
Improved Storm Surge Anaylsis

Topic Description

There were two major goals for the Storm Surge project.  In previous work we found that coupling wave models together with 
storm surge models had a strong influence on the total surge.  Typically waves contribute about 30% to the total water elevation.  

In this study we wanted to introduce two-way coupling between the wave and surge models to see if the change in water levels 
from the surge would effect the wave field enough to make significant adjustments to the wave contribution to the total surge.   The

second aspect we examined was the effect of including different sizes of bays and inlets to the open coast storm surge models 
during hurricanes.  We wanted to test how much the open coast storm surge changed when a bay was well resolved along the 

coast.  In both studies, we were surprised by the results.
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Motivating IssueMotivating Issue
►►Wave fields depend on water depth Wave fields depend on water depth 

κκ = Wave height / Water depth = 0.78= Wave height / Water depth = 0.78
Linear theory suggests that Setup = 20% of Linear theory suggests that Setup = 20% of 
deep water wave heightdeep water wave height
Offshore waves of 10Offshore waves of 10--20 meters common in 20 meters common in 
hurricanes.hurricanes.

►►Surge Changes the Water Depths, Surge Changes the Water Depths, 
sometimes dramatically. sometimes dramatically. 

►►TwoTwo--way coupling could potentially change way coupling could potentially change 
coastal wave heights enough to adjust wave coastal wave heights enough to adjust wave 
induced setup at shorelineinduced setup at shoreline
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Wave Setup Modeling SystemWave Setup Modeling System
1. Calculate deep water waves in Gulf of Mexico in Basin domain. 

2. Pass the time dependent Spectral Wave Boundary Conditions 
to SWAN (Simulating WAves Nearshore) in nested Coastal 
Region domain.

3. Run ADCIRC (ADvanced CIRCulation model) with wind & wave 
forcing in the Gulf to get time dependent water elevations.

4. Rerun Regional SWAN model with ADCIRC water elevations. 

5. Pass Regional SWAN Spectral B.C.’s and ADCIRC water 
elevations to 9 High Resolution nested Coastal SWAN domains.  

• Include barrier island overtopping and inland flooding.

6. Calculate Surge and Wave Setup from improved wave fields.

7. Examine sensitivity to time step of two-way coupling 

1  2  3  4  5  6  7  8  9

Test System on Hurricanes Katrina and Ivan Test System on Hurricanes Katrina and Ivan 
Basin and Region Wave Domains showing the Basin and Region Wave Domains showing the 

9 Nested Coastal Domains9 Nested Coastal Domains

Basin

Region
Coastal Domains

Region



3

Before Flooding

Coastal Domain 2

Before Flooding

Coastal Domain 7
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Wave Setup Flow ChartWave Setup Flow Chart
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Coastal Wave Model DetailsCoastal Wave Model Details
►► 5 degree directional wave spectra 5 degree directional wave spectra (72 directional bins)(72 directional bins)

►► 26 frequency bins    (0.03138 to 0.4177428 Hz) 26 frequency bins    (0.03138 to 0.4177428 Hz) 
►► Spatial resolution:  160 metersSpatial resolution:  160 meters
►► 301 x 151 grid points in Coastal Domains301 x 151 grid points in Coastal Domains
►► Physics: Physics: 

NonNon--StationaryStationary
bottom frictionbottom friction

depth limited breakingdepth limited breaking
White cappingWhite capping
Triad and Quadratic waveTriad and Quadratic wave--wave interactions.wave interactions.
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Maximum wave heights during stormMaximum wave heights during storm

Hurricane Katrina

Buoy 42040 near strong wave 
height gradient

Effect of Water elevations on wave predictionsEffect of Water elevations on wave predictions
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Effect of Water elevations on wave predictionsEffect of Water elevations on wave predictions
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Wave Forces (Radiation Stress Gradients)Wave Forces (Radiation Stress Gradients)

Maximum Envelope of Water (MEOW)Maximum Envelope of Water (MEOW)
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Coastal Surge from WavesCoastal Surge from Waves
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Idealized Storm StudyIdealized Storm Study
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Hurricane with properties similar to IvanHurricane with properties similar to Ivan
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Waves across the shelf Waves across the shelf –– steady steady 
winds, 50 winds, 50 m/sm/s, 70 , 70 m/sm/s
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Summary of Idealized Storm TestsSummary of Idealized Storm Tests

►The waves have a modest impact on the 
overall surge in this idealized example.

►The two-way coupling doesn’t have a 
significant impact on the solution.

The set up due to waves is around 10% of  
the overall surge for a mild slope and over 
20% for a steeper slope.

► The majority of wave height decrease is caused by 
the steepness limited breaking condition 

(i.e., the theoretical limit for monochromatic waves is 
approximately H / L = 1/7). 

► This occurs in regions farther offshore than where 
depth limited breaking would occur. 

Depth limited breaking, i.e., g = H / h = 0.73  is not often 
reached on shallow shelves for large wave conditions.

► As the deep water wave spectrum shoals across 
intermediate depth water on the shelf, the 
wavelength decreases, causing the significant wave 
height to decrease through white capping.  Since 
this occurs in relatively deep water, the resulting 
setup is relatively small. 
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SummarySummary

Tested twoTested two--way coupling between Waves and Surge way coupling between Waves and Surge 
for idealized and historical storms.for idealized and historical storms.

►► Two way coupling gives more accurate wave field Two way coupling gives more accurate wave field 
estimates for Hurricane Katrina. estimates for Hurricane Katrina. 

►► Iterative coupling (at refined time steps) produces Iterative coupling (at refined time steps) produces 
limited improvement. limited improvement. 

►► Results depend significantly on Shelf Topography!Results depend significantly on Shelf Topography!


