
     
 
 

Civil & Environmental Engineering 
 

DEFINING THE UPPER VISCOSITY LIMIT FOR MINERAL 

SLURRIES USED IN DRILLED SHAFT CONSTRUCTION 

BDK84-977-24 

FINAL REPORT 

Principal Investigator: 
Gray Mullins, Ph.D., P.E. 

 
Research Associate: 

Danny Winters, Ph.D., P.E. 
 

Researchers: 
 Justin Bowen, Kevin Johnson, Vincent DePianta, Jeff Vomacka, and Miles Mullins  

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

February 2014 



 

 

Disclaimer 
 
 

The opinions, findings, and conclusions expressed in this publication are those of the authors 
and not necessarily those of the State of Florida Department of Transportation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

SI* (MODERN METRIC) CONVERSION FACTORS 

APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 

in inches 25.4 millimeters mm 

ft feet 0.305 meters m 

yd yards 0.914 meters m 

mi miles 1.61 kilometers km 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

AREA 

in2 square inches 645.2 square 
millimeters 

mm2 

ft2 square feet 0.093 square meters m2 

yd2 square yard 0.836 square meters m2 

ac acres 0.405 hectares ha 

mi2 square miles 2.59 square 
kilometers 

km2 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

VOLUME 

fl oz fluid ounces 29.57 milliliters mL 

gal gallons 3.785 liters L 

ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 

oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T short tons (2000 lb) 0.907 megagrams (or 
"metric ton") 

Mg (or "t") 

 
 



 

 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 

or (F-32)/1.8 
Celsius oC 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 

fc foot-candles 10.76 lux lx 

fL foot-Lamberts 3.426 candela/m2 cd/m2 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

lbf poundforce 4.45 newtons N 

lbf/in2 poundforce per 
square inch 

6.89 kilopascals kPa 

kip kilopound 4.45 kilonewtons kN 

 
 

APPROXIMATE CONVERSIONS TO SI UNITS 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 

mm millimeters 0.039 inches in 

m meters 3.28 feet ft 

m meters 1.09 yards yd 

km kilometers 0.621 miles mi 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

AREA 

mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 

km2 square kilometers 0.386 square miles mi2 

 
 



 

 

 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

VOLUME 

mL milliliters 0.034 fluid ounces fl oz 

L liters 0.264 gallons gal 

m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 

g grams 0.035 ounces oz 

kg kilograms 2.202 pounds lb 

Mg (or "t") megagrams (or 
"metric ton") 

1.103 short tons (2000 
lb) 

T 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 

lx  lux 0.0929 foot-candles fc 

cd/m2 candela/m2 0.2919 foot-Lamberts fl 

 
 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 

N newtons 0.225 poundforce lbf 

kPa kilopascals 0.145 poundforce per 
square inch 

lbf/in2 

kN kilonewtons 0.225 kilopound kip 

*SI is the symbol for the International System of Units. Appropriate rounding should be made to 
comply with Section 4 of ASTM E380. 
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Executive Summary 
 

Construction of drilled shafts in the state of Florida generally requires the excavation to be 
stabilized either mechanically through the use of permanent or temporary casing  or 
hydrostatically from mineral slurry pressure. Depending on the slurry type (mineral, polymer, or 
natural), a lower to higher differential fluid level is required.  When compared to casing, slurry 
tends to use less expensive equipment (making it more attractive) but is more prone to 
complications associated with maintaining the borehole stability.  
 
Until recently, Florida Department of Transportation (FDOT) required mineral slurry to achieve a 
Marsh funnel viscosity between 28 and 40 sec/qt. Concerns with the lower imit were addressed in 
a recent study (BDK-84-977-08) that resulted in its increase to 30 sec/qt. After which, the upper 
limit was conspicuously absent of a similar rationale for its selection. Nationwide, the upper limit 
ranges widely from 40 to 90 sec/qt again with no apparent supporting evidence. Providing a 
rationale for the upper limit determination formed the basis of the study. 
 
Two types of tests were undertaken to assess the effect of the upper viscosity limit on shaft 
performance. These tests, included: rebar pullout tests and side shear tests where the presence of 
slurry may impede the structural and geotechnical capacities, respectively. The results of these 
tests concluded that the presence of any bentonite slurry at the time of concreting reduces the 
rebar bond. Reductions ranged from 25 to 70% for slurry viscosity of 30 to 90 sec/qt, 
respectively. Similar tests with polymer slurry showed smaller reductions.  
 
The effect on side shear was evaluated at both model and full scales. Model tests conducted over 
a wide range of viscosity showed only modest reductions in side shear for shafts cast with 50 
sec/qt slurry when compared to shafts cast in 40 sec/qt slurry. However, shafts cast with 90 sec/qt 
slurry showed a marked increase in side shear.  
 
Full-scale tests were conducted with both mineral and polymer slurry where four different slurries 
were used (average viscosities were: 40 sec/qt and 74 sec/qt bentonite as well as 50 sec/qt and 
131 sec/qt polymer). Those tests showed use of higher viscosity bentonite or polymer slurry had 
no adverse effects on side shear (again compared to 40 sec/qt). In fact, increases in the unit side 
shear resistance of 19%, 12%, and 13% were recorded for 74 sec/qt bentonite,  50 sec/qt and 131 
sec/qt polymer, respectively. 
 
Finally, physical inspection of shafts with congested cages (6 in. clear space) cast in bentonite 
slurry indicated that there may exist potential durability issues as pathways/creases of trapped 
bentonite formed at all rebar locations that extended from the rebar out to the soil/concrete 
interface. This was most pronounced for slurry with viscosity greater than 40 sec/qt. 
 
Although preliminary, and from the durabililty standpoint, the study findings support a bentonite 
slurry  upper viscosity limit of 40 sec/qt and not 50 sec/qt as recommended by the Federal 
Highway Administration. 
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The selection of slurry products or additives is somewhat controversial as various states permit 
or restrict the use of some products.  In all cases, the slurry pressure within the excavation must 
be higher than that of the existing ground water. This net pressure differential creates a tendency 
to flow from the excavation into the soil and not vice versa as noted above. Most commonly, a 
powdered clay mineral called bentonite is mixed with water to form a slurry with a density 
slightly higher than water, but with the added advantage of greatly slowing or completely sealing 
off flow into the surrounding soil while maintaining the pressure differential; this exerts a force 
against the soil that maintains stability.  Polymer slurry products tend to only slow the inflow 
rate but do not completely seal off the excavation walls. 
 
Although the term slurry can apply to the mixture of in-situ soil and water that forms without the 
use of additives, this report will restrict the definition of slurry to those fluids that are 
intentionally mixed from mineral or polymer additives. 
 
With any slurry product, the ratio of product to water volume can be adjusted to meet the needs 
of the soil conditions encountered.  For mineral slurries this ratio can range from 0.5 to 1.0 lb/gal 
while polymer products may only require 1/100th of that required by mineral slurries.  In all 
cases, a thick / viscous fluid results with properties selected on the basis of soil type and 
permeability (i.e. more viscous for more porous materials).  Further, as various products may be 
more or less effective in achieving a desired level of performance, the amount of material is not 
as crucial as the resulting properties, specifically viscosity and density. 
 
State and federal specifications have been established to control the slurry properties with the 
aim of circumventing the potential for problematic shafts.  However, despite these efforts 
(specifications), problems persist.  Figure 1.2 shows an example of a shaft that exhibited 
concrete flow problems, either from fresh concrete or slurry properties. 
 
To date, specifications throughout the Unites States vary from state to state whereby both 
minimum and maximum values of viscosity are dictated.  Many of these values were established 
on the basis of experience and not science.  A recent study (Mullins, et al, 2010) provided a 
rational explanation for the determination of lower viscosity limits for such specifications.  
Therein, the viscosity was identified below which flow increased disproportionate to viscosity.  
The same study noted that no parallel study had been published to establish an upper limit and 
forms the basis of this study.  To establish an upper limit two concerns arise: (1) at what point 
does the slurry become too thick or heavy to easily displace during concreting and (2) at what 
point does the slurry viscosity adversely affect the concrete bond with rebar or the surrounding 
soil. 
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Chapter 2:  Background 
 
The following chapter provides a brief history of drilled shafts, and the role slurry plays in the 
construction of drilled shafts. 
 
2.1 Drilled Shafts 
 
When a traditional spread or shallow footing is unable to carry the required loads a deep 
foundation is required.  Of the many types of deep foundations, two of the most popular are 
driven piles and drilled shafts.  Driven piles are steel, timber or pre-cast concrete elements that 
are driven to the appropriate depth wherein the pile lengths are determined based on capacity 
requirements, shipping limitations or physical constraints of the installation method.  Drilled 
shafts, on the other hand, are cast-in-place concrete elements where the practical upper limit of 
length is 30 to 40 diameters of the shaft (e.g. 4-foot diameter can be 120 to 160-feet deep).  The 
Federal Highway Administration (FHWA) defines a drilled shaft as a "cast-in-place deep 
foundation element constructed in a drilled hole that  is stabilized to allo w controlled placement 
of reinforcement and concrete" (FHWA 2010).   
 
Drilled shafts have evolved from caissons which were first used during the late 1800's.  Caissons 
were originally precast foundations that were sunk in place to a depth that provided suitable 
bearing or cast-in-place in a hand dug braced excavations that were progressively advanced in 
lengths equivalent to available board lengths used to provide lateral wall stability.  The 
excavation concept for drilled shafts has not been altered much since the 1940's but 
improvements in technology have allowed the process to become more efficient and a viable 
option for any type of construction. 
 
Of the aforementioned deep foundations, the drilled shaft can be more cost effective than driven 
piles in some circumstances. This is due in part to the load carrying capacity of a drilled shaft 
versus that of a driven pile where large axial and lateral loads can be withstood and the moment 
capacities are significantly greater.  This often allows for fewer elements when using drilled 
shafts and in turn, allows for an overall smaller cap.  For example, in cases exposed to large 
vessel collision forces, hundreds of piles can be replaced with several drilled shafts.  
 
Drilled shaft construction is also the preferred method when dealing with varying geological 
strata.  Driven piles are restricted to handling and shipping lengths as well as driving criteria set 
to ensure the piles are not damaged during driving.  This is particularly problematic when 
encountering denser layers near the surface that require drilling prior to driving.  This is not an 
issue with drilled shafts since the elements are cast-in-place, and the boreholes are drilled to the 
proper depth (reported to over 300 feet) to reach the required capacity.   
 
Drilled shaft construction has other benefits over driven piles wherein minimal vibrations and 
noise are produced during drilling and concrete placement.  This makes drilled shafts more 
conducive for environments (urban areas) where vibrations are a major concern or when near 
sensitive structures. 
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mineral slurry suspends the solids by way of mineral gel strength, polymer slurry does not 
develop gel strength and allows the cuttings to fall-out through the material requiring only 
cleanout from the bottom of the excavation.  Therefore, de-sanding is not necessary, but a sit 
time may be imposed. 
 
Upon reaching the proper tip elevation, the excavation is cleaned with the clean out bucket and 
inspected for proper depth and dimensions.  Once approved, the reinforcement is lowered into 
the excavation.  Prior to concrete placement, the properties of the slurry are verified, and once 
approved, the concrete is placed. 
 
Concrete is placed via a tremie pipe or pump line in order to prevent segregation of the concrete; 
concrete is essentially pumped to the bottom of the excavation through a 6 - 12-inch pipe and the 
slurry is displaced as the concrete level rises.  It was originally thought that as the concrete was 
placed there was a shearing / scouring effect on the walls of the excavation in turn scrubbing 
away any filter cake that may have formed (when mineral slurry is used).  However, as concrete 
is placed, it has been shown to fill up the center of the reinforcement cage, and flow outwardly 
pushing through the reinforcement and then resting against the walls of the excavation (Mullins 
et al, 2005).  This effect was shown to increase with tighter cage spacing and when the tremie 
pipe was not centered in the opening.   
 
When placing concrete, the tremie must be embedded into the rising concrete level to a depth 
sufficient to ensure that there is no unwanted segregation.  However, until that depth of concrete 
is achieved within the excavation, some segregation must be expected.  The tremie pipe must not 
be removed at a rate that encroaches on this requirement.  As the concrete level rises toward the 
top of shaft elevation, the slurry is expelled; and concrete overflows from the excavation to 
ensure all slurry is properly removal. 
 
2.3 Mineral Slurry 
 
Mineral slurry is the most widely used material when employing wet construction methods.  
Sodium montmorillonite (bentonite) is a natural occurring mineral with a massive absorption 
capacity which is beneficial in a drilling fluid.  The majority of bentonite production in the 
United States is in the Black Hills area of South Dakota, Montana, and Wyoming (Grim, 1978).  
This particular bentonite contains higher amounts of the crystallite smectite.  The amount of 
smectite within the bentonite is directly related to performance in that it enhances the absorption 
capacity of bentonite and results in higher viscosity.   
 
When bentonite is mixed with water, typically keeping a maximum of five percent solids, it 
creates slurry with properties conducive for drilling.  Bentonite changes water from a Newtonian 
fluid to a non-Newtonian fluid with properties of a Bingham plastic.  A Newtonian fluid will 
maintain the same viscosity regardless of the rate of shear (viscosity can vary with temperature), 
whereas a non-Newtonian fluids viscosity will vary as the shear rate is varied.  A Bingham 
plastic is a fluid that can have plastic properties and would require a stress to begin flow.  The 
stress required to begin the flow of the material is called the yield point of the fluid (Baker 
Hughes, 2006).  It is these characteristics that allows for the fluid to have gel strength.  Gel 
strength is the ability of the fluid to regain its viscosity after shear thinning, and gel strength 
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allows the slurry to carry the cuttings in suspension.  According to the American Petroleum 
Institute (API), there are two gel strengths measured at 10 seconds and 10 minutes after the 
material has been agitated (API, 2009).  The test requires a viscometer, and it is recommended 
that the sample be mixed at 600 rpm, sit for the allotted time, then measure the maximum shear 
stress while rotating at 3 rpm.   
 
When the mineral slurry is introduced into the excavation, it begins to form a filter cake, which 
is a thin layer, along the walls as it deposits clay particles while flowing into the surrounding 
soils.  This thin layer, along with the higher hydrostatic pressure of the slurry, prevents ground 
water intrusion which in turn helps to prevent the sloughing the side wall material.  As the 
geology changes, the properties of the slurry must be monitored to ensure there are no adverse 
changes disabling the filter cake formation.  For more porous soils, additional bentonite is 
typically introduced into the suspension (CETCO, 2013).   
 
2.4 Polymer Slurry 
 
Polymer slurries are formed when polyacrylamide materials are mixed with water (other polymer 
types exist but are less common).  The mixture forms long polymer chains that are vital for 
proper performance.  When mixing polymer slurries, dry powder is introduced at controlled rates 
into quickly moving water to prevent clumping. Initial mixing is usually performed with a 
centrifugal pump to provide a constant stream. However, centrifugal pumps tend to shear the 
long polymer chains, which then require time for the chains to reform. Therefore, recirculation 
with a diaphragm pump is preferred over more traditional centrifugal pumps.   
 
The performance of polymer slurry is based solely on the viscosity of the material.  Where 
mineral slurries form a filter cake barrier, polymer slurry flows into the walls of the excavation 
in order to maintain stability and prevents ground water intrusion.  As noted earlier, there is no 
gel strength with polymer slurries so cuttings cannot be carried in suspension.  Therefore, all 
material can be removed more immediately without concern of trapping sand in the shaft 
concrete.  This is also beneficial when reusing the slurry since it reduces the need for de-sanding 
the slurry. 
 
2.5 Quality Control 
 
When using slurry, mineral or polymer, quality control is needed to ensure that the material will 
function properly.  It is common practice to verify the properties of the slurry prior to 
introduction into the excavation for viscosity, density, and pH in the field.  The same tests are to 
be performed prior to the placement of concrete as well, but the sand content becomes more 
important at that time.  These test methods are based on the American Petroleum Institute (API) 
test methods provided in API 13B-1. 
 
2.6 Viscosity (API 13B-1.6, FM 8-RP13B-2) 
 
The viscosity of a fluid is its ability to resist flow under shear stress.  Viscosity that is verified 
with a viscometer is the ratio of shear stress to strain rate.  When determining the viscosity in the 
field, a Marsh funnel is used (Figure 2.3).  This determines the time required for one quart of 
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Figure 2.8 Breakdown of available state recommended viscosities. 
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2.12 Development Length   
 
The development length of a deformed bar can be determined with the equation provided by the 
American Concrete Institute ACI 318-10 (Equation 2.1) stemming from ACI Committee 408 
tasked with determining the bond strength between concrete and steel reinforcement.  According 
to this committee, the bond strength is based on the friction between the concrete and the 
reinforcement which is affected by the strength of the reinforcement, surface deformation 
characteristics, system geometry and concrete strength.  Any factor or material that interferes 
with this interface could adversely affect this interface, and in turn reduce the bond strength.   
 

    Equation 2.1 

According to ACI 408, there are several formulas to determine the bond strength.  The equations 
use different coefficients, but the variables are similar.  This include: the concrete strength, the 
concrete cover, clear spacing, and surface area of the reinforcement (Equations 2.2 – 2.5), but not 
steel strength when considering bond.   
 

                                       0.083045 ′ç 1.2 3 50                                Equation 2.2 

(Orangun et al, 1977) 
 

                  0.083045 ′ç 1.06 2.12 0.92 0.08 75        Equation 2.3 

(Darwin et al, 1992) 
 

                                                     0.265 ′ç 0.5                                         Equation 2.4 

(Australian Standard, 1994) 
 

                                    0.083045 ′ç 22.8 0.208 38.212                 Equation 2.5 

(Hadi, 2008) 
Where, 
  	  
 	  
            	 	  
            ′ 	 	 	  
           	 	 	 	 , 	 , 	 /2 
           	 	 	 , 	 , 	 /2 
 
These equations were used to determine the bond strength for this project to both design the 
pullout equipment and to evaluate the actual measured values (Chapter 3 and 4, respectively).  
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Chapter 3: Test Preparations and Procedures 
 
This chapter discusses the preparation for all testing performed in this study which included: (1) 
slurry preparation and rebar pullout tests, (2) casting and pullout testing of model shafts in 
frustum confining vessel, and (3) full scale pullout testing of shafts constructed with various 
slurries. 
 
3.1 Slurry and Rebar Pullout Testing 
  
3.1.1 Bentonite Testing 
 
In order to determine the amounts of bentonite required to obtain the varying viscosities, small 
scale (1 gallon) batches of slurry were mixed.  Prior to batching slurry, the mixing water was 
mixed with soda ash to bring the pH within the required range and meet state specifications and 
manufacturer recommendations (for FDOT this is between 8 and 11, FDOT, 2013).  For all 
slurry mixed during the following experiments the pH was increased to approximately 9.5.  In 
order to encompass all viscosities currently recommended from state specifications the tests were 
performed as well as extending the testing to 90 sec/quart.  The bentonite introduced was 
increased in increments of 0.1 pounds/gallon until the desired viscosity was obtained (Table 3.1).  
For the tests performed CETCO's PureGold Gel© was used.  This particular brand was chosen 
based on previous research that indicated more product would be needed to produce comparable 
viscosities when compared to other brands (Yeasting, 2011).  This in turn should provide a worst 
case scenario as far as percent solids in suspension of the slurry.   As Figure 3.1 illustrates, these 
tests were required due to the non-linear characteristics.  Along with the viscosities, the density, 
pH and temperature were recorded.  For the laboratory testing a 100 mL volumetric flask and a 
digital scale were used to determine the density.  This method provided more accurate results and 
the volume could be more precisely determined.  All small scale samples were mixed with a drill 
press and a paddle blade for a duration of 20 minutes to ensure a homogeneous mixture. Figure 
3.2 shows the results for polymer tests for completeness that resulted from both lab and field 
tests. 

 
Table 3.1 Results for small scale testing to determine bentonite quantities 

Bentonite 
(lb/gal) 

pH 
Mass/ 

100mL (g) 
Density 
(g/mL) 

Density 
(lb/ft3) 

Temp 
(C°) 

Average 
Viscosity 

(sec) 

0.1 8.34 1001.1 1.0011 62.50 25.0 30.70 
0.2 8.34 1018.1 1.0181 63.56 22.1 29.79 
0.3 9.13 1013.9 1.0139 63.30 25.0 29.27 
0.4 9.10 1016.3 1.0163 63.45 25.0 29.93 
0.5 9.11 1020.0 1.0200 63.68 25.0 30.57 
0.6 9.16 --   25.0 33.04 
0.7 9.09 1036.6 1.0366 64.71 25.0 35.33 
0.8 9.04 1045.0 1.0450 65.24 25.0 39.23 
0.9 9.05 1050.8 1.0508 65.60 25.0 46.07 
1.0 9.16 1059.9 1.0599 66.17 25.0 59.87 
1.1 9.12 1061.5 1.0615 66.27 25.0 98.16 
1.2 9.09 1073.1 1.0731 66.99 25.0 359.30 
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 Figure 3.1 Plot of test results illustrating the non-linear relationship. 

 
 

 
Figure 3.2 Viscosity observed from varied polymer mix ratios. 

26

36

46

56

66

76

86

96

62.0

62.5

63.0

63.5

64.0

64.5

65.0

65.5

66.0

66.5

67.0

67.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

M
ar
sh
 F
u
n
n
el
 V
is
co
si
ty
(s
)

D
en

si
ty
 (
p
cf
)

Bentonite Mix Ratio (lbs/gal)

Density

Viscosity

25

45

65

85

105

125

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

M
ar
sh
 F
u
n
n
el
 V
is
co
si
ty
 (
se
c/
q
t)

Polymer Mix Ratio (lbs/100gal)

Lab

Field



 

3.1.2 For
 
The sizin
enough t
design co
should b
inches ta
 
The sidew
24-inch x
rolled, th
edges in 

 
Once the
sections 
increase 
means to
were inst
slurry du
increase 

rm Fabricat

ng considera
to maximize
onstraints, re
e tremie pla
ll, and 42 in

walls for the
x 132-inch 

he strips wer
order to allo

e sidewalls 
and treated 
repeatability

o locate the r
talled, the s
uring placem
the sample n

tion 

ations of the 
e the sample
einforcemen
aced to repli
ches in diam

e shafts were
strips and ro
re trimmed a
ow the repeat

Figure 3.3

were comp
with polyure
y, PVC cap
reinforcemen
heets were 

ment in orde
numbers for 

scale model
e size and u

nt cage with 
icate field c

meter. 

e constructed
olled into a 
and 2-inch x
ted opening 

 18 gauge st

pleted, ¾ -in
ethane in or
s were anch

nt (Figure 3.4
framed out 
er to pump 
a given pou

18 

l shafts were
use a full re
minimum cl

concrete flow

d from 18 ga
circular sha

x 2-inch x 0
and closing 

 

teel rolled to

nch plywoo
der to achie
hored and, s
4).  Once the
with 2-inch
evacuated 

ur, a total of s

e two-fold: (
ebar cage to
learances an
w conditions

auge steel.  T
ape (Figure 
.25-inch stee
 of the form

o 42-inch dia

d sheets we
eve a non-ab
silicon seale
e plywood w

h x 6-inch b
slurry into 
six forms we

(1) the shaft
o model a c
nd openings,
s.  The scal

The steel she
3.3).  Once
el angles we

ms.  

        

ameter. 

ere cut into
bsorptive sur
ed to the ply
was treated a
oards as to 
holding tan

ere fabricate

ts should be 
congested, w
 and (2) con

le shafts we

eets were cu
e the sheets 
ere welded t

o 4-foot x 4
rface.  In ord
ywood base
and the PVC
dam the flo

nks.  In ord
ed. 

large 
within 
ncrete 
re 24 

ut into 
were 

to the 

 

4-foot 
der to 
e as a 
C caps 
ow of 
der to 



 

Each form
3.4).  On
form was

Fi
 
 
3.1.3 Rei
 
In order 
arrangem
used for 
pipe (PEX
vertical r
between 
shafts an
the outer
with the 

Fig

m was seale
nce the mater
s in fact wate

igure 3.5 Sil

inforcing C

to maximize
ment consisti

the horizon
X pipe) was
reinforcemen
bars.  The e

nd was not u
r layer of ve
vertical rein

gure 3.4 Fini

d with silico
rial had time
er tight (Figu

icon to seal 

age 

e the conges
ing of 14-N

ntal (stirrups
s incorporate
nt was place
exterior laye
sed for the p
rtical reinfo

nforcement to

shed form p

one around th
e to cure, a w
ure 3.5). 

form (left), w

stion and stil
o. 8 bars (1
) reinforcem

ed as a secon
ed in two la
r was in pla
pullout testin
rcement for 
o be tested in

19 

rior to place
 

he base of th
water test wa

 

water testing

ll remain wi
.0-inch diam

ment.  In add
nd layer of h
ayers with a
ace to provid
ng.  The stee
confinemen

n pullout.  P

ement of rein

he form to p
as performed

g to ensure w

ithin state sp
meter) vertic
dition to the

horizontal rei
a minimum 
de structural 
el stirrups w
nt purposes, 
PEX pipe (1/

nforcement. 

prevent slurry
d in order to

water tight se

pecifications
cally, and 2-
e steel stirru
inforcement 
of 6-inches 
reinforceme

were placed o
and did not

/2 in) was pl

 

y leakage (F
o ensure that

eal (right). 

, a reinforce
-No. 3 bars 
ups, polyeth
congestion.
of clear sp

ent for the m
on the exteri
t come in co
aced betwee

Figure 
t each 

 

ement 
were 
ylene 
.  The 
acing 

model 
ior of 
ontact 
en the 



 

vertical r
rebar spe
inches on
shaft, wh
 

 
Each of t
for the hy
to 0.865-
for a 0.8
(Figure 3
 

reinforcemen
ecimens.  Th
n center, ho
here the steel

Figure 3.6

the vertical r
ydraulic ram
-inches for a 
75-inch nut.

3.7). 

nt layers to p
he stirrups w
wever the P
l, structural, 

6 Structural,

reinforcing b
m, and steel s

length of 3-
.  This prov

Figur

provide cong
were placed 6
PEX pipe, no

was placed 

 outer layer,

bars was cut 
spacers durin
-inches on th
ided a point

re 3.7 Reinfo

20 

gestion with
6-inches on c
on-structural
only in the t

 reinforceme

to a length 
ng testing.  E
he upper end
t of resistanc

orcement afte
 

hout providin
center.  The 
l, was place
top 10-inche

ent (left) and

of 4-feet in 
Each bar to b
d.  Once mac
ce for the ra

er machining

ng any streng
PEX pipe w

ed for the en
es (Figure 3.6

d full cage (r

order to allo
be tested was
chined the ba
am during th

g. 

gth to the pu
was also plac
ntire depth o
6). 

right). 

ow enough le
s machined d
ars were thre
he pullout te

 

ullout 
ced 6-
of the 

 

ength 
down 
eaded 
esting 



 

3.1.4 Slu
 
All slurry
mixing h
Hootonan
(30, 40, 5
were test
based on
with 0.8 
 

 
The bent
batch con
assurance
 

urry Prepar

y was mixed
hydration pr
nny eductor 
50, and 90 s
ted, correspo

n previous te
lb/gallon of 

Fig

tonite slurry
nsisted of 15
e, the viscos

ation 

d a minimum
rocess durin
(Figure 3.8)

sec/qt).  The
onding to st
est data.  Th
water, 50 se

gure 3.8 Mix

y was mixed
50 gallons (F
sities were ve

Figure 3.

m of 24 hour
ng mixing, 
).  Four diffe
e current mo
ate and fede

he 30 sec/qt
ec/qt with 0.9

xing mineral 

d with a com
Figure 3.9) f
erified after 

.9 Batches o

21 

rs prior to pl
each batch 

erent viscosi
st common

eral limits, r
was achieve
95 lb/gallon

slurry with 

mbination of
for the mine
mixing and 

f mineral slu

lacement in 
was mixed

ities were ch
upper visco

respectively.
ed with 0.3 
, and the 90 

Hootonanny

f 3 inch and
eral slurries t
again after a

urry after mi

the forms.  
d using the 
hosen for reb
sity limits (4
  The initial
lb/gallon of
sec/qt with 

y® eductor. 

d 2 inch she
that were te
a setting tim

ixing. 

To maximiz
rapid hydr

bar pullout te
40 and 50 se
l mix ratios 
f water, 40 s
1.05 lb/gallo

 

ear pumps.  
sted.  For qu

me of 24 hour

 

ze the 
ration 
esting 
ec/qt) 
were 

sec/qt 
on.  

Each 
uality 
rs. 



 

For com
polymer 
testing pe
bubbler s
polymer 
for the 6
manufact
 

Fig
  
For every
to the fo
Marsh fu
mineral s
maximum
and in co
Slurry w
the shear
 
Along w
These we
 
3.1.5 Deb
 
Accordin
a deform
provided
not attain
is require
length of
 

mparison, the
slurries we

erformed.  D
system was u
slurry were 

60 sec/qt m
turer's recom

gure 3.10 60 

y placement
orms and aga
unnel metho
slurries were
m permissibl
ontact with th
as placed in 
r pump (mine

with the min
ere provided

bonding of R

ng to the Am
med No.-8 ba
d (Equation 2
nable.  The A
ed to pull ou
f the bars for

e manufactu
re tested as

Due to the se
used to mix 
60 sec/qt (l

mix required 
mmendations

sec/qt polym

, the slurries
ain prior to 

od, as well a
e tested with
le set time w
he reinforcem
the forms th

eral) or a dia

neral and po
d as control s

Reinforcem

merican Conc
ar is 47 inch
2-1).  Due to
ACI Commit
ut a deforme
r the test spe

urer's recom
s well.  Sho
ensitive natu
and agitate 

lower end) a
0.21 lb/gal

s.  The polym

mer slurry af

s were tested
placement o

as with a vi
h the filter p
was used wh
ment for 12
he night prio
aphragm pum

olymer slurri
samples. 

ment 

crete Institut
hes and can 
o the size of t
ttee 408 has 
ed bar. Thes
cimens (Equ

22 

mmended m
ore Pac® wa
ure of the po
the polymer

and 135 sec/
lon and 0.8
mer slurry w

fter mixing b

d for density
of concrete.
iscometer.  

press.   In or
herein the slu
hours prior t

or to the conc
mp (polymer

ies, two sha

te (ACI) 318
be calculate
the shafts be
performed r
e equations 

uations 2.2-2

minimum an
as the mate
olymer chain
r slurries.  T
/qt (upper en
88 lb/gallon 
was mixed in 

being agitate

y and viscosi
  The visco
Prior to the

rder to show
urry was allo
to placemen
crete placem
r). 

afts were co

8-11, the requ
ed with the d
eing construc
research to t
were used t

2.5).  

nd maximum
erial chosen 
ns, a diaphra
The chosen v
nd).  The po

for the 135
300 and 400

ed with bubb

ity at the tim
osities were 
e placement 

w the effects
owed to rem

nt of concrete
ment (Figure 

onstructed u

quired develo
developmen
cted, this req
try to determ
to approxim

m viscositie
for the pol

agm pump w
viscosities fo
olymer mix r
5 sec/qt mix
0 gallon batc

 
bler system.

me of introdu
measured b
of concrete

 of exposure
main in the fo
e  (FDOT, 2
3.11) with e

using only w

opment lengt
nt length equ
quired length

mine the force
mate the debo

s for 
lymer 
with a 
or the 
ratios 
x per 
ches. 

uction 
by the 
e, the 
e, the 

forms, 
2013).  
either 

water.  

th for 
uation 
h was 
e that 
onded 



 

Througho
For the i
inches at
increased
than expe
placemen
the use o
plastic tie

Figure 3

out the proje
initial placem
t the top of 
d in the top o
ected pullou
nt, and finall
of 1 inch thi
es. 

Figure 3.

.11 Placing 

ect the debon
ment, a bond
f the shaft w
of the shaft i
ut capacity, t
ly to 6 inche
in-walled PV

12 Reinforce

mineral slur

nded region 
ded length o
were debond
in order to p
the debonde
es for all sub
VC pipe cut

ement cage a
23 

rry in forms 
 

was modifie
of 18 inches 
ded with PV
protect again
d length wa
bsequent pla
t to length, 

 

after debond

the night pri

ed in order t
was used, 2

VC pipe (Fig
nst rupture of
as reduced to
acements.  D
sealed with 

ding prior to 

ior to placem

to ensure the
2 inches at t
gure 3.12). 
f the concret
o 10 inches 

Debonding w
tape, and ti

slurry place

 
ment. 

e best test re
the bottom a
 The length
te.  Due to h
for the follo

was achieved
ied in place

ement. 

esults.  
and 4 
h was 
higher 
owing 
d with 
 with 

 



 

3.1.6 Con
 
The conc
mixes wi
slump ran
and prov
had a 0.4
 
The con
discussed
(Figure 3
by 8-inch
tests.  On
finished f
 

 
Upon ach
in order 
(Figure 3
order to 
displaced
polymer 
 

ncrete Place

crete used to
ith a 28 day 
nging from 7

vided a Class
4 water to cem

ncrete placem
d.  The con
3.13).  For qu
h cylinders w
nce the conc
for subseque

hieving appr
to visually 

3.14) and in
remove any

d by the co
slurry. 

ement 

o cast the m
compressiv

7 to 10 inche
s IV Drilled 
ment ratio an

ment began 
ncrete was p
uality assura
were cast in 
crete placeme
ent pullout te

Figu

ropriate com
inspect for 

nitial inspect
y remaining

oncreting act

model shafts 
ve strength o
es.  Preferre
Shaft concr

nd met the p

within the
placed via t
ance the plas
order to ver
ent was com
ests. 

ure 3.13 Plac

mpressive str
anomalies a

tion had tak
g mineral sl
tion. No res

24 

was chosen 
of 4000 psi, c
d Materials,
rete, mix ID 
previous requ

e 12 hours
tremie to si
stic propertie
rify compres

mpleted the to

cing concrete

rength, the s
and imperfe
ken place, th
lurry on the
sidual slurry

to meet FD
contained 20
, Inc. was ch
 01-1031-01
uirements.  

of the slur
imulate conc
es of the con
ssive strength
ops of the m

e via tremie.

steel forms w
ections.  On
he shafts we
e exterior o
y was noted

DOT typicall
0% to 30% 

hosen as the 
1.  This FDO

rry placemen
crete placem
ncrete were t
h prior to pe

model shafts 

. 

were remove
nce the form
ere then pre

of the concr
d for those 

ly approved 
flyash, and h
concrete sup

OT approved

nt as previ
ment in the 
tested, and 4
erforming pu
were leveled

ed from the 
ms were rem
essure wash
rete that wa

shafts cast 

shaft 
had a 
pplier 
d mix 

ously 
field 

4-inch 
ullout 
d and 

 

shaft 
moved 
hed in 
as not 

with 



 

3.1.7 Pul
 
Pullout t
The hydr
computer
of 4-Hert
 
The stiffn
measure 
concrete 
same day
be tested
placed be
hold the 

Figure 3.14

llout Testin

esting was p
raulic pump
rized data ac
tz to ensure t

fness of the b
the bar pul
reached a m

y as the com
d, and seated
etween the r
steel plate in

4 Form remo

g 

performed w
p pressure w
cquisition sy
that the peak

bond was als
llout movem
minimum com

mpressive stre
d on the pr
ram and the 
n place (Figu

oval after sh

with a hydra
was measure
ystem (Ome
k load was c

so captured 
ment during 
mpressive st
ength testing
eviously lev
threaded reg
ure 3.15).  

25 

 
aft achieves 

 

aulic pump a
ed with an 
ga DAQ-55
aptured. 

via a displac
loading.   P

trength of 4-
g.  During te
veled concre
gion of the b

 suitable com

and a 30-ton
inline press
).  Data was

cement trans
Pullout testi
-ksi, and all

esting, the ra
ete surface. 
bar and 2 hig

mpressive st

n hollow-cor
sure transdu
s acquired a

sducer attach
ing was per
l tests were c
am was place

 A 3/8-inch
gh-strength n

 

trength. 

re hydraulic
cer connect

at a sampling

hed to the ra
rformed afte
completed o
ed over the b
h steel plate
nuts were us

 ram.  
ed to 
g rate 

am to 
er the 
on the 
bar to 
e was 
sed to 



 

In all, a 
acquired 
capacity,
 
3.2 Mod
 
3.2.1 Fru
 
The frust
unique d
the soil a
open to t
created u
constant 
 
As the st
force is 
gradient 
at the sid
frustum a
force dist

Figure 3.

total of 126
from each 

, and any tren

el Shafts in 

ustum Conf

tum is a coni
evice create
at the base. 
he atmosphe

using an air-o
regulation o

tress variatio
also implied
magnificatio

dewalls near
and measure
tribution of t

.15 Hydrauli

6 pullout tes
pullout test

nds associat

Frustum C

fining Vesse

ical apparatu
s the stress g
The stress c
ere creating 
over-fluid su

of the pressur

on within the
d on the sid
on mechanis
r the base of
ed by a pres
the side of th

ic ram confi

sts were per
t was then 
ted with the b

Confining Ve

el (FCV) 

us which con
gradient sim
created incre
a zero stress
upply system
re at the bas

e soil inside
dewalls of th
sm is used to
f the frustum
ssure gauge 
he frustum.

26 

gured during
 

rformed on 
analyzed to
bond of the r

essel 

ntains an adj
milar to that f
eases approx
s condition. T
m or continuo
e. 

 the frustum
he device (F
o determine 
m. The hydr
can be relat

g pullout tes

18 different
o show the e
rebar in the 

justable pres
found in the 
ximately line
The pressure
ous air supp

m is near line
Figure 3.16)
the maximu

raulic pressu
ted to the m

 
sting with LV

t shaft speci
effects of st
various envi

ssure bladde
field by ind

early with de
e within the 

ply system w

ear in nature
). The stress
um value of 
ure applied t

maximum val

VDT. 

imens.  The
tiffness, ulti
ironments. 

er at its base.
ducing pressu
epth with th
rubber bladd

which allows

e, a linear no
s attenuation
the normal 

to the base o
lue of the no

e data 
imate 

. This 
ure to 
he top 
der is 
 for a 

ormal 
n and 
force 

of the 
ormal 



 

 
The frust
a base di
approxim
inches at
sand. Th
inches in
bladder p
which the
 
It is wort
with full 
maintain 

tum confinin
ameter of 52

mately ¾ of 
t the bottom

he large size
n diameter w
pressure equ
e model is si

thy to note 
length casin
an open hol

 

Figure 3.

ng vessel use
2 inches, and
an inch thic

m. This allow
 of the testi
which helps
ates to an ap
imilar would

that past tes
ngs. This stu
le during exc

16 Schemati

ed for this s
d 6.75 inche
ck making th

ws for the fru
ing vessel is
s minimize 
pproximate s
d then be 36f

sting within 
dy was the f
cavation. 

ic and Ideali

27 

tudy has app
s in diamete
he inside dia
ustum to con
s suitable fo
errors from 
scale factor o
ft long and 4

a FCV used
first to constr

 
zation of pre

 
 

proximate d
er at the top. 
ameters of 5
ntain approx
or scaled sha

scaling eff
of 12, or the
4ft in diamet

d either driv
truct a model

essure in FC

dimensions o
 The walls o

5.25 inches a
ximately 87 
afts of 36 in
fects. For th
e full scale pr
ter.  

ven piles or 
l shaft using

CV (Sedran, 

of 56 inches 
of the frustum
at the top an
cubic feet o

nches long a
his study a 
rototype sha

shaft constru
g drilling slur

 

1999) 

high, 
m are 
nd 50 
of dry 
and 4 
30psi 

aft for 

ucted 
rry to 



 

3.2.2 FC
 
For the t
inch diam
program,
frustum a
tear down
sidewalls
the base 
apply ad
torqued t

 

V Testing P

esting of the
meter mode
, preparation
apparatus (F
n, the interio
s and from u
plate using 

dequate pres
to approxima

F

Preparation

e soil-slurry 
l shafts 36 
n included 
Figure 3.18) 
or of the frus

under the bla
a silicone b

sure to smo
ately 700 ft-

igure 3.17 F

n 

interaction,
inches in le
the complet
to check fo

stum was cle
adder. For the
based adhesi
ooth the edg
lb. 

FCV disassem

28 

 the frustum
ength in a d
te tear dow

or any damag
eaned and an
e reassembly
ive and the 
ges. Once th

mbled for in

m confining v
dry sandy s

wn (Figure 3
ge to the ve
ny heavy ru
y, the edges 
main cone p

he bladder w

spection and

vessel was s
oil. At the 

3.17) and re
essel and bla
st deposits r
of the bladd
placed on to
was set, the 

d cleaning 

set up to cre
onset of the

eassembly o
adder. Durin
removed from
der were seal
op of the ba

base bolts 

eate 4 
e test 

of the 
ng the 
m the 
led to 
ase to 
were 

 



 

3.2.3 Soi
 
While th
also bein
not prom
approxim
was then
with a ra
foot deep

 
3.2.4 Equ
 
Other equ
casing w
connectio
flight aug

il Preparatio

e frustum w
ng prepared. 
mote the co
mately 10 foo
n allowed to
ake and shov
p and 5 foot 

uipment Pr

uipment that
with slurry ho

ons, and a l
ger was fabr

F

on 

was undergoi
This consis

ollection of 
ot square tar
 dry for 2-3
vel. Once th
square cover

rocurement 

t was fabrica
olding tank, 
loading fram
ricated to hav

Figure 3.18 F

ing the clean
ted of dryin
moisture. T

rp on the flo
3 days with 
he soil was r
red containe

and Prepar

ated include
a 2 inch dia

me with data
ve 3 flights a

29 

FCV fully as
 

ning and ass
ng, sifting, an
The sand w

oor with a 6 
the aid of lo

removed of a
er.  

ration 

d a 4 inch m
meter tremie
a collection 
and be attach

ssembled 

sembling pha
nd storing th
was dried in
to 10 inch th
ow speed fa
all moisture

multi-flight a
e pipe, a 2 c
and monito

hed to a soli

ase, the sand
he sand in a 
ndoors by 
hick layer o
ans and twic
e it was store

auger, a 4 inc
cubic foot ho
oring equipm
d half inch r

 

dy soil strata
location tha
laying dow
f sand. This
ce daily agit
ed indoors i

ch inner diam
opper with tr
ment. The m
rod (Figure 3

a was 
at did 

wn an 
 sand 
tation 
in a 5 

meter 
remie 
multi-
3.19). 



 

It was lat
auger wa
a sliding
fabricate
height of
the casin
The casin
head of 
assembly
and then 
tension lo
 

 

ter determin
as removed f
g centralizing
d (Figure 3.
f the slurry d

ng was provi
ng / slurry t
slurry to m

y (Figure 3.2
hoisted into

oad frame th

ned that fluid
from the sha
g device wh
.20) and inc
during drillin
ded to drain
ank assembl

maintain the 
21) was crea
o place. An e
hrough which

Figure 

d transfer por
ft. The auge
hich fit insi
luded both a
ng. A drain

n off extra slu
ly was desig
open hole. 

ated which a
existing com
h the anchor

3.19 Multi-f

30 

rts were nee
r was then fi
de the casin
a slurry hold
valve appro

urry before t
gned to be se

A 6.5 ft., 
allowed for t
mpression loa
r rod could p

flight auger

eded to reduc
fitted to a han
ng during dr
ding tank (5

oximately 16
the casing w
elf-standing 
2 in. diame
the mortar (m
ad frame wa
pass for pullo

(4 in diamet

ce the suctio
nd auger rod

drilling. The 
5 gal bucket
6 inches abo

was removed
 and keep a 
eter tremie 
model concr

as modified t
out testing (F

ter) 

on force whe
d and handle

casing was
t) to maintai
ove the botto
d after concre

3 foot mini
pipe and ho
rete) to be m
to also serve
Figure 3.22)

en the 
e with 
s also 
in the 
om of 
eting. 
imum 
opper 
mixed 
e as a 
).  

 



 

Figure 3.220 Self-suppporting casin

31 

g with slurryy storage tan
 

nk and relieff valve 



 

Figure 3.21 Tremmie pipe attac

32 

ched to hopp
 

per with quicck disconnec
 

cts 



 

3.2.5 Slu
 

The drill
was prep
Then the
with a m
bentonite
all of the
minutes. 
 

F

urry Prepar

ing slurry w
pared in two 
e bentonite p
mixing padd
e powder wa
e powder wa

Four differe

Fig

Figure 3.22 T

ation 

was prepared 
steps. First t

powder was 
dle attachm
as manually a
as introduced
ent viscositie

gure 3.23 Pre

Tension/Com

in advance 
the mix wate
slowly add

ment (Figure 
added in sm

d into the sys
es using bent

eparation of 

33 

mpression loa
 

and stored in
er was broug

ded to the w
3.23). For

mall amounts
stem, the slu
tonite were t

a batch of sl

ad frame for

n 55 gallon 
ght to a pH o

water and mi
r the small 
while mixin

urry was mix
tested: 30, 4

lurry in 55 g

 
r the FCV 

closed conta
of 9 with the
ixed using a

slurry volu
ng to ensure 
xed for a min
0, 60, and 90

gallon drum 

ainers. The s
e use of soda
a high speed
ume needed
no clumps. 
nimum of tw
0 sec/qt.  

 

slurry 
a ash. 
d drill 
d, the 
Once 

wenty 



 

A polym
analysis 
running w
The targe

 
3.2.6 Con

 
For the c
with dry 
the first 4
the mode
 
For each
remainin
consisten
safeguard
 

 
Once the
pressure 
reasons: 
pressuriz
require th
 
With the
penetrati
out sourc
CPT whe

mer drilling sl
of the mode
water throug
et slurry visc

nstruction o

construction 
sand minim

40 inches of 
el shaft.  

h test, the f
ng sand from
ncy between
d against the

e frustum wa
of 30 psi us
(1) the flu

zed and (2) 
he bladder to

frustum set
on test (Figu
ces of variati
ere the left is

lurry was al
el shafts. Du
gh a rapid hy
cosity was 60

of Model Sh

of each mo
mizing drop e
f the FCV; se

frustum was
m previous 
n tests, the s
e addition of 

Figure

as filled with
ing an air pr

uid used in 
pullout test

o be filled w

t and ready f
ure 3.25) wa
ion not assoc
s the measur

so created fo
ue to the ina
ydration Hoo
0 to 70 sec/q

hafts 

del shaft, th
energy; pres
etting the cas

s filled wit
tests befor

sand was pl
f any compac

e 3.24 Additi

h sand, the b
ressure syste

the air-ove
ting was to 

with a noncom

for drilling, 
as conducted 
ciated with s
red tip resista

34 

or evaluation
ability to pro
otonanny ed
qt.  

he following 
ssurizing the
sing; placing

h clean, dry
re the clean
laced in sm
ction energy

ion of dry sa

bladder was
em. This styl
er-fluid syst
be conduct

mpressible fl

the work pl
to determin

slurry viscos
ance and the

n and to be u
ocess clump
ductor into a

steps were 
e bladder to 
g the slurry;

ry sand. Th
n sand coul

mall incremen
y (Figure 3.2

and to the FC

s pressurized
le of pressur
tem leaked 
ted to evalu
luid.  

atform was 
ne the tip stre
sity. Figure 3
e right is the 

used as a co
ps, this slurry
a 55 gallon s

followed: fi
30 psi; cond
drilling the 

his required 
d be introd
nts near the
4). 

CV 

d by supplyi
re system wa

into the s
uate the shaf

set in place,
esses versus 
3.26 is a typ
friction ratio

ontrol for the
y was forme
storage conta

illing the fru
ducting a CP
hole; and pl

removal of
duced. To in
e sand surfa

 

ing a consta
as chosen fo
and strata w
fts, which d

, and then a 
depth and to

pical result fr
o.  

e data 
ed by 
ainer. 

ustum 
PT in 
acing 

f any 
nsure 

ace to 

nt air 
or two 
when 
didn’t 

cone 
o rule 
rom a 



 

Figuure 3.25 Conne penetration

35 

 
 

n test into drry soil strataa within FCVV 

 



 

This CPT
stress cur
3.27. Thi
soil stren
 

Figu

T evaluation 
rve which gr
is process is 
ngth.  

Figure 3

ure 3.26 Typ

of the sandy
raphically re
also done to

3.27 Cumula

pical CPT so

y soil was th
epresents the
o normalize a

ative area und
36 

ounding for s
 

hen used to d
e load carryin
all of the tes

der the tip as

soil strength

develop a cum
ng capacity o
st shafts and 

s a function 

h delineation

mulative are
of the soil as
remove the 

of depth in F

 
 

ea under the 
s seen in Fig
effects of va

 
FCV 

tip 
gure 
aried 



 

After con
began by
permanen
frame an
a 3 ft min

 

Figur

Excavati
the temp
the flight
on the s
excavatio
of the ho
hours bef

 
Concretin
of Quikre
after whi
inches or
was be 
prepared 

nducting the
y setting the 
nt surface ca

nd eliminate 
nimum head

re 3.28 Casin

on began by
orary casing
ts (Figure 3.
sidewalls of 
on rate that 
ole reached 
fore a final c

ng was perfo
ete Mortar M
ich a mini sl
r greater, the
added to ac
from the mo

e CPT, drill
casing to a 

asing was pl
bonding to t

d while drillin

ng set in pla

y placing the
g. After 3 fu
29). A 2 min

f the excava
is possible o
36 inches. A

cleanout and

ormed using
Mix, and 15 
lump test w
en the mixtur
chieve the d
ortar mix acc

ling of the h
depth of 8 i
laced around
the FCV. Slu
ng (Figure 3

ace and filled

e auger with
ull turns, the
nute wait tim
ation to help
on such a sm
At this poin

d placement o

g a mortar mi
pounds of w
as performe
re was trans
desired min
cording to th

37 

hole for the
inches within
d the casing 
urry was the

3.28). 

d in excess w
 

hin the casin
e auger was 
me was estab
p prevent c

mall scale. T
nt, the open 
of the fluid c

ix which con
water. This m
d (Figure 3.
ferred into th

ni slump dia
he proper pro

e model sha
n the frustum
to extend th

en introduced

 
with drilling 

ng and settin
removed an

blished to all
collapse due
This process 

hole was le
concrete. 

nsisted of 10
mixture was
.30). If the m
he hopper (F
ameter. Thr
ocedures. 

ft commenc
m and secur
he top of sha
d into the sy

slurry (top v

ng the centra
nd the soil w
low for the s

e to the hig
was repeate

eft undisturb

0 lb of Portla
 mixed for a
mini slump d
Figure 3.31)
ree mortar c

ced. This pr
ring it in pla
aft up to the
ystem to mai

view of FCV

alizer snug w
was cleaned 
slurry to bui

gher than no
ed until the d
bed for at le

and cement, 
at least 6 mi
diameter wa
, otherwise w
cubes were 

ocess 
ce. A 

e load 
intain 

V) 

within 
from 

ild up 
ormal 
depth 
east 8 

60 lb 
inutes 
as 6.5 
water 
then 



 

Figure 3.29

Figure 3.3

9 Removal of

30 Mini Slum

38 

f auger after
 

mp testing of
 

 
r a drilling se

f fresh morta

equence 

ar mix 
 



 

The botto
placed on
then hois
of the ex
displaced
this point
and casin

 

F

om of the op
n the bottom
sted to the to
xcavation, th
d by the mor
t in the casin
ng were remo

Figure 3.31 T

pen excavatio
m of the trem
op of the trem
he hopper v
rtar flowed o
ng the hoppe
oved. 

Transfer of f

on was then
mie pipe an
mie and con
valve was o
out of the dra
er valve was

39 

fresh mortar 
 

cleaned out 
d then inser

nnected (Figu
opened and 
ain value on
s closed, trem

mix to trem

t with a few t
rted into the
ure 3.32). W
concrete pla

n the casing,
mie disconne

 
mie hopper 

turns of the 
e open hole. 
With the trem
acement com
and once th

ected, and th

auger. A cap
The hopper

mie on the bo
mmenced. S
he mortar rea
he hopper, tr

p was 
r was 
ottom 
Slurry 
ached 
remie 



 

A 1/2in 
adequate
minimum
develop t

Figure 3

diameter fu
 stick up to

m of 24 hou
the bar).  

.32 Connect

ully treaded 
 connect the
urs or until 

tion of tremi

rod was th
e pullout de

the strengt

40 

ie pipe to ho
  

hen inserted 
evice (Figure
th reached 2

opper and ho

d into the sh
e 3.33). The
250 psi (mi

 
se to relief v

haft the full
e model shaf
inimum stre

valve 

l 36 inches 
ft was cure 

ength require

with 
for a 
ed to 



 

 
3.2.7 Pul

 
Once the
load fram
A hollow
(Figure 3
test was 
(Figure 3
the FCV
monitorin
by increa
out of the

llout Testin

e model sha
me onto the f
w core hydra
3.34). A half
monitored b

3.35). The sh
V as this len

ng equipmen
asing the pre
e FCV the te

Figure 3.3

g 

afts reached 
frustum and 
aulic jack w
f inch plate w
by a load cel
haft was then
ngth did not
nt was then c
essure via a h
est was termi

33 Complete

sufficient st
connecting 

was placed on
was then pla
ll and two d
n marked to 
t contribute
connected to
hand pump.
inated.  

41 

ed placemen

trength, a pu
an extension
n top of a lo

aced over the
displacement

indicate the
 to the surf

o a data colle
Once the m

 

nt of a model

ullout test w
n rod to the 
oad cell wh
e rod and sec
t gauges mou
e point at wh
face area in
ection system

model shaft ha

l shaft 

was conduct
treaded rod

hich rested o
cured on top
unted 180° f

hich the shaf
n contact w
m and the te
ad been pull

 

ted by secur
d within the 
on the load f
p of the jack
from one an
ft extended a
ith the soil.
st was perfo
led at least 1

ring a 
shaft. 
frame 

k. The 
nother 
above 
. The 

ormed 
1 inch 



 

FFigure 3.34 L

Figure 3.

Load frame 

.35 Displace

42 

with load ce
 

ement gauges
 

ell and hydra

s secured to 

aulic ram 

FCV 

 

 



 

3.2.8 Mo
 

After the
removed 
was take
that had b
around th
along the
 

 

odel Shaft E

e load test w
to evaluate 

n during the
become moi
he shaft has 
e shaft (Figu

Figur

Evaluation 

was conduct
the slurry f

e excavation
istened from
been remov
re 3.38).  

re 3.36 Over

ted, the blad
filter cake on
n of the mod

m the interact
ed, the filter

43 

 
rall view of l

 

dder was de
n the sidewa
del shaft from
tion with the
r cake was m

loading setu

eflated and u
alls of the sh
m the FCV t
e drilling slur
measured usi

 

up  

upper cone 
haft (Figure 
to not distur

urry. Once en
ing calipers 

of the FCV
3.37). Great
rb the sand 
nough of the
at three loca

V was 
t care 
strata 

e sand 
ations 



 

Figure 33.37 Evaluatiion of mode

44 

 
l shaft after 

 
removal of F

 

FCV upper ccone 



 

After the
cake and
to the ma
the shaft
diameter 
area of e
the next t
 
In all, ten
discarded
psi after 
tip stress
side shea
 
 
 

e shaft was e
d or sand. Th
ark made be
, the diamet
was then b

ach shaft. T
test.  

n model sha
d: the first m
the shaft ha

s curve, aver
ar stress relat

Fig

exhumed fro
he overall len
efore the pul
ter of the sh
e used to de
he FCV blad

afts were cas
method shaft
d been cast.

rage diamete
tive to specim

 

gure 3.38 M

om the FCV 
ngth was the
llout test occ
aft was mea
etermine the
dder was the

st resulting i
t and a secon
 The data w

er of the mod
men S3-40.

45 

 
easuring the

 
it was wash

en determine
curred. Then
asured every
e average dia
en deflated c

in eight usab
nd that was 

was then anal
del shaft, len
 

e filter cake 

hed to remov
ed by measu
n starting at 
y inch in two
ameter, cros
completely u

ble data sets
inadvertentl

lyzed for cum
ngth of the s

 

ve any rema
uring from th
the same in
o orthogona
ss sectional 
using a vacu

s. Data from
ly over pres
mulative are
shaft, and no

ining slurry 
he tip of the 

ndicating ma
al directions.
area, and su
uum and res

m two shafts 
surized abov
ea under the
ormalized pu

filter 
shaft 

ark on 
 This 

urface 
et for 

were 
ve 30 
 CPT 
ullout 



46 
 

3.3 Field Pullout Testing 
 
Full-scale pullout testing was performed on four different sets of shafts where both mineral and 
polymer slurry were tested at varied viscosities; in all, twelve shafts were constructed and tested. 
The test program was performed in two phases.  

Phase I provided a baseline for the FDOT upper viscosity limit of mineral slurry, which at that 
time was 40 sec/qt (this value was increased to 50 sec/qt during of the project, unrelated to the 
findings of this study). Phase I also included testing a polymer slurry with a viscosity of 60 
sec/qt.  Although not in the original scope, the FDOT project manager requested similar tests to 
be performed during the rebar pullout tests discussed earlier. 

Phase II tests were performed at the end of the lab study to demonstrate the effects of higher 
viscosity mineral slurry on side shear resistance. This phase used 74 sec/qt mineral slurry and 
131 sec/qt polymer slurry. So in total (Phase I and II), twelve shafts were constructed using four 
different slurries where each slurry condition was replicated for three shafts.  

The overall field testing program involved: (1) CPT testing of the test site to confirm consistency 
or show where variations existed; (2) design and fabrication of a pullout frame capable of fully 
extracting the full scale shafts; (3) construction of the test shafts; (4) pullout testing and 
extraction; and (5) detailed measuring of the constructed shaft dimensions. 

3.3.1 CPT Testing 
 
The location of the test site was confirmed to be in the south yard of a local Association of 
Drilled Shaft Contractors (ADSC) member, R.W. Harris, Inc., in Clearwater, Florida (Figure 
3.39). This firm has been supportive with several drilled shaft research projects with the 
University of South Florida, where many aspects of quality assurance and construction methods 
have been assessed. These projects dealt with post grouting shaft tips, thermal integrity profiling, 
viability of voided shafts, rapid hydration of mineral slurries, remote monitoring of foundations, 
and effects of polymer slurry (Mullins et al., 2012, 2010, 2009a, 2009b, and 2007). 

In cooperation with R.W. Harris personnel, an area of the storage yard was selected which 
provided access to six separate shaft locations per phase that would logistically enable access for 
both drilling and concreting. Shafts were cast and tested in two phases: Phase I (2012) consisted 
of six shafts, three 40 sec/qt bentonite and three 50 sec/qt polymer; and Phase II (2013) consisted 
of six shafts, three 74 sec/qt bentonite and three 131 sec/qt polymer. In each phase, two rows of 
shaft locations separated by 30 ft were laid out; the individual shaft spacing is 20 ft CTC in each 
row.  The shaft layout locations are shown in Figure 3.40. 
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Figure 3.42 CPT tip stress (left) and sleeve friction (right) for each of the Phase I CPT 
soundings. 

 

Figure 3.43 Cumulative area under the tip stress curve as a function of depth. 
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Positions B-2 and P-5 showed the highest cumulative tip area. For the remaining locations, the 
variation was less significant. Table 3.2 shows each of the CPT locations sorted from highest to 
lowest potential capacity for both Phase I and II. 
 

Table 3.2 Capacity potential sorted for each phase (highest to lowest) 
Cumulative qc @15ft 

Phase I Phase II 
Sounding (TSF-ft) Sounding (TSF-ft) 

B-2 1264 P-5 1224 
P-1 941 B-5 926 
P-3 876 P-4 921 
B-1 873 B-6 783 
P-2 816 B-4 670 
B-3 774 P-6 946 

 
3.3.2 Preparations for Shaft Construction and Field Testing 
 
The test program outlined for this study required that shafts be constructed with full-length 
debonded anchor bars, which would, in effect, load the shaft concrete in compression by 
applying a tension load to the anchor bar secured at the toe of the shaft. The soil therefore resists 
by pulling down on the shaft as it is pulled upward, which is typically considered to develop 
lesser side shear resistance than under typical service loads. However, as all shafts were 
constructed and tested in the same manner, this serves as a convenient means to compare the 
shaft capacities and the effect of the slurry used at the time of shaft construction. 
 
Pullout Frame. As the load testing (tension) apparatus could be designed to develop the full 
capacity of the side shear, it could also be designed to fully extract the shafts for dimensional 
inspection. As a result, the bulk of the preparations made for this task were in the design and 
fabrication of the pullout frame as well as the base anchor plates. Preliminary estimates of shaft 
capacity ranged from 50 to 70 kips based on the target diameter of 18 in. and length of 15 ft. The 
pullout frame (Figure 3.44) was designed to develop twice the estimated capacity while also 
providing sufficient vertical clearance to fully extract the shaft during testing. As the pullout tests 
were performed in two phases, the pullout frame was designed to be self-erecting via 
hydraulically actuated legs, which expedited transport and assembly. 
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All excavations were completed by 12:00 PM (4 hours total); bentonite shafts from 8:00 to 9:30 
and the polymer shafts from 10:30 to 12:00. Polymer slurry was mixed while bentonite shafts 
were being excavated and the same pumping system was cleaned out and used to introduce 
polymer slurry into the excavations. Upon completion of all shafts, the slurry was left for 5 hours 
prior to final slurry testing, cleanout procedures, and concreting. Table 3.5 summarizes the 
results of slurry testing and field measurements just prior to concreting. 
 

Table 3.5 Field measurements and slurry test results at time of concreting 

Shaft 
ID 

Length 
(ft & in) 

FDOT Required Slurry Tests 
Sand 

Content (%) 
Density 

(pcf) 
Viscosity 

(s/qt) 
pH 

B1 16’-8” 3 66.5 40 9.5 
B2 17’-2” 1.75 65 44 9.5 
B3 16’-10” 2.5 65 36 9.5 
P1 16’-0” Trace < 0.25 63 47 10 
P2 15’-9” Trace < 0.25 63 46 10 
P3 16’-2” Trace < 0.25 62.5 56 10 

 
The cleanout process caused the shafts to be slightly over-excavated as shown in Table 3.5 
wherein the target depth was 15 ft. Final shaft lengths ranged from 15’-9” to 17’-2”. 
 
Note 1: Shaft P-1, slurry was introduced after encountering the water table. Some sloughing was 
noted prior to pumping in slurry.  
 
Note 2: Shaft P-2, water table was encounter ed during casing installation the day before 
excavation. 
 
Due to deeper than anticipated shafts, some of the anchor rods were lengthened to accommodate 
the as-built conditions. Not all anchor rods could be lengthened, so the anchor bar and 
anchorages were suspended at the lowest possible elevation. Figures 3.62 and 3.63 show the 
installation of the anchor rod and concreting. 
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additional decrease in load was detected which also represented the self-weight of the shaft 
(about 10 ft upward movement). At which point, the loading frame was removed and the crane 
lifted the shaft from the ground. 
 
The displacement of the shaft during the full extraction process was tracked by a string-line 
displacement transducer that measured the position of the jack piston. As all load was locked into 
the load frame system during the extraction, no rebound of the soil, relaxation of the frame, rod 
or crane mat / footings movement was experienced. However, the first shaft tested did not have 
the locking nut below the jack, which necessitated far more loading cycles to extract that shaft 
(P-1). 
 
The order of load testing was selected based on crane access and to minimize the number of 
crane lifts and setups required. This resulted in Row A being tested first followed by Row B. 
Therefore, the Phase I order of testing was as follows: P-1, B-2, P-3, B-1, P-2, and B-3. 
 
With the exception of B-2, all shafts were successfully tested and extracted for inspection. Shaft 
B-2 was loaded to failure and was extracted approximately 3 in when the anchorage failed at the 
bottom of the shaft. This was noted by sudden loss of load accompanied by the anchor rod being 
pulled from the shaft approximately 1 ft. Further, as the shafts were slightly over-excavated and 
the diameter was larger than that designed (22 in instead of 18 in), the anchor rod and anchorage 
system was very close to its associated strength limits; the anchor rod capacity was 126 kips, and 
the ½ in thick bearing plate was 96-120 kips.  As a result, shear failure around the bottom nut 
and washer in the bearing plate most likely caused the sudden failure followed by the nuts 
splitting up through the bottom of the shaft. The rod was successfully unthreaded from the 
anchor nuts and showed no damage. However, the rod could not be reinstalled for subsequent 
attempts to remove the shaft. As thermal integrity wires had been installed this data was 
reviewed to identify the shaft shape as well as match all data to the extracted shafts. Thermal 
integrity analyses of the as-built shafts are presented in Appendix I.  
 
The extraction process is depicted in Figure 3.70. Once the load registered by the load cell 
became constant and decreased no further, the shaft was then set carefully back into the hole, the 
frame removed, and then the shaft was removed via crane. 
 
Phase II extraction was also performed in the same fashion as Phase I. All shafts were 
successfully removed for subsequent dimensional examinations; anchor plates were thicker ¾ in  
steel whereas Phase I used ½ in plates removing the possibility of the same mode of failure 
experienced for B-2.  
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Chapter 4: Test Results 
 
This chapter discusses the results of the testing that was performed.  This includes: the rebar 
pullout results, model scale side shear testing, and full scale side shear/ pullout tests. 
 
 
4.1 Rebar Pullout Tests 
 
The rebar pullout tests involved casting specimens in a variety of slurry conditions and as such 
the slurry properties, concrete properties, pullout resistance, and physical observations of the 
specimens were all documented and discussed in this section.  
 
4.1.1 Slurry Properties 
 
Prior to placing slurry in the forms and on the evening before concrete placement, the viscosity 
of each sample was determined with the Marsh funnel and viscometer methods.  Both the 
viscosity and density were tested from each form at the time the slurry was introduced as well as 
prior to concrete placement.  Table 4.1 details the shaft number, as well as the anticipated slurry 
viscosity. The placement number refers to individual test setups and to an individual concrete 
truck / strength. Increasing numbers of samples were prepared for subsequent placements. 
 

Table 4.1 Test matrix showing shaft number and target viscosity for each placement 
Placement Shaft Viscosity (sec/qt) 

1 
 1 40  
 2 90  

2 

 3 40  
 4 50  
 5 90  
 6 26  (Water) 

3 

 7 30  
 8 40  
 9 50  
 10 90  
 11 60  (Polymer) 
 12 60  (Polymer) 

4 

 13 30  
 14 30  
 15 50  
 16 90  (Polymer) 
 17 90  (Polymer) 
 18 26  (Water) 
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For the first concrete placement the viscosity was determined only with the Marsh Funnel 
method, for all subsequent placements the viscosity was first determined via the Marsh Funnel 
followed by determining the plastic viscosity and gel strength with a viscometer.  The 
subsequent tables provide a breakdown of the slurry properties at the time of slurry placement as 
well as at the time of concrete placement (Table 4.2 - 4.4).  For the first placement only the 
viscosity was verified to be 40 sec/qt and 90 sec/qt at the time of slurry placement for shafts 1 
and 2, respectively.   
   

Table 4.2 Breakdown of slurry properties for model shafts for placement 2 

Shaft 
Number 

Sample 
Time 

Viscosity 
(sec/qt) 

Plastic 
Viscosity 

(cP) 

10 Sec 
Gel 

Strength

10 Min 
Gel 

Strength 

Density 
(lb/ft3) 

Yield 
Point 

3 
Intro 41.15 10.00 33 55.00 

65.37 
40.51 

Placement 43.81 11.50 0.00 58.00 39.67 

4 
Intro 51.57 12.88 64.00 66.00 

65.29 
84.98 

Placement 57.20 15.32 66.00 99.00 72.23 

5 
Intro 83.90 20.16 135.00 118.00 

65.72 
138.34 

Placement 108.39 23.99 118.00 180.00 122.77 
6  26 (Water) n/a n/a n/a n/a n/a 

 
Table 4.3 Breakdown of slurry properties for model shafts for placement 3 

Shaft 
Number 

Sample 
Time 

Viscosity 
(sec/qt) 

Plastic 
Viscosity 

(cP) 

10 Sec 
Gel 

Strength

10 Min 
Gel 

Strength 

Density 
(lb/ft3) 

Yield 
Point 

7 
Intro 30.01 2.80 0.00 4.00 

63.21 
5.19 

Placement 31.10 4.46 0.00 5.00 2.11 

8 
Intro 38.10 8.71 18.00 51.00 

64.27 
32.65 

Placement 41.73 11.74 22.00 55.00 31.16 

9 
Intro 48.76 14.03 53.00 103.00 

64.61 
62.88 

Placement 56.72 15.34 54.00 98.00 71.08 

10 
Intro 80.73 20.84 96.00 172.00 

65.17 
115.01 

Placement 119.59 22.97 107.00 178.00 130.71 
11 

Polymer 
Intro 65.99 5.75 0.00 0.00 

62.03 
6.30 

Placement 64.89 5.37 2.00 2.00 8.58 
12 

Polymer 
Intro 66.46 5.77 3.00 3.00 

62.09 
5..78 

Placement 65.97 5.30 2.00 3.00 9.15 
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Table 4.4 Breakdown of slurry properties for model shafts for placement 4 

Shaft 
Number 

Sample 
Time 

Viscosity 
(sec/qt) 

Plastic 
Viscosity 

(cP) 

10 Sec 
Gel 

Strength

10 Min 
Gel 

Strength 

Density 
(lb/ft3) 

Yield 
Point 

13 
Intro 29.88 2.59 3.00 5.00 

63.41 
3.05 

Placement 30.43 3.31 4.00 5.00 4.18 

14 
Intro 30.22 2.16 3.00 7.00 

63.41 
11.77 

Placement 31.24 3.32 2.00 5.00 4.51 

15 
Intro 52.87 13.31 52.00 101.00 

65.02 
70.94 

Placement 61.37 17.18 48.00 78.00 75.21 
16 

Polymer 
Intro 81.76 7.15 11.00 15.00 

61.06 
27.58 

Placement 86.76 7.59 10.00 15.00 26.31 
17 

Polymer 
Intro 83.18 7.15 11.00 15.00 

61.06 
27.58 

Placement 85.05 7.48 10.00 15.00 30.16 
18  26 (water) n/a n/a n/a n/a n/a 

 
4.1.2 Concrete Properties 
 
Prior to each concrete placement the plastic properties were tested to ensure compliance with 
FDOT specifications (slump range of 7 to 10-inches, FDOT, 2013).  The concrete properties are 
detailed in Tables 4.5 through 4.8 for placements 1 through 4, respectively. For placement 1, 
only the slump data was recorded and cylinders were cast between the placement of shaft 1 and 
shaft 2, and for the subsequent placements the test times were recorded.   
 

Table 4.5 Concrete plastic properties for placement 1 
Concrete Data 

Shaft 
Number 

Slurry 
Type 

Viscosity
(sec) 

Slump 
(in) 

Cylinders
Slurry Contact Time 

(hours) 

1 Bentonite 40 8.50 n/a 12 

2 Bentonite 90 8.50 yes 12 
 
The concrete slump throughout the test program ranged from 4.5-inches to 9.5-inches upon 
arrival at the test site.  The properties are specified in the mix design and were noted on the 
delivery tickets (Appendix C); no adjustment/control was imposed in response to this variability 
as it was assumed that the same issues could arise in the field under normal drilled shaft 
construction. However, concrete out of the specified range was rejected. 
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Table 4.6 Concrete plastic properties for placement 2 
Concrete Data 

Shaft 
Number 

Slurry 
Type 

Viscosity 
(sec) 

Slump 
(in) 

Cylinders
Slurry 
Placed 

Casting Time 

Start Finish 

3 Bentonite 40 9.50 yes 10:04 PM 10:31 AM 10:36 AM 

4 Bentonite 50 8.50 n/a 9:06 PM 9:43 AM 9:48 AM 
5 Bentonite 90 9.25 n/a 9:35 PM 10:03 AM 10:07 AM 
6 Water 26 8.50 yes 9:00 PM 10:57 AM 11:02 AM 

 
Table 4.7 Concrete plastic properties for placement 3 

Concrete Data 

Shaft 
Number 

Slurry 
Type 

Viscosity 
(sec) 

Slump 
(in) 

Cylinders 
Slurry 
Placed 

Casting Time 

Start Finish 

7 Bentonite 30 8.25 n/a 9:39 PM 11:03 AM 11:05 AM 

8 Bentonite 40 7.75 n/a 10:05 PM 11:13 AM 11:15 AM 
9 Bentonite 50 8.50 n/a 10:28 PM 11:20 AM 11:24 AM 
10 Bentonite 90 8.00** yes 9:17 PM 10:52 AM 10:56 AM 
11 Polymer 60 7.75 n/a 10:49 PM 11:27 AM 11:29 AM 
12 Polymer 60 7.75 yes 11:08 PM 11:38 AM 11:40 AM 

** Added approximately 27 gallons of water to obtain slump. 
 

Table 4.8 Concrete plastic properties for placement 4 
Concrete Data 

Shaft 
Number 

Slurry 
Type 

Viscosity 
(sec) 

Slump 
(in) 

Cylinders 
Slurry 
Placed 

Casting Time 

Start Finish 

13 Bentonite 50 9.50 n/a 8:31 PM 9:02 AM 9:06 AM 

14 Bentonite 30 9.50 yes 8:55 PM 9:17 AM 9:20 AM 
15 Bentonite 30 10.00 n/a 9:13 PM 9:29 AM 9:31 AM 
16* Polymer 85 10.00 n/a 9:38 PM 9:38 AM 9:42 AM 
17 Polymer 85 9.50 n/a 9:42 PM 9:49 AM 9:55 AM 
18 Water 26 10.00 yes 9:22 PM 10:07 AM 10:14 AM 

* 2 1/2 hour contact time due to form leaking. 
 
Prior to performing any pullout testing the concrete cylinders cast during the concrete placement 
were tested to verify the required compressive strength.  A minimum of 4-ksi was needed in 
order to replicate field conditions and to achieve meaningful results during pullout testing.  
Tables 4.9 through 4.12 provide the compressive strength data for the concrete placements. 
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Table 4.9 Compressive strength data for placement 1 

Sample 
ID 

Break  
Date 

 
Diameter 

(in) 

 
Diameter 

(in) 

 
Area 

 (in^2) 

Force 
(lb) 

Strength 
(psi) 

1 4-9-13 4.005 4.032 12.683 80785 6370 

2 4-9-13 4.013 4.022 12.677 77570 6119 

3 4-9-13 4.064 4.034 12.876 76740 5960 

Average Compressive Strength 6150 

Table 4.10 Compressive strength data for placement 2 

Sample 
ID  

Break  
Date 

 
Diameter 

(in) 

 
Diameter 

(in) 

 
Area 

 (in^2) 

Force 
(lb) 

Strength 
(psi) 

1 5-14-13 4.025 4.049 12.800 56130 4385 

2 5-14-13 4.059 4.033 12.857 56050 4359 

3 5-14-13 4.063 4.023 12.838 54390 4237 
4 5-14-13 4.051 4.046 12.873 57290 4450 

Average strength 4358 
 

Table 4.11 Compressive strength data for placement 3 

Sample 
ID  

Break  
Date 

 
Diameter 

(in) 

 
Diameter 

(in) 

 
Area 

 (in^2) 

Force 
(lb) 

Strength 
(psi) 

1 6-25-13 4.075 4.067 13.016 54083 4150 

2 6-25-13 4.080 4.025 12.898 57098 4430 

3 6-25-13 4.022 4.000 12.636 62016 4910 
4 6-25-13 4.077 4.064 13.013 60180 4620 

Average strength 4530 
  

Table 4.12 Compressive strength data for placement 4 

Sample 
ID  

Break  
Date 

 
Diameter 

(in) 

 
Diameter 

(in) 

 
Area 

 (in^2) 

Force 
(lb) 

Strength 
(psi) 

1 10/18/13 4.000 4.000 12.566 61170 4870 

2 10/18/13 4.080 4.025 12.898 59050 4580 

3 10/18/13 4.022 4.000 12.636 60820 4810 

Average strength 4753 
4.1.3 Pullout Data 
 
Once the concrete achieved the desired compressive strength, the pullout testing could be 
performed.  Pullout testing was performed on the same day as the compressive strength testing.   
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The following tables detail the pullout data for each placement.  The bonded length for 
placement 1 was 18-inches.  The red shaded areas denote bars that failed in tension.  All failures 
occurred in the threaded region due to the reduced cross section. 
 

Table 4.13 Placement 1 pullout data (load in kips). 

 
 
For placement 2 the bonded length was adjusted from 18-inches to 10-inches based on the 
calculated values to determine the pullout strength.  Again, the red shaded areas denote bars that 
failed in tension.  The bonded length for the water shaft was varied where the shortest length was 
8-inches, increasing in 2-inch increments up to 12-inches.  Again, all the bar failures occurred in 
the threaded region of the bar where the cross section was reduced during machining.  
  

1 58.706 55.724
2 65.360 51.680
3 54.071 51.073
4 56.460 53.133
5 55.160 33.097
6 60.946 53.852
7 49.935 49.367

Max 65.360 55.724
Min 49.935 33.097

Average 57.234 49.704
std dev 5.003 7.604

Maximum Recorded Pullout Load

Bar #
Bentonite

Shaft 1
40 sec

Shaft 2 
90 sec
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Table 4.14 Placement 2 pullout data (load in kips). 

 
 

For placement 3 the bonded length was again adjusted based on previous test data to a length of 
6-inches.  Along with determining the pullout strength, for placements 3 and 4 the bar 
displacement was measured to determine stiffness of the bond between the concrete and 
reinforcement.  Table 4.15 (below) provides the pullout testing data from placement 3, and is 
followed by the stiffness data in Table 4.16.  
 

Table 4.15 Placement 3 pullout data. 

 
  

Water

1 40.88 29.36 35.08 54.65
2 40.70 34.68 36.46 51.19
3 37.22 34.56 35.81 55.73
4 40.52 38.96 46.21 54.34
5 33.23 31.62 42.37 51.83
6 26.99 34.17 35.80 55.46
7 38.71 25.52 34.93 56.93

Max 40.881 38.962 46.211 56.933
Min 26.994 25.523 34.927 51.194

Average 36.894 32.697 38.094 54.304
std dev 5.138 4.332 4.405 2.090

Bar #
Bentonite

Maximum Recorded Pullout Load

Shaft 6
26 sec

Shaft 5
90 sec

Shaft 4
50 sec

Shaft 3
40 sec

1 23.559 26.970 23.998 20.639 32.886 30.233
2 31.575 26.018 18.836 29.715 34.133 42.584
3 22.707 25.242 24.218 20.932 26.757 25.488
4 34.929 24.708 24.117 25.910 41.109 29.595
5 32.530 18.320 20.893 18.518 24.431 36.973
6 28.293 20.599 12.657 27.736 32.836 38.471
7 27.687 27.627 18.947 18.519 34.216 34.244

Max 34.929 27.627 24.218 29.715 41.109 42.584
Min 22.707 18.320 12.657 18.518 24.431 25.488

Average 28.754 24.212 20.524 23.139 32.338 33.941
std dev 4.569 3.454 4.203 4.580 5.445 5.896

Bar #
Bentonite

Shaft 7
30 sec

Shaft 8
40 sec

Shaft 9
50 sec

Shaft 10
90 sec

Shaft 11
60 sec

Shaft 12
60 sec

Polymer
Maximum Recorded Pullout Load (kips)
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Table 4.16 Placement 3 stiffness data. 

 
 

 
The stiffness was determined by calculating the change in load in the linear portion of the 
following plots (Figures 4.1 - 4.6). 
 

 
Figure 4.1 Plot of load vs. displacement for shaft 7 (30 sec bentonite). 

 

1 184.524 155.147 200.293 178.007 236.414 233.316
2 147.035 95.463 121.542 n/a 229.444 124.058
3 160.456 178.462 133.714 116.327 242.478 183.385
4 118.177 157.900 181.749 146.099 193.904 183.348
5 133.818 134.670 116.816 126.856 98.494 157.599
6 187.597 144.364 79.575 93.945 150.325 129.961
7 154.469 132.983 147.729 103.965 102.648 118.166

Max 187.597 178.462 200.293 178.007 242.478 233.316
Min 118.177 95.463 79.575 93.945 98.494 118.166

Average 155.154 142.713 140.203 127.533 179.101 161.405
std dev 25.273 26.006 40.838 30.666 62.217 41.640

Recorded Pullout Stiffness (kips/in)

Bar #
Bentonite Polymer

Shaft 7
30 sec

Shaft 8
40 sec

Shaft 9
50 sec

Shaft 10
90 sec

Shaft 11
60 sec

Shaft 12
60 sec
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Figure 4.2 Plot of load vs. displacement for shaft 8 (40 sec bentonite). 

 

 
Figure 4.3 Plot of load vs. displacement for shaft 9 (50 sec bentonite). 
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Figure 4.4 Plot of load vs. displacement for shaft 10 (90 sec bentonite). 
 
 

 
Figure 4.5 Plot of load vs. displacement for shaft 11 (60 sec polymer). 
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Figure 4.6 Plot of load vs. displacement for shaft 12 (60 sec polymer). 

 
  

For the fourth and final placement, the bonded length remained 6-inches, however another water 
shaft was constructed in order to determine a control value for the bond strength due to the 
tensile failure of the bars in the previous tests.  The threads for bar 2 failed and the data was 
unusable for that particular bar.  Table 4.17 (below) provides the pullout testing data from 
placement four. 

Table 4.17 Placement 4 pullout data. 

 
 

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Lo
ad

 (
ki
p
s)

Displacement (in)

Bar 1

Bar 2

Bar 3

Bar 4

Bar 5

Bar 6

Bar 7

Water

1 20.000 24.960 21.000 25.590 25.460 37.410
2 25.050 29.210 18.590 24.180 19.110
3 28.560 27.130 24.540 27.430 24.670 41.500
4 30.040 32.620 21.600 30.880 26.370 27.220
5 25.360 31.530 16.370 23.280 27.740 29.040
6 22.850 24.580 17.130 20.280 25.710 28.060
7 27.590 23.460 19.400 16.900 34.670 41.020

Max 30.040 32.620 24.540 30.880 34.670 41.500
Min 20.000 23.460 16.370 16.900 19.110 27.220

Average 25.636 27.641 19.804 24.077 26.247 34.042
std dev 3.457 3.575 2.819 4.590 4.610 6.678

Maximum Recorded Pullout Load (kips)

Bar # Shaft 13
30 sec

Shaft 14
30 sec

Shaft 15
50 sec

Shaft 16
85 sec

Shaft 17
85 sec

Shaft 18
26 sec

Bentonite Polymer
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4.2.4 Normalization of Data 
 
All the data was normalized to a single shaft to create comparable data thereby removing effects 
from inadvertent variations in the FCV soil strength profile. A 40 sec/qt model shaft (S3–40) was 
selected to be used as the basis of comparison for this testing. To analyze the data, two things 
were done: (1) the surface area of each shaft was used to convert load to side shear stress by 
dividing the load by the surface area and (2) the measured side shear was normalized by 
multiplying the measured values with the cumulative area ratio defined by equation 4.1. The 
normalized side shear response is shown in in Figure 4.18. 
 
 

	 	 	 	 	

	 	 	 	
	           (Equation 4.1) 

 
  

Average 

Diameter

Total 

Length

IN IN

S1 4.260 36

S2 3.909 36

S3 3.898 32.89

S4 3.690 34.95

S5 3.979 36.93

S6 3.848 35.74

S7 3.871 34.45

S8 3.881 38.5
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Table 4.20 Unit capacity at various displacements along with ultimate capacity for each shaft. 

 
 
The length shown for each was based on measured lengths after the shafts were exhumed with 
the exception of B-2.  The length of B-2 was determined from the measurements during 
excavation and just prior to concreting. 
 

Length
(ft)

Viscosity 
(sec/qt)

Side
Surface

Area (ft
2
)

correction 

Total
Volume

(ft
3
)

Calculated
Dead Load

(kips)

Observed
Min. Load

(kips)

Displacement
(in)

Total Load
(kips)

Side Shear
(ksf)

0.25 62.28 0.58
Shaft B-1 15.4 40 95.5 1.01 48.1 6.7 7.6 0.50 75.19 0.72

1.00 89.22 0.86

0.25 62.94 0.52
Shaft B-2 14.2 44 104.3 0.88 56.0 8.8 N/A 0.50 65.49 0.54

1.00 100.12 0.87

0.25 50.26 0.49
Shaft B-3 14.7 36 90.7 1.26 45.3 6.3 6.6 0.50 74.96 0.76

1.00 76.70 0.78

0.25 68.60 0.64
Shaft P-1 15.4 47 97.0 1.22 49.7 6.9 N/A 0.50 97.93 0.94

1.00 103.43 1.00

0.25 90.31 0.78
Shaft P-2 14.8 46 104.9 0.74 60.9 8.4 11.1 0.50 100.31 0.88

1.00 102.54 0.90

0.25 59.84 0.55
Shaft P-3 15.5 56 97.2 1.09 49.5 6.9 7.3 0.50 56.14 0.51

1.00 97.39 0.93

0.25 68.7 0.69
Shaft B-4 16.2 99 99.2 1.63 46.0 6.9 13.8 0.50 80.2 0.81

1.00 99.5 1.00

0.25 75.10 0.74
Shaft B-5 17.0 56 101.0 1.23 46.6 7.0 15.4 0.50 100.20 0.99

1.00 119.00 1.18

0.25 60.00 0.69

Shaft B-6 14.7 67 87.0 1.46 42.6 6.4 13.4 0.50 68.80 0.79

1.00 70.40 0.81

0.25 62.30 0.63
Shaft P-4 15.7 174 98.2 1.24 45.7 6.9 15.6 0.50 74.70 0.76

1.00 100.40 1.02

0.25 43.25 0.41
Shaft P-5 17.4 108 106.4 0.93 55.8 8.4 14.2 0.50 60.16 0.57

1.00 70.37 0.66

0.25 45.80 0.49
Shaft P-6 15.1 112 93.5 1.21 47.7 7.1 14.1 0.50 59.90 0.64

1.00 69.10 0.74
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Using a theoretical upper bound of 0.5f’c, only the pure water and polymer shafts came close to that 
value and in such cases the water environment causes a 10-15% loss in bond. However, if water is 
used as the reference upper limit, the percent loss becomes slightly less. Bond loss in the bentonite 
samples ranged from 40% to 70% for 30 and 90sec/qt slurry, respectively.  These effects were more 
prevalent for the bentonite slurry than the polymer slurry.  Note that the effect of varied concrete 
strength was normalized by dividing the pullout shear stress by the f’c of that sample. Hence, all 
bond strengths are shown relative to the unconfined compression strength. Likewise, the bond length 
was also taken into account in the normalized bond strength equation shown.  

 
Figure 5.4 Comparison of pullout test results using bentonite slurry. 

 
The pullout bond for the polymer slurry specimens tended to be higher than that of the bentonite 
specimens with average bond losses on the order of 25% to 50% for 60 and 90 sec/qt, respectively. 
However in some cases, the bond values noted for 60 sec/qt polymer specimens exceeded that of the 
pure water (Figure 5.5). 
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Figure 5.5 Comparison of pullout test results using polymer slurry. 

 
 
5.2 Durability 
 
In addition to the loss of bond strength, the pullout specimens revealed possible permeability issues 
with the hardened concrete.  Due to the flowing action of the concrete around the rebar, the bentonite 
slurry was encapsulated by the concrete, projecting to the outer surface the location of each piece of 
reinforcement.  The encased slurry could potentially provide a direct pathway between the exterior 
of the shaft and the reinforcement for chloride or sulfate attack.  Cores taken at the intersection of 
the creases split into quarters along the visible lines in the 50 and 90 sec/qt shafts.  The 30 and 40 
sec/qt cores did not split, however showed visible signs of poor consolidation around the 
reinforcement as well as creases at the surface.  The cores that were cut from the shaft cast with 
water and polymer did not show any signs of poor consolidation, nor did it show any visible defects 
in the concrete.  Figures 5.6 - 5.9 illustrate the encapsulation potential caused by slurry in the shafts.  
Poor consolidation was also noted. Figure 5.10 shows the preferred concrete flow path which is up, 
then out after sufficient lateral pressure has developed to drive the concrete through the resisting 
cage matrix. This flow explains the mechanism that formed the creases and is in keeping with 
previous studies that showed similar concrete movement using a down-hole borescope. 
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Table 5.1 shows the same data both as-measured and using an adjustment factor for local CPT 
strengths. For example, a CPT adjustment factor of 1.12 means that the local CPT soil strength 
was 12% weaker than the average of all 12 CPT strength profiles. 
 
Table 5.2 Ultimate side shear for Phase I and Phase II with and without local CPT adjustments. 

Shaft 
ID 

Viscosity  Ultimate Side Shear (as-measured) Adjusted Side Shear 

(sec/qt) Avg. (ksf) 
Average 

(ksf) 
% 

Increase 
CPT Adj. 

Factor 
(ksf) 

Average 
(ksf) 

% 
Increase 

B1 40 

40 

0.86 

0.84 0 

0.91 0.79 

0.79 0 B2 44 0.87 0.79 0.69 

B3 36 0.78 1.13 0.88 

B4 99 

74 

1.00 

1.00 18.9 

1.47 1.48 

1.28 63.1 B5 56 1.18 1.11 1.31 

B6 67 0.81 1.32 1.06 

P1 47 

50 

1.00 

0.94 12.3 

1.10 1.10 

0.87 10.6 P2 46 0.90 0.67 0.60 

P3 56 0.93 0.98 0.91 

P4 174 

131 

1.04 

0.95 13.3 

1.12 1.16 

0.96 22.2 P5 108 1.00 0.84 0.84 

P6 112 0.81 1.09 0.88 

 
 
5.4 Conclusions 
 
This study tested the pullout resistance of 126 rebar specimens cast in 18 different shaft 
specimens as well as the side shear resistance of twelve shafts with nominal dimensions of 16ft 
long and 22in diameter constructed using either mineral or polymer drilling slurry.  Rebar 
specimens cast in mineral slurry showed degraded bonded which may require consideration from 
a structural perspective.  
 
Full scale side shear tests were conducted where six of the twelve shafts were constructed using 
each type of slurry (polymer slurry stabilized or mineral slurry stabilized) and where the 
excavations were left open with slurry in place for an extended period of time.  Subsequent to 
load testing, the shafts were extracted from the ground whereby the diameter and length could be 
measured to ascertain the exact surface area contributing to the side shear resistance.  
Additionally, the soil type and strength distribution at each shaft location was delineated using a 
cone penetrometer to provide further insight into variations that often occur in load testing.   
 
Phase I. Test results showed similar performance in the comparison of stiffness and ultimate load 
resistance with a 24% increase in initial stiffness and a 6% increase in ultimate capacity is noted 
as a result of polymer use.  One bentonite and one polymer shaft (B-2 and P-2) exhibited higher 
capacity than the rest due to a stronger soil strength profile and a bulge, respectively.  These 
findings are summarized below (Table 5.3) where the average of all bentonite and all polymer 
shafts are computed with and without the effects of the higher capacity shafts. However, when 
considerations for local increases or decreases in soil strength are considered, a 27% increase in 
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side shear resulted from the 50sec/qt polymer slurry relative to the 40sec/qt bentonite slurry 
(Figure 5.12). 
 

Table 5.3 Initial stiffness and ultimate capacity of mineral and polymer slurry shafts (Phase I). 

Comparison Type 
Average Bentonite Capacities Average Shore Pac Capacities 

All B-Series w/o Shaft B-2 All P-Series w/o Shaft P-2 
Initial Stiffness (ksf/in) 2.11 2.13 2.62 2.36 
Ultimate Capacity (ksf) 0.93 0.87 0.99 1.00 

 
Excavation stability (resulting from slurry type) showed similar capabilities where all shafts 
showed some irregularities along the length of the shaft.  The irregularities either stemmed from 
water table sloughing where slurry was not introduced in time or less pronounced undulations 
from the bottom of casing to the shaft toe.  Water table sloughing resulted in bulging in the 
regions just below the temporary surface casing.  In one instance, the excavation was left open 
overnight below the bottom of the temporary casing.  In another, the drilling process started 
before slurry could be introduced.  In cases where slurry was introduced prior to encountering 
the water table, no significant difference was noted as a result of slurry type.  These findings 
support the importance of proper sequencing with regards to the addition of slurry for any type of 
wet shaft construction. 
 
Phase II. All shafts were compared to the average unit side shear capacity of shafts constructed 
with bentonite slurry having viscosity of 40 sec/qt in Phase I. In all cases, shafts performed better 
than the control shaft conditions where thick bentonite (74 sec/qt) performed the best. Different 
schools of thought exist when comparing side by side shafts where the load tests results should 
be adjusted to account for varied soil conditions using SPT or CPT results. Or, variations noted 
by SPT or CPT can be subject to scaling errors and direct corrections may be inappropriate. In 
any event, by applying or by not applying such corrections, no adverse effects on side shear 
capacity were noted by using higher than 40 sec/qt viscosity bentonite slurry (the previous FDOT 
state upper viscosity limit). No adverse effects were noted from the use of polymer slurry either. 
 
It is unclear to what extent the creases formed by entrapped bentonite slurry may affect long-
term durability/corrosion resistance of shafts cast with bentonite slurries. No concern is apparent 
for the shafts constructed with polymer slurry. 
 
5.5 Further Considerations 
 
For this project a slump of 8-inches to 9.5-inches was used, also, the time the reinforcement was 
exposed to slurry was maximized but kept within the Florida Department of Transportation's 
drilled shaft requirements.  Given the opportunity, it would be beneficial to explore higher slump 
concrete in order to minimize the creases noted from the flow of concrete. These trends could be 
verified with x-ray diffraction of the material encountered between the exterior of the shaft and 
the reinforcing in order to determine if bentonite is present and to what extent.  Further testing 
could be done on the polymer and water shafts in order to see if there is a localized higher 
water/cement ratio at these locations as well.   
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Comparative studies of shafts constructed where bentonite was 1hr and 24hrs in the excavation 
show reduction in side shear capacity. But within that time span less is known. Given the 
negligible fluid loss during both the lab and field studies, it is conceivable that all degradation of 
side shear occurs very early on which is in keeping with findings from filter press tests 
performed in previous studies. If true, there should be no further increase in “filter cake” 
thickness beyond the first couple of hours. Hence, over-reaming may never be necessary if the 
traditional 24hr performance is suitable.  
 
In order to determine the severity of the creases that were encountered, it would be beneficial to 
perform chloride diffusion testing on the existing specimens in order to determine the 
permeability of the concrete where the bentonite was not displaced. It is the opinion of the 
principle investigator that the creases formed in this study along with the images depicted in 
Figures 1.2 and 2.9 are the norm and not the exception. The act of extracting a surface casing 
simply obliterates the lines making them undetectable during routine shallow excavations. 
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APPENDIX B: STATE SPECIFICATIONS 
 

Table B.1 Alabama Slurry Specifications  
Mineral Slurry Specifications  
(Sodium Bentonite or Attapulgite in Fresh Water) 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3  

{kg/m3} 

64.3** - 69.1** 
 

{1030* - 1110**} 

64.3** - 75.0** 
 

{1030** - 1200**} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L) 

28 – 45 
 

{30 – 48} 

28 – 45 
 

{30 – 48} 

Marsh Cone 

pH 8 – 11 8 – 11 pH paper, pH Meter 
Sand Content 

Percent by Volume 
N/A N/A N/A 

**Increase by 2 pounds per cubic foot {32 kg/m3} in salt water 
a. Tests should be performed when the slurry temperature is above 39° F. 
b. If desanding is required, sand content shall not exceed 4 percent (by volume) at any 
point in the bore hole as determined by the American Petroleum Institute sand content 
test. 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

 
 
 
 

Alabama has no polymer slurry specifications 
Viscosity 

Seconds/qt 
{Seconds/L} 

pH 
Sand Content 

Percent by Volume 
 
Source: United States. Alabama Department of Transportation. Standard Specifications 
for Highway Construction. 2012.  
Their 2012 is still the most current, so no change was made 
http://www.dot.state.al.us/conweb/specifications.htm 
http://www.dot.state.al.us/conweb/doc/Specifications/2012%20DRAFT%20Standard%20
Specs.pdf 
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Table B.2 Alaska Slurry Specifications  
Mineral Slurry Specification 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3  

{kg/m3} 

Alaska has no specification for drilled shaft slurry 
Viscosity 

Seconds/qt 
{Seconds/L) 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3  

{kg/m3} 

Alaska has no specification for drilled shaft slurry 
Viscosity 

Seconds/qt 
{Seconds/L) 

pH 
Sand Content 

Percent by Volume 
Source: United States. Alaska Department of Transportation and Public Facilities. 
Standard Specifications for Highway Construction. 2004.  
Their 2004 version is still the latest... 

http://www.dot.state.ak.us/stwddes/dcsspecs/pop_hwyspecs_english.shtml  
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Table B.3 Arizona Slurry Specifications  
Mineral Slurry Specifications 
(Sodium Bentonite in Fresh Watera) 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3  

64.3 – 69.1 64.3 – 75.0* Density Balance 

Yield Point 
{Pascals} 

Or 
Viscosity 

Seconds/qt 

Bentonite 
1.25 – 10 

 
 

28 – 50 

10 Maximum 
 
 

28 – 50 

Rheometer 
 
 

Marsh Cone 

pH 7 – 12 7 – 12 pH paper, pH meter 
Sand Content 

Percent by Volume 
0 – 4 0 – 2 API Sand Content 

Kit 
* 85 lb/ft3 maximum when using Barite. 
a. Range of results above 68°F. 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3  

Arizona has no polymer slurry specifications. 
 

Only mentions: 
“The level of polymer slurry shall be maintained at or near 
the ground surface or higher, if required to maintain boring 

stability.” 

Yield Point 
{Pascals} 

Or 
Viscosity 

Seconds/qt 
pH 

Sand Content 
Percent by Volume 

Source: United States. Arizona Department of Transportation. Standard Specifications 
for Road and Bridge Construction. 2008.  
 
Their 2008 version is still the latest, no change in requirements 
http://azdot.gov/business/ContractsandSpecifications/Specifications 
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Table B.4 Arkansas Slurry Specifications  
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64 – 75 
 

None Specified 
 

Mud Balance 
ASTM D4380 

Viscosity 
(Seconds/qt) 
{Seconds/L} 

28 – 45 None Specified API RP13B-1 
Section 2 

Marsh Funnel and 
Cup 

pH 8 – 11 None Specified ASTM D4972 
Sand Content 

Percent by Volume 
4% Maximum N/A (Sand Screen Set) 

ASTM D4381 
a. Range of results at 60°F (20°C). 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64 
Maximum 

(fresh water 
applications) 

 
N/A 

(Mud Balance) 
ASTM D4380 

Viscosity 
Seconds/qt 

{Seconds/L} 

40 to 90 
(or as approved by 

the 
Engineer) 

 
N/A 

API RP13B-1 Sect. 
2 

(Marsh Funnel & 
Cup) 

pH  
8-10 

 
N/A 

ASTM D4972 

Sand Content 
Percent by Volume 

1 % maximum 1% Max (Sand Screen Set) 
ASTM D4381 

a. Range of results at 60°F (20°C). 
Source: United States. Arkansas State highway and Transportation Department. Special 
Provision Job No. 110229 Slurry Displacement Drilled Shaft. 2005. 
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Table B.5 California Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

64.3* – 69.1* 64.3* - 75.0* Mud Weight 
(Density)  

API 13B-1  
Section 1 

Viscosity 
Seconds/qt 

 (Bentonite) 
28 – 50 

(Attapulgite) 
28 – 40 

None Specified Marsh Funnel and 
Cup 

API 13B-1 
Section 2.2 

pH 8 – 10.5 8 – 10.5 Glass Electrode pH 
meter, pH paper 

Sand Content 
Percent by Volume 

Volume≤4.0  Volume≤4.0  Sand, API 13B-1, 
Section 5 

      * When approved by the Engineer, slurry may be used in salt water, and the 
allowable densities may be increased by up to 2 lb/ft3.  Slurry temperature shall be 
at least 40°F when tested. 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

The physical properties of synthetic slurries should be carefully 
monitored during drilling of the hole and before concrete 
placement. Because these slurries in general do not suspend 
particles, the permissible density and sand content values are 
much lower than those allowed for mineral slurries. The density 
and sand content values should be tested and the values 
maintained within the limits stated in the contract specifications to 
allow for quick settlement of suspended materials. The synthetic 
slurry’s pH value should be tested and maintained within the 
limits stated in the contract specifications to prevent 
destabilization of the slurry. 

Viscosity 
Seconds/qt 

pH 
Sand Content 

Percent by Volume 

 
Water Slurry Specification 

 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

 63.5 Mud Weight 
(Density)  

API 13B-1  
Section 1 

Sand Content 
Percent by Volume 

 Volume≤ 0.5 Sand, API 13B-1, 
Section 5 
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If authorized, you may use salt water slurry. The allowable density of the slurry may be 
increased by 2 lb/ft3. 
Source: United States. California Department of Transportation Division of Engineering 
Services. Foundation Manual. 2010.  
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Table B.6 Colorado Slurry Specifications  
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
g/ml 

Less than 1.10 
 

Less than 1.10 
 

Mud Weight 
(Density)  

API 13B-1  
Section 1 

Viscosity 
Seconds/qt 

 (Bentonite) 
30-90 seconds  

Or  
less than 20cP 

 

None Specified Marsh Funnel and 
Cup 

API 13B-1 
Section 2.2 

pH 8 – 10.5 8 – 10.5 pH indicator 
paper  

Strips or 
electrical  
pH meter  

 

Sand Content 
Percent by Volume 

Less than 5%  
 

Less than 5%  
 

Screen 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
g/ml 

No specification for Polymer Slurries 
Viscosity 

Seconds/qt 
pH 

Sand Content 
Percent by Volume 

Source: United States. Colorado Department of Transportation. Permanent Changes to 
Project Dated Special Provisions, Revision of Section 503. 2006. 
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Table B.7 Connecticut Slurry Specifications  
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

64.3* – 69.1* 64.3* - 75.0* Density Balance 

Viscosity 
Seconds/qt 

28 – 45 28 – 45 Marsh Funnel 

pH 8 – 11 8 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
N/A N/A N/A 

*   Increase by 2 lb/ft3 in salt water. 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

Connecticut has no polymer slurry specifications. 
 
“If polymer slurry, or blended mineral-polymer slurry, is 
proposed, the Contractor’s slurry management plan shall include 
detailed provisions for controlling the quality of the slurry, 
including tests to be performed, the frequency of those tests, the 
test methods, and the maximum and/or minimum property 
requirements that must be met to ensure that the slurry meets its 
intended functions in the subsurface conditions at the construction 
site and with the construction methods that are to be used. The 
slurry management plan shall include a set of the slurry 
manufacturer’s written recommendations and shall include the 
following tests, as a minimum: Density test (API 13B-1, 
Section 1), viscosity test (Marsh funnel and cup, API 13B-1, 
Section 2.2, or approved viscometer), pH test (pH meter, pH 
paper), and sand content test (API sand content kit, API 13B-1, 
Section 5).” 

Viscosity 
Seconds/qt 

pH 

Source: United States. Connecticut Department of Transportation. Connecticut DOT 
Guide Drilled Shaft Spec. 2009.  
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Table B.8 Delaware Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

63.55 – 68.51 
 

{1025 – 1105} 

63.55 – 74.41 
 

{1025 – 1200} 

Density Balance 

Viscosity 
Seconds/ft 

{Seconds/L} 

849.5 – 1359.2 
 

{30 – 48} 

849.5 – 1359.2 
 

{30 – 48} 

Marsh Cone 

pH 7 – 11 7 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
1 MAX 4 MAX 200 Sieve Retain 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No state specification pertaining to slurry parameters defined.  
Refers to FHWA guidelines. 

 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: Keith Gray (Bridge Engineer, DELDOT), email message to author, March 7, 
2009. 
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Table B.9 Florida Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64 – 73*  
66 – 75** 

{1030 – 1170*} 
{1060 – 1200**} 

N/A Mud Density 
Balance 

FM 8-RP13B-1 

Viscosity 
Seconds 

 

30 - 50 N/A Marsh Cone Method 
FM 8-RP13B-2 

pH 8 – 11 N/A Electric pH meter, 
pH paper 

FM 8-RP13B-4 
Sand Content 

Percent by Volume 
4% or less N/A FM 8-RP13B-3 

* Fresh water @ 68°F (20°C) 
** Salt water @ 68°F (20°C) 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

62 to 64 lb/ft3  
(fresh water)  

64 to 66 lb/ft3  
(salt water)  

62 to 64 lb/ft3  
(fresh water)  

64 to 66 lb/ft3  
(salt water) 

Mud Density 
Balance 

FM 8-RP13B-1 

Viscosity 
Seconds/qt 

{Seconds/L} 

Range Published By 
The Manufacturer 

for Materials 
Excavated  

 

Range Published By 
The Manufacturer 

for Materials 
Excavated  

 

Marsh Cone Method 
FM 8-RP13B-2 

pH Range Published By 
The Manufacturer 

for Materials 
Excavated  

 

Range Published By 
The Manufacturer 

for Materials 
Excavated  

 

Electric pH meter, 
pH paper 

FM 8-RP13B-4 

Sand Content 
Percent by Volume 

0.5% or less  
 

0.5% or less  
 

FM 8-RP13B-3 

a. Range of results at 68° F 
b. The Engineer will not allow polymer slurries during construction of drilled shafts for 

bridge foundations. 
c. Materials manufactured expressly for use as polymer slurry for drilled shafts may be 

used as slurry for drilled shaft excavations up to 60 inches in diameter installed to 
support mast arms, cantilever signs, overhead truss signs, high mast light poles or 
other miscellaneous structures. 
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d.  A representative of the manufacturer must be on-site or available for immediate 
contact to assist and guide the construction of the first three drilled shafts at no 
additional cost to the Department. 

e. Use polymer slurry only if the soils below the casing are not classified as organic, 
and the pH of the fluid in the hole can be maintained in accordance with the 
manufacturer’s published recommendations. 

Source: United States. Florida Department of Transportation . Standard 
Specifications for Road and Bridge Construction. 2014.  
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Table B.10 Georgia Slurry Specifications  
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

66 – 73 
 

{1060 – 1170} 

N/A N/A 

Viscosity 
Seconds/qt 

{Seconds/L} 

30 – 45 
 

{32 – 48} 

N/A Marsh Funnel 

pH 8 – 11 N/A N/A 
Sand Content 

Percent by Volume 
N/A 4% N/A 

a. Perform sand content tests on slurry samples taken from the bottom of the shaft 
after placement of the reinforcing cage, but immediately before pouring concrete.  
Do not place concrete until all testing produces acceptable results. 

b. If sidewalls are unstable, or if artesian flow is present, use a weighing additive to 
increase the slurry density 

c. pH may be adjusted with soda ash. 
d. When sand content exceeds 4%, desanding or other equipment must be used. 
e. Tests must be performed at 39°F (4°C), slurry temperature. 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64 – 67 
{1025 – 1073} 

N/A N/A 

Viscosity 
Seconds/qt 

{Seconds/L} 

30 – 125 
{32 – 132} 

N/A Marsh Funnel 

pH 8 – 11 N/A N/A 
Sand Content 

Percent by Volume 
N/A ≤1 N/A 

A weighing additive may be used to increase the density of the polymer slurry if the 
sidewalls are unstable or if artesian flow is present. 
Source: United States. State of Georgia Department of Transportation. Special Provision 
Section 524 – Drilled Caisson Foundations. 2006.  
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Table B.11 Hawaii Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

Slurry Drilling is not permitted* 
Viscosity 

Seconds/qt 
{Seconds/L} 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

Slurry Drilling is not permitted* 
Viscosity 

Seconds/qt 
{Seconds/L} 

pH 
Sand Content 

Percent by Volume 
*Wet Construction Method – This method includes using water to maintain stability of 
shaft perimeter while advancing excavation to final depth, and placing reinforcing cage 
and shaft concrete.  
Reuse drilling water only if permitted by the Engineer and contingent upon control of 
unit weight to no more than 62.5 pounds per cubic foot and Marsh funnel viscosity to not 
more than 27 seconds per quart, at  the time drilling water is introduce into the borehole. 
Source: United States. State of Hawaii Department of Transportation. Standard 
Specifications. 2005. 
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Table B.12 Idaho Slurry Specifications Special Provisions  
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

 

64 to 75 
 
 

N/A Mud Weight  
(Density) 

API 13b-1,Section 1
Viscosity 

Seconds/qt 
 

26 to 50 
 
 

N/A Marsh Funnel 
API 13b-1,  
Section 2.2 

pH 8 – 11 N/A N/A 
Sand Content 

Percent by Volume 
N/A 4.0 Max Sand API 13b-1 

Section 5 
Quality control testing will be by the contractor.  Slurry temperature shall be at 
least 40°F when tested. 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No specifications pertaining to slurry parameters available at time 
of study. 

 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
 
Source: United States Idaho Transportation Department. Special Provision S501-20A SP 
Bridge-Drilled Shaft -2013. 
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Table B.13 Illinois Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No specifications pertaining to slurry parameters available. 
 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications  

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No specifications pertaining to slurry parameters available. 
 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: United States. Illinois Department of Transportation. Standard Specifications for 
Bridge Construction. 2012.  



145 

Table B.14 Indiana Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

 

64.3 - 69.1 
 
 

N/A Density Balance 

Viscosity 
Seconds/qt 

 

28 - 45 
 
 

N/A Marsh Cone 

pH 8 – 11 N/A pH paper or meter 
Sand Content 

Percent by Volume 
N/A N/A N/A 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Drilled shafts not permitted. 
Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: United States. Indiana Department of Transportation. Standard Specifications. 
728-B-203 Drilled Shaft Foundations 2013 
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Table B.15 Iowa Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64 – 75 
 

{1030 – 1200} 

64 – 75 
 

{1030 – 1200} 

Slurry Density 
Materials I.M. 387 

Viscosity 
Seconds/gal 

{Sec./L} 

104 - 201 
 

(27.5 – 53)  

104 - 201 
 

(27.5 – 53)  

Marsh Funnel and 
Cup 

Materials I.M. 387 
pH 8 – 11 8 – 11 pH paper 

Sand Content 
Percent by Volume 

≤ 4 ≤ 4 Sand Content Test 
Materials I.M. 387 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

62-63 
 

{995 – 1010} 

62-63 
 

{995 – 1010} 

Slurry Density 
Materials I.M. 387 

Viscosity 
Seconds/gal 

{Sec./L} 

136-227 (36-60) 
231-252 (61-66.5) 
(dry sand/gravel)  

136-227 (36-60) 
231-252 (61-66.5) 
(dry sand/gravel) 

Marsh Funnel and 
Cup 

Materials I.M. 387 
pH 8 – 11 8 – 11 pH paper 

Sand Content 
Percent by Volume 

< 2 < 2 Sand Content Test 
Materials I.M. 387 

Source: United States. Iowa Department of Transportation. Standard Specifications 2012.  
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Table B.16 Kansas Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Drilled shafts permitted but no specifications pertaining to slurry 
parameters available. 

 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Drilled shafts permitted but no specifications pertaining to slurry 
parameters available. 

 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: United States. Kansas Department of Transportation. Standard Specifications for 
State Road and Bridge Construction. 2007. 
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 Table B.17 Kentucky Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No state specification pertaining to slurry parameters defined. 
Refer to FHWA Guidelines 

 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No state specification pertaining to slurry parameters defined. 
Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: United States. Kentucky Transportation Cabinet. Special Note 11C for 
Excavation and Embankment. 2008. 
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Table B.18 Louisiana Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64.3 – 69.1 
 

{1030 – 1107} 
(fresh water) 

64.3 – 75.0 
 

{1030 – 1202} 
(fresh water) 

Mud Balance 
API 13B 
Section 1 

Viscosity 
Seconds 

28 – 45 
 

N/A 
 

Marsh Funnel 
API 13B Section 2 

pH 8 – 11 8 – 11 pH paper, pH meter 
API 13B 
Section 6 

Sand Content 
Percent by Volume 

4 4 Sand Screen Set 
API 13B 
Section 4 

a. Slurry shall not stand for more than 4 hours in the excavation without agitation. 
 

Polymer Slurry Specifications 
Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density lb/ft3 

(kg/m3) 
63-64 

(1010-1026) 
(fresh water) 

63-64 
(1010-1026) 
(fresh water) 

Mud Balance 
(API 13B- Sec 1) 

Viscosity 
Seconds 

45 MIN 
 

N/A Marsh Funnel 
(API 13B- Sec 2) 

pH 8 – 10 8 - 10 pH Paper 
pH Meter 

(API 13B-Sec6) 
Sand Content 

Percent by Volume 
1 MAX 1 MAX Sand Screen Set 

(API 13B- Sec 4) 
a. The slurry shall not stand for more than 4 hours in the excavation without 

agitation 
Source: United States. Louisiana Department of Transportation. Drilled Shaft Inspection 
Manual, Shaft Construction. 2006. 
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Table B.19 Maine Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Drilled shafts permitted but no specifications pertaining to slurry 
parameters available. 

 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Drilled shafts permitted but no specifications pertaining to slurry 
parameters available. 

 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: United States. Maine Department of Transportation. Standard Specifications. 
2002. 
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Table B.20 Maryland Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No specifications pertaining to slurry parameters available. 
Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No specifications pertaining to slurry parameters available. 
Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: United States. Maryland Department of Transportation. Standard Specifications 
for Construction and Materials. 2008.  
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Table B.21 Massachusetts Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{ kg/m3} 

64-75 
 

{1030-1200} 

64-75 
 

{1030-1200} 

Mud Density 
API 13B- Sec. 1 

Viscosity 
Seconds/qt 
{Sec./L} 

26-50 
 

{27.5-53} 

26-50 
 

{27.5-53} 

Marsh Funnel and 
Cup  

API 13B- Sec. 2.2 
pH 8 – 11 8 - 11 Glass Electrode, pH 

Paper, pH Meter 
Sand Content 

Percent by Volume 
4 MAX 4 MAX Sand Content 

API 13B- Sec 5 
* To be increased by 2 lb/ft3 (32 kg/m3) in salt water or brackish water.  
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

Natural or synthetic slurry shall have specific properties at the 
time of mixing and of concreting that are in conformance with the 
written recommendations of the manufacturer and the Contractor’s 
Drilled Shaft Installation Plan. The Contractor shall perform the 
required tests at the specified frequency and shall provide slurry 
that complies with the maximum and/or minimum property 
requirements for the subsurface conditions at the site and with the 
construction methods that are used. Whatever product is used, the 
sand content at the base of the shaft excavation shall not exceed 
1% when measured by the API sand content test, immediately 
prior to concreting. 

Viscosity 
Seconds/qt 

{Seconds/L} 
pH 

Sand Content 
Percent by Volume 

 
Water Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

The use of water slurry without full length steel casings will only 
be allowed if approved in writing by the Engineer. In that case, all 
of the properties of mineral slurry shall be met, except that the 
maximum density shall not exceed 70 lb/ft3 (1120 kg/m3). 
Mixtures of water and on-site soils shall not be allowed for use as 
a drilling slurry, since particulate matter falls out of suspension 
easily and can contaminate the concrete.  

Viscosity 
Seconds/qt 

pH 
Sand Content 

Percent by Volume 
Source: United States. Massachusetts Department of Transportation. Standard 
Specifications. 2012. 
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Table B.22 Michigan Slurry Specifications 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

< 63 < 63 Density Balance 

Viscosity 
Seconds/qt 

33-43 33-43 Marsh Cone 

pH 8 – 11 8-11 pH meter, pH paper 
Sand Content 

Percent by Volume 
< 1 < 1 API 13B-1 

a. Slurry temperature shall be at least 40°F when tested. 
b. Use of mineral slurry in sat water installations will not be allowed. 

 
Source: United States. Michigan Department of Transportation. Standard Specifications 
for Construction. 2012. 
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Table B.23 Minnesota Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64.3 – 69.1 
 

{1030 – 1107} 

64.3 – 75.0 
 

{1030 – 1201} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L} 

28 – 45 
 

{30 – 48} 

28 – 45 
 

{30 – 48} 

Marsh Cone 

pH 8 – 11 8 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
N/A N/A N/A 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

 
 

No specifications pertaining to slurry parameters available. 
Viscosity 

Seconds/qt 
{Seconds/L} 

pH 
a. Mineral slurries shall be employed in the drilling process unless other drilling 

fluids are approved by the Engineer. 
Source: United States. Minnesota Department of Transportation. Standard Bridge Special 
Provisions. 2005. 
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Table B.24 Mississippi Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64.3* – 69.1* 
 

{1030* – 1105*} 

64.3* – 75.0* 
 

{1030** – 1200*} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L} 

28 – 45 
 

{30 – 48} 

28 – 45 
 

{30 – 48} 

Marsh Cone 

pH 8 – 11 8 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
N/A N/A N/A 

* Increase by 2 lb/ft3 (30 kg/m3) in salt water. 
a. Tests should be performed when slurry temperature is above 41°F (5°C). 
b. If desanding is required, sand content shall not exceed 4% (by volume) at any 

point in the borehole as determined by the American Petroleum Institute sand 
content test. 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} Mineral slurries shall be employed when slurry is used in the 
drilling process, unless other drilling fluids are approved in 

writing by the Engineer. No Polymer Specification Available. 
Viscosity 

Seconds/qt 
{Seconds/L} 

pH 
Source:United States. Mississippi Department of Transportation. Special Provision No. 
907-803-18M, Deep Foundations. 2007. 
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Table B.25 Missouri Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

63.5 – 66.8 
 

{1017 – 1129} 

63.5 – 70.5 
 

{1017 – 1129} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L} 

32 – 60 
 

{34 – 60} 

32 – 60 
 

{34 – 60} 

Marsh Funnel 

pH 8 – 10 8 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
<4 <10 API Sand Content 

Kit 
Maximum Contact 

Time* 
Hours 

N/A 4 N/A 

a. All values without agitation and sidewall cleaning. 
b. Higher viscosities may be required to maintain excavation stability in loose or 

gravelly sand deposits. 
c. All values for freshwater without additives. 

 
Polymer Slurry Specifications 

Emulsified Polymer 
 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

< 63 
{1009} 

< 63 
{1009} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L} 

33 – 43* 
{35 – 45}* 

33 – 43* 
{35 – 45}* 

Marsh Funnel 

pH 8 - 11 8 - 11 pH Paper or pH 
Meter 

Sand Content 
Percent by Volume 

< 1 < 1 API Sand Content 
Kit 

Maximum Contact 
Time Without 
Agitation and 

Sidewall Cleaning 

 
 

72 hrs 

 

*Higher viscosities may be required to maintain excavation stability in loose or gravelly 
sand deposits. 
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Dry Polymer 
 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

< 63 
{1009} 

< 63 
{1009} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L} 

50 – 80* 
{53 – 85}* 

50 – 80* 
{53 – 85}* 

Marsh Funnel 

pH 7 - 11 7 - 11 pH Paper or pH 
Meter 

Sand Content 
Percent by Volume 

< 1 < 1 API Sand Content 
Kit 

Maximum Contact 
Time Without 
Agitation and 

Sidewall Cleaning 

 
 

72 hrs 

 

*Higher viscosities may be required to maintain excavation stability in loose or gravelly 
sand deposits. 

a. All values for freshwater without additives. 
Source:United States. Missouri Department of Transportation. Supplemental 
Specifications to 2013 Missouri Standard Specifications for Highway Construction. 2013.  
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Table B.26 Montana Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Mineral slurry use not permitted. 
Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Slurry must be in conformance with Manufacturer’s 
recommendations 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
The following synthetic slurries are approved as slurry systems: 
Product Manufacturer 
Novagel Geo-Tech Services, LLC 
 220 North Zapata Highway, Suite 11A 
 Laredo, TX  78043-4464 
 
ShorePac GCV CETCO 
 1500 West Shure Drive 
 Arlington Heights IL, 60004 
 
SlurryPro CDP KB International, LLC 
 Suite 216, 735 Broad Street 
 Chattanooga, TN  37402-1855 
 
Super Mud* PDS Company 
 8140 East Rosecrans Ave. 
 Paramount, CA  90723-2754 
*Approval as a product applies to the liquid product only. 
Submit other proposed synthetic slurry products for approval. Submit proposed additives 
for approval. 
Source: United States. Montana Department of Transportation. Special Provisions: 
Synthetic Slurry for Drilled Shafts. 2011. 
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Table B.27 Nebraska Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

 
 
 

Mineral slurry not allowed without engineer approval. 
Viscosity 

Seconds/qt 
pH 

Sand Content 
Percent by Volume 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

 
 
 

Manufacturer specifications required upon engineer approval. 
Viscosity 

Seconds/qt 
pH 

Sand Content 
Percent by Volume 

Source: Jordan Larsen (Nebraska Department of Roads Bridge Foundation Engineer) in 
discussion with author, August 2013 
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Table B.28 Nevada Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kN/m3} 

64.0-68.8 
 

{10.1-10.8} 

64.0-74.6 
 

{10.1-11.8} 

Density Method 
API 13B-1  
Section 1 

Viscosity* 
Seconds/qt 

28 – 45 
 

28 – 45 
 

Marsh Funnel and 
Cup 

API 13B-1 Section 
2.2 

pH 8 – 11 8 – 11 pH paper, Glass 
Electrode pH meter 

Sand Content 
Percent by Volume 

4 MAX 4 MAX N/A 

* The Marsh Funnel Test is conducted using one quart of fluid, not one liter. 
a. Testing shall be performed when the slurry temperature is above 40°F (4°C).   
b. The sand content shall not exceed 4% (by volume) at any point in the bore hole as 

determined by the American Petroleum Institute sand content test. 
 

Polymer Slurry Specifications 
Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kN/m3} No specifications pertaining to slurry parameters available at time 
of study. 

 
Viscosity* 
Seconds/qt 

pH 
Source:United States. Nevada Department of Transportation. Standard Specifications for 
Road and Bridge Construction. 2001. 
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Table B.29 New Hampshire Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kN/m3} 

64.3 – 69.1* 
 

{410 – 440*} 

64.3 – 75.0* 
 

{410 – 478*} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/0.945L} 

28 – 45 
 

{28 – 45} 

28 – 45 
 

{28 – 45} 

Marsh Funnel 

pH 8 – 11 8 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
N/A N/A N/A 

* Upper limit assumes that the slurry is being reused after having been treated.  
Initial mixing of mineral powder and fresh water should be no higher than 65.5 
lb/ft3 (717 kN/m3) unless additional density is obtained with weighting agents.  
Increase by 2 lb/ft3 (12.5 kN/m3) in salt water. 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kN/m3} 

64.3 – 69.1* 
 

{410 – 440*} 

64.3 – 75.0* 
 

{410 – 478*} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/0.945L} 

28 – 45 
 

{28 – 45} 

28 – 45 
 

{28 – 45} 

Marsh Funnel 

pH 8 – 11 8 – 11 pH paper, pH meter 
* Upper limit assumes that the slurry is being reused after having been treated.  
Initial mixing of mineral powder and fresh water should be no higher than 65.5 lb/ft3 
(717 kN/m3) unless additional density is obtained with weighting agents.  Increase by 
2 lb/ft3 (12.5 kN/m3) in salt water. 

Source: United States. New Hampshire Department of Transportation. Standard 
Specifications. 2010.  
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Table B.30 New Jersey Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

64.3 – 69.1* 64.3 – 75.0* Mud Balance 
API 13B 

ASTM D 4380 
Viscosity 

Seconds/qt 
28 – 45* 28 – 45* Marsh Funnel and 

Cup 
API 13B 
Section 2 

pH 8 – 11 8 – 11 pH paper, Glass-
Electrode pH meter 

API 13B 
Section 6 

Sand Content 
Percent by Volume 

4 MAX 4 MAX Sand Screen Set 
API 13B Section 4 

ASTM D 4381 
* Increase by 2 lb/ft3 in salt water. 
a. Perform tests when slurry temperature is above 40°F. 
b. Ensure that the sand content does not exceed 4% (by volume) at any point in the 

borehole as determined by the API sand content test when the slurry is introduced. 
c. Perform tests to determine density, viscosity and pH value during the shaft 

excavation to establish a consistent working pattern.  Perform a minimum of 4 
sets of tests during the first 8 hours of slurry use.  When the results show 
consistent behavior, the Contractor may decrease the testing frequency to 1 set per 
every 4 hours of slurry use. 

d. One sec/qt = 1.06 sec/L. 



163 

Polymer Slurry Specifications 
Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

 
 
 
 

No specifications pertaining to slurry 
parameters available. 

API 13B-1, Section 
1 

Viscosity 
Seconds/qt 

{Seconds/L} 

(Marsh funnel and 
cup, API 13B-1), 

Section 2.2 or 
approved 

viscometer 
pH pH meter, pH paper 

Sand Content 
Percent by Volume 

API sand content 
kit, API 13B-1, 

Section 5 
 
Provide a slurry management plan to the RE that includes a set of the slurry 
manufacturer’s written recommendations and results of the following tests, as a 
minimum:  

1. Density Test (API 13B-1, Section 1). 
2. Viscosity Test (Marsh funnel and cup, API 13B-1), Section 2.2 or approved 

viscometer. 
3. pH Test (pH meter, pH paper). 
4. Sand Content Test (API sand content kit, API 13B-1, Section 5). 

Also include the tests to be performed, the frequency of those tests, the test methods, and 
the maximum and minimum property requirements that must be met to ensure that the 
slurry meets its intended functions. Ensure that all test reports are signed, and provide 
them to the RE on completion of each drilled shaft. 
 
Source: United States. New Jersey Department of Transportation. Standard 
Specifications for Road and Bridge Construction. 2007. 
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Table B.31 New Mexico Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

N/A 64.0 – 75.0 Density Balance 

Viscosity 
Seconds/qt 

28 – 45 N/A Marsh Cone 

pH 8 – 10 8 – 10 pH paper 
Sand Content 

Percent by Volume 
N/A 0 – 4 API Method 

a. Perform tests when the slurry temperature is above 40 °F. 
b. Premix the slurry according to the manufacturer’s directions.  Prevent the slurry 

from “setting up” in the shaft.  Dispose of the slurry offsite in accordance with 
Section 107.14.8, “Disposal of Other Materials and Debris.” 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

62.4 - 64 62.4 - 64 Density Balance 

Viscosity 
Seconds/qt 

50-120 50-120 Marsh Cone 

pH 8 – 11.7 8 – 11.7 pH paper 
Sand Content 

Percent by Volume 
0-1 0 – 1 API Method 

a. Premix the slurry according to the manufacturer’s directions.  Prevent the slurry 
from “setting up” in the shaft.  Dispose of the slurry offsite in accordance with 
Section 107.14.8, “Disposal of Other Materials and Debris.” 

b. Perform tests when the slurry temperature is above 40 °F. 
c. Table pertains to Emulsified or Dry Phpa Polymer 

 
Source: United States. New Mexico State Department of Transportation. Standard 
Specifications for Highway and Bridge Construction. 2007.  
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Table B.32 New York Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

1030 – 1106 1030 – 1200 Density Balance 

Viscosity 
Seconds/L 

29 – 48 29 – 48 Marsh Cone 

pH 8 – 11 8 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
N/A N/A N/A 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Polymer Slurry. Provide a polymer slurry with sufficient 
viscosity and gel characteristics to hold the hole open, and 
transport excavated material to a suitable screening system. 

Polymer slurry may be made from PHPA (emulsified), vinyl (dry), 
or natural polymers. Desand the polymer slurry so that the sand 

content is less than 1 percent (by volume) prior to concrete 
placement, as determined by the American Petroleum Institute 

sand content test. 

Viscosity 
Seconds/L 

pH 

Source: United States. New York State Department of Transportation. Standard 
Specifications. 2008.  
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Table B.33 North Carolina Slurry Specifications 
Define “slurry” as bentonite or polymer slurry. Mix bentonite clay or synthetic polymer 
with water to form bentonite or polymer slurry.  
Bentonite Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

 

64.3 – 72 
 
 

64.3 – 72 
 
 

Mud Weight 
API RPb13B-1 

Section 4 
Viscosity 

Seconds/qt 
 

28 – 50 28 – 50 Marsh Funnel and 
Cup 

API RPb13B-1 
Section 6.2 

pH 8 – 11 8 – 11 Glass Electrode pH 
meter  

API RPb 13B-1 
Section 9 

Sand Content 
Percent by Volume 

Vol≤4 Vol≤2 Sand 
API RPb 13B-1 

Section 9 
a. Slurry temperature of at least 40°F (4.4°C) required. 
b. American National Standards Institute/ American Petroleum Institute 

Recommended Practice 
c. Increase density requirements by 2 lb/ft3 in salt water 
d. pH paper is also acceptable for measuring pH. 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

 

≤64 ≤64 Mud Weight 
API RPb 13B-1 

Section 4 
Viscosity 

Seconds/qt 
 

32 – 135 32 - 135 Marsh Funnel and 
Cup 

API RPb 13B-1 
Section 6.2 

pH 8 – 11.5 8 – 11.5 Glass Electrode pH 
meter API RPb 

Section 11 
Sand Content 

Percent by Volume 
≤0.5 ≤0.5 Sand 

API RPb 13B-1 
Section 9 

a. Slurry temperature of at least 40°F (4.4°C) required. 
b. American National Standards Institute/ American Petroleum Institute 

Recommended Practice 
c. Increase density requirements by 2 lb/ft3 in salt water 
d. pH paper is also acceptable for measuring pH. 
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The following polymer slurries are approved for use: 
Product     Manufacturer 
Shore Pac     CETCO Construction Drilling Products 

2870 Forbs Avenue 
Hoffman Estates, IL 60192 
(800) 527-9948 

https://connect.ncdot.gov/resources/Geological/Lists/GEOTechApprvlList/Attachments/2
/SHORE%20PAC%20Technical%20Data.pdf 
Terragel     Geo-Tech Services, LLC 
      220 North Zapata Highway 
      Suite 11A-449A 
      Laredo, TX 78043 
      (210) 259-6386 
https://connect.ncdot.gov/resources/Geological/Lists/GEOTechApprvlList/Attachments/3
2/Terragel%20Technical%20Data.pdf 
SlurryPro CDP    KB International, LLC 
      735 Broad Street 
      Suite 209 
      Chattanooga, TN 37402 
      (423) 266-6964 
https://connect.ncdot.gov/resources/Geological/Lists/GEOTechApprvlList/Attachments/3
/SlurryPro%20CDP%20Technical%20Data.pdf 
Super Mud     PDS Co., Inc. 
      105 West Sharp Street 
      El Dorado, AR 71731 
      (800) 243-4755 
https://connect.ncdot.gov/resources/Geological/Lists/GEOTechApprvlList/Attachments/4
/Super%20Mud%20Technical%20Data.pdf 
Super Mud Dry     PDS Co., Inc. 
      105 West Sharp Street 
      El Dorado, AR 71731 
      (800) 243-475 
https://connect.ncdot.gov/resources/Geological/Lists/GEOTechApprvlList/Attachments/5
/Super%20Mud%20Dry%20Technical%20Data.pdf 
 
Source: United States. North Carolina Department of Transportation. Standard 
Specifications. 2012. 
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Table B.34 North Dakota Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No specifications pertaining to slurry parameters available at time 
of study. 

 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume  
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No specifications pertaining to slurry parameters available at time 
of study. 

 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
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Table B.35 Ohio Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64.3 – 69.1 

{1030 – 1107} 

64.3 – 75.0 
 

{1030 – 1201} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L} 

28 – 45 
 

{30 – 48} 

28 – 45 
 

{30 – 48} 

Marsh Cone 

pH 8 – 11 8 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
N/A N/A N/A 

a. Range of values for 68°F. 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

Only use polymer slurry after demonstrating to the Engineer that 
the stability of the hole perimeter can be maintained while 
advancing the excavation to its final depth by excavating a trial 
hole of the same diameter and depth as that of the production 
shafts. Use the same polymer slurry in the trial hole as proposed 
for the production shafts. If using different sizes of the shafts at 
the project, use the same size trial hole as that of the largest 
diameter shaft, except the depth of the trial hole need not be more 
than 40 feet (12 meters). Only one trial hole per project is 
required. Do not use the trial hole excavation for a production 
shaft. After completing the trial hole excavation, fill the hole with 
sand. The acceptance of the polymer slurry does not relieve the 
Contractor of responsibility to maintain the stability of the 
excavation. Polymer slurry shall conform to the manufacturer‟s  
requirements. 

Viscosity 
Seconds/qt 

{Seconds/L} 
pH 

Source: Ohio Department of Transportation. Construction and Material Specifications. 
2013.  
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Table B.36 Oklahoma Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64.3 – 69.1 
 

{1030 – 1107} 

64.3 – 75.0 
 

{1030 – 1200} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L} 

28 – 45 
 

{30 – 48} 

28 – 45 
 

{30 – 48} 

Marsh Cone 

pH 8 – 11 8 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
N/A N/A N/A 

    a.    Perform tests when slurry temperature is above 40°F [4°C] 
    b.    Density values are for fresh water.  Increase density values 2.0 lb/ft3 [32 kg/m3] 
for salt water 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

62.4 – 63 
 

{1000 – 1010} 

62.4 – 63.5 
 

{1000 – 1017} 

Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L} 

30 – 40 
 

{32 – 42} 

30 – 40 
 

{32 – 42} 

Marsh Cone 

pH 9 – 11 9 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
< 1 < 1 N/A 

    a.    Perform tests when slurry temperature is above 40°F [4°C] 
    b.    Density values are for fresh water.  Increase density values 2.0 lb/ft3 [32 kg/m3] 
for salt water 
Source: United States. Oklahoma Department of Transportation. Standard Specifications 
Book. 2009. 
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Table B.37 Oregon Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

64 – 75 64 – 75 Mud Density 
API 13B-1 
Section 1 

Viscosity 
Seconds/qt 

26 – 50 26 – 50 Marsh Funnel and 
Cup 

API 13B-1 
Section 2.2 

pH 8 – 11 8 – 11 pH paper, pH meter, 
Glass Electrode 

Sand Content 
Percent by Volume 

4 MAX 4 MAX Sand 
API 13B-1 
Section 5 

a. Maintain slurry temperature at 40°F or more during testing. 
 

Polymer Slurry Specifications 
Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

(b) Synthetic Slurries - Select synthetic slurries from the QPL. 
Use synthetic slurries according to the manufacturer’s 

recommendations and the Contractor’s quality control plan. The 
sand content of synthetic slurry shall be less than 2.0 percent (API 
13B-1, Section 5) prior to final cleaning and immediately prior to 

concrete placement. 

Viscosity 
Seconds/qt 

pH 

Sand Content 
Percent by Volume 

<2 <2 Sand 
API 13B-1 
Section 5 

a. Maintain slurry temperature at 40°F or more during testing. 
 

Water Slurry 
Water may be used as slurry when casing is used for the entire length of the drilled shaft. 
Use of water slurry without full-length casing will only be allowed with the Engineer’s 
approval. 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

70 MAX 70 MAX Mud Density 
API 13B-1 
Section 1 

Sand Content 
Percent by Volume 

2 MAX 2 MAX Sand 
API 13B-1 
Section 5 

a. Do not use blended slurries. 
Source: United States. Oregon Department of Transportation. Standard Specifications. 
2008.  
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Table B.38 Pennsylvania Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 
No specifications pertaining to slurry parameters available at time 

of study. 
 

Viscosity 
Seconds/qt 

{Seconds/L} 
pH 

Sand Content 
Percent by Volume 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 
No specifications pertaining to slurry parameters available at time 

of study. 
 

Viscosity 
Seconds/qt 

{Seconds/L} 
pH 

Sand Content 
Percent by Volume 
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Table B.39 Rhode Island Slurry Specifications  
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

No specifications pertaining to slurry parameters available at time 
of study. 

 

Viscosity 
Seconds/qt 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

No specifications pertaining to slurry parameters available at time 
of study. 

 

Viscosity 
Seconds/qt 

pH 
Sand Content 

Percent by Volume 
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Table B.40 South Carolina Slurry Specifications  
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

64.3 – 69.1 64.3 – 75.0 Density Balance 
API 13B-1 
Section 1 

Viscosity 
Seconds/qt 

28 – 45 28 – 45 Marsh Cone 
API 13B-1 
Section 2.2 

pH 8 – 11 8 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
N/A N/A N/A 

a. Perform tests when the slurry temperature is above 40° F. 
b. If desanding is required, do not allow sand content to exceed 4% (by volume) at 

any point in the borehole as determined by the American Petroleum Institute Sand 
Content Test (API 13B-1, Section 5). 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

64.3 – 69.1 64.3 – 75.0 Density Balance 
API 13B-1 
Section 1 

Viscosity 
Seconds/qt 

28 – 45 28 – 45 Marsh Cone 
API 13B-1 
Section 2.2 

pH 8 – 11 8 – 11 pH paper, pH meter 
Source: United States. South Carolina Department of Transportation. Standard 
Specifications for Highway Construction. 2007. 
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Table B.41 South Dakota Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Drilled shafts permitted but no specifications pertaining to slurry 
parameters available. 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Drilled shafts permitted but no specifications pertaining to slurry 
parameters available. 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: United States. South Dakota Department of Transportation. Standard 
Specifications. 2004. 
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Table B.42 Tennessee Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

63.5 – 66.8 63.5 – 70.5 Density Balance 

Viscosity 
Seconds/qt 

32 – 60 32 – 60 Marsh Funnel 

pH 8 – 10 8 – 10 pH paper, pH meter 
Sand Content 

Percent by Volume 
Vol<4 Vol<10 API Sand Content 

Kit 
Maximum Contact 

Time 
Hours 

N/A N/A N/A 

 
Polymer Slurry Specifications 

Emulsified Polymer 
 Property  

(Units) 
At Time of Slurry 

Introduction 
In Hole at Time of 

Concreting 
Test 

Method 
Density 

lb/ft3 
{kg/m3} 

< 63 < 63 Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L} 

33-43* 33-43* Marsh Funnel 
 

pH 8 - 11 8 - 11 pH paper or meter 
Sand Content 

Percent by Volume 
< 1 < 1 API Sand Content 

Kit 
Maximum Contact 

Time Without 
Agitation or 

Sidewall Cleaning 

 
72 hrs 

 
72 hrs 

 

*Higher viscosities may be required to maintain excavation stability in loose or gravelly 
sand deposits. 
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Dry Polymer 
 Property  

(Units) 
At Time of Slurry 

Introduction 
In Hole at Time of 

Concreting 
Test 

Method 
Density 

lb/ft3 
{kg/m3} 

< 63 < 63 Density Balance 

Viscosity 
Seconds/qt 

{Seconds/L} 

50 – 80* 50 – 80* Marsh Funnel 
 

pH 7 - 11 7 - 11 pH paper or meter 
Sand Content 

Percent by Volume 
< 1 < 1 API Sand Content 

Kit 
Maximum Contact 

Time Without 
Agitation or 

Sidewall Cleaning 

 
72 hrs 

 
72 hrs 

 

*Higher viscosities may be required to maintain excavation stability in loose or gravelly 
sand deposits. 
Source: United States. Tennessee Department of Transportation. Special Provisions Item 
625: Drill Shaft Specifications. 2006.  
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Table B.43 Texas Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Specific Gravity ≤1.10 ≤1.15  
Viscosity 

Seconds/qt 
{Seconds/L} 

N/A ≤45  

pH    
Sand Content 

Percent by Volume 
Vol≤1 Vol≤6  

Polymer Slurry Specifications 
Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Specific Gravity 

“Do not use PHPA (partially hydrolyzed polyacrylamide) 
polymeric slurry or any other fluid composed primarily of a 

polymer solution.” 

Viscosity 
Seconds/qt 

{Seconds/L} 
pH 

Sand Content 
Percent by Volume 

Source: United States. Texas Department of Transportation. Standard Specifications. 
2004. 
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Table B.44 Utah Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Slurry drilling is not permitted. 
Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Slurry drilling is not permitted. 
Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: United States. Utah Department of Transportation. Standard Specifications. 
2012. 
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Table B.45 Vermont Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

64.3 – 69.1 
 

{1030 – 1107} 

64.3 – 75.0 
 

{1030 – 1201} 

Density Balance 
API 13B-1 
Section 1 

Viscosity 
Seconds/qt 

{Seconds/L} 

28 – 45 
{30 – 47} 

 

28 – 45 
{30 – 47} 

 

Marsh Cone 
API 13B-1 
Section 2.2 

pH 7 – 11 7 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
N/A ≤4 Sand 

API 13B-1 
Section 5 

a. These tests shall be done per the American Petroleum Institute RP 13B-1 
Standard Procedure for field testing Water Based Drilling Fluids. 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

{kg/m3} 

63 – 64 
 

{1009 – 1025} 

63 – 64 
 

{1009 – 1025} 

Density Balance 
API 13B-1 
Section 1 

Viscosity 
Seconds/qt 

{Seconds/L} 

45 min 
{48 min} 

45 min 
{48 min} 

Marsh Cone 
API 13B-1 
Section 2.2 

pH 7 – 11 7 – 11 pH paper, pH meter 
Sand Content 

Percent by Volume 
N/A < 1 Sand 

API 13B-1 
Section 5 

 
a. These tests shall be done per the American Petroleum Institute RP 13B-1 

Standard Procedure for field testing Water Based Drilling Fluids. 
b. Range of values for polymer slurry at 68° F [20° C] 
c. The use of a blended mineral-polymer slurry is not permitted. 
d. Polymer slurry (vinyl (dry) or natural polymers) shall be made from Partially-

Hydrolyzed Polyacrylamide Polymer (PHPA) (emulsified). The polymer slurry 
product must be approved for use by the Agency. 

Source: United States. Vermont Agency of Transportation. Bennington AC NH 019-1(51) 
Construction Special Provisions. 2009. 
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Table B.46 Virginia Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

63 – 65 65 – 67 Mud Balance 
API 13B-1 
Section 1 

Viscosity 
Seconds/qt 

50 max. 50 max. Marsh Cone Method 
API 13B-1 
Section 2.2 

pH 8 – 10 8 – 10 pH paper, pH meter 
Sand Content 

Percent by Volume 
0.3% max 1% max API 13B -1 

a. Density values shall be increased by two pounds per cubic foot (lb/ft3) in salt 
water. 

b. At time of concreting, sand content at any point in the drilled shaft excavation 
shall not exceed 1% (by volume); test for sand content as determined by the 
American Petroleum Institute. 

c. Minimum mixing time shall be 15 minutes. 
d. Storage time to allow for hydration shall be minimum of 4 hours. 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

63 – 65 65 – 67 Mud Balance 
API 13B-1 
Section 1 

Viscosity 
Seconds/qt 

50 max. 50 max. Marsh Cone Method 
API 13B-1 
Section 2.2 

pH 8 – 10 8 – 10 pH paper, pH meter 
Sand Content 

Percent by Volume 
0.3% max 1% max API 13B -1 

a. Density values shall be increased by two pounds per cubic foot (lb/ft3) in salt 
water. 

b. At time of concreting, sand content at any point in the drilled shaft excavation 
shall not exceed 1% (by volume); test for sand content as determined by the 
American Petroleum Institute. 

c. Minimum mixing time shall be 15 minutes. 
d.Storage time to allow for hydration shall be minimum of 4 hours. 

Source: United States. Virginia Department of Transportation. Special Provisions for 
Drilled Shafts. 2010. 
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Table B.47 Washington Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

63 – 75 63 – 75 Mud Weight API 
13B-1 Section 1 

Viscosity 
Seconds/qt 

26 – 50 26 – 50 Marsh Funnel and 
Cup API 13B-1 

Section 2.2 
pH 8 – 11 8 – 11 Glass electrode, pH 

paper, pH meter 
Sand Content 

Percent by Volume 
4 MAX 4 MAX Sand 

API 13B-1 
Section 5 

a. Use of mineral slurry in salt water installations will not be allowed. 
b. Slurry temperature shall be at least 40 F when tested. 

 
Water Slurry Specifications 

Water without site soils may be used as slurry when casing is used for the entire 
length of the drilled hole. Water slurry without full length casing may only be 
used with the approval of the Engineer. 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

65 MAX 65 MAX Mud Weight 
(Density)API 13B-1 

Section 1 
Sand Content 

Percent by Volume 
1 MAX 1 MAX Sand 

API 13B-1 
Section 5 

Use of water slurry in salt water installations will not be allowed. 
Slurry temperature shall be at least 40ºF when tested. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



183 

 
Synthetic Slurry Specifications 

Synthetic slurries shall be used in conformance with the manufacturer’s 
recommendations and shall conform to the quality control plan specified in Section 6-
19.3(2)B, item 4. The synthetic slurry shall conform to the following requirements: 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

64 MAX 64 MAX Mud Weight API 
13B-1 Section 1 

Viscosity 
Seconds/qt 

32-135 32-135 Marsh Funnel and 
Cup API 13B-1 

Section 2.2 
pH 6 -11.5 6 -11.5 Glass electrode, pH 

paper, pH meter 
Sand Content 

Percent by Volume 
1 MAX 1 MAX Sand 

API 13B-1 Sec 5 
 
Source: United States. Washington State Department of Transportation. Bridge Special 
Provisions. 2014. 
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Table B.48 West Virginia Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

When the use of slurry is anticipated, details of the methods to 
mix, circulate, and de-sand slurry.  Any request to use a slurry 
displacement method for the construction of caissons shall also 
provide information for the Engineer's approval as follows: 

1. Detailed description of proposed construction method. 
2. Concrete mix, as modified for use with the slurry 

displacement method. 
3. Components and proportions in proposed slurry mixture. 
4. Tests proving slurry mixture will not degrade rock or 

interfere with bond. 
5. Methods to agitate slurry mixture prior to concrete 

placement. 
6. Methods to clean slurry mixture for re-use. 
7. Disposal methods for used slurry. 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 

 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

No specific polymer slurry specifications 
 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: United States. West Virginia Department of Transportation. West Virginia 
Division of Highways: Supplemental Specifications. 2000. 
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Table B.49 Wisconsin Slurry Specifications 
Mineral Slurry Specifications 

Property at 68°F 
Units 

At the Time of 
Slurry Introduction 

into the Drilled 
Shaft 

Before Concrete 
Placement in the 

Drilled Shaft 

Test Method 

Density in Fresh 
Water (lb/ft3) (a) 

64 to 69 64 to 75 Density Balance 

Viscosity 
(seconds per quart) 

28 to 45 28 to 45 Marsh Funnel 

pH 7 to 11 7 to 11 pH paper or meter 
Sand Content (%) 

(b) 
4 maximum 10 maximum 200 Sieve Retain 

 
Polymer Slurry Specifications 

Property at 68°F 
Units 

At the Time of 
Slurry Introduction 

into the Drilled 
Shaft 

Before Concrete 
Placement in the 

Drilled Shaft 

Test Method 

Density in Fresh 
Water (lb/ft3) (a) 

63 or less 63 or less Density Balance 

Viscosity 
(seconds per quart) 

50 minimum 50 minimum Marsh Funnel 

pH 8 to 11 8 to 11 pH paper or meter 
Sand Content (%) 2 maximum 10 maximum 200 Sieve Retain 

 
Source : United States. Wisconsin Department of Transportation. Standard Specification, 
2013. 
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Table B.50 Wyoming Slurry Specifications  
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Drilled shafts permitted but no specifications pertaining to slurry 
parameters available. 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
kg/m3 

Drilled shafts permitted but no specifications pertaining to slurry 
parameters available. 

Viscosity 
Seconds/L 

pH 
Sand Content 

Percent by Volume 
Source: United States. State of Wyoming Department of Transportation. Standard 
Specifications. 2010. 
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Table B.51 Federal Highway Administration Slurry Specifications 
Mineral Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

64.3 – 72 N/A Mud Weight 
Density Balance 

(API 13B-1) 
Viscosity 
Seconds/L 

28 – 50 N/A Marsh Funnel and 
Cup (API 13B-1) 

pH 8 – 11 N/A pH paper, pH meter 
Sand Content 

Percent by Volume 
4 MAX N/A Sand Content 

API 13B-1 
Note: Density values shown are for fresh water. Increase density values 2 pounds per 
cubic foot for saltwater. Perform tests when slurry temperature is above 40 °F. If 
desanding is required, sand content shall not exceed 4 percent by volume at any point in 
the bore hole according to the American Petroleum Institute sand content test. 
 
Polymer Slurry Specifications 

Property 
(Units) 

At Time of Slurry 
Introduction 

In Hole at Time of 
Concreting 

Test 
Method 

Density 
lb/ft3 

≤64 N/A Mud Weight 
Density Balance 

(API 13B-1) 
Viscosity 
Seconds/L 

32 to 135 N/A Marsh Funnel and 
Cup (API 13B-1) 

pH 8 – 11.5 N/A pH paper, pH meter 
Sand Content 

Percent by Volume 
≤ 1.0 N/A Sand Content 

API 13B-1 
 
Source: United States. United States Department of Transportation Federal Highway 
Administration. Drilled Shafts: Construction Procedures and LRFD Design Methods. 
2010. 
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Figure D.2 CPT data prior to casting S1 – 40 (40 sec/qt) 
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Figure D.3 Puullout data fo
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or model shaaft S1 – 40 ((40 sec/qt) 
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Figure D.4 CPT data prior to casting S2- 50 (50 sec/qt) 
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Figure D.5 Puullout data fo
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Figure D.6 CPT data prior to casting S3- 40 (40 sec/qt) 
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Figure D.7 Puullout data fo
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Figure D.8 CPT data prior to casting S4- 90 (90 sec/qt) 
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Figure D.9 Puullout data fo
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or model shaaft S4 – 90 ((90 sec/qt) 
 

 



203 
 

 
Figure D.10 CPT data prior to casting S6- 90 (90 sec/qt) 
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Figure D.11 PPullout data f
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for model shhaft S6 – 90 ((90 sec/qt) 
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Figure D.12 CPT data prior to casting S7- 40 (40 sec/qt) 
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Figure D.13 PPullout data f
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for model shhaft S7 – 40 ((40 sec/qt) 
 

 



207 
 

 
Figure D.14 CPT data prior to casting S8- 50 (50 sec/qt) 
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Figure D.15 P
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for model shhaft S8 – 50 ((50 sec/qt) 
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APPENDIX E: CONE PENETRATION TEST RESULTS 
 

Phase I: P-1, P-2, P-3, B-1, B-2, and B-3 
Phase II: B-4, B-5, B-6, P-4, P-5, and P-6 
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Figure E.1 CPT sounding for Shaft P-1 (Phase I).
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Figure E.2 CPT sounding for Shaft B-2 (Phase I).
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Figure E.3 CPT sounding for Shaft P-3 (Phase I).
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Figure E.4 CPT sounding for Shaft B-1 (Phase I).
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Figure E.5 CPT sounding for Shaft P-2 (Phase I). 
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Figure E.6 CPT sounding for Shaft B-3 (Phase I). 
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Figure E.7 CPT sounding for Shaft B-4 (Phase II). 
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Figure E.8 CPT sounding for Shaft B-5 (Phase II). 
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Figure E.9 CPT sounding for Shaft B-6 (Phase II). 
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Figure E.10 CPT sounding for Shaft P-4 (Phase II). 
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Figure E.11 CPT sounding for Shaft P-5 (Phase II). 
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Figure E.12 CPT sounding for Shaft P-6 (Phase II). 
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APPENDIX F: PHASE I and II LOAD TEST RESULTS 

 
Phase I 

Shafts B-1, B-2, B-3, P-1, P-2, and P-3 
 

Phase II 
Shafts B-4, B-5, B-6, P-4, P-5, and P-6 
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Figure F.1 Load vs. Displacement data for Shaft B-1 

 

 
Figure F.2 Load vs. Displacement data for Shaft B-2 
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Figure F.3 Load vs. Displacement data for Shaft B-3 

 

 
Figure F.4 Load vs. Displacement data for Shaft P-1 
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Figure F.5 Load vs. Displacement data for Shaft P-2 

 

 
Figure F.6 Load vs. Displacement data for Shaft P-3 

 



226 
 

 
Figure F.7 Extraction data for Shaft B-1 

 

 
Figure F.8 Extraction data for Shaft B-2 

 

Dead Load 

Dead Load 
not observed 
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Figure F.9 Extraction data for Shaft B-3 

 

 
Figure F.10 Extraction data for Shaft P-1 

 

Dead Load 

Dead Load 
not observed 
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Figure F.11 Extraction data for Shaft P-2 

 

 
Figure F.12 Extraction data for Shaft P-3 

Dead Load 

Dead Load 
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Figure F.13 Load vs. Displacement data for Shaft B-4 

 
Figure F.14 Load vs. Displacement data for Shaft B-5 
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Figure F.15 Load vs. Displacement data for Shaft B-6 

 
Figure F.16 Load vs. Displacement data for Shaft P-4 
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Figure F.17 Load vs. Displacement data for Shaft P-5 

 
Figure F.18 Load vs. Displacement data for Shaft P-6 
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Figure F.19 Extraction data for Shaft B-4 

 
Figure F.20 Extraction data for Shaft B-5 
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Figure F.21 Extraction data for Shaft B-6 

 
Figure F.22 Extraction data for Shaft P-4 
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Figure F.23 Extraction data for Shaft P-5 

 
Figure F.24 Extraction data for Shaft P-6 
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APPENDIX G: PHASE I and II EXTRACTED SHAFT IMAGES 
 

Phase I 
Shafts B-1, B-3, P-1, P-2, and P-3 

 
Phase II 

Shafts B-4, B-5, B-6, P-4, P-5, and P-6 
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Figure 0.1 Shaft B-1 top, toe, side view top, middle, bottom (from top to bottom). 
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Figure 0.2 Shaft B-3 top, toe, side view top, middle, bottom (from top to bottom). 
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Figure 0.3 Shaft P-1 top, toe, side view top, middle, bottom (from top to bottom). 
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Figure 0.4 Shaft P-2 top, toe, side view top, middle, bottom (from top to bottom). 
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Figure 0.5 Shaft P-3 top, toe, side view top, middle, bottom (from top to bottom).  
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Figure G-6 Shaft B-4 top, toe, side view top, middle, bottom (from top to bottom). 
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Figure G-7 Shaft B-5 top, toe, side view top, middle, bottom (from top to bottom). 
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Figure G-8 Shaft B-6 top, toe, side view top, middle, bottom (from top to bottom). 
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Figure G-9 Shaft P-4 top, top elevated, toe, side view top, middle, bottom (from top to bottom). 
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Figure G-10 Shaft P-5 top, toe, side view top, middle, bottom (from top to bottom). 
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Figure G-11 Shaft P-6 top, toe, side view top, middle, bottom (from top to bottom). 
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APPENDIX H: PHASE I and II AS-BUILT SHAFT DIMENSIONS 
 

Shafts B-1, B-2, B-3, P-1, P-2, and P-3 
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Shaft B-1 
 
Measured Length: 15’ 4 ½”  

Depth

(ft) D1 D2 AVG

0.0 27.5 27.5 27.5

0.5 28.25 29.5 28.875

1.0 29 29.5 29.25

1.5 28.25 29.75 29

2.0 28 29.5 28.75

2.5 28.5 29 28.75

3.0 28.5 28.75 28.625

3.5 28.25 28.5 28.375

4.0 28.75 28.5 28.625

4.5 23 25.5 24.25

5.0 22 22.75 22.375

5.5 21.75 21.5 21.625

6.0 22.5 23.5 23

6.5 21.5 21 21.25

7.0 21.5 21 21.25

7.5 21 21.5 21.25

8.0 21 21.75 21.375

8.5 21.5 21.5 21.5

9.0 22 21 21.5

9.5 22.25 21 21.625

10.0 22 21 21.5

10.5 21.5 21 21.25

11.0 21.75 21 21.375

11.5 22 21.75 21.875

12.0 23 22.25 22.625

12.5 22.25 22 22.125

13.0 22 22 22

13.5 22 22.25 22.125

14.0 22.25 22 22.125

14.5 22 22 22

15.0 20.75 20.5 20.625

15.4 20.75 20.5 20.625

Diameter (in)

 
 

Figure H.1 Shaft B-1 caliper measurements and graphical representation of shaft shape. 
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Shaft B-2 
 
See Appendix I for dimensions of Shaft B-2 as estimated from thermal data. 
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Shaft B-3 
 
Measured Length: 14’ 8” 

Depth

(ft) D1 D2 AVG

0.0 27.5 30 28.75

0.5 28.5 28.25 28.375

1.0 28.25 28 28.125

1.5 28.25 28 28.125

2.0 28.25 28 28.125

2.5 28 28 28

3.0 28 28 28

3.5 28 28 28

4.0 28.25 27.25 27.75

4.5 22.25 21.5 21.875

5.0 22 23 22.5

5.5 21.5 21.25 21.375

6.0 21.5 20.75 21.125

6.5 21.5 21 21.25

7.0 22 21 21.5

7.5 22.5 22 22.25

8.0 22.25 22.5 22.375

8.5 22.25 22.5 22.375

9.0 22 21.75 21.875

9.5 22.25 22 22.125

10.0 22 21.5 21.75

10.5 21.5 21.5 21.5

11.0 21.5 22 21.75

11.5 21.5 21.5 21.5

12.0 22.25 22 22.125

12.5 22 22 22

13.0 21.75 21.5 21.625

13.5 21.25 22 21.625

14.0 21.5 21.75 21.625

14.5 21.75 22 21.875

14.7 19 19 19

Diameter (in)

 
 
Figure H.2 Shaft B-3 caliper measurements and graphical representation of shaft shape. 
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Shaft P-1 
 
Measured Length: 15’ 5” 

Depth

(ft) D1 D2 AVG

0.0 37 27 32

0.5 28.25 28.5 28.375

1.0 28 28.5 28.25

1.5 28.5 28.25 28.375

2.0 28.25 28 28.125

2.5 28 28 28

3.0 28 28.5 28.25

3.5 27.75 27.5 27.625

4.0 27.75 28.75 28.25

4.5 30.5 29.5 30

5.0 34.25 31 32.625

5.5 22.5 23.5 23

6.0 22 22.5 22.25

6.5 21 21.25 21.125

7.0 21 21.5 21.25

7.5 20 21.5 20.75

8.0 20.75 22 21.375

8.5 20.5 21.25 20.875

9.0 21 21.5 21.25

9.5 21 21 21

10.0 21 21.5 21.25

10.5 21.25 21 21.125

11.0 21 21 21

11.5 22.25 21.5 21.875

12.0 23.5 23.5 23.5

12.5 22 22 22

13.0 21.5 21.75 21.625

13.5 21.75 22 21.875

14.0 21 22 21.5

14.5 21 21.75 21.375

15.0 21.25 21 21.125

15.4 18.5 18.5 18.5

Diameter (in)

 
 

Figure H.3 Shaft P-1 caliper measurements and graphical representation of shaft shape. 
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Shaft P-2 
 
Measured Length: 14’ 10” 

Depth

(ft) D1 D2 AVG

0.0 26 26 26

0.5 27.75 28.5 28.125

1.0 28 28.75 28.375

1.5 28 28.5 28.25

2.0 28 28.5 28.25

2.5 28 28.75 28.375

3.0 28 28.25 28.125

3.5 27.75 28 27.875

4.0 31 31 31

4.5 33.5 36 34.75

5.0 35 45 40

5.5 33 34 33.5

6.0 34 32.75 33.375

6.5 37 33.75 35.375

7.0 37 25 31

7.5 36.5 24 30.25

8.0 21 23.5 22.25

8.5 21.5 24.25 22.875

9.0 24.25 23.5 23.875

9.5 23.5 22 22.75

10.0 22.25 22 22.125

10.5 22.5 22.5 22.5

11.0 22.5 22.75 22.625

11.5 23 23 23

12.0 22.75 23.25 23

12.5 23 23.5 23.25

13.0 22.25 23.25 22.75

13.5 22.75 23 22.875

14.0 22.75 22.5 22.625

14.5 23 21.75 22.375

14.8 20 18.5 19.25

Diameter (in)

 
 

Figure H.4 Shaft P-2 caliper measurements and graphical representation of shaft shape. 
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Shaft P-3 
 
Measured Length: 15’ 6” 

Depth

(ft) D1 D2 AVG

0.0 32 35.5 33.75

0.5 28.5 28.25 28.375

1.0 28.25 28.25 28.25

1.5 28.5 28 28.25

2.0 28.5 28.75 28.625

2.5 28.25 28.75 28.5

3.0 28.5 28.5 28.5

3.5 28.5 28.5 28.5

4.0 28.5 28.5 28.5

4.5 28.5 28.5 28.5

5.0 25.25 25.25 25.25

5.5 24.5 22 23.25

6.0 23 21.25 22.125

6.5 23 22 22.5

7.0 22.25 22 22.125

7.5 22.5 22 22.25

8.0 22.25 21.5 21.875

8.5 22.5 21.5 22

9.0 21.75 21.5 21.625

9.5 21.5 21.5 21.5

10.0 21.5 22 21.75

10.5 21.25 21 21.125

11.0 21.25 21 21.125

11.5 22 21.5 21.75

12.0 22.5 22 22.25

12.5 21.5 20.75 21.125

13.0 23 21 22

13.5 22.5 21 21.75

14.0 21.75 21 21.375

14.5 21.25 21 21.125

15.0 21.25 20.5 20.875

15.5 17.5 18.5 18

Diameter (in)

 
 

Figure H.5 Shaft P-3 caliper measurements and graphical representation of shaft shape. 
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Depth (ft) D1 (in) D2 (in) C (ft) R (avg of D) R (from C)

0.25 29.4 28.5 7.73 14.475 14.76321

0.5 28.75 28.3 7.55 14.2625 14.41944

0.75 28.6 28.3 7.52 14.225 14.36214

1 28.8 28.1 7.51 14.225 14.34304

1.25 28.4 28 7.49 14.1 14.30485

1.5 28.6 28 7.44 14.15 14.20935

1.75 28.65 27.9 7.42 14.1375 14.17116

2 29 27.85 7.43 14.2125 14.19025

2.25 29 27.2 7.24 14.05 13.82738

2.5 26.2 24.1 6.5 12.575 12.41409

2.75 24.9 23.9 6.42 12.2 12.2613

3 24.8 23.9 6.38 12.175 12.1849

3.25 24.6 23.7 6.39 12.075 12.204

3.5 24.9 23.8 6.38 12.175 12.1849

3.75 25 23.9 6.38 12.225 12.1849

4 25 23.9 6.38 12.225 12.1849

4.25 25 23.7 6.37 12.175 12.1658

4.5 24.8 23.25 6.38 12.0125 12.1849

4.75 24.5 23.1 6.38 11.9 12.1849

5 24.9 23.1 6.35 12 12.12761

5.25 24.5 22.8 6.28 11.825 11.99392

5.5 24.1 22.6 6.22 11.675 11.87932

5.75 23.9 22.4 6.12 11.575 11.68834

6 23 22.4 6.1 11.35 11.65014

6.25 22.9 22.6 6.05 11.375 11.55465

6.5 22.9 22.2 6.06 11.275 11.57375

6.75 22.7 22 6.09 11.175 11.63104

7 22.8 22.4 6.08 11.3 11.61194

7.25 22.9 22.5 6.14 11.35 11.72654

7.5 23 22.5 6.1 11.375 11.65014

7.75 22.7 22.4 6.09 11.275 11.63104

8 22.7 22.6 6.1 11.325 11.65014

8.25 22.6 22.5 6.11 11.275 11.66924

8.5 22.4 22.3 6.09 11.175 11.63104

8.75 22.5 22.2 6.08 11.175 11.61194

9 22.5 22.4 6.11 11.225 11.66924

9.25 22.7 22.4 6.09 11.275 11.63104

9.5 22.3 22 6.06 11.075 11.57375

9.75 22 22 6.07 11 11.59285

10 22 21.9 6.03 10.975 11.51645

10.25 22.6 22.05 6.03 11.1625 11.51645

10.5 22.2 22 5.98 11.05 11.42096

10.75 22.15 21.8 5.98 10.9875 11.42096

11 22.15 21.65 5.97 10.95 11.40186

11.25 22.1 21.5 5.95 10.9 11.36366

11.5 22.1 21.7 6.01 10.95 11.47825

11.75 22 21.85 5.94 10.9625 11.34456

12 22 22 5.95 11 11.36366

12.25 22.7 22.3 6.11 11.25 11.66924

12.5 22.7 22.7 6.14 11.35 11.72654

12.75 22.9 22.2 6.1 11.275 11.65014

13 22 22 6 11 11.45916

13.25 21.95 21 5.87 10.7375 11.21087

13.5 21.5 20.5 5.77 10.5 11.01989

13.75 21.1 20.5 5.7 10.4 10.8862

14 21.2 20.6 5.77 10.45 11.01989

14.25 21 20.6 5.7 10.4 10.8862

14.5 21.6 20.6 5.7 10.55 10.8862

14.75 21.2 20 5.65 10.3 10.79071

15 20.6 20 5.02 10.15 9.587494

15.25 20 17.5 4.45 9.375 8.498874  
Figure H.6 Shaft B-4 caliper measurements. 
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Depth (ft) D1 (in) D2 (in) C (ft) R (avg of D) R (from C)

0.25 29 28.8 7.7 14.45 14.70592

0.5 28.35 28.7 7.63 14.2625 14.57223

0.75 27.9 28.8 7.57 14.175 14.45764

1 28 28.6 7.57 14.15 14.45764

1.25 27.95 28.65 7.53 14.15 14.38124

1.5 27.7 29 7.44 14.175 14.20935

1.75 28.05 28.5 7.44 14.1375 14.20935

2 28 28.55 7.44 14.1375 14.20935

2.25 27.1 28.6 7.36 13.925 14.05656

2.5 27.2 28.55 7.33 13.9375 13.99927

2.75 27.5 28.4 7.35 13.975 14.03747

3 23.9 25.9 6.6 12.45 12.60507

3.25 23.5 25.2 6.45 12.175 12.31859

3.5 23.2 24.2 6.3 11.85 12.03211

3.75 22.7 23.9 6.15 11.65 11.74563

4 22.8 22.9 6.13 11.425 11.70744

4.25 22.7 22.9 6.13 11.4 11.70744

4.5 22.8 22.9 6.14 11.425 11.72654

4.75 22.7 23.05 6.1 11.4375 11.65014

5 23.1 23.15 6.15 11.5625 11.74563

5.25 23.3 23.2 6.17 11.625 11.78383

5.5 23.05 23.1 6.14 11.5375 11.72654

5.75 22.8 22.95 6.14 11.4375 11.72654

6 22.7 22.8 6.12 11.375 11.68834

6.25 22.9 22.8 6.08 11.425 11.61194

6.5 22.8 22.85 6.05 11.4125 11.55465

6.75 22.6 22.5 6 11.275 11.45916

7 22.9 22.7 6.01 11.4 11.47825

7.25 23 22.4 6.04 11.35 11.53555

7.5 23 22.2 6.04 11.3 11.53555

7.75 23.1 22.15 6.07 11.3125 11.59285

8 23 22.4 6.08 11.35 11.61194

8.25 22.1 22.4 6.03 11.125 11.51645

8.5 22.3 22 5.94 11.075 11.34456

8.75 22.3 21.9 5.96 11.05 11.38276

9 22.5 21.8 5.96 11.075 11.38276

9.25 22.4 21.2 5.93 10.9 11.32547

9.5 22.2 21.9 5.95 11.025 11.36366

9.75 22.2 21.8 5.96 11 11.38276

10 22.2 21.9 5.94 11.025 11.34456

10.25 22.3 21.9 5.93 11.05 11.32547

10.5 22.6 21.9 5.84 11.125 11.15358

10.75 22 21.4 5.71 10.85 10.9053

11 21.8 21.4 5.65 10.8 10.79071

11.25 21.5 21.4 5.61 10.725 10.71431

11.5 21.4 21.2 5.62 10.65 10.73341

11.75 21.5 21.2 5.64 10.675 10.77161

12 21.3 21.5 5.63 10.7 10.75251

12.25 21.3 21.83 5.66 10.7825 10.8098

12.5 21.6 21.7 5.69 10.825 10.8671

12.75 21.9 21.9 5.72 10.95 10.9244

13 21.99 22 5.76 10.9975 11.00079

13.25 22 21.6 5.77 10.9 11.01989

13.5 22.4 21.3 5.78 10.925 11.03899

13.75 22.5 22 5.89 11.125 11.24907

14 22.4 21.5 5.92 10.975 11.30637

14.25 23 21.5 5.93 11.125 11.32547

14.5 23.1 23.9 6.21 11.75 11.86023

14.75 23.2 24 6.39 11.8 12.204

15 23.2 24.5 6.41 11.925 12.2422

15.25 23 22.6 11.4

15.5 23.4 22 11.35

15.75 23 22.2 11.3

16 21.9 10.95

16.25 20.5 10.25

16.5 20.1 10.05  
Figure H.7 Shaft B-5 caliper measurements. 
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Depth (ft) D1 (in) D2 (in) C (ft) R (avg of D) R (from C)

0.25 29.2 28.2 7.55 14.35 14.41944

0.5 29 28.2 7.63 14.3 14.57223

0.75 29.85 28.1 7.7 14.4875 14.70592

1 28.9 27.85 7.59 14.1875 14.49583

1.25 28.6 27.6 7.45 14.05 14.22845

1.5 28.5 27.8 7.42 14.075 14.17116

1.75 28.55 28 7.4 14.1375 14.13296

2 26.6 25.95 6.84 13.1375 13.06344

2.25 25 24.6 6.52 12.4 12.45228

2.5 23.95 24 6.39 11.9875 12.204

2.75 23.7 23.4 6.28 11.775 11.99392

3 23.5 23 6.18 11.625 11.80293

3.25 23.25 22.9 6.18 11.5375 11.80293

3.5 22.9 22.9 6.16 11.45 11.76473

3.75 22.9 22.9 6.17 11.45 11.78383

4 22.75 22.8 6.18 11.3875 11.80293

4.25 23.1 22.9 6.17 11.5 11.78383

4.5 2285 22.9 6.19 576.975 11.82203

4.75 22.9 22.7 6.15 11.4 11.74563

5 23 22.5 6.11 11.375 11.66924

5.25 22.95 22.3 6.09 11.3125 11.63104

5.5 22.7 22.3 6.07 11.25 11.59285

5.75 22.7 22 6.02 11.175 11.49735

6 22.8 22.3 6.02 11.275 11.49735

6.25 22.7 21.95 6.01 11.1625 11.47825

6.5 22.9 22 6.03 11.225 11.51645

6.75 22.95 21.95 6.08 11.225 11.61194

7 22.8 22 6.08 11.2 11.61194

7.25 22.6 21.9 6.08 11.125 11.61194

7.5 22.4 21.9 6 11.075 11.45916

7.75 22.5 22 5.96 11.125 11.38276

8 22.5 21.95 5.95 11.1125 11.36366

8.25 22.74 22.4 5.96 11.285 11.38276

8.5 22.4 22.4 5.95 11.2 11.36366

8.75 22.5 22.5 5.96 11.25 11.38276

9 22.3 22.3 5.94 11.15 11.34456

9.25 22.1 22.1 5.97 11.05 11.40186

9.5 22 22 6 11 11.45916

9.75 22 22 5.98 11 11.42096

10 22.05 22.05 5.96 11.025 11.38276

10.25 21.9 21.9 5.91 10.95 11.28727

10.5 22.1 22.1 5.91 11.05 11.28727

10.75 21.85 21.85 5.91 10.925 11.28727

11 21.9 21.9 5.91 10.95 11.28727

11.25 21.9 21.9 5.93 10.95 11.32547

11.5 21.9 21.9 5.91 10.95 11.28727

11.75 21.9 21.9 5.91 10.95 11.28727

12 21.75 21.75 5.9 10.875 11.26817

12.25 21 21 5.92 10.5 11.30637

12.5 21.5 21.5 5.98 10.75 11.42096

12.75 22.4 22.4 6.11 11.2 11.66924

13 23.1 23.1 6.15 11.55 11.74563

13.25 23.3 23.3 6.3 11.65 12.03211

13.5 23.15 23.15 11.575

13.75 23.3 23.3 11.65

14 23.8 23.8 11.9

14.25 22.7 22.7 11.35  
Figure H.8 Shaft B-6 caliper measurements. 
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Depth (ft) D1 (in) D2 (in) C (ft) R (avg of D) R (from C)

0.25 27 28.8 13.95 0

0.5 27.25 28.5 13.9375 0

0.75 27 28.6 7.54 13.9 14.40034

1 26.8 28.5 7.54 13.825 14.40034

1.25 26.8 28.4 7.55 13.8 14.41944

1.5 26.8 28.7 7.51 13.875 14.34304

1.75 26.7 28.4 7.41 13.775 14.15206

2 25.2 25.9 7.11 12.775 13.5791

2.25 24.5 25.1 6.7 12.4 12.79606

2.5 24 24.25 6.64 12.0625 12.68147

2.75 24 24.1 6.58 12.025 12.56687

3 24.7 24.1 6.47 12.2 12.35679

3.25 24.9 24 6.39 12.225 12.204

3.5 24.2 23.9 6.39 12.025 12.204

3.75 24 23.7 6.28 11.925 11.99392

4 24 23.5 6.26 11.875 11.95572

4.25 23.9 23.4 6.25 11.825 11.93662

4.5 23.9 23.6 6.23 11.875 11.89842

4.75 23.8 23.7 6.23 11.875 11.89842

5 23.8 23.75 6.24 11.8875 11.91752

5.25 23.8 23.6 6.25 11.85 11.93662

5.5 23.8 24.1 6.27 11.975 11.97482

5.75 23.8 24.7 6.27 12.125 11.97482

6 23.5 24.1 6.25 11.9 11.93662

6.25 23.05 23.9 6.23 11.7375 11.89842

6.5 23 24.05 6.22 11.7625 11.87932

6.75 23 24.2 6.21 11.8 11.86023

7 23.3 24 6.22 11.825 11.87932

7.25 23.25 23.9 6.19 11.7875 11.82203

7.5 23.3 24.05 6.22 11.8375 11.87932

7.75 23.2 23.99 6.18 11.7975 11.80293

8 23.8 23.99 6.14 11.9475 11.72654

8.25 23.4 23.7 6.14 11.775 11.72654

8.5 23.2 23.05 6.1 11.5625 11.65014

8.75 23 23 6.1 11.5 11.65014

9 23 23.05 6.06 11.5125 11.57375

9.25 23.2 23 6.06 11.55 11.57375

9.5 23.8 23.5 6.09 11.825 11.63104

9.75 23.2 23.75 6.17 11.7375 11.78383

10 23.8 23.7 11.875

10.25 23.7 23 11.675

10.5 21 23 11

10.75 20.8 23 10.95

11 21.2 23.4 5.95 11.15 11.36366

11.25 22 23.65 5.96 11.4125 11.38276

11.5 23 23.4 6 11.6 11.45916

11.75 23 23.5 6.05 11.625 11.55465

12 21 23.7 6.04 11.175 11.53555

12.25 20 23.5 6.04 10.875 11.53555

12.5 20.4 23 5.9 10.85 11.26817

12.75 20.9 23.25 5.86 11.0375 11.19178

13 21 23.4 5.85 11.1 11.17268

13.25 20.8 23.5 5.86 11.075 11.19178

13.5 20 24.4 5.89 11.1 11.24907

13.75 19.9 25 5.99 11.225 11.44006

14 20.95 26 6.09 11.7375 11.63104

14.25 26 6.17 13 11.78383

14.5 25.9 6.3 12.95 12.03211

14.75 25 6.33 12.5 12.08941

15 6.55 12.50958  
Figure H.9 Shaft P-4 caliper measurements. 
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Depth (ft) D1 (in) D2 (in) C (ft) R (avg of D) R (from C)

0.25 28 29.05 7.7 14.2625 14.70592

0.5 28.5 28.95 7.6 14.3625 14.51493

0.75 28.4 28.85 7.55 14.3125 14.41944

1 28.4 28.9 7.54 14.25 14.40034

1.25 28.6 28.6 7.54 14.25 14.40034

1.5 28.5 28.4 7.5 14.1875 14.32394

1.75 28.1 28.25 7.45 14.15 14.22845

2 28.15 28.5 7.45 14.1625 14.22845

2.25 28.15 28.35 7.47 14.125 14.26665

2.5 28 28.4 7.48 14.1 14.28575

2.75 28.4 28.3 7.48 14.175 14.28575

3 28.5 29.2 7.8 14.425 14.8969

3.25 27 24.7 6.6 12.925 12.60507

3.5 24.65 24 6.6 12.1625 12.60507

3.75 25.5 7.7 12.75 14.70592

4 32.9 7.72 16.45 14.74411

4.25 35.6 8 17.8 15.27887

4.5 34.1 7.75 17.05 14.80141

4.75 33.9 7.68 16.95 14.66772

5 33.5 23.9 7.6 14.35 14.51493

5.25 33.41 23.9 7.54 14.3275 14.40034

5.5 33.3 24 7.5 14.325 14.32394

5.75 32 24 7.2 14 13.75099

6 25.5 24 6.35 12.375 12.12761

6.25 24 24 6.28 12 11.99392

6.5 23.5 24 6.24 11.875 11.91752

6.75 23 24 6.24 11.75 11.91752

7 22.9 24 6.23 11.725 11.89842

7.25 22.7 24 6.21 11.675 11.86023

7.5 22.1 24 6.21 11.525 11.86023

7.75 21.8 23.9 6.19 11.425 11.82203

8 21.65 24 6.19 11.4125 11.82203

8.25 21.4 24.4 6.26 11.45 11.95572

8.5 21.3 24.3 6.22 11.4 11.87932

8.75 21.1 23.95 6.2 11.2625 11.84113

9 21.15 23.95 6.2 11.275 11.84113

9.25 21.3 24.5 6.25 11.45 11.93662

9.5 21.95 27.8 6.85 12.4375 13.08254

9.75 21.75 27.35 7.5 12.275 14.32394

10 21.8 23.5 6.78 11.325 12.94885

10.25 22 22.4 6.6 11.1 12.60507

10.5 21.8 22.2 6.5 11 12.41409

10.75 21.2 21.05 6.33 10.5625 12.08941

11 21.05 21.1 6.24 10.5375 11.91752

11.25 21.1 21.1 6.18 10.55 11.80293

11.5 21.1 20 6.03 10.275 11.51645

11.75 21.6 19.9 6.1 10.375 11.65014

12 21.6 20.9 6.09 10.625 11.63104

12.25 21.6 20.5 6.11 10.525 11.66924

12.5 21 21 6.1 10.5 11.65014

12.75 20.9 21.2 6.1 10.525 11.65014

13 22.2 21.1 6.2 10.825 11.84113

13.25 21.8 22.1 6.42 10.975 12.2613

13.5 22.9 22.5 11.35

13.75 23.5 24.7 12.05

14 23.15 25 12.0375

14.25 22.6 25.9 6.5 12.125 12.41409

14.5 22.4 25.8 6.47 12.05 12.35679

14.75 21 25.75 6.38 11.6875 12.1849

15 20.5 23.9 6.33 11.1 12.08941

15.25 20.5 23.85 5.9 11.0875 11.26817

15.5 19.9 21.5 5.63 10.35 10.75251

15.75 18.7 20.5 5.51 9.8 10.52332

16 18.5 20.2 5.28 9.675 10.08406

16.25 19 4.89 9.5 9.339212

16.5 18.2 4.62 9.1 8.82355

16.75 4.123 7.87435

17 3.65 6.970987  
Figure H.10 Shaft P-5 caliper measurements. 
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Depth (ft) D1 (in) D2 (in) C (ft) R (avg of D) R (from C)

0.25 29.5 28.7 7.79 14.55 14.8778

0.5 29 28.6 7.75 14.4 14.80141

0.75 28.75 28.5 7.67 14.3125 14.64862

1 28.75 28.4 7.63 14.2875 14.57223

1.25 28.75 28.4 7.6 14.2875 14.51493

1.5 28.7 28.3 7.63 14.25 14.57223

1.75 28.9 28.5 7.65 14.35 14.61042

2 29.2 28.6 7.73 14.45 14.76321

2.25 29.2 28.5 7.81 14.425 14.916

2.5 25.7 24.7 6.81 12.6 13.00614

2.75 24.6 24.2 6.73 12.2 12.85335

3 26.7 28.4 13.775 0

3.25 25.5 31.2 14.175 0

3.5 26.7 31.6 14.575 0

3.75 27.3 31.99 14.8225 0

4 27.6 32 14.9 0

4.25 27.1 31.9 14.75 0

4.5 24.5 25.2 12.425 0

4.75 23.45 24 11.8625 0

5 23.37 23.4 7.11 11.6925 13.5791

5.25 23.8 24.1 6.79 11.975 12.96794

5.5 23.4 23.9 6.66 11.825 12.71966

5.75 23.9 24.1 6.47 12 12.35679

6 23.9 24.2 6.45 12.025 12.31859

6.25 23.89 23.99 6.45 11.97 12.31859

6.5 23.8 24.2 6.45 12 12.31859

6.75 23.9 24.2 6.53 12.025 12.47138

7 23.8 24.3 6.54 12.025 12.49048

7.25 24.2 24.2 6.52 12.1 12.45228

7.5 24.2 24 6.44 12.05 12.29949

7.75 23.9 23.4 6.39 11.825 12.204

8 23.3 23.2 6.31 11.625 12.05121

8.25 23.1 23 6.29 11.525 12.01302

8.5 23 22 6.26 11.25 11.95572

8.75 22.9 23 6.27 11.475 11.97482

9 23.2 22.6 6.28 11.45 11.99392

9.25 22.6 22.6 6.24 11.3 11.91752

9.5 22.4 22.8 6.22 11.3 11.87932

9.75 22.5 22 6.15 11.125 11.74563

10 21.7 21.5 6.14 10.8 11.72654

10.25 21.3 21.5 6.09 10.7 11.63104

10.5 21.75 21.5 6.07 10.8125 11.59285

10.75 21.48 21.4 6.04 10.72 11.53555

11 21 20.85 6.01 10.4625 11.47825

11.25 21 20.65 5.96 10.4125 11.38276

11.5 21.2 20.7 5.97 10.475 11.40186

11.75 21 21.5 6.04 10.625 11.53555

12 21.4 21.4 10.7

12.25 21.4 21 10.6

12.5 21 20.3 10.325

12.75 20.8 20.2 10.25

13 20 20 10

13.25 21 20.7 10.425

13.5 21.3 20.86 10.54

13.75 21 21.1 10.525

14 21.2 21.04 10.56

14.25 21.2 21.55 10.6875

14.5 21.3 21.4 10.675  
Figure H.11 Shaft P-6 caliper measurements. 
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APPENDIX I: PHASE I THERMAL ANALYSIS 

 
 

Shafts B-1, B-2, B-3, and P-1 
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Shaft B-1 

 

 
 

Figure 0.1 Thermal data, predicted shaft size and measured shaft size for Shaft B-1. 
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Shaft B-2 
 

 
 

Figure 0.2 Thermal data and predicted shaft size for Shaft B-2. 
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Shaft B-3 
 

 
 

Figure 0.3 Thermal data, predicted shaft size and measured shaft size for Shaft B-3. 



264 
 

Shaft P-1 
 

 
 

Figure 0.4 Thermal data, predicted shaft size and measured shaft size for Shaft P-1. 
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