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Chapter One  - Introduction

The Electronic Field Book Processor (EFBP) uses a wide variety of mathematical techniques derived

from surveying and statistics textbooks.  Every user does not need to fully understand the theoretical

basis for these techniques.  Understanding what the report files indicate are more important.  Most

users can simply refer to the EFBP user's guide for most questions that deal with production issues. 

A user unfamiliar with EFBP would need to read the EFBP user's guide before taking advantage of

the information in this document.

There are times when a user wants to look at some broader background descriptive information

regarding certain algorithms in EFBP.  This document serves that purpose, and points the to more

source documents of information as this is not intended to eliminate those references.  In addition,

many users are asked technical questions by others go beyond their knowledge base.  Those

questions can now be forwarded to this document.

This document should be used in conjunction with the Electronic Field Book Processing Handbook

and any currently available Electronic Field Book (EFB) documentation.  A user not familiar with

EFBP would need to refer to the EFBP user's guide before utilizing information in this document. 

The Electronic Field Book was developed for field survey collection by the Florida Department of

Transportation, and the subsequent processing of it by EFBP.  While EFB relies exclusively on

EFBP for coordinate production,  EFBP accepts other field system's survey measurements if the

data is translated to the ASCII raw data file format (.OBS) which is read by EFBP.   The .OBS file

and its format must be understood (see EFBP user's guide) before understanding this documentation

as many references are made to its contents.

Discussion Of Components Of The Documentation

The following topics are covered in this handbook :

• Chapter Two of this handbook deals with the correction of systematic errors in surveying

measurements. 
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• Chapter Three discusses analysis of repetitive survey measurements. 

 

• Chapter Four discusses how a weighted average can be used to derive a realistic "average"

from repeated observations which have different error estimates. 

 

• Chapter Five discusses correction of systematic errors due to earth curvature and atmospheric

refraction.

 

• Chapters Six discuss horizontal datums.

 

• Chapters Seven discuss vertical datums.

 

• Chapter Eight highlights state plane coordinate computations as they relate to EFBP and the

use of its generated coordinates in other software systems.

 

• Chapter Nine discusses the automatic sideshot identification algorithms in EFBP.

 

• Chapter Ten discusses the importance of error estimation in least squares analysis as it relates

to EFBP.  Reasonable strategies which enable integration of various measurement types are

presented.

 

• Chapter Eleven discusses how one validates the quality of survey measurements based on the

least squares analysis output. 

 

• Chapter Twelve discusses the interpretation of least squares post-adjustment error estimates of

final coordinates. 

 

• Chapter Thirteen presents the basic theory of least squares analysis, its application to non-

linear equations (most survey measurements are of this form), efficient strategies for solution,

and generation of post-adjustment coordinate error estimates.
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Conventions Used in this Handbook

The following conventions are used within this manual:

italics words which appear in italics emphasize important details

[ENTER] words enclosed in square brackets represent keyboard key strokes

   important concepts will be highlighted for easy recognitionconcept
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Chapter Two  - Instrument Calibration

All survey field instruments can contain systematic errors due to the  nature of the mechanical

components in them.  Personal and environmental systematic errors can also exist.  These errors

can be minimized through proper field techniques and office processing mechanisms.  Instrumental

systematic errors can be minimized if a calibration process is performed, and mechanical or

mathematical means are used to correct any systematic error that is detected.  EFBP uses

mathematical means to correct systematic error in ways that are now discussed.

Systematic vs. Random Error

Error can be systematic or random.  Systematic error follows some mathematical rules which can be

modeled and corrected by proper techniques or survey data processing.  Random error follows the

laws of probability which are evaluated using statistical processes such as least squares analysis. 

Sources of error in surveying are instrumental, personal, or environmental.  Instrumental systematic

errors in surveying can include total station/theodolite horizontal and vertical collimation errors,

electronic distance/prism combined offset and scale errors, a differential level's line of sight not

being horizontal, and a tape containing offset (short or long) or scale errors. Instrumental random

errors are due to the mechanical nature of survey instruments being limited in absolute measuring

ability.

An example of a personal systematic errors is not applying the correct pull to a tape.  A good

example of random personal error is our inability to point perfectly with a total station or theodolite.

Environmental systematic errors include earth curvature and atmospheric refraction.  Heat waves,

making pointing difficult, are an example of an environmental random error.

The distinction between systematic error and random error can become difficult in some cases.  An

electronic distance measuring (EDM) device is affected by temperature and pressure.  At an instance

of time there is a temperature and pressure that can be used to model systematic error corrections.

You obviously would not record temperature and pressure every time you make a measurement, so

it is difficult to define the drift in temperature and pressure as totally systematic or random.
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Total Station/Theodolite

If the vertical circle of a theodolite was in perfect adjustment, it would read zero degrees when

pointed at the zenith.  A horizontal circle would be in perfect adjustment (except for circle graduation

errors in a theodolite) if the direct and reverse circle readings when pointing (with no personal error)

to the same object would differ by exactly 180 degrees.  Both of these errors are minimized by

measuring equal number of times in direct and reverse position and averaging.

Many situations, such as topographic data collection, do not justify repeated measurements in direct

and reverse.  It is still highly desirable to eliminate instrument systematic error in all measurements. 

This is why EFBP is able to process what are called numerical calibration records.

A theodolite/total station calibration is an equal number of direct and reverse readings to the same

object.  Obviously the object should be very well defined so precise pointings can be made.  While

one (1) direct and one (1) reverse reading will suffice, multiple pointings are recommended so the

surveyor can ensure no blunders exist, obtain a more reliable measurement through averaging, and

obtain an estimate of the operator's pointing error.  EFBP averages the direct readings and computes

standard deviations in a single observation for horizontal and vertical pointings.  The same is

performed in the reverse position.  The standard deviations indicate if a blunder exists, and in

absence of a blunder indicate pointing ability.

If the instrument was in perfect vertical adjustment, the sum of the average direct and reverse

vertical circles would be 360 degrees.  The difference from 360 degrees represents twice the error. 

As an example, assume the average direct and reverse vertical pointings were 90° 00’ 30” and 270°

00’ 20”.  The sum is 360° 00’ 50” and indicates every zenith circle reading should have 25 seconds

subtracted from it.  A sum less than 360 degrees would require an addition of the error value to all

zenith circle readings.

The amount that the average direct and reverse horizontal circles are from being 180 degrees

different again is twice the error.  In this case the sign of the correction will be opposite as applied to

horizontal angles measured in the direct and reverse positions.  As an example, consider the

average direct and reverse horizontal circle pointings in a calibration to be 190° 00’ 10” and 10° 00’

30” respectively.  Horizontal angles measured in direct would have +10 seconds added to them,
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while the correction added to reverse horizontal angles would be -10 seconds.  Calibration values are

applied to all measurements collected after it until another calibration that contains numerical data is

reached (a user can store a calibration without circle readings using EFB as it contains other

pertinent information).  If no calibration exists at the beginning of an .OBS file the calibration

corrections are zero until a calibration with numerical data is reached.  If two or more distinct

calibrations are in consecutive order in an .OBS file, the last is always used.

Due to the calibration process, EFBP treats direct and reverse readings as unique measurements

because they can be corrected for the systematic errors which were the major reason for measuring

in direct and reverse.  Thus four direct and four reverse measurements are corrected for systematic

calibration errors, summed, and divided by eight to obtain an average.  Many methods used by

surveyors recommend averaging direct and reverse measurements in obtaining four (4) values which

are then averaged.  This is no longer necessary due to the calibration record.

Differential Level

A differential level is usually calibrated for line of sight not being horizontal by a peg test.  This test is

described in all basic surveying texts, and usually involves one backsight/foresight combination at

midpoint (this corrects systematic error) to a backsight/foresight combination where the sight

distances are not equal. 

Electronic Distance Measurement (FIXIT)

An EDM/prism combination can contain offset (constant) and scale (parts per million - ppm)

systematic errors.  The offset error remains constant for any measured length of line.  The scale

error grows (or shrinks) as a linear function of the length of the line.

EFBP performs no systematic correction based on a peg test calibration in

an .OBS file as it is assumed the surveyor adjusted the cross hairs as a

result of the test to create the horizontal line of sight.



Technical Reference Handbook

14 - Electronic Field Book Processing System

An EDM/prism combination can be tested for correct distance measurement by one of three

methods:

(1) Lay out a precisely measured distance with a steel tape and compare that value to what you

measure with the EDM.  This will not resolve scale error as a precisely taped distance will

be too short in length to derive it.

(2) Set two collinear points A, B, and C.  Measured distances AB plus BC should equal

measured distance AC.  The difference is the error in the EDM and prism combination.

Since this test usually uses short lines the scale error is usually not measurable.

(3) An EDM calibration range (a base line) is utilized which has a series of known distances

which vary in length.  The shortest distance determines the offset error, and the scale

error is modeled by how the difference between the known and measured distance values

vary for different lengths of lines.  Public domain programs are available for computation

of systematic error corrections from base line measurements.

Some total stations or EDM's allow a user to dial in corrections for offset and scale error so that the

distances in a data file (.OBS file) will be already corrected for any systematic error influence.  If this

is not performed, an auxiliary program to EFBP called FIXIT allows you to apply offset and scale

corrections to measured EDM distances before you actually process your data with EFBP.  FIXIT

allows an accidental prism offset or incorrect temperature/pressure problem to be efficiently

corrected.

Tape (FIXIT)

A tape is like an EDM and is suspect to offset and scale errors.  A tape is usually laid out on a known

baseline to obtain this information.  Taping is usually a small part of an .OBS file.  With a text editor

one should separate total station and taping measurements before performing FIXIT type

corrections.  The text editor can then be used to again merge the total station and taping

measurements into one .OBS file again.
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Chapter Three  - Repetitions and Comparisons

Repeated measurements provide the surveyor with checks for blunders and a way of estimating the

quality of one's measurements.  Certain types of repeated measurements are more generic in testing

for blunders.  As an example, repeated measurements from the same instrument setup does not

check if a user set up the total station or prisms over the station(s) properly.  Another setup at that

station, or a setup which measures a common line but in the opposite direction, is a better check as

the quality of the instrument setups can be made.

Averaging and Standard Errors

These values can be derived from repeated measurements at the same instrument setup.  Note,

standard error and standard deviation are used interchangeably in this discussion.  Slope distances,

zenith angles, height of instruments, and height of targets are converted to horizontal distance and

mark-to-mark elevation change before any averaging or standard error computation begins.  This is

especially required for elevation differences in case a change in height of target occurred during the

repetition process.

Horizontal circle readings are converted to horizontal angles based on a unique backsight station

before averaging and standard error computations begin.  This allows any movement in the

horizontal circle plate to be accounted for between repetitions.  This is analogous to the process of

"moving" an initial horizontal circle reading when turning a series of repetitions.  The difference

between horizontal circle readings (horizontal angle) provides a more generic comparison

mechanism.

The backsight station for a particular setup is the station which was sighted the most times.  If a

given number of stations were sighted the same number of times, the first station of that group after

the setup record is selected as the backsight.  The .OBS file is usually time sequenced, and thus the

backsight is commonly measured to first at a setup.

The EFBP users guide has a series of examples of averaging and standard error computations, and

thus one can refer to these examples if one needs to look at numerical examples.
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Simple Averaging

A simple average is performed for any repeated measurements at a setup.  A simple average is the

sum of the individual measurements divided by the number of repetitions.  It does not take into

account that the individual measurements could vary in quality.  A weighted average, which is used

by EFBP in some other situations and is discussed later, can take into account measurements of

varying quality.

One point to make is that the .OBS file allows for multiple pointings to exist on the same position

number and in the same (direct/reverse) face.  This is common when one has performed a large

number of topographic measurements, and one wishes to "check in" on the backsight at the end of

the setup.  Some surveyors like to routinely check in on the backsight in some pre-defined

chronological fashion.  Slope distances/zenith angles of this fashion are treated as separate

measurements.  Thus one (1) measurement in position one (1) direct, one (1) measurement in

position one (1) reverse, three (3) measurements in position two (2) direct, and one (1) measurement

in position two (2) reverse of slope distance/zenith angle will be treated as six (6) measurements. 

The same is not true for horizontal circle readings as the three (3) measurements in position two (2)

direct will be averaged.  At this point, a unique horizontal circle reading exists in position one (1)

direct, position one (1) reverse, position two (2) direct, and position two (2) reverse.  These four (4)

values are used in computing horizontal angles from horizontal circles, and the horizontal angles are

then averaged.  Thus, one (1) unique horizontal circle reading exists for each position number and

face (direct/reverse) prior to the horizontal angle computation/averaging process.  This eliminates

the problem of how many horizontal angles exist from station A1 to A2 in position one (1) reverse if

station A1 was measured to four (4) times and A2 once.  By EFBP's algorithm, the four (4) circle

readings to A1 are averaged and one (1) angle for that position number and face is computed.

The averaging of horizontal circle readings on the same position/face setting

produces the multiple pointing error values which are displayed in the

abstracting report (the .GEN file).
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Reiterating, slope distances and zenith angles are not averaged, instead their reduced horizontal

distances and elevation differences are averaged.  It is possible to average a horizontal distance(s)

in an .OBS file with those in an .OBS file that are derived from slope distance/zenith angles. 

Horizontal circle readings on the same position and face are averaged before horizontal angle

computation occurs.  Each position/face produces a horizontal angle which is subjected to the

averaging process.

The simple averaging process is thus a fairly simple computation which is well documented in

statistics texts and surveying textbook sections on statistics as it applies to surveying.

Standard Error In A Single Observation

The standard error is the square root of the variance.  To compute a standard error one must first

compute the difference between each individual observation and the average.  These are residuals

in a averaging process.  The residuals are squared and then summed.  That sum is divided by the

number of observations minus one to obtain the variance.  The square root of this variance is the

standard error in a single observation.

Residuals are squared because they will be both positive and negative in sign - a simple sum of

residuals from a simple average yields zero.  The division by the number of observations minus one

is similar to dividing by the number of observations in simple averaging.  The "minus one" is with

reference to the number of observations beyond what you minimally need (one observation does

indeed determine a value for that measurement).  This could also be referred to as the number of

checks or number of degrees of freedom.  There is no standard error unless you make at least two

measurements.

The physical meaning of the standard error in a single observation is if you made one more

observation under the same conditions with the same equipment you would be approximately 67%

(one sigma) confident that you would fall within the range defined between the average minus the

standard error to the average plus the standard error (average plus or minus the standard error).

If your worst residual (maximum spread in the .GEN file report) is more than the standard error that

is not cause to be alarmed.  Approximately 33% of your data will fall outside, so obviously we cannot
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be discarding that amount of data as surely not all of those are blunders.  Using three times the

standard error as a blunder detection device provides approximately 95 % confidence that the outlier

should be discarded.  The three sigma rule for blunder detection is quite common across disciplines

who make measurements.

Standard Error In The Mean (Average)

The standard error in the mean is the standard error in a single observation divided by the square

root of the number of observations.  A standard error in the mean is half the magnitude of the

standard error in a single observation if the number of observations is four (4). 

The physical meaning of the standard error in the mean is if you made one the same number of

observations under the same conditions with the same equipment you would be approximately 67%

(one sigma) confident that you would fall within the range defined between the average minus the

standard error in the mean to the average plus the standard error in the mean (average plus or

minus the standard error in the mean).

The standard error in the mean reflects that increasing reliability by repetition has diminishing returns

as the number of repetitions grow.  To first halve standard error in a single observation you need four

(4) repetitions.  To halve it again you need sixteen (16) repetitions, and to halve it yet again you need

sixty-four (64) repetitions!

Significance Of Standard Errors

The standard error in the mean reflects the uncertainty in the average as opposed to a single

observation.  Obviously under the same measuring conditions a horizontal angle observed eight

times will usually have less uncertainty than a horizontal angle measured twice.  Other factors can

play a role in this determination.  If the angle measured eight (8) times had a 12 meter backsight and

6 meter foresight you would probably feel less certain about it than the angle measured only twice

where the backsight and foresight distances were more than 500 meters.  The "same measuring

conditions" rule does not apply in that comparison.  Likewise, a setup with very short sight distances

may by coincidence have its horizontal angle measured twice and repeat perfectly.  The perfect
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repetition does not reflect our surveyor's knowledge of the problems with short sight distances.

The standard error derived from repetition is thus an estimate of uncertainty, and not an absolute

mechanism in surveying for assessing data quality.  Standard errors are simply based on repetition, 

and do not account for errors such as instrument positioning over a point or the leveling of the

instrument.  A standard error can thus be used more effectively if we add surveyor insight into the

overall model.

Maximum Spread

The maximum spread is the largest deviation of any single observation from the mean.  In other

words, it is the largest residual (absolute value) derived from an averaging process.  The maximum

spread is the best indicator of a blunder in a repetition process, while the standard errors are the

better indicators of data uncertainty.

Same Line / Different Setup Comparison

One of the best checks of horizontal distances and elevation differences is measuring the line on

more than one setup.  In a traverse mode the second setup is usually at the sighted station of the

first setup, and the check results from a prism being measured to on the backsight.  This procedure

is common as averaging elevation changes measured in opposite directions on a line can help

eliminate most systematic errors due to earth curvature and atmospheric refraction.

This check is better than standard errors and maximum spreads as it does check for blunders that

cannot be checked by simple repetition.  These blunders include failing to check the setup over a

point, leveling of an instrument, and some types of station naming problems.  The use of it in blunder

detection is described in the EFBP user's guide.
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Chapter Four  - Weighted Averaging

Any horizontal distance or elevation difference measured on more than one setup is averaged at the

same time the comparison of the two values is made for blunder detection purposes.  A simple

average could be used in this process, but instead to take advantage of the data uncertainty

estimates (usually called error estimates) generated by EFBP a weighted average is used. 

Error estimates can be generated totally by user supplied constant and ppm input error values, or

can be generated as a function of the standard error in the mean plus user defined additions which

are defined by constant and ppm add-ons. 

The weighted averaging process will first be illustrated.  This will be followed by a discussion of the

two choices in error estimate generation.

Consider the following example :

Assume the first measurement of a line is 100.00 with an error estimate of 0.01 and the second

measurement is 100.04 with an error estimate of 0.02.  The weighted average is computed by:

[ 100.00 x (1 ÷ 0.01) + 100.04 x (1 ÷ 0.02) ]  = [ 100.00 x 100 +100.04 x 50]

             [ (1 ÷ 0.01) + (1 ÷ 0.02) ]                                   [100 + 50]

which produces an average value of 100.013.  The inverse of the error estimate becomes the weight,

and thus the first measurement received twice the weight of the second measurement.  This would

be the same as a simple average of two 100.00 measurements with the 100.04 value. 

The error constants and add-ons are defined in EFBP's opening setup menu. 

The choice of user defined error estimates or standard error plus add-ons is

also defined in this initial menu.
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Note, this allows the better measurement (smaller error estimate) to have more of an affect in the

averaging process.  This method is the same whether the measurement is a horizontal distance or

an elevation difference.

The error estimate for the weighted average value will be :

[2 x 0.01 x 0.02 ] ÷ [0.01 + 0.02]   =  0.009

The formula for the error estimate of the weighted average is the square root of two (2) x error

estimate number one (1) x error estimate number two (2) divided by the sum of the error estimates.

Error Estimation By Standard Errors Plus Add-Ons

Assume a 300.000 meter slope distance and zenith angle were measured by repetition and produced

standard errors in the mean for horizontal distance and elevation change of 0.002 meter and 0.008

meter respectively.  Most surveyors would judge these values to be optimistic in being used directly

as error estimates for reasons previously discussed.  In EFBP's initial menu horizontal distance

constant and add-on parameters of 0.005 meter and 10 ppm were entered respectively.  For

elevation changes by trigonometric leveling constant and ppm errors of 0.007 meter and 100 ppm

were entered.

The horizontal error estimate would be 0.002 + 0.005 +(10 ÷ 1000000) x 300 or 0.002 + 0.005 +

0.003 = 0.010 meter.  The elevation change error estimate would be 0.008 + 0.007 + (100 ÷

1000000) x 300 = 0.008 + 0.007 + 0.030 = 0.045 meter.  The error constant add-on could be thought

of accounting for setup error that affects linear measurements, and the ppm add-on is due to the fact

that longer lines generally contain more error in these types of measurements.  The ppm add-on is

usually larger for trigonometric leveling than horizontal distance as common surveying practice

acknowledges that error in trigonometric leveling grows faster for a longer distance than for

horizontal distance. 

With non-zero constant and ppm error add-ons even perfect repetitions, producing a standard error

in the mean of zero, will receive a non-zero error estimate.  This is important because perfect
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repetition definitely does not reflect that a measurement contains no error.

Error Estimation By User Definition

Some users may feel error estimation partially based on standard errors from repetition is not a

desired procedure.  The other option is error estimation totally by user definition independent of

repetition error.  EFBP allows user defined values for constant error for horizontal distance, constant

error for elevation difference, and a single ppm error for both types of measurements.  Assume a

user has input horizontal constant error of 0.008 meter, elevation difference constant error of 0.02

meter, and a ppm error of 10 ppm.  A 300 meter distance, independent of repetition error, would

produce a horizontal distance error estimate of 0.008 + (10 ÷ 1000000) x 300 = 0.011 meter and an

elevation difference error estimate of 0.02 + (10 ÷ 1000000) x 300 = 0.023 meter.  Logically, the

constant error for trigonometric leveling should be larger than the constant error for horizontal

distance as it is more difficult to measure.

If error estimates from repetition is not utilized, the weighted average turns into a simple average

because the error estimate for all measurements of a line will be equal.  Even if error estimates from

repetition is being used, there will obviously be situations where a measurement is not repeated at a

setup.  The error estimate will thus be generated from the error estimates (not add-ons) by user

definition.  It is thus possible to perform a weighted average of a value with an error estimate

generated from standard error and add-ons with a value that was not repeated and thus has its error

estimate derived from user input constant and ppm values.

How Many Distances and Elevation Differences of A Line Are in the Least

Squares Analysis?

Multiple setups which measure a horizontal distance or elevation change are subjected to weighted

averaging.  Thus, only one final averaged value is subjected to the least squares analysis.  This

helps ensure a proper number of degrees of freedom which is based on the geometry of the survey

network, and not enhanced by repetitive measurements of the same line.
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Why Angle Weighted Averaging Does Not Occur in EFBP

Horizontal angles are not subjected to a weighted average for several reasons.  The first is that

horizontal angles are not often measured multiple times on different setups - measuring to a prism

on a backsight creates the need for weighted averaging of horizontal distances and elevation

differences.  A common field practice is to measure both the interior and exterior angles when

traversing.  If measured on separate setups, including both in the least squares has some validity as

residuals can indicate a better fit of one of the angles, which in turn indicates a possible setup error

in the angle with the larger residual.  Multiple occupations of the same setup can create a multitude

of angles with different backsights which in turn makes angle averaging difficult as it would require

definition of a single backsight from all of these angles.  This may not be how the field data was

collected.  It was thus decided that the complications of angle averaging made placing all of them in

the least squares analysis the suitable solution.
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Chapter Five  - Earth Curvature & Atmospheric Refraction Correction

Elevation differences derived from a total station need to be corrected for earth curvature and

atmospheric refraction.  It is also possible to correct differential leveling for these values but due to

short sight distances it is not being performed in EFBP as it is negligible.  Atmospheric refraction

bends a line of sight downward, and thus it causes a line of sight to be lower than if no atmosphere

existed and the line of sight was not bent. 

To consider earth curvature better, pretend atmospheric refraction does not exist.  It would be

desired for a line of sight to parallel the curve of the earth.  This is not possible as the line of sight is

straight, and thus this sight is above the curved line which means earth curvature causes a line of

sight to be above where it should be.

Since the errors are in opposite directions, if they were equal in magnitude they would cancel.  For a

standard atmosphere, atmospheric refraction has only 1/7th the effect of earth curvature.  Thus, the

cumulative affect is the line of sight is too high which creates a elevation change which is too

negative, and thus a positive correction is always applied to the elevation difference for earth

curvature and atmospheric refraction.

Note, the correction grows as a squared function of the distance.  A sight distance of 100 feet

produces a correction of only 0.0002 foot so it is insignificant.  Five hundred (500) foot and one

thousand (1000) foot sight distances produce corrections of 0.005 feet and 0.021 feet respectively. 

Since a trigonometric elevation difference derived from a 1000 foot sight distance is rarely accurate

to 0.02 foot, it could be stated the earth curvature and atmospheric refraction corrections are

insignificant for normal surveying practice.

The amount of correction in feet is 0.0206 x (F ÷ 1000)2 where F is

equal to the horizontal distance in feet.  If in meters the correction is

0.0675 x (M ÷ 1000)2 where M is the horizontal distance in meters.
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The user has the ability to toggle the correction on or off in the initial EFBP menu.  Some total

stations have an ability to also toggle the correction on or off.  Be very careful as the correction is

often only applied to reduced values, and raw data is stored in the .OBS file. 

To determine if a total station corrects raw data (zenith angle) call

your local dealer or measure to a precise locatable point with the

correction on and off and see if any change in raw data (zenith angle)

is noted.



                             Technical Reference Handbook

Electronic Field Book Processing System - 27

Chapter Six  - Horizontal Datums

EFBP can automatically reduce data to state plane coordinate projections in NAD 27 or NAD 83.

Note that the horizontal datum and state plane zone (NGS zone number) is stored in the control .CTL

file.  A lack of horizontal datum and state plane zone indicates assumed coordinates are being used.

Assumed Horizontal Datum

There are situations where a surveyor chooses to use an assumed coordinate system and apply no

geodetic/state plane reductions.  This is very useful for checking for blunders in survey

measurements, and determining relative distance and bearing changes between stations.  Use of

state plane coordinates in a control file with no datum or state plane zone designation will produce

incorrect state plane coordinates as no scale or elevation factors can be applied.  It is thus suggested

when using assumed coordinates to make them "look" very different than state plane coordinate

values in that general area.

If you are using EFBP without a control file, the first setup is assigned horizontal coordinates of

10000,10000 and due north is assumed to the first station sighted at that setup.

North American Datum of 1927 (NAD 27)

This is based on the Clarke ellipsoid of 1866.  The units for distance and state plane coordinates

were defined in U.S. Survey Feet, and thus EFBP will only process in this datum in English units. 

This datum was created by fixing a latitude/longitude at station Meade's Ranch, Kansas, and fixing a

geodetic azimuth to a nearby azimuth mark.  The type of measurements which made up the geodetic

control network for this datum were primarily triangulation as EDM's had not been invented.  The

production of coordinates had to occur without the use of computers!  All geodetic and state plane

coordinate production prior to 1986 was with respect to this datum.
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North American Datum of 1983 (NAD 83)

This is based on the World Geodetic Reference ellipsoid of 1984.  The units for distance and state

plane coordinates were defined in meters, with conversion to U.S. survey feet or international feet

left up to the user's preference.  No fixed control existed.  The type of measurements now included

traverse, doppler, and the global positioning system (GPS) in addition to triangulation.  It resulted in

a least squares adjustment of approximately 250000 stations and resulted in new (better) coordinates

for stations (labeled NAD 83 coordinates).  Not all stations which had NAD 27 coordinates were part

of this adjustment, and it is thus often desirable to convert these coordinates to NAD 83.  The

National Geodetic Survey (NGS) has produced a public domain program called NADCON for this

purpose (geodetic coordinates only).  The Army Corps of Engineers updated NADCON with more

options such as NAD 27 state plane to NAD 83 state plane.  This public domain program is called

CORPSCON. 

The exact conversion between meters and U.S. survey feet is 1 meter = 39.37 inches.  The exact

conversion between meters and international feet is 25.4 millimeters = 1 inch.  If performing a survey

in English units in NAD 83 the surveyor must know if the particular state he or she is in has passed

legislation stating which foot should be used.  If the state has not passed legislation one should find

which foot is being used by the agency one is doing work for.

One should not worry which foot is used for one's measurements.  The difference in a 1000 foot

distance is only 0.002 foot, and thus not within the measuring ability of conventional survey

measurements.

Other Datums

Due to the advent of the global positioning system (GPS) several states and regions have found it

desirable to create a high precision network of GPS observations, and perform a least squares

analysis of it for coordinate production.  This will use the NAD 83 ellipsoid and NAD 83 state plane

zone constants.  A station which has coordinates in NAD 83 and the high precision network will not

be equal, and differences are usually less than one foot.  This makes unlabelled coordinates nearly

impossible to detect as NAD 83 or supernetwork. 
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Supernetworks are usually labeled such as NAD 83 (90) which implies the supernetwork coordinates

were published in 1990.  Florida’s supernetwork is NAD 83 (90) and thus a 90 should replace the 83

in a .CTL file if the supernetwork coordinates are used.

EFBP permits tagging of any two digit year to a horizontal datum in the control (.CTL) file which will

be also be placed in the final coordinate (.XYZ) file.  A year greater than 82 indicates NAD 83 datum

and state plane zone constants will be used.  A year greater than 83 indicates the coordinates are

referenced to a regional supernetwork.

No mixing of control coordinates from different datums in one job

should ever occur as there are systematic shifts between them.
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Chapter Seven  - Vertical Datums

A vertical datum is not significant numerically to EFBP as geodetic reductions such as scale factors,

elevation factors, and convergence angles are only applied to 2-D (horizontal) measurements.

Nonetheless, it is very important to label control (.CTL file) and final (.XYZ file and .SOE file)

elevations with a vertical datum number.  A lack of vertical datum number indicates an assumed

vertical datum is being used.  A vertical datum is designated with a two (2) digit number in the .CTL,

.XYZ, and .SOE files.

Assumed Vertical Datum

This would indicate the benchmarks used are with respect to some arbitrary reference.  If you are

using EFBP without a control file, the first setup is assigned an arbitrary elevation of 500.00 feet or

meters.

If you have a geodetic horizontal datum and an assumed vertical datum, the elevations should at

least be derived from interpolating from a map with reference to a vertical datum.  This is because

elevation factors in the geodetic reductions are based on the elevations in the .CTL file, and it is

assumed these elevations are with respect to a vertical datum.

National Geodetic Vertical Datum of 1929 - NGVD 29

This was the only national geodetic vertical reference until approximately 1993.  These elevations

resulted from differential leveling which was compiled by NGS at that time. Elevations were

published in feet, and a series of benchmarks near the coastline were held fixed to force the datum

to be referenced close to mean sea level. 

All benchmarks and contour maps published prior to 1993 by NGS, the U.S. Geological Survey and

other federal and state mapping agencies were with respect to this datum.
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North American Vertical Datum of 1988 - NAVD 88

The plethora of leveling observations which succeeded NGVD 29, plus better gravity measurements,

created the need for a redefinition of the vertical datum in North America.  While labeled NAVD 88,

the elevations were not published until 1993.  All elevations are published in meters, and a user

follows the same logic as horizontal coordinates in converting to either U.S. survey or international

feet.  Only one benchmark (near the mouth of the St. Lawrence River) was held fixed in the least

squares adjustment of more than 200,000 benchmarks.

Elevations for the same benchmark in NGVD 29 and NAVD 88 will not be equal.  Many benchmarks

with NGVD 29 elevations were not included in the NAVD 88 and thus need translation to it.  NGS has

provided public domain program VERTCON for that purpose.

Local Datums

It is possible in an area to have a local datum which is offset from either NGVD 29 or NAVD 88.  This

should be labeled in the .CTL and .XYZ files with a vertical number other than 29 or 88, and would

operate similar to the high precision network datum discussion.
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Chapter Eight  - State Plane Projections

State plane coordinates are based on two types of projection systems - a Lambert Conic Conformal

or a Transverse Mercator.  States that are elongated north-south tend to use Mercator zones and

states elongated east-west tend to use Lambert zones.  Florida is an example of a state elongated in

portions of the state in different directions, and is thus made up of both Lambert and Mercator zones.

 All zones have central meridians with defined longitudes which point true north-south except for one

Mercator zone in Alaska where the central meridian is offset 45 degrees from true north.  This is

called an oblique Mercator projection.

In NAD 1927, the size of state plane zones were limited by the fact that the difference between a grid

distance and a ground distance reduced to the ellipsoid would not exceed 1/10000.  The difference

between these two distances is known as the scale factor.  The scale factor varies according to your

location in a zone, and deviates furthest from unity at the center and extremes (E-W in Mercator, N-

S in Lambert) of the zone.  Thus larger states have more zones than smaller states.

In NAD 83, some states decided to eliminate some zones which in some cases now makes the

difference between grid and ellipsoid distance greater than 1/10000.  Some states also changed

some zone origins, central meridian longitude, or location of meridian lines with a scale factor of one.

Lambert Conical Projection

The Lambert projection is a cone which intersects the ellipsoid at two defined latitudes where scale

factor would be one.  The scale factor does not change in an east-west direction.

Transverse Mercator Projection

The Mercator is a cylindrical projection where the centerline of the cylinder is running in an east-west

direction.  The cylinder intersects the ellipsoid at defined longitudes where the scale factor is equal to

one.
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Zone Origin, False Northings, And False Eastings

An origin for the zone is defined by latitude and longitude.  A false easting is assigned to the central

meridian to prevent negative eastings.  While sometimes the origin received a false northing, it was

more common to set the false northing of the origin to zero.  This origin was far enough south of the

location of the zone to prevent creation of negative northings.

NAD 27 vs. NAD 83

To force NAD 83 state plane coordinates to look different than their NAD 27 equivalents, two items

were instituted.  NAD 83 state plane coordinates were published by NGS in meters, while NAD 27

state plane coordinates were published in feet.  In addition the false easting (and in some cases also

the false northing) were changed so that even if coordinates in NAD 83 were converted to feet they

would not match their NAD 27 counterparts.  In most cases, false eastings in NAD 27 Lambert zones

were 2,000,000 feet and NAD 27 Mercator false eastings were 500,000 feet.  The false eastings in

NAD 83 actually vary from state to state and often between zones within a state.

Difference Between Grid Distance and Ground Distance

The grid distance between two points is simply the Pythagorean inverse of the end point coordinates.

Grid distance is computed from ground (horizontal) distance by :

Grid distance = Ground distance x scale factor x elevation factor

and thus ground distance is computed from grid distance by :

Ground distance = Grid distance ÷ (scale factor x elevation factor)

Scale factor for a line is usually computed by averaging the scale factors at the end points of the

line.  Remember the scale factor is a function of your location in the zone. 
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The elevation factor is derived from the average of the end point elevations (ave. elev.) and in feet

is computed by:

elevation factor = 20,906,000 ÷ (20,906,000 + average elevation)

where 20,906,000 feet is a suitable approximation for the radius of the earth.  The metric equivalent

of 20,906,000 feet can obviously be computed and then ave. elev. can be entered in meters.

It should be noted that it is theoretically correct to reduce to the ellipsoid, and not the geoid

(elevation reference).  The difference between the geoid and ellipsoid is approximately 20-30 meters

in North America, which causes an error in elevation factor of approximately 1/200000.  This makes

it smaller than our usual random errors in surveying, and thus using elevation, not ellipsoid height, is

valid.

Convergence Angles and T-t Corrections

A convergence angle is the difference between grid north and forward geodetic north at a point.  A

forward geodetic azimuth at a station is the angle from geodetic north to another station. Geodetic

north lines converge to the north pole and therefore are only parallel at the equator.  Grid north (state

plane north) lines are parallel to one another.  The convergence angle is zero at the central meridian

because grid north and geodetic north coincide.

The equation which relates azimuths in the two systems is:

grid azimuth = geodetic azimuth - convergence angle + T-t correction

- or -

geodetic azimuth = grid azimuth + convergence angle - T-t correction

Convergence angles are thus negative when west of the central meridian and positive when east of

the central meridian.  The T-t (second term) correction is insignificant on typical survey distances but

can become a few seconds for lines longer than a mile near the edge of a zone.
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Horizontal angles are reduced to grid by only T-t correction:

grid angle = geodetic angle + foresight T-t corr. - backsight T-t corr.

Again the T-t correction rarely exceeds tenths of seconds.  This correction is due to the fact that

horizontal angles measured on a curved earth need to be reduced to the flat state plane grid.

Forward vs. Mean vs. Reverse Geodetic and Astronomic Azimuths

While different in format, the term azimuth equally applies to bearings in this discussion.  In the

previous section we have defined the relationship between grid and forward geodetic azimuths.  A

reverse (back) geodetic azimuth is the forward geodetic azimuth from the sighted station back to the

occupied station.  The forward and reverse azimuth do not differ by 180 degrees, except on a north-

south line, because of convergence of meridians towards the north pole.  The mean geodetic

azimuth of a line is the average of the geodetic forward and reverse bearings.  It is a line of constant

bearing and is thus a curved line on the face of the earth.  An east-west section line is an excellent

example of a line that represents mean bearing as it is intended to be a line of constant latitude.

Astronomic azimuths are similar in nature to geodetic equivalents, except that its reference is

astronomic north.  Astronomic north is determined from surveying measurements to stars or the sun.

 The difference between astronomic and geodetic north is a function of the direction of gravity, and

thus varies according to your location.  In most parts of the United States the difference between

astronomic and geodetic north is less than one second.  NGS has a public domain program available

called DEFLECT90 which outputs the difference between geodetic and astronomic north based on

input latitude/longitude.

How Does EFBP Do State Plane Reductions?

The abstracting initial phase of EFBP identifies redundant stations, and generates preliminary

coordinates for the least squares analysis by automatic coordinate geometry computations.  Even

without using state plane reductions, these preliminary coordinates are rarely most than 10 feet from

their least squares adjusted values. 
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The second component of EFBP is the 1D least squares analysis and sideshot computations for all

1-D sideshots.  This produces elevations for all stations which can be used for elevation factors for

any 2-D coordinate computations.

The third component of EFBP is the 2D least squares analysis.  It uses the preliminary coordinates

from the abstracting stage to obtain point scale factors.  The end point scale factors of a distance are

averaged to obtain a scale factor for that line.  Scale factors change minimally over survey

measurement type distances, and thus the preliminary coordinates are as good as the final least

squares adjusted values for scale factor generation.  Every point has an elevation from the 1D

computations and thus an average of the end point elevations for a line can be used to generate

elevation factors.

Sideshots are generally fairly short lines and thus the scale factor change, elevation factor change,

and T-t corrections will be negligible.  Thus the horizontal sideshots, which are based on the least

squares adjusted coordinates of the redundant stations, utilize the sideshot's occupied station's point

scale factor and elevation factor.

Thus it has been defined how all measurements reductions to grid are automatically employed.  It

has also been defined how all sideshot computations are based on the results of the least squares

analysis.

If geodetic azimuths exist in the .CTL file, the preliminary coordinates

are used to compute a convergence angle for reduction of that

azimuth to grid.  Similarly the preliminary coordinates are used to

generate T-t corrections for all geodetic azimuths and horizontal

angles.
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Chapter Nine  - Sideshot Identification Algorithm

EFBP requires no identification of sideshot vs. redundant observation or station.  EFBP

automatically identifies the sideshots via the "connectivity" of the survey as defined by observation

station name.  Note, a 1D sideshot can be a 2D redundant point, and vice-versa.  A benchmark

which is only measured from one station is a 2D sideshot, but is  definitely not a sideshot vertically. 

A 2D (horizontal) control point that is only measured from one other station will not be a redundant

1D station.

Performing a 1D/2D analysis accounts that many times the redundant 1D network is different from

the redundant 2D network because not all survey control is usually 3D in nature.  The 1D/2D

approach also allows one to integrate differential leveling, station-offset, 2-D traverse, and 3-D

traverse into the same job.  The 1D/2D approach has also been shown by the author to be more

suitable for reduction of conventional survey measurements, and in all cases producing statistically

the same results as a full 3D approach.

1D Sideshot Identification

The only measurements in the 1D analysis are elevation differences and benchmarks.  An elevation

difference connects two stations.

The 1D sideshot algorithm looks for stations that are not benchmarks that are only connected to one

other station.  These are sideshots and are "pruned" from the remainder of the data.  The process is

repeated until there are no sideshots left to prune.  This iterative process allows for spur traverses

with no redundancy to be all identified as sideshots.  This algorithm then removes any benchmarks

which were in the control file which had no measurements connected to them.

2D Sideshot Identification

The 2D analysis is composed of horizontal distances, horizontal angles, azimuths, and control

coordinates.  The first three types of data connect stations to one another.  A sideshot is defined as a

station that is not a control station, is not an occupied station on a horizontal angle, and is only on
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one distance and angle which are from the same station.  If a station has one distance and two

angles from the same setup to it, this is not a sideshot as there is angular redundancy to it.  A station

uniquely located by angle-angle intersection, angle-distance intersection, distance-distance

intersection or resection will not be considered as sideshots even though there may be no

redundancy to it.  This is because the sideshot computation process in EFBP assumes one angle-

distance from the same station.  Note EFBP automatically recognizes any type of intersection or

resection.

The 2D sideshot algorithm looks for stations that are not 2-D control that are only connected to one

other station by an angle-distance.  These are sideshots and are "pruned" from the remainder of the

data.  The process is repeated until there are no sideshots left to prune.  This iterative process allows

for spur traverses with no redundancy to be all identified as sideshots.

Horizontal control points that is not connected to any other stations are carried along to the final .XYZ

file that is imported into a survey/engineering design software system.  This is because some

horizontal coordinates not connected by the survey can be important in the later computational

process.  As an example, the coordinates may be for a section corner (which was coordinated in a

previous survey) which is going to be used in a proportion or subdivision computation.
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Chapter Ten  - Estimation Of Errors In Measurements

While the estimation of a survey's random errors is important at all times, in use of least squares it

has special meaning.  The key item to remember is this is "estimation", and one should not feel there

needs to be exactness in the process.

Error Estimation Importance In Least Squares Analysis

Least squares minimizes the sum of the weighted residuals squared.  A weighted residual is the

residual divided by its error estimate (thus a snoop number in a .1D or .2D report).  That value needs

to be squared because a residual can be either positive or negative.  Note a weighted residual is

unitless as the residual and error estimate have the same units.  This enables different types of

measurements to be compared to one another as the weighting process makes everything unitless.

Not only do the error estimates enable simultaneous analysis of different measurement types,

likewise it enables measurements of the same type to have varying affects (weights) on the final

results.  A paced distance is a valid form of measurement if assigned a proper error estimate

(perhaps 5 foot per 100 foot) relative to an EDM distance (.01 foot plus 5 ppm).

Error Estimation From Repetition Error Plus Add-Ons

Repetition can be an indicator of an error estimate, but it is usually too small to be used absolutely as

an error estimate.  As an example, repetition error does not model setup errors at the instrument or

prism.  It also possible to obtain perfect repetitions, but this does not mean the measurement is

perfect.  The first form of error estimation EFBP allows is repetition error plus user assigned add-ons

which model the errors which repetition cannot model.

Error Estimation Without Influence of Repetition Error

Some people feel repetition error should only be used for blunder detection and not in error

estimation calculations.  A user can thus toggle off error estimation from repetition plus add-ons and
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instead use user defined constants.  If a measurement is not repeated EFBP will use the user

defined constants no matter what form of error estimation has been selected.

Horizontal Distance

Horizontal distance error estimation is usually associated with a constant error/add-on plus a ppm

(parts per million) error/add-on.  The ppm assigns larger error estimates to longer lines.  Typical total

station error estimate add-ons to repetition error are 0.005-0.01 foot (0.002-0.004 meter) and 2-10

ppm.  Typical error estimate constants are 0.01-0.02 foot (0.004-0.008 meter) and 5-20 ppm.  Note

the constant is in feet or meter while the ppm is unitless.

Trigonometric Or Differential Leveling Elevation Difference

Trigonometric elevation difference error estimation is usually associated with a constant error/add-on

plus a ppm (parts per million) error/add-on.  The ppm assigns larger error estimates to longer lines. 

It is a well known fact that error in trigonometric leveling propagates faster for longer distances than

the error in horizontal distance.  Typical total station add-ons to repetition error are 0.02-0.05 foot

(0.008-0.02 meter) and 30-100 ppm.  EFBP only supports error estimate constants for trigonometric

leveling which typically are 0.03-0.10 foot (0.01-0.03 meter).  Note, the constant is given in feet or

meters while the ppm is unitless.

Differential leveling does not usually require any form of repetition.  Therefore, independent of type

of defined error estimation, elevation differences at a setup are assigned a user defined error

estimate which usually ranges from 0.002-0.01 foot (0.001-0.003 meter).

Horizontal Angles

Horizontal angle error estimation is usually associated with a constant error/add-on plus a setup

error.  The setup ensures that shorter lines receive larger error estimates as measuring directions on

a shorter line is more difficult than on a longer line.  Setup error can be thought of as our inability to

position exactly over the occupied or sighted station.  The error due to setup is the inverse tangent of
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the setup error (foot or meter) divided by the length of the line.  Typical total station constant error

add-on is usually 3-20 seconds, while the constant error estimate is usually 6-30 seconds. 

If repetition error plus add-ons is used, error estimate of a angle is :

(repetition error2 + constant add-on2 + BS setup err.2 + FS setup err.2)

If user defined error estimation is used, error estimate of an angle is :

(constant err.2 + BS setup err.2 + FS setup err.2)

Setup error is used in both methods of error estimation, and is generally 0.003 to 0.01 foot (0.001 to

0.003 meter).  Setup error is linear units sensitive.

Azimuths

EFBP only accepts azimuths in the .CTL file.  In the CTL program you are able to assign error

estimates to them.  The azimuth add-on in the EFBP menu is there for future implementation only.  If

the azimuth error estimate has not been entered into the .CTL file, the azimuth error estimate

constant in the EFBP menu will be used.

No matter which of these two procedures apply, setup error is always added to the constant error. 

Setup error is calculated exactly as in horizontal angle error estimation.

The azimuth error estimate is calculated from constant and setup error by :

(constant error2 + setup error2)
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Control Coordinates

A control coordinate (horizontal or vertical) can be treated as a measurement with an appropriate

error estimate if one desires.  This will allow control to adjust along with the rest of one's

measurements.  The error estimate for control coordinates is in the .CTL file.

Another safeguard to preventing control from adjusting is that if error estimate from user defined

constants is selected (do not use repetition error) EFBP will ignore values in .CTL and assign error

estimates of 0.001 foot or meter to all control.

Allowing control to adjust based on non-fixed error estimates has several outstanding abilities.  Used

with robustness, it is a powerful tool in finding control problems which are often station naming or

incorrect data entry.  It also lets you evaluate the quality of your measurements without errors in the

control coordinates having an affect.  It also lets you weight different control accuracy’s relative to

one another.

Normally, one wants to not allow control to adjust and thus when

entering control default error estimates are assigned of 0.001 foot or

0.001 meter.  This error estimate is so superior to the other

measurements that control will not adjust. 
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Chapter Eleven  - Validating Of Measurements

Least squares analysis provides a large number of indicators which evaluate the quality of your

measurements.  The key indicator is the residual which is the difference between the measurement

and its adjusted equivalent which is derived from inversing final coordinates.  If all of your residuals

are within what you would call acceptable random errors in surveying, you should deem the final

coordinates acceptable.

Residual vs. Error Estimate

A residual and an error estimate for a particular measurement share a very important relationship. 

Simply looking at a residual does not always give you a clear interpretation without observing its

error estimate.

As an example, consider two angle residuals of ten (10) and sixty (60) seconds respectively.  At first,

it looks like the second is much worse than the first and is indicative of a blunder.  But the 10 second

residual is associated with a 4 second error estimate because of long sight distances, while the 60

second residual has a 12 foot backsight distance and a 14 foot foresight distance which created an

error estimate (mostly due to setup error) of 80 seconds.  Both are acceptable measurements as the

residuals and error estimates are within the same reasonable level of magnitude.

One should be concerned when the residual is significantly larger than the error estimate.  Simply

being larger than the error estimate is not a reason for concern as, from a statistical standpoint, only

approximately 67% (one sigma) of our acceptable measurements should have residuals smaller than

our error estimates.  A general rule of thumb is if any residuals are more than three times the size of

their respective error estimates a user is 95% certain there is something wrong with at least one of

the measurements or control coordinates.  Note this may be numeric (measurement) or a station

naming problem.  In most cases the problem can be resolved and the data reprocessed without

elimination of the measurement.

A significant amount of large residuals of the same sign indicates systematic error.  An example is a

survey which ties to "good" control that produces all negative distance residuals.  This could be an
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indicator of an instrument/prism offset constant error.

Snoop Number

Looking at a large number of residuals and error estimates is difficult as one has to mentally make

the association of magnitude of the two quantities.  To simplify this in both the 1D and 2D least

squares reports snoop numbers are associated with all measurements.

A snoop number is the absolute value of the residual divided by the error estimate.  If the residual is

larger than the error estimate the snoop number is greater than one, and a residual which is smaller

than the error estimate produces a snoop number less than one. 

Usually a series of flagged residuals can be traced to a single problem, and the asterisks go away

once the problem is resolved and reprocessing occurs.

The best part of the snoop number concept is how it relates to measurements of the same type

which have different error estimates.  Let us revisit the example and consider two angle residuals of

10 and 60 seconds respectively.  At first it looks like the second is much worse than the first and is

indicative of a blunder.  But the 10 second residual is associated with a 4 second error estimate

because of long sight distances, while the 60 second residual has a 12 foot backsight distance and a

14 foot foresight distance which created an error estimate (mostly due to setup error) of 80 seconds.

The 10 second residual would produce a snoop number of 2.5, and the 60 second residual would

produce a snoop number of 0.75.  The snoop number shows the 10 second residual indicates a

worse observation than the 60 second residual.  The 2.5 snoop number is usually regarded as

acceptable, but is nearing the concern magnitude and thus may warrant some investigation.

Snoop numbers which are greater than three are flagged with

asterisks.  These asterisks are used to highlight a potential problem

or problems.
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Root-Mean-Square Error

The root-mean-square (rms) error is associated with a particular type of observation type, and can be

thought of as an average residual for that type of observation.  To eliminate the affect of the

positive/negative nature of residuals, rms error is the square root of the sum of the squares of the

residuals divided by the number of that observation type.  Note, it does not take into consideration

the differences in error estimates for a given observation type.

Root-Mean-Square Snoop Number

RMS snoop number is for a given observation type, and is the square root of the sum of the squares

of the snoop numbers divided by the number of that observation type.  It takes into consideration the

differences in error estimates, and is thus a better indicator of data quality than the standard rms

error.  Note a 2D adjustment may yield rms snoop numbers for horizontal distances and angles of

0.4 and 2.8 respectively.  This could be an indicator that your default error estimate parameters for

distances should be tightened up and the default error estimate parameters for angles loosened up.

Note that substandard control coordinates which are held fixed will produce higher residuals and rms

errors in the measurements.  One should be very careful in evaluating your measurement residuals 

as some of it may be derived from its "fit" to the control coordinates.

Maximum Residual

Maximum residual is the largest (absolute value) difference between measured and adjusted values

for a particular type of measurement.  One quick way to verify data quality is verifying if the

maximum residuals are insignificant in size.  Note the maximum residual may not be associated with

the largest snoop numbers due to varying error estimates.

Degrees of Freedom

Degrees of freedom is the amount of redundancy in an adjustment.  Redundancy is the number of
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measurements beyond what is needed for unique computation of coordinates.  Note this value is

computed after sideshots are removed though including them would not change the number of

degrees of freedom.

In the 1D adjustment the number of degrees of freedom is the number of benchmarks plus the

number of elevation differences minus the total number of stations.

In the 2D adjustment the number of degrees of freedom is the number of control coordinates plus the

number of distances plus the number of angles plus the number of azimuths minus the total number

of coordinates.  Note the number of control coordinates is two times the number of horizontal control

stations, and the total number of coordinates is two times the total number of stations in the 2D least

squares analysis.

Standard Error of Unit Weight

The standard error of unit weight is the square root of the sum of the square of the weighted

residuals divided by the number of degrees of freedom.  A weighted residual is a snoop number. 

The standard error of unit weight is thus the overall indicator of the fit of the error estimates to the

residuals, and should be near one.

Chi-Squared Test

The chi-squared test is an analysis of the suitability of the standard error of unit weight.  The chi-

squared test in EFBP is performed at 95 % (.05 level of significance) confidence in what is termed a

two tailed test.  The two tailed test means the standard error of unit weight could be too high or too

low.  Obviously, a low standard of unit weight (less than one) should be considered positive - you did

better than expected - but the chi-squared test could "fail" on this end.  Most people would consider

doing better than expected not failure, but the chi-squared test is simply saying that in the future you

may want to start using tighter error estimation parameters.

The chi-squared low and high ends of success/failure are based on the number of degrees of

freedom.  A lower degree of freedom gives a larger spread.  This is because a lower degree of



                             Technical Reference Handbook

Electronic Field Book Processing System - 49

freedom lends itself to more data variability, while a higher number of degrees of freedom means the

outliers have less affect on the standard error of unit weight.  You are not being punished for higher

degrees of freedoms which produces tighter chi-squared high/low tolerances - data variability simply

has less affect when you have more degrees of freedom and thus you need tighter high/low

tolerances.

If the chi-squared test passes you are 95% confident that there is no problem with your data.  It is not

easy to consistently pass this test as rarely in surveying are you 95% sure about anything.  The

magnitude of the snoop numbers and residuals should be the judge of suitability even if the chi-

squared test fails.

Minimally Constrained vs. Constrained Adjustment

A minimally constrained adjustment is one where a minimum amount of control is used so that the

least squares reports are based solely on one's measurements, and not how one's data "fits" all

control that has been tied to.  In a 1D minimally constrained least squares one benchmark is held

fixed, and in a 2D minimally constrained analysis one control point and one azimuth are held fixed. 

To derive meaningful results from a minimally constrained adjustment one must ensure a reasonable

amount of redundancy can still be achieved in absence of redundant control coordinates.

EFBP provides two mechanisms for a quick procedure for obtaining a minimally constrained

analysis.  If no control (.CTL) file exists EFBP will assume arbitrary 3-D control coordinates of

(10000, 10000, 500) for the first setup and an azimuth of due north to the first sighted station.  If a

control file exists one can assign large error estimates to the control and render its affect on the

measurement residual statistics null.

If sufficient redundancy exists the minimally constrained and

constrained analyses can be compared to see if any lack of fit

between measurements and control coordinates exists.
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Chapter Twelve  - Validating Repeatability

Least squares can estimate the quality/repeatability of adjusted coordinates through post-adjustment

coordinate standard deviations and error ellipses.  EFBP computed these values at a 95% level of

confidence.  These computed values are all relative to control coordinate location, i.e.,

repeatability/reliability of a coordinate close to control is of a smaller magnitude than a coordinate

which is a long distance or number of stations from control.

Introduction - Geometry Considerations

Geometry of the survey network has an affect on post-adjustment standard deviations and size of

error ellipses.  It also validates what we know about how error propagates in surveying.  As an

example, trigonometric leveling would produce larger elevation standard deviations than a

differential level survey through the same points.  A traverse running north-south will produce

smaller northing (Y) than easting standard errors.  This is because we measure distances more

precisely than angles due to the EDM, and this makes coordinates in the direction of the traverse

more reliable than coordinates which are perpendicular to the traverse direction.  Finally, an

intersection which produces a very non-equilateral triangle will produce higher coordinate standard

deviations than an intersection where the triangle is near equilateral.

F Statistic Multiplier

To achieve more than one sigma (67%) confidence the F statistic multiplier is applied to all

coordinate standard deviations and error ellipse dimensions.  The size of the multiplier is a function

of desired confidence level (EFBP produces everything at the 95% confidence level) and the number

of degrees of freedom.  The multiplier decreases in size as the number of degrees of freedom

increases.

One standard deviation standard errors and error ellipse dimensions are converted to 95%

confidence via the F-statistic multiplier.
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This value is (three significant figures):

    

of degrees of freedom  F statistic multiplier

          1                          20.00

          2               6.16

          3               4.37

          4               3.73

          5               3.40

          6               3.21

          7               3.10

          8               2.99

          9               2.93

         10              2.86

         11              2.83

      12 - 14            2.77

      13 - 18            2.71

      17 - 26            2.64

      25 - 36            2.58

      35 - 46            2.55

      45 - 60            2.52

      59 - 75            2.51

      74 - 90            2.50

      89 - 120           2.49

    119 - 150          2.48

    149 - 180          2.47

    179 - 210          2.46

       210+            2.45

    

This tells you adding degrees of freedom initially enhances your ability to have better confidence in

your work.  Note after approximately 25 degrees of freedom the F-statistic goes down very slowly.

This is analogous to why, after a certain point, repeated measurement of a value does little good in

improving its standard deviation in the mean.
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The other value affecting standard errors of coordinates and error ellipse dimensions is that the

standard error of unit weight is also applied as a multiplier.  This makes sense as a standard error of

unit weight of 1.0 indicates approximately twice the quality of a standard error of unit of 2.0.

    

Consider the following example :

    

standard error of unit weight = 1.34

degrees of freedom = 10 -- F- statistic multiplier = 2.86

one standard deviation coordinate error = 0.034 meter (assumes standard error of unit weight = 1.00)

95% confidence coordinate error = 1.34 x 2.86 x 0.034 = 0.13 meter

    

Weak geometry/ strong geometry in intersections and resections shows up very quickly in

evaluations of error ellipses and coordinate errors. Likewise the inherent larger errors in eastings in

north-south road projects is evident in reviewing error ellipses.

    

Coordinate Standard Deviations

EFBP produces all post-adjustment coordinate standard deviations at a 95% level of confidence

based on the F statistic multiplier and the standard error of unit weight.  Coordinate standard errors

will be smaller near fixed control as the repeatability of that coordinate is easier than a station which

is further away from control.

Post-adjustment standard deviations are very much a function of survey geometry.  As an example,

a north-south traverse will generally produce  smaller northing errors than the easting error for the

The meaning of the post-adjustment coordinate standard deviation is

if the same survey was performed over again, using the same

equipment under the same conditions,  you are 95% sure that the

second survey's coordinates will be  within (plus-or-minus) the

standard error about the first survey's coordinate.  The standard error

gets larger for higher confidence levels.
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same point.  The easting errors could be reduced by astronomic observations, additional control, or

ties in an east-west direction.

Error Ellipses

Error ellipses are output by EFBP at 95% confidence, and are thus multiplied by the F-statistic

multiplier and the standard error of unit weight.  An error ellipse is defined by SU - semi-major axis,

SV - semi--minor axis, and T - angle of the semi-major axis off north (clockwise positive).  A semi-

axis is from the center to the external edge of the ellipse.  The semi-major is the longest axis of the

ellipse, and the semi-minor is the shortest axis and is 90 degrees from the semi-major axis. 

The least squares adjusted coordinate is at the center of the ellipse.  Error ellipses will be smaller

near fixed control as the repeatability of that coordinate is easier than a station which is further away

from control.

Error ellipses are very much a function of survey geometry.  As an example, consider a tower a long

distance from the job site which is being used simply as a direction check from a number of stations.

Since it is very doubtful good geometry of equilateral triangles exists, the error ellipse for the

intersection will be large, especially in the direction of the survey lines to the tower.  In this case this

is expected, and there is nothing wrong with the measurements to the tower unless large residuals

exist to it.  It still provides a good directional check for the job, but its final coordinates should not be

treated as fixed if another survey ties to it.

The meaning of the error ellipse is if the same survey was performed

over again, using the same equipment under the same conditions,

you are 95% sure that the second survey's coordinates will be within

(plus-or-minus) the error ellipse about the first survey's coordinate. 

The error ellipse gets larger for higher confidence levels.
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Repeatability of Derived Quantities

The post-adjustment statistics of coordinate standard deviation and error ellipses are indicators of

reproducibility if one performed the same survey over under the same conditions.  A subsequent

survey which does not exactly follow this rule should not be using this information as you are not

comparing relatable items.  Any post-adjustment standard deviation or error ellipse should definitely

not be regarded as the error in the "absolute position"  of the point as that in no way follows the rules

which they are based on.  One should be extremely careful in understanding the limits of the

interpretation of error ellipses.
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Chapter Thirteen  - Theory of Least Squares Solution

While the theory of least squares adjustment as it applies to surveying can be found in well

documented form in several text books, several of the important concepts are presented here in

simple form.

Minimization

Least squares minimizes the sum of the squares of the weighted residuals.  A weighted residual is

the residual divided by the error estimate.  That quantity is what is squared, and each measurement

(observation) needs to included in the summation.

To obtain a minimum the sum of the squares of the weighted residuals are subjected to partial

differentiation with respect to the parameter which is the residual, and that equation is set equal to

zero.  Since it is desired to solve for the unknown coordinates,  the observation equation is used to

substitute for the residual in terms of the unknowns.  An observation equation defines a

measurement plus its residual in terms of an equation which defines the measurement in terms of

coordinates. 

The observation equation for an elevation difference is simply the "to" station's elevation minus the

"from" station's elevation.  The observation  equation for a horizontal distance is the Pythagorean

theorem "inverse" of the coordinates.  The observation equation for an azimuth is the tangent

inverse of the change in eastings divided by the change in northings.  The observation equation for a

horizontal angle is the difference between the foresight and backsight directions, and is thus the

similar to an azimuth applied twice where the two values are differenced.  The observation equation

for a control coordinate is simply the input coordinate is equal to its adjusted value plus the residual.

The second derivative can be taken and solved.  This results in a positive value which assures we

have computed a minimum (a negative value assures a maximum has been calculated).
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Linearization

Certain observation equations cannot be directly solved because they are non-linear.  A non-linear

equation is any equation with any exponentials besides one (including square root) or any

trigonometric functions which include unknown coordinates.  The observation equations for

differential leveling and control coordinates are linear,  and the observation equations for distance

(square root and squared), azimuths (tangent inverse), and angles (tangent inverse) are non-linear.

The 1D least squares adjustment is thus linear and is solved directly.  Solved directly means the

elevations are directly solved for.

The 2D least squares adjustment contains non-linear equations and thus requires linearization. 

Linearization is performed using a Taylor's series expansion where all but the first order differentials

are considered negligible.  This approach requires input of approximate values for all unknowns

(coordinates), and the solution is actually for updates to the approximate coordinates. 

The update process is iterative (note the 1D least squares does not iterate) where the updates to the

unknowns eventually become insignificant.  In cases of large blunders the solution may actually get

worse as iterations proceed (divergence).  EFBP uses 0.001 foot or 0.001 meter as the maximum

update convergence criteria, and also quits iterating if divergence or 10 iterations occur.

Both minimization and linearization involve calculus (differentiation).  Note, a user of least squares

does not have to understand  the derivation and is thus not required to have knowledge of calculus.

Normal Equations

Least squares forms and solves a "n x n" system of equations where n is the number of unknowns. 

The number of unknowns is the number of stations in a 1D adjustment (one elevation per station)

and in the 2D adjustment it is two times the number of stations (two coordinates per station).  The

equations which are formed and solved are called the normal equations.
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Cholesky Solution (Positive Definite Systems Of Equations)

System of equations can be solved by a variety of methods.  Least squares normal equations in

surveying always belong to a class of equations which are positive-definite.  The understanding of

the positive definite class  of equations is a topic of linear algebra.  A user of least squares does  not

need to know linear algebra.

The positive-definite classification can be taken advantage of and solved using the Cholesky (square

root) solution.  This type of solution is less prone to round-off and is significantly faster than more

generic forms of solution.  EFBP uses the Cholesky solution in the 1D and 2D least squares

algorithms.

The normal equations in surveying are always symmetric (the term in row 2, column 5 equals the

term in row 5, column 2).  This allows EFBP to only have to store approximately 50% of the terms

which saves on computer storage and the amount of necessary computations.

Variance-Covariance Matrix

If the normal equations are written as NX=C where N is a "n x n" system of coefficients, X is an "n x

1" vector of unknowns, and C is the "n x 1" vector of constants, let N-1 be another "n x n" system of

coefficients which results from NX=C being re-written as X=N-1C.

N-1 is called the inverse of N, and it can also be shown that it represents the variance-covariances of

the unknown coordinates.  N-1 is thus the coefficients from which post-adjustment coordinate

standard deviations and error ellipses can be derived.  To obtain this information only a very small

fraction of terms in N-1 (2 x n terms) need to be calculated.  The Cholesky solution can again be used

to efficiently calculate these variance-covariance terms.

If no redundancy existed, simple error propagation of coordinate equations and variance-covariance

would yield identical results.  The simple equation based error propagation cannot efficiently handle

redundancy in a survey in calculating the results of coordinate standard deviations and error ellipses.

A user does not have to understand the derivation of the variance-covariance matrix.  A user simply

needs to know how post-adjustment error analysis should be utilized.
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Sparsity of the Normal Equations

Solving a system of "n equations, n unknowns" where n is large is a very time consuming problem

even on a fast computer.  It is compounded by the fact that in the 2D adjustment the system has to

be solved multiple times as the solution iterates to convergency.

The normal equations in survey adjustments tend to be sparse, i.e., many of the coefficients are

zero.  This is true because a non-zero term indicates two stations are directly connected by a

measurement.  While it is possible that every station in a survey is directly connected to every other

station by a measurement (no zero terms), this is highly unlikely.  In survey networks a particular

station is usually only directly connected by measurements to a small subset of the total number of

redundant stations.  The number of zero terms is thus quite large as a percentage of the total

number of terms.

What you want to avoid is having the computer is operate on zero terms - adding zero to a number,

or multiplying zero times a number and adding it to another number, are unnecessary operations.  It

is also possible to not store zero terms in a computer register.  The location of the zero terms in the

normal equations defines if an algorithm can eliminate storage of zero terms and eliminate most of

the addition of zero terms.

Taking Advantage Of Sparsity - Bandwidth Optimization

EFBP uses a bandwidth optimization process in taking advantage of the sparsity of the normal

equations.  This process is actually a station reordering which places the zero terms in a grouped

area so that the algorithm knows not to store or operate on those terms.  The bandwidth optimization

process places stations which are directly connected by a measurement(s) in close proximity in the

reordered list.

While the number of bandwidth optimization algorithms is immense, EFBP uses a simple one which

works very well for survey network type station connectivity.  Note it applies to the survey after

sideshots have been eliminated.  The algorithm starts at a station with the most number of

connected stations (connected by a measurement).  Connected stations are added to the list.  Next

stations not in the list are added which are connected to the second station in the list, then the third
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station, etc.  Eventually every station is in the list.

The bandwidth is displayed as it is one of the elements in estimating how long the least squares will

take to process.  Survey networks with small redundancy will tend to have a smaller bandwidth as a

percent of the number of stations in the network.  As a survey becomes more interconnected

(redundant) the bandwidth becomes a larger percent of the total number of stations.

Bandwidth optimization is essential for efficient solution of least squares problems.  Knowledge of

how the bandwidth procedure works is not required for a user of EFBP.

The term maximum bandwidth refers to the reordered station list. 

The furthest "distance" in the list between two stations directly

connected by a measurement is the maximum bandwidth.  This is

computed as the list is being built.
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