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Classes of UMVs:  
1) U/W Remotely Operated Vehicles (ROVs) – continuously teleoperated 
2) Autonomous/Unmanned Underwater Vehicles (AUVs/UUVs), preprogrammed to 

perform without human intervention, and  
3) Unmanned Surface Vehicles (USVs) – robotic boats that can be teleoperated or 

operated autonomously without human input.  
 

Unmanned Marine Vehicles 
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Applications:  
• subsea inspection 
• pipeline installation 
• trench digging 
• maintenance 
• construction 
Control: remote teleoperation (may be semi-
autonomous) 
Sensors/Instrumentation: video cameras, lights.  
Advantages: Data transfer/power use umbilical – 
virtually unlimited power for propulsion/tooling; 
Human operators can perform more complex 
tooling motions. 
Disadvantages: Limited range; need constant 
human supervision; need complex mooring 
systems to decouple wave-induced motions and 
prevent entanglement.  

Remotely Operated Vehicles (ROVs) 

Future: Hybrid AUV/ROV.  
• Transit untethered (automatic control).  
• Deployable from many platforms. 
• Travel ~8 hours at speeds of ~3-4 knots  

Oceaneering Nexxus ROV 

Saab Double Eagle SAROV 
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Applications:  
• Ship hull inspection 
• Underwater survey 
• Oceanographic sensing 
• Plume tracking 
• Vehicle/Animal Detection or Tracking 
 
Control: Preprogrammed automatic control 
Sensors/Instrumentation: Sonar (mapping), 
USBL (localization), Water Column (CTD, CDOM, 
O2, etc.).  
Advantages: Deployable from many platforms; 
can travel ~8 hours at speeds of ~3-4 knots; can 
perform many missions without human 
intervention.  
Disadvantages: Onboard power restricts range – 
glider technologies can circumvent; limited 
tooling capabilities.  

Autonomous Underwater Vehicles (AUVs) 
Hydroid (Kongsberg) Remus AUV 

Bluefin AUV with B.O.S.S. 

Slocum Glider 

AUV Docking Station 



FAU SeaTech Institute for Ocean Systems Engineering 

E-Field Sensor Development 

Autonomous Underwater Vehicles (AUVs) 
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Autonomous Underwater Vehicles (AUVs) 

E-Field Sensor Development 
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Applications:  
• Ocean sampling 
• Maritime search and rescue 
• Hydrologic surveys 
• Harbor surveillance 
• Underwater Inspection 
• Defense 

 
 
Control: Automatic control or teleoperated 
 
Sensors/Instrumentation: Stereo cameras, 
LiDAR, Radar, GPS.  
Advantages: Deployable from many platforms; 
can perform many missions without human 
intervention.  
Disadvantages: Onboard power restricts range; 
Can be susceptible to wave, current & wind; 
interaction with civilian vessels.  

Unmanned Surface Vehicles (USVs) 

Liquid Robotics Wave Glider 

Saildrone USV 

Marine Advanced Research WAM-V 
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USV Design: Hullform 
Do not need to accommodate human operators – design more optimized for 
sensing, maneuvering or deployment requirements. 
Expected operating conditions suggest semi-displacement vessels: 
1. SWATH (e.g. Marquardt et al. 2014; Kitts et al. 2012) 
2. Catamarans (e.g. Sarda et al. 2015) 
 

Catamaran USV configured with thrust vectoring 
for station-keeping  

SWATH USV 

USV Challenges: Disturbance Rejection 
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USV Design: Autonomy (Station Keeping) 

1. Inspections may require object localization, feature imaging and the launch 
and recovery of smaller subsystems – stationkeeping essential. 

2. Winds, tides and waves – can vary substantially, in time and space, as a USV 
maneuvers around a bridge structure → robust stationkeeping. 

3. Typical low weight and high windage of USVs can make this challenging. 
4. Nonlinear MIMO and Backstepping stationkeeping controllers (Sarda et al. 

2015) 
5. Wind Feedforward Control – wind models, sensor number and placement (Qu 

& von Ellenrieder 2015). 
 
 

USV Challenges: Disturbance Rejection 
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WAM-V USV16 during on-water station-keeping tests in the 
Intracoastal Waterway  

USV Challenges:  Disturbance Rejection 
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Position and heading errors for sliding mode station-keeping 
controller with/without wind feedforward control at Location 1. 

USV Challenges: Disturbance Rejection 
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1. Operating near a large structures can affect precise positioning: 
a) GPS line of sight to overhead satellites blocked 

i. Kalman-filter sensor fusion combining dead-reckoning and GPS 
ii. Real Time Kinematic (RTK) GPS positioning technology 

b) System Localization and Mapping (SLAM) 
2. Large bridge structures can affect compasses (flux-gate) 
3. Cooperative sensing/Multi-session Mapping 

a) Use of SLAM to capture changes in bridge structures using maps obtained 
over repeated bridge inspections. 

b) Can increase efficiency and quality of maps using informative path 
planning for active mapping in SLAM (Kim & Eustice 2015) 

 

USV Challenges: Positioning 
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USV 

AUVs 

UAV 

UxV Multi-domain Systems 
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USV Challenges: ALR 
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Variable mass and drag during ALR 

USV Challenges: ALR 
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Field Testing of Dynamics-Aware  
COLREGs-Compliant Behaviors for USVs 

MOTIVATION: NON-TRIVIAL TRAJECTORY PLANNING AND TRACKING CHALLENGES  

USV encountering COLREGS  
“crossing from right” situation 

Civilian 
vessel 

USV in crossing from 
right situation 

USV goal 
location 

COLREGS-compliant 
trajectory 

Intended trajectory 
of civilian vessel 

Congested harbor scenario 
(Source: Map data ©2013 Google) 

USV Challenges: Multiple Vehicle Interaction 
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Not possible to anticipate the infinite number of possible situations a USV might 
encounter – combination of advanced deliberative/reactive task and trajectory 
planning is needed. 

a) “Automatically-generated” behaviors that allow planner to consider 
classes of situations in pre-programmed ways, while accounting for 
limitations of the vehicle’s dynamic response (Bertaska et al. 2015). 

b) Model-predictive trajectory planning for operations in civilian traffic 
(Shah et al. 2014) – contingency maneuvers; COLREGs 

 

USV Challenges: Multiple Vehicle Interaction 
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Meta-model of WAM-V USV14’s dynamics and control
 

WAM-V USV14 meta-model WAM-V USV14 simulation model 

COLREGs-compliant local trajectory planner 
oAdaptively samples space of reachable motion goals based on temporal-spatial distribution of obstacle vessels and history of 

detected collisions during the search: 
a) prioritized sampling of entire set of state space trajectories in each sampling cycle 
b) sampling of individual state space trajectories for collision detection 

Lattice-based global trajectory planner 
oUSV control action space discretized into a set of dynamically feasible  

motion commands  
Planner utilizes A* search to find a collision-free, dynamically-feasible trajectory 𝜏𝜏 = {𝑤𝑤𝑖𝑖   𝑤𝑤𝑖𝑖 = 𝑥𝑥,𝑦𝑦,𝜃𝜃, 𝑡𝑡 𝑇𝑇  between the 
current USV’s state and motion goal 
 

USV Challenges: Multiple Vehicle Interaction 
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Calculation of Closest Point of Approach (CPA) 
distance and time for initiation of COLREGs-
Compliant Maneuvers (Bertaska et al. 2015). 

COLREGs rule for each OMT vessel is 
determined by its current position with 
respect to USV (Bertaska et al. 2015). 

USV Challenges 
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USV12 DUKW-Ling 

USV14 

Jonboat 

Experimental platforms 

EXPERIMENTAL SETUP 

USV Challenges: Multiple Vehicle Interaction 
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EXPERIMENTAL RESULTS 
USV Challenges: Multiple Vehicle Interaction 

Follow-behavior Head-on and 
crossing-from-right  
COLREGs situations 
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EXPERIMENTAL SETUP 

USV Challenges: Multiple Vehicle Interaction 
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a) Small teams, 3-5 people, maybe with ALR 
b) Some locations difficult to access – system small/light for small truck 

transport and tended by small boat. 
c) Autonomy: 

i. Does not need continuous monitoring by human team.  
ii. Should permit teleoperation or redirection to areas of interest (RSC). 
iii. Capable of autonomously resuming normal operation after interruption 

(sliding autonomy). 
d) Constant communications with auto reconnect. 
e) GUI: near real time; bright sunlight; outdoor working conditions; balanced 

operator workload. 
f) Other boat traffic: COLREGs; dynamic obstacle avoidance. 

USV Challenges: Autonomy 
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Multilayered Software 
Architecture. 

USV Challenges: Autonomy 
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