ORIGINATION FORM

Date: 6/10/14 Originator: Jordan Thomas / Charles Boyd Contact Information: 414-4306 / 414-4275

<u>Specification Title</u>: Fiber Reinforced Polymer (FRP) Composite Structural shapes <u>Specification Section, Article, or Subarticle Number</u>: **973**

<u>Why does the existing language need to be changed</u>? Criteria for Thermoset Pultruded and Vacuum Infusion Processed Structural Shapes has been added; names of structurally reinforced composite lumber (SCL) and dimensional fiberglass fiber reinforced composite lumber (FFRCL) have been changed to Reinforced Thermoplastic Structural Shapes (RTSS) and Thermoplastic Structural Shapes (TSS), respectively; test criteria for RTSS and TSS have been revised slightly.

Summary of the changes: Entire section has been replaced with a new version

<u>Are these changes applicable to all Department jobs</u>? **No** <u>If not, what are the restrictions</u>? **Only applicable for jobs with FRP composite structural members**

Will these changes result in an increase or decrease in project costs? No If yes, what is the estimated change in costs?

<u>With who have you discussed these changes</u>? **FRP industry representatives, Chase Knight, Gevin McDaniel**

What other offices will be impacted by these changes? Construction, Materials

Are changes needed to the PPM, Design Standards, SDG, CPAM or other manual? Structures Manual, Materials Manual

<u>Are all references to external publications current</u>? Yes (with the possible exception of Materials Manual 12.1 that is referenced out of Spec 105?) If not, what references need to be updated (please include changes in the redline)?

Is a Design Bulletin, Construction Memo, or Estimates Bulletin needed? Yes, it is under development

Contact the State Specifications Office for assistance in completing this form. Daniel Scheer 850-414-4130 <u>daniel.scheer@dot.state.fl.us</u> Frances Thomas 850-414-4101 <u>frances.thomas@dot.state.fl.us</u> Debbie Toole 850-414-4114 <u>deborah.toole@dot.state.fl.us</u> Andy Harper 850-414-4127 <u>clifton.harper@dot.state.fl.us</u> Ray Haverty 850-414-4129 <u>ray.haverty@dot.state.fl.us</u>

RICK SCOTT GOVERNOR 605 Suwannee Street Tallahassee, FL 32399-0450 ANANTH PRASAD, P.E. SECRETARY

MEMORANDUM

DATE: June 25, 2014

TO: Specification Review Distribution List

FROM: Daniel Scheer, P.E., State Specifications Engineer

SUBJECT: Proposed Specification: 9730000 Structural Plastics.

In accordance with Specification Development Procedures, we are sending you a copy of a proposed specification change.

This change was proposed by Jordan Thomas and Charles Boyd of the State Structures Design Office update the language for industry practice.

Please share this proposal with others within your responsibility. Review comments are due within four weeks and should be sent to Mail Station 75 or online at <u>http://www2.dot.state.fl.us/SpecificationsEstimates/Development/IndustryReview.aspx</u>. Comments received after **July 23, 2014**, may not be considered. Your input is encouraged.

DS/dt Attachment

STRUCTURAL PLASTICS. (REV 6-13-14)

SECTION 973 is deleted and the following substituted:

SECTION 973

FIBER REINFORCED POLYMER (FRP) COMPOSITE STRUCTURAL PLASTICSSHAPES

973-1 Description.

This work-Section covers structural plastic material and fabrication requirements for fiber reinforced polymer (FRP) composite structural shapes-components including fiberglass structurally reinforced composite lumber (SCL) and dimensional fiberglass fiber reinforced composite lumber (FFRCL).

973-2 Product Acceptance.

Use structural plastics listed on the Department's Qualified Products List (QPL). Manufacturers seeking evaluation of products for listing on the QPL must submit an application in accordance with Section 6 and include independently certified test reports, and manufacturer's certification that the material meets the requirements of this Section.

Structural plastic components used in Contractor-developed custom designs may be used in place of QPL listed products. For Contractor developed custom designs, meet the product acceptance criteria in Section 471Obtain FRP composites from a producer that is currently on the list of Producers with Accepted Quality Control Programs for Fiber Reinforced Polymer. Producers seeking inclusion on the list shall meet the requirements of 105-3.

973-3 Thermoset Pultruded Structural Shapes.

Thermoset pultruded structural shapes must meet the requirements in the materials section of the ASCE, Pre-Standard for Load & Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures.

Manufactured components shall be inspected according to ASTM D3917 for dimensional tolerances and ASTM D4385 for visual defects.

Pultruded profiles located on bridge and overhead sign structures shall meet a flame spread index of Class B in accordance with ASTM E84 and meet the requirements of UL94 with a rating of V-1.

973-4 Vacuum Infusion Processed (VIP) Structural Shapes: 973-4.1 Materials:

973-4.1.1 Fibers: Use commercial grade glass fibers that conform to ASTM D578. Glass fibers may be in any form such as rovings, woven fabrics, braided fabrics, stitched fabrics, continuous fiber mats, continuous strand mats, continuous filament mats (CFM), and chopped strand mats (CSM) of any size or weight.

Each structural element shall contain a minimum of 40% (by weight) of glass fibers oriented in a minimum of two directions in accordance with the manufacturer's requirements.

Tensile strength of glass fiber strands, yarns and rovings shall not be less than 290 ksi in accordance with ASTM D7290, determined by a tension test in accordance with ASTM D2343.

973-4.1.2 Resin: Use a commercial grade thermoset resin for fabricating shapes. 973-4.1.3 Additives: Additives such as fillers, promoters, accelerators, inhibitors, UV agents, and pigments, used in the processing or curing shall be compatible with the fiber and resin.

973-4.2 Physical and Mechanical Properties: The physical properties of VIP FRP products shall conform to the requirements of Table 4-1. The characteristic mechanical properties of VIP FRP composite structural members, determined in accordance with ASTM D7290, shall equal or exceed the minimum requirements in Table 4-2 for shapes and Table 4-3 for plates.

Table 4-1Required Physical Properties - VIP FRP		
Physical Property	Requirement	Test Method
Barcol Hardness	> 40	ASTM D2583
Glass Transition Temperature	> 180 F	ASTM D4065
Coefficient of Thermal Expansion	$< 7.5 \ x \ 10^{-6}$ in/in/ F (longitudinal)	ASTM D696
Moisture Equilibrium Content	< 2%	ASTM D570, Section 7.4

Table 4-2Required Mechanical Properties - VIP FRP Shapes		
Property Minimum Requirement Test Meth		
Longitudinal Tensile Strength	30,000 psi	
Transverse Tensile Strength	7,000 psi	ASTM D2020
Longitudinal Tensile Modulus	$3 \times 10^6 psi$	- ASTM D3039
Transverse Tensile Modulus	$0.8 \ x \ 10^6 \ psi$	
Longitudinal Compressive Strength	30,000 psi	
Longitudinal Compressive Modulus	3 x 10 ⁶ psi	ASTM D6641
Transverse Compressive Modulus	1 x 10 ⁶ psi	
In-Plane Shear Strength	8,000 psi	ASTM D5379
In-Plane Shear Modulus	$0.4 \ x \ 10^6 \ psi$	ASTM D5379
Interlaminar shear strength	3,500 psi	ASTM D2344

Table 4-3		
Required Mechanical Properties -VP FRP Plates		
PropertyMinimum RequirementTest Method		
Longitudinal Tensile Strength	20,000 psi	
Transverse Tensile Strength	7,000 psi	ASTM D3039
Longitudinal Tensile Modulus	$1.8 \ x \ 10^6 \ psi$	

Table 4-3			
Required Mechanical Properties -VP FRP Plates			
Property	Minimum Requirement	Test Method	
Transverse Tensile Modulus	$0.7 x 10^6 psi$		
Longitudinal Compressive Strength	24,000 psi		
Transverse Compressive Strength	15,500 psi	A STM D6641	
Longitudinal Compressive Modulus	$1.8 \times 10^6 psi$	ASTM D6641	
Transverse Compressive Modulus	$1 \times 10^6 psi$		
Longitudinal Flexural Strength	30,000 psi		
Transverse Flexural Strength	13,000 psi	ASTM D790	
Longitudinal Flexural Modulus	$1.6 \ x \ 10^6 \ psi$	ASTM D790	
Transverse Flexural Modulus	$0.9 \ x \ 10^6 \ psi$		
In-Plane Shear Strength	6,000 psi	ACTM D5270	
In-Plane Shear Modulus	$0.4 \times 10^6 psi$	ASTM D5379	
Interlaminar shear strength	3,500 psi	ASTM D2344	

973-4.3 Fire, Smoke and Toxicity: VIP profiles located on bridge and overhead sign structures shall meet a flame spread index of Class B in accordance with ASTM E84 and meet the requirements of UL94 with a rating of V-1.

973-4.4 Impact Tolerance: Where impact resistance is stipulated, impact resistance shall be determined in accordance with ASTM D7136.

973-5 Thermoplastic Structural Shapes.

973-5.1 General: For the purpose of this specification, use the following definitions: a. Thermoplastic Structural Shapes (TSS) includes a thermoplastic matrix reinforced with chopped fiberglass filaments.

b. Reinforced Thermoplastic Structural Shapes (RTSS) includes a thermoplastic matrix reinforced with chopped fiberglass filaments and continuous FRP reinforcing bars meeting the requirements of this Section. Steel reinforcing bars are not permitted.

973-5.2 Materials-:

——Use polyethylene made from recycled post consumer or post industrial thermoplastics. Mix the <u>plastic-polyethylene</u> with appropriate colorants, UV inhibitors, hindered amine light stabilizers, and antioxidants, and chopped fiberglass reinforcement so that the resulting product meets the <u>material property</u>-requirements specified in Tables 5-1 for TSS and Table 5-2 for RTSS. Use a minimum of 15% (by weight) chopped fiberglass reinforcement for both TSS and RTSS. The Structural plastic-thermoplastic matrix must not corrode, rot, warp, splinter or crack. The skin must be smooth and black in color unless otherwise specified in the Contract Documents. Skin is the surface material exposed to the atmosphere. Core is the material that surrounds and bonds to the fiberglass reinforcing rods.

For RTSS members, **T***t*he use of separate materials for skin and core is at the discretion of each manufacturer; however, if a single material is used, that both materials must meet the requirements for both skin and core in Table 5-1. The material surrounding the rebar within 1 inch from the rebar surface shall not contain voids greater than 3/4 inch diameter and extend no further than 2 inches along the length of the member. The cross section of the product

shall not contain voids exceeding 1-1/4 inches in diameter and the sum of all voids greater than 3/8 inches in diameter shall not exceed 5% of the cross sectional area.

Manufacture structural plastic*Extrude final product* as one continuous piece with no joints or splices to the dimensions and tolerances in accordance with Table 5-3. Interior voids shall not exceed 3/4 inches in diameter. Structural plastic members shall be free of twist and eurvature.

Reinforce square fiberglass structurally reinforced composite lumber with a minimum of four fiberglass reinforcing rods placed in the corners of the section.

Reinforcing rods must be continuous and offer a minimum flexural strength of 70.0 ksi when tested in accordance with ASTM D4476 and a minimum compressive strength of 40.0 ksi when tested in accordance with ASTM D695. Steel reinforcing rods are not permitted.

Reject any sections of structural plastic containing cracks or splits. Also, inspect the ends of the reinforcing rods and reject any sections containing reinforcing rods with voids or cracks.

Add a minimum of 15% (by weight) chopped fiberglass reinforcement to the polyethylene used for fiberglass structurally reinforced composite lumber and a minimum of 15% (by weight) chopped fiberglass reinforcement for smaller dimensional fiberglass fiber reinforced composite lumber. The fiberglass reinforcement may be reduced when other means of controlling cracking are specified with test results which show long term cracking is nonexistent.

Fiberglass structurally reinforced composite lumber must meet the minimum structural properties listed in Table 4.

		Table 1	
	Plastic Mat	erial Properties	-SCL
Density	ASTM D792	Skin	55-63 pcf
Density	ASTM D792	Core	4 8-63 pcf
Water Absorption	ASTM D570	Skin	2 hrs:<1.0% weight increase 24 hrs:<3.0% weight increase
Brittleness	ASTM D746	<u>Skin</u>	Brittleness temperature to be less than - 40°C
Impact Resistance	ASTM-D256 Method A (Izod)	<u>Skin</u>	Greater than 0.55 ft-lbs/in
Hardness	ASTM D2240	<u>Skin</u>	44-75 (Shore D)
Ultraviolet	ASTM D4329	<u>Skin</u>	500 hours<10% change in Shore D
	UVA		Durometer Hardness
Abrasion	ASTM D 4060	Skin	Weight Loss: <0.02 oz Cycles=10,000 Wheel=CS17 Load=2.2 lb
Chemical Resistance	ASTM D543	Skin/Core Sea Water Gasoline No. 2 Diesel	<1.5% weight increase < 9.5% weight increase <6.0% weight increase
Tensile Properties	ASTM D638	Core	2200 psi at break min.
Compressive Modulus	ASTM D695	Core	40 ksi min.

Static Coefficient of Friction	ASTM D1894	Skin	0.25, wet max.
Nail Withdrawal or Screw Withdrawal	ASTM D6117	Skin/Cor	e 60 lb (nail) min. 400 lb (screw) min.
Table 5-1			
		RTSS Matrix	
Property	Test Meth	hod	Requirement
Density	ASTM D7	792	48–63 pcf
Water Absorption	ASTMD5	570	2 hrs: <1.0% weight increase 24 hrs: <3.0% weight increase
Brittleness	ASTM D7	746	Brittleness temperature $<$ minus 40°C
Impact Resistance	ASTM D2 Method A (>0.55 ft-lbs/in
Hardness	ASTM D2	240	44-75 (Shore D)
Ultraviolet	ASTM D4 UVA	329	500 hours <10% change in Shore D Durometer Hardness
Abrasion	ASTM D 4	2060	Weight Loss: <0.02 oz Cycles = 10,000 Wheel = CS17 Load = 2.2 lb
Chemical Resistance	ASTM DS	-	Sea Water: <1.5% weight increase Gasoline: <9.5% weight increase No. 2 Diesel: <6.0% weight increase
Tensile Properties	ASTM De	538	2200 psi at break min.
Compressive Modulus	ASTM De	595	40 ksi min.
Static Coefficient of Frict	ion ASTM D1	894	0.25, wet max.
Screw Withdrawal	ASTM D6	117	400 lb (screw) min.

Table 5-2			
Plastic Ma	terial Properties - FFRC	LTSS Matrix	
Property	Test Method	Requirement	
Density	ASTM- D792	50-65- pcf	
Impact Resistance	ASTM-D256	Greater than > 2.0- ft-lbs/in	
impact Resistance	Method A (Izod)		
Hardness	ASTM- D2240	44-75 (Shore- D)	
Ultraviolet	ASTM- D4329 (UVA)	500 hours <10% change in Shore- D	
Oltraviolet	A3111 D4329 (UVA)	Durometer Hardness	
	ASTM-D756 or		
	ASTM-D543	Sea Water: <1.5% weight increase	
Chemical Resistance	Sea Water	<i>Gasoline:</i> <7.5% weight increase	
	Gasoline	<i>No. 2 Diesel:</i> <6.0% weight increase	
	No. 2 Diesel	ivo. 2 Diesei. <0.0% weight increase	
Tensile Properties	ASTM-D638	3000 psi at break min.	

Table 5-2		
Plastic Ma	terial Properties - FFRO	ELTSS Matrix
Static Coeffecient of Friction	ASTM- D2394	0.25, wet or dry min.
Nail Withdrawal or Screw Withdrawal	ASTM- D6117	250 lb (nail) min. 400 lb (screw) min.
Scant Modulus at 1% Strain	ASTM D6109	150,000 psi min.
Flexural Strength	ASTM D6109	2,500 psi min.
Compressive Strength	ASTM D6108	2,200 psi min.
Compressive Strength Perpendicular to grain	ASTM D6108	700 psi min.

	Table 3	
	Dimensions and Tolerances	
Structural Plastic	Dimension	Tolerance
Length	Per order (80 ft Maximum)	0/+6 inch
Width – SCL	See Contract Plans	$\pm 1/2$ inch
Width – FFRCL	See Contract Flans	$\pm 1/4$ inch
Height – SCL	See Contract Plans	$\pm 1/2$ inch
Width – FFRCL	See Contract Flans	$\pm 1/4$ inch
Skin Thickness	3/16 inch minimum	n/a
Distance from outer surface	2 inches	$\pm 1/2$ inch
to center rebar elements (SCL)	2 menes	
Straightness (gap, bend or		
inside while lying on a flat		<1-1/2 inches per 10 feet
surface)		

	Table 4	
	Structural Properties for SCL	
Member Size		10 inches x 10 inches min.
Modulus of Elasticity	ASTM D6109	521 ksi min.
Stiffness, E.I.	ASTM D6109	4.05E+08 lb-inch ² min.
Yield Stress in Bending	ASTM D6109	5.3 ksi min.
Weight		30-37 lb/ft

Table 5			
-Minimum Properties for FFRCL			
Modulus of Elasticity	ASTM D6109	300,000 psi	
Flexural Strength	ASTM D6109	2,500 psi	
Compressive Strength	ASTM D6108	2,200 psi	
Compressive Strength Perpendicular to grain	ASTM D6108	700 psi	

9730000 All Jobs

Table 5-3 Tolerances	
Dimension	Tolerance
Length	0/+6 inch
Width – RTSS	$\pm 1/2$ inch
Width – TSS	±1/4 inch
Height – RTSS	±1/2 inch
Width – TSS	$\pm 1/4$ inch
Clear cover from outer surface	$\geq 3/4$ inch (wales)
to rebar elements (RTSS)	$\pm 1/2$ inch (other)
Straightness (while lying on a flat surface)	<1-1/2 inches per 10 feet