty of method:  

Tomlinson versus Meyerhof).  In construction, for high strain rate field monitoring, LRFD Φ 

factor of 0.65 is recommended (PDA and CAPWAP: FDOT Structures Design Guidelines), if 

approximately 10% of the piles are monitored during driving.  Others (AASHTO 2009) also use 

pre-defined Φ depending on number of piles monitored, type of monitoring, and whether static 

load testing is performed.  For example, Φ=0.75 if all piles are monitored and Φ = 0.80 if 20% 

are monitored, as well as one static load test will be performed.  

Evidently, all of the approaches do not explicitly account for the spatial heterogeneity 

that generally exists between individual piles (monitored and unmonitored) in a group, number 

of piles monitored within a group, and the possibility of combined methods (i.e., high strain rate 

with hammer blow counts, etc.).  Also, due to the typical dimensions of driven piles and 

expected vertical loads, piles are generally combined underneath a rigid pile cap to form a pile 

group foundation.  For such a pile group foundation, none, some, or all of the individual piles 

may be monitored resulting in different pile group resistance uncertainty and, hence, different 

design LRFD resistance factors Φ for the group.  Typically, the larger the number of piles 

monitored, the smaller should be the coefficient of variation of group resistance CVR leading to 

higher Φ for the group. 
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The work presented begins with a discussion of probability of failure (POF) of a bridge 

and defines failure in terms of redundant and non-redundant systems.  Generally, piers may be 

considered non-redundant (i.e., one pier failure then bridge fails), whereas, the group of piles 

(ng>3) beneath a rigid cap could be considered as redundant, i.e., if one pile fails the group may 

not fail.  It was found that the number of piles in a pier may play an important role for the POF 

of a bridge (see Chapter 2).  As a consequence, the very fundamental question arises about what 

structural level (e.g., pile, pier or bridge) are design reliabilities or POF valid for.  From a 

transportation point of view, it would make most sense to apply them to entire highway sections 

possibly including more than a single bridge.  However, this would require an integrated 

approach of many engineering disciplines at the highest level of complexity which is currently 

out of reach.  Instead, the geotechnical engineer involved in bridge foundation design is typically 

expected to determine pier dimensions for a given (pier or pile group) design load.  

Consequently, we believe that design and, hence, LRFD  must be based on the POF of the 

whole pier by accounting for the number of piles within the group and what is monitored and 

unmonitored within the group. 

Next, the effort (Chapter 3) looked at spatial uncertainty (skin + tip resistance) of a single 

pile using in situ SPT data.  Here, site data (SPT borings) were considered in assessing the 

spatial uncertainty of a pile (Figure 3-4) in terms of a site’s SPT blow count N  summary 

statistics (i.e., mean and standard deviation), and covariance (expressed in terms of correlation 

length av).  Subsequently, the work was expanded to spatial group uncertainty (Chapter 4) for the 

case of pile skin friction.  The effort also introduced kriging, which considered different weights 

for individual borings and group layouts (e.g., double, triple, quads, etc.) to assess group 

uncertainty CVR.  The work also focused on identifying worst case design scenarios for typically 

unknown horizontal correlation lengths.  
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Using the kriging approach, the work (Chapter 5) then moved to assessing uncertainty, i.e., 

spatial and method error (predicted versus static load test) using high strain rate field measure-

ments.  The effort developed charts identifying the uncertainty (variance) reduction (e) for a 

specific group based on number and geometric configuration of piles monitored within a group, 

total piles within the group, and number of pile groups at the site (see Figures 5-5 through 5-7).  

Once the variance reduction e for a specific group has been assessed, it may be multiplied by 

the variance of individual total pile capacity Rp (e.g., variance of all monitored piles) to give the 

variance of group resistance from which CVR and LRFD  of the group may be found.  

Unfortunately, no simple analytical expression for variance reduction in terms of pile group 

layouts (e.g., group size, versus number and layout of monitored piles) could be developed.  In 

addition, the development assumed that all piles within the group had approximately the same 

capacity on a horizontal plane where the pile tips were founded.  And, the approach is 

specifically one directional, i.e., for a specific pile layout, monitoring, etc., the group uncertainty 

and LRFD  of the group is assessed along with the total group resistance Q which always 

increases with monitoring (see Table 5-1).  Of interest for practice is the inverse solution where a 

specific axial design load is given and LRFD  for a group supported by driven piles of possibly 

different lengths and resistances needs to be assessed. 

 Due to the conceptual limitations of the kriging approach (Chapter 5), an alternative 

solution based on:  (1) the use of blow count data recorded during pile installations as an 

additional piece of pile information currently used in construction practice; and (2)dropping 

spatial correlation between monitored pile resistances in favor of blow counts on every pile in 

order to avoid conceptual limitations.  This allowed the approach to be more flexible/adaptive to 

different design situations and more designer friendly.  Due to the very good correlation 

observed between blow count data and monitored resistances, the disregarding of spatial 
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correlation between monitored piles was shown to have a rather insignificant effect on group 

resistance uncertainties. As with prior work, the uncertainty of the pile group was expressed in 

terms of monitored (high strain rate data:  EDC, PDA, etc.) and unmonitored piles (hammer blow 

count measurements) uncertainties.  In terms of the unmonitored piles within a group, their 

uncertainty was assessed by linear correlation between blow count data and EDC/PDA 

capacities.  Justification for the latter is supported in the literature by a series of formulae (ENR, 

Gates, etc.) between static pile capacity and hammer blow counts.  Using both the monitored pile 

resistances and blow count predicted resistances, the total group resistance and its associated 

uncertainty (variance 2
g ) was expressed in terms of monitoring uncertainty CVεm (coefficient of 

variation between high strain rate testing and static load testing) and unmonitored uncertainty 

(CVεh  expressed the uncertainty between measured hammer blow count and high strain rate 

testing).  Therefore, knowing the total group resistance Rg (Equation 6.5) and its associated 

uncertainty (Equation 6.6), its coefficient of variation CVR may be readily assessed which when 

combined with a representative probability of failure (Chapter 2) a relatively simple LRFD  

equation may be developed (Equation 6.10). 

 The applicability of Equation 6.10 versus current practice (i.e., FDOT, AASHTO) was 

investigated on two different sites:  1) Caminida Bay, Louisiana (piles 1 and 7); and 2) SR 810, 

Dixie Highway (piles 1 and 8) over Hillsboro Canal in Broward County, Florida.  Using the 

hammer blow count data for two piles at each site versus EDC/PDA data, the uncertainty of the 

unmonitored piles CVεh was assessed.  Using an uncertainty of monitored piles CVεm = 0.25, 

LRFD  (Equation 6.10) was assessed for 22 to 44 with variable pile monitoring (Figure 

6-6).  Interestingly, full monitoring gives LRFD  values similar to literature (i.e., AASHTO, 

FDOT); however, shown in the figure and not reported in the literature is the influence of pile 

group size (Chapter 2).  Of additional importance is the flexibility of Equation 6.10 which allows 
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for different  resistances of piles within group (see Equations 6.11 and 6.12), as well as nonlinear 

regressions between blow count and high strain rate capacities (see Chapters 2 and 6).  Also of 

interest, and not discussed, are end of drive (EOD), beginning of restrike (BOR) high strain rate 

capacity assessment versus static axial capacity.  The latter could readily be accounted for in 

CVεm. 

Finally, the development of Equation 6.10 allows different considerations:  (1) EOD 

versus BOR; (2) number of monitored piles; (3) variability of axial capacity within a group 

(Equations 6.11 through 6.16); and (4) equipment (EDC and PDA), site and soil specific 

conditions (e.g., CVεm, CVεh), both the contractor and owner have a multitude of options when 

designing/constructing a deep foundation.  Of great interest to each will be the consideration of 

optimization, which results in the safest and most economical foundation. 
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APPENDIX A 

SPATIAL CORRELATION VERSUS  
COLLOCATED SECONDARY DATA 

 
 

This appendix attempts to illustrate the relationship between the approaches of Chapters 5 

and 6 by regarding the simplest possible co-kriging scenario of monitored and blow count data 

for a two-pile foundation with one monitored (assuming CVεm = 0) and one unmonitored pile.  

Known are the spatial auto correlation functions Cmm of monitored resistance Rm with Rm, Chh of 

blow count predictions mR = a + bNh with mR  and the spatial cross correlation function Cmh of Rm 

with .mR   Since mR  is a linear regression predictor of Rm we know that the variances 2
mm and 

2
hh of Rm and mR , respectively, are related by hh = mhmm (the slope of the regression line 

between mR  and Rm is one) with mh being the respective correlation coefficient.  The 

covariance 2
mh  between Rm and mR  is known as mh mm hh =

2 2 .mh mm    The spatial auto and cross 

correlation functions also need to meet certain criteria.  In the simplest case they are all 

proportional with the same range, such that Chh = 2
mh mmC and Cmh =

1/ 2 1/ 2
mh mm hhC C = 2

mh mmC , as 

shown in Figure A-1. 

 
Figure A-1.  Cmm (top curve) and Cmh = Chh =

2
mh mmC  (bottom curve). 
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With this, co-kriging of the monitored (= true because error assumed zero) resistance of the 

unmonitored pile can be done.  There are different types of co-kriging and the one with a single 

bias condition as discusses in Isaaks and Srivastava (1989, Equation 17.15) is chosen here.  The 

ordinary co-kriging system results as 

2 2 2
12 1 12

2 2 2
12 2

1

1

1 1 0 1

mm mh mm

mh hh mh

w

w

      
           
        

 (A.1) 

 
where 2

12mh  is the covariance between Rm at the first (monitored) pile and mR  at the second 

(unmonitored) pile which are separated by a distance Ds.  In analogy, 2
12mm is the covariance 

between values of Rm at the two piles.  From Figure A-1, it becomes clear that 2
12mh  = 2

12.mh mm    

While λ is the Lagrangian operator; w1 and w2 are the weights assigned to the monitored 

resistance Rm1 of the first pile and of the predicted resistance 2mR of the second pile.  They are 

used in Equation A.2 to find an estimate 2mR  of the monitored resistance Rm2 of the second pile as 

2 1 1 2 2m m mR w R w R    (A.2) 

Note that w1 + w2 = 1 and that a single asterisk “*” denotes a regression estimate only from 

collocated blow count information Nh, while double asterisks “**” denotes a co-kriging estimate 

including information from monitored piles at other locations (here Rm1). 

Equation 1 may be solved for w1, w2 and λ or, alternatively, using Cramer’s rule one can 

directly express the ratio w1/w2 as 
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With the relationships of Figure A-1 and by also introducing a spatial correlation coefficient 

s= 2 2
12mm mm  = 2 2

12mh mh  as the auto correlation that persists over a lag distance Ds between 

the piles, Equation A.3 simplifies to 

 
  2

2

2

1

11

1

mhs

mhs

w

w






  (A.4) 

which is shown by contour lines in Figure A-2.  In Chapter 5, 2mR is disregarded in Equation A.2, 

which is equivalent to using a large value of w1/w2 as it occurs in the yellow zone in Figure A-2.  

This zone is located where s >> mh, i.e., where spatial correlation is dominant.  In Chapter 6, 

the opposite is the case and Rm1 is eliminated from Equation A.2.  This corresponds to small 

values of w1/w2 and the green zones in Figure A-2, i.e., where mh >> s and blow count 

correlation dominates over spatial correlation.  Interestingly from the data used in Chapter 6, it is 

evident that the green zone is relevant (see arrow at mh ≈ 0.85) and neglecting Rm1 will not have 

a large impact (w1 << w2; i.e., w1 would be close to zero anyway).  Neglecting Rm1 is also 

conservative as the estimation uncertainty should somewhat increase, but again not by much as 

the weight of Rm1 in estimation would not be very significant.  One can also see that for mh ≈ 

0.85, it does not make a large difference what particular s there is unless it is really close to 1, 

which is irrelevant for practice.  It is recalled that the error of the monitoring method was 

neglected here; this error would always decrease s.  Moreover, in many situations the values of 
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s are not even reliably known (e.g., unknown horizontal correlation length).  Note that Figure 

A-2 also indicates w2 >> w1 for both mh ≈ s ≈ 0.  This is an artifact of the fact that the 

regression estimate in the present form does not consider uncertainty due to limited data (from a 

single unmonitored pile). 
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Figure A-2.  w1/w2 as a function of mh and s.  Yellow zone is where spatial correlation is 
dominant (previous approach), green zone is where correlation between blow count and 

monitored resistance is dominant.  Green arrow indicates mh ≈ 0.85  
from Caminida and Dixie data. 

 
 

Overall, this is a very simple “elementary” example, but if the conclusion holds for a single 

monitored and a single unmonitored pile, then it should also hold in some form for more 

complex configurations. 

 
 


