Medium and Heavy-Duty Vehicle Field Evaluations - Line Haul Truck Platooning

Kenneth Kelly
NREL Team: Adam Duran, Arnaud Konan, Mike Lammert, Eric Miller, Bob Prohaska

National Renewable Energy Laboratory
December 2015
NREL – part of DOE’s Network of National Labs

National Renewable Energy Laboratory is operated for the U.S. Department of Energy by the Alliance for Sustainable Energy, LLC

NREL – Scope of EERE Mission

<table>
<thead>
<tr>
<th>Sustainable Transportation</th>
<th>Energy Productivity</th>
<th>Renewable Electricity</th>
<th>Systems Integration</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Technologies</td>
<td>Residential Buildings</td>
<td>Solar</td>
<td>Grid Integration of Clean Energy</td>
<td>Private Industry</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Commercial Buildings</td>
<td>Wind</td>
<td>Distributed Energy Systems</td>
<td>Federal Agencies</td>
</tr>
<tr>
<td>Biofuels</td>
<td>Water: Marine Hydrokinetics</td>
<td>Water: Marine Hydrokinetics</td>
<td>Batteries and Thermal Storage</td>
<td>State/Local Government</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Energy Analysis</td>
<td>International</td>
</tr>
</tbody>
</table>
NREL Transportation RD&D Activities & Applications

Vehicle Thermal Management
- Integrated Thermal Management
- Climate Control/Idle Reduction
- Advanced HVAC

Vehicle Deployment/Clean Cities
- Guidance & Information for Fleet Decision
- Makers & Policy Makers
- Technical Assistance
- Online Data, Tools, Analysis

Regulatory Support
- EPAct Compliance
- Data & Policy Analysis
- Technical Integration
- Fleet Assistance

Infrastructure
- Vehicle-to-Grid Integration
- Integration with Renewables
- Charging Equipment & Controls
- Fueling Stations & Equipment
- Roadway Electrification
- Automation

Advanced Combustion/Fuels
- Advanced Petroleum and Biofuels
- Combustion/Emissions Measurements
- Vehicle & Engine Testing

Vehicle and Fleet Testing
- MD/HD Dynamometer Testing
- MDV & HDV Testing/Analysis
- Drive Cycle Analysis/Field Evaluations
- Technology Performance Comparisons
- Data Collection, Storage, & Analysis
- Analysis & Optimization Tools

Advanced Power Electronics and Electric Motors
- Thermal Management
- Thermal Stress and Reliability

Advanced Energy Storage
- Development, Testing, Analysis
- Thermal Characterization/Management
- Life/Abuse Testing/Modeling
- Computer-Aided Engineering
- Electrode Material Development
Providing Unbiased Data and Analysis

This project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis.

- **3rd party unbiased data**: Provides data that would not normally be shared by industry in an aggregated and detailed manner.

- Over 10 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 600 different vehicles since 2002.

- **Data, Analysis, and Reports** are shared within DOE, national laboratory partners, and industry for R&D planning and strategy.

- **Results help**:
 - Guide R&D for new technology development
 - Help define intelligent usage of newly developed technology
 - Help fleets/users understand all aspects of advanced technology
Medium- and Heavy- Vehicle Field Testing Approach

Evaluate the performance of alternative fuels and advanced technologies in medium- and heavy-duty fleet vehicles - in partnership with commercial and government fleets and industry groups vehicles.

Collect, analyze and publicly report data:
- Drive cycle and system duty cycle analysis
- Operating cost/mile
- In-use fuel economy
- Chassis Dynamometer emissions and fuel economy
- Scheduled and unscheduled maintenance
- Warranty issues
- Reliability (% availability, MBRC)
- Implementation issues/barriers
- Subsystem performance data & metrics (ESS, engine, after-treatment, hybrid/EV drive focus)

Data stored in FleetDNA for security and limited public accessibility

Frequent interactions and briefings with stakeholders – fleets, technology providers, researchers, and government agencies

Fleets

Vehicle & Equip Mfg’s

Useful Data, Analysis and Published Reports
Current Heavy Vehicle Evaluation Projects

<table>
<thead>
<tr>
<th>Current DOE Projects</th>
<th>EV Fleet Data Collection Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS HHV Solazyme biofuel</td>
<td>Miami HHV Refuse Trucks</td>
</tr>
<tr>
<td>Frito Lay EV</td>
<td>Natural Gas Refuse Trucks</td>
</tr>
<tr>
<td>Fleet Platooning</td>
<td>Battery EV Transit Bus</td>
</tr>
<tr>
<td>PG&E Electrified Utility Trucks</td>
<td>EV – V2G School Bus</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>CA Air Resources Board (CARB)</td>
</tr>
<tr>
<td>• Fleet DNA</td>
<td>• Heavy Hybrid Vehicle Analysis</td>
</tr>
<tr>
<td>• Zero Emissions Cargo Transport</td>
<td>• Aerodynamics Device Testing</td>
</tr>
<tr>
<td></td>
<td>EPA</td>
</tr>
<tr>
<td></td>
<td>Heavy-Duty Phase II GHG Drive</td>
</tr>
<tr>
<td></td>
<td>Cycle Development</td>
</tr>
</tbody>
</table>
Fleet DNA

Objectives:

• Capture and quantify drive cycle and technology variation for the multitude of **medium- and heavy-duty** vocations

• Provide a common data storage warehouse for medium- and heavy-duty vehicle data across DOE activities and labs – www.nrel.gov/fleetdna

• Integrate existing DOE tools, models, and analyses to provide data driven decision making capabilities

For Government: Provide in-use data for standard drive cycle development, R&D, tech targets, and rule making

For OEMs: Real-world usage datasets provide concrete examples of customer use profiles

For Fleets: Vocational datasets help illustrate how to maximize return on technology investments

For Funding Agencies: Reveal ways to optimize impact of financial incentive offers

For Researchers: Provides a data source for modeling and simulation

www.nrel.gov/fleetdna
Secure Storage Paired with Expert Analysis and Validation

Alternative Fuels Data Center (AFDC)
Public clearinghouse of information on the full range of advanced vehicles and fuels

National Fuel Cell Technology Evaluation Center (NFCTEC)
Industry data and reports on hydrogen fuel cell technology status, progress, and challenges

Transportation Secure Data Center (TSDC)
Detailed light-duty fleet data, including GPS travel profiles

Fleet DNA Database
Medium- and heavy-duty drive-cycle, fueling, and powertrain data from advanced commercial fleets

<table>
<thead>
<tr>
<th>Features</th>
<th>AFDC</th>
<th>NFCTEC</th>
<th>TSDC</th>
<th>Fleet DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Securely Archived Sensitive Data</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Publicly Available Cleansed Composite Data</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Quality Control Processing</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Spatial Mapping/GIS Analysis</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Custom Reports</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Controlled Access via Application Process</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Detailed GPS Drive-Cycle Analysis</td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Fleet DNA – Data Fusion

<table>
<thead>
<tr>
<th>Geography and Infrastructure</th>
<th>Vehicle Data</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOHS US Infrastructure</td>
<td>CAN</td>
<td>RL Polk</td>
</tr>
<tr>
<td>Navteq Road Layer</td>
<td>GPS</td>
<td>US Census</td>
</tr>
<tr>
<td>Tom Tom Road Network</td>
<td>Standard Cycles</td>
<td>EPA Moves</td>
</tr>
<tr>
<td>Tom Tom Road Grade</td>
<td>Dyno Results</td>
<td>EMFAC</td>
</tr>
<tr>
<td>National Elevation Dataset</td>
<td></td>
<td>TEDB</td>
</tr>
</tbody>
</table>

![Elevation / Grade](image1)

![CAN Data](image2)

![EPA MOVES](image3)

![Vehicle Registrations](image4)

![GPS Drive Cycles](image5)

![Digital Street Maps](image6)
National Road Grade Characterization

US Highway Network

Highway Road Grade Data

Activity Data

National Road Grade Stats
Approach: Field Data & Analysis Tools

- Data from Field Evaluations helps populate FleetDNA database
- DOE Fleet Tools (DRIVE, FASTSim, AFleet, etc.) used to analyze and investigate impacts – data used to validate and improve tools
- Published information and data used by fleets, industry, DOE and other research programs, and other agencies

Collect Lab and Field Data
Capture, Store and Analyze
Explore & Optimize
Communicate & Inform

Identify Barriers, New R&D Opportunities, Validate Efforts

Partnership with Fleets and Technology Providers = Relevant Results & Optimized Solutions for Real World Applications
Line-Haul Truck “Semi-Autonomous” Platooning Evaluation

- Conduct repeatable track testing to assess fuel savings potential from semi-automated truck platooning
 - Supported by DOE’s Vehicle Technologies Office
- Demonstration system provided by Peloton Technology
- Test US-style line haul sleeper cabs with modern aerodynamics
 - EPA SmartWay tractors; trailers with side skirts
- Tested range of following distances, vehicle loading and speeds common in the U.S. (up to 70 mph)
Platooning System Evaluation – Test Details

- SAE J1321 Type II Fuel Consumption Test Procedure
- Ten constant speed tests and one variable speed test
- Each test 60 miles (7 laps)
- Range of gaps between lead/trailing vehicle: 20-75 ft vehicle gaps
- Gravimetric fuel measurements with weigh tanks
- J1939 data collection including coolant temperature and fan state

<table>
<thead>
<tr>
<th>Trailing Distance</th>
<th>55 mph, 65,000 lb</th>
<th>65 mph, 65,000 lb</th>
<th>70 mph, 65,000 lb</th>
<th>Variable Speed, 65,000 lb</th>
<th>65 mph, 80,000 lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 ft</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 ft</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 ft</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>75 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Summary Results

- Team fuel savings ranged from 3.7% to 6.4%
- Closer following distances (<40 ft) caused the engine fan on the trailing truck to engage, negatively impacting fuel savings

Class 8 - Two Truck Platooning

Fuel Savings at 65 mph 65,000 lb

- **Lead Truck**
- **Trail Truck**
- **Platoon "Team"**

Not Statistically Significant
Summary of Key Findings

- Significant line-haul fuel savings possible through platooning
 - Tests showed fuel savings for the lead (up to 5.3%) and trailing (up to 9.7%) trucks
 - The demonstrated “team” savings of 6.4% could be an attractive return on investment for a fleet
- Engine coolant temperature needs to be monitored/addressed for the trailing vehicle
 - Optimum following distance may depend on ambient temperature and vehicle load (absent some aerodynamic aid for radiator air flow)
- Heavy payloads affect the percent improvement from platooning, but still result in substantial fuel savings

Published Results:

http://www.nrel.gov/docs/fy15osti/62348.pdf
Follow-on Work

- Computational Fluid Dynamics & Wind Tunnel testing at Lawrence Livermore (LLNL) to better understand & optimize the platooning operational envelope and aerodynamic design.
- Analysis of in-use fleet operational/logistics data to evaluate “Big Picture” fuel savings potential at fleet and national levels.
- Follow-on track testing to confirm CFD and Wind-tunnel findings.
- Partnership with fleet and technology provider to evaluate technology under real world conditions.

Images courtesy of LLNL
Thank You!

Questions/Discussion

kenneth.kelly@nrel.gov
michael.lammert@nrel.gov
Vehicle Selection
- Typically 10-20 vehicles
- Representative of typical fleet operations
- Conventional and technology of interest (if available)

Data Collection
1. Pre-installed telemetric and CAN devices
2. Data Loggers

Vehicle Specifications

<table>
<thead>
<tr>
<th>Engine parameters:</th>
<th>Chassis parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make</td>
<td>Weight class</td>
</tr>
<tr>
<td>Model</td>
<td>Body type</td>
</tr>
<tr>
<td>Cert Year</td>
<td>Transmission type</td>
</tr>
<tr>
<td>Displacement</td>
<td>GVWR</td>
</tr>
<tr>
<td>Rated power/max torque</td>
<td>Vocation</td>
</tr>
<tr>
<td>Tire size in rev/mile</td>
<td>Final gear ratio, Rear Axle ratio</td>
</tr>
<tr>
<td>Total number of gears & gearing ratios</td>
<td></td>
</tr>
</tbody>
</table>
Contributing Data to Fleet DNA

Minimum Data
• 1 Hz telemetric data
• GPS location, vehicle speed, date & time, engine status, power take-off status

Expanded Data – J1939 CAN Channels
• Wheel based vehicle speed (SAE SPN 84)
• Instantaneous fuel rate (SAE SPN 183)
• PTO status (SAE SPN 976)
• Current gear (SAE SPN 523)
• Referenced engine torque (SAE SPN 544)
• Engine rated speed (SAE SPN 189)
• Engine Speed (SAE SPN 190)
• Engine Speed at Idle (SAE SPN 188)
• Actual engine percent torque (SAE SPN 513)
• Aftertreatment Outlet NOx (SAE SPN 322)
• Aftertreatment Inlet NOx (SAE SPN 322)

Data Reporting
User-Specific Reports

www.nrel.gov/fleetdna
Technical Accomplishments: Miami-Dade Hydraulic Hybrid Fleet Evaluation

NREL Lead: Bob Prohaska (PI)

Partners & Cost Share:

- **Miami Dade** – access to HHV and baseline vehicles for instrumentation; fuel and maintenance data
- **Parker** – data and technical information on Parker HHV system, demonstration vehicles for chassis dynamometer testing
- **Southeast Florida Clean Cities Coalition** – coordination with the local Clean Cities partnership

<table>
<thead>
<tr>
<th>FY15 Accomplishment Highlights</th>
<th>FY15/FY16 Plan Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kick-off meeting held with Miami-Dade – January 2015</td>
<td>Log data from 10-12 Gen 2 vehicles when deployed (underway)</td>
</tr>
<tr>
<td>Draft start-up fact sheet completed</td>
<td>Collect fuel and maintenance data from fleet – baseline, HHV-Gen 1 and Gen 2</td>
</tr>
<tr>
<td>Fleet agreed to provide electronic maintenance and refueling and other operational data</td>
<td>Calculate total cost of ownership including reliability and maintenance on all projects</td>
</tr>
<tr>
<td>Parker NDA completed for vehicle-specific technical data</td>
<td>Perform analysis to show optimal placement of new technology (i.e. Route vs benefit)</td>
</tr>
<tr>
<td>Initial duty-cycle data collected on Gen 1 HHV’s and conventional Diesels: 2/25/2015 - 3/25/2015</td>
<td>Chassis dynamometer tests of HHV and baseline for controlled fuel economy and emissions using representative and standard drive cycles</td>
</tr>
<tr>
<td>Gen 2 duty cycle data currently being collected</td>
<td>Final Technical Report FY16</td>
</tr>
</tbody>
</table>

Goals/Objectives

- Conduct objective, independent evaluation of hydraulic hybrid technology in refuse hauler application – including performance, fuel savings, emissions, total cost of ownership
- Contribute data to FleetDNA database & knowledge base on refuse hauler technology alternatives

Background and Value

- Miami-Dade is the 7th most populous county in the US and 3rd largest municipal hybrid fleet (NYC, CA)
- Miami-Dade County currently operates 35 Autocar E3 refuse trucks with Parker Hannifin “Run Wise” Gen 1 hydraulic hybrid system and recently purchased an additional 29 Gen 2 HHVs
- Claimed 43% fuel savings needs to be evaluated by independent 3rd party
Initial Duty-Cycle Data from Miami HHVs

HHV Technology Basics

The Miami-Dade test vehicles are Autocar E3 refuse trucks equipped with Parker Hannifin’s RunWise hydraulic hybrid drive, the HHVs are reported to recover as much as 70% of the energy typically lost during braking and reuse it to power the vehicle. The system features a two-speed hydrostatic drive combined with a mechanical direct drive, which optimizes vehicle performance at both low and high speeds.

Covanta Waste-to-Energy plant

Refuse haulers deliver load from residential pickup to Covanta 77 mega-watt WTE plant. Traces in the above image are from actual GPS on data collected by NREL.

Initial Duty cycle data

Images above show initial GPS route data collected from Miami fleet. GPS data is used to develop duty-cycle statistics and used in vehicle models. Data collected also include vehicle and engine operating parameters – including vehicle speed, fuel rate, engine speed/torque, NOx sensor, etc.
Miami-Dade County currently operates 35 Gen 1 hydraulic hybrid system

Additional 29 Gen 2 HHVs deployed starting in August 2105 – Gen 2 HHVs are now in service with 3000-4000 miles accumulated

Miami-Dade will provide operational data on Gen 1 & Gen 2 HHVs and conventional

Preliminary data shown from 8 Gen 1 HHVs and diesel baseline
Initial Comparison w/ Baltimore UPS MY13 HHV’s

Kinetic Intensity vs Avg MPG

- Broader range of FE for Parcel Delivery
Comparison w/ Baltimore UPS MY13 HHV’s

Kinetic Intensity vs Stops per Day

- Refuse vehicles stop many more times per day