

General Relationships between Test Data and Performance

EAR Workshop

Relationships Between Test Results and Performance

June 2005

Test Results

Air voids (laboratory compaction).
Roadway density.
Asphalt binder content.
Gradation.
Permeability.
Shear testing.

Air Voids (lab compaction)

- Represents ultimate compaction in roadway.
 - Majority of densification occurs within 4 years (summers).
- Past research: less than 2.5 to 3.0% lab air voids is detrimental to rutting.
- Air voids too high:
 - Faster oxidation.
 - More difficult to achieve field compaction.
 - Potential permeability problem.
 - Often the result of low AC content.
 - Faster to crack.

Roadway Density

Too low:

- Consolidation rutting.
- Permeability for coarse mixes.
- Stripping potential increases.
- More oxidation/cracking.
- **Too high:**

Aggregate breakdown...uncoated particles.

Asphalt Binder Content

Too low:

- Cracking and raveling (FC-5 and dense).
- Permeability issue if result is high air voids for dense mixtures.

Too high:

- Binder draindown for FC-5.....flushing, fat spots, bleeding.
- Low air voids and rutting for dense mixtures.
- Bleeding.

Gradation

Dense mixtures:

- Effect on VMA could reduce fatigue cracking resistance of mixtures....less film thickness.
- Effect on air voids could affect rutting potential.

FC-5:

- Coarser gradation may lower surface area and cause excessive binder film thickness.....i.e., draindown.
- Finer gradation may result in less porosity and reduced film thickness.....more serious.

Permeability

- Dense mixtures:
 - High permeability....increased stripping potential.

FC-5:

 Low permeability....reduced effectiveness at water drainage and spray reduction.

Shear Testing

Dense mixtures:

 Low shear strength....strong potential for slippage.

Comments / Questions?